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Abstract—Handover is the process of transferring a cellular
call or data session from one base station (BS) to another. This
process aims to establish reliable and uninterrupted connection,
thereby providing satisfactory Quality of Service (QoS) and
Quality of Experience (QoE) for users. 5G networks will use
millimetre wave (mmWave) frequencies in addition to sub-6 GHz
bands, which will make handover (HO) more challenging. This
paper focuses on the problem of partially blind HOs which is a
novel HO type. In this sense, we modify an extant algorithm
used for the partially blind HOs [1] which the algorithm is
based on machine learning (ML). In our modified algorithm, we
use the extant algorithm with a powerful boosting method that
is Categorical Boosting (CatBoost). We compare our modified
algorithm with a baseline algorithm, the originally proposed
algorithm, Support Vector Machine integrated original algo-
rithm. Different settings of simulation time and number of users
are considered in comparing the algorithms, and our modified
algorithm outperforms the rest of the algorithms in majority of
the settings with higher HO prediction rates as per obtained
results. The obtained results clearly indicate that the integration
of ML with partially blind HOs enables accurate predictions
whether HO execution will be successful in collocated cells in a
network in the real-world case. A noteworthy takeaway from the
obtained results is that ML deployment with partially blind HOs
will likely contribute to self-organizing networks (SONs) in 5G
communication systems.

Index Terms—machine learning, mmWave, 5G, handover,
blind handover, self-organizing networks (SONs), Categorical
Boosting (CatBoost), eXtreme Gradient Boosting (XGBoost)

I. INTRODUCTION

Millimeter wave (mmWave) frequencies range from 24 GHz
to 52.6 GHz [2]. These frequencies are much higher than
those used by 4G LTE, and this feature allows mmWave to
offer much higher speeds and capacity. However, mmWave
signals have a much shorter range and are more susceptible to
interference than traditional cellular frequencies. In this sense,
this feature limits the use of mmWave in outdoor areas and
dense urban areas with good line-of-sight.

Collocated cells are two or more base stations (BSs) located
in the same physical location. They are able to use both sub-6
GHz and mmWave frequencies, which can assist in mitigating
the disadvantages of mmWave by providing a wider range
and better resistance to interference. This feature ensures that
a device remains within range and provides an uninterrupted
connectivity.

This paper is funded by Türk Telekom, and authors of the paper thank to
Türk Telekom for this financial support.

5G is a wireless communication standard that can operate
in both mmWave and sub-6 GHz bands. Both band types have
their own advantages and disadvantages. The mmWave offers
higher data rates and capacity than sub-6 GHz, but has a
shorter range and is more susceptible to interference. Sub-6
GHz offers a longer range and better resistance to interference
than mmWave, but offers lower data rates and capacity. As
a result, 5G networks can provide a wide range of services
and applications, from high-speed data transfer to wide-area
coverage.

In this paper, we extend the original algorithm in [1] to
predict whether a handover (HO) from LTE to 5G mmWave
will be successful without the need for a measurement gap.
A measurement gap is a period of time during which data
transmission is paused so that a user equipment (UE) can mea-
sure the signal strength of target technology. One significant
concern associated with measurement gaps is that they may
cause a decrease in the perceived end-user throughput.

Our algorithm tries to learn a statistical relationship be-
tween the signal strengths of the sub-6 GHz and mmWave
frequencies. If the algorithm predicts that the HO will be
successful, the UE can skip the measurement gap, and continue
data transmission. This can improve the perceived end-user
throughput, and reduce the risk of a failed HO.

Ref. [3] presents an FL-based CSI estimation and feedback
scheme designed for mmWave massive MIMO systems. This
scheme employs a decentralized approach, where each user
trains a local model on their own data and subsequently
shares model parameters with the central BS. It involves
three key components: an CSI estimate module, a compression
network, and a CSI recovery network. Numerical results show
that the scheme outperforms traditional centralized learning
approaches in terms of CSI estimation and feedback perfor-
mance while also reducing transmission overhead. In certain
instances, our methodology obviates the necessity for CSI
estimate by delegating the task to the BS, which conducts
channel estimation on behalf of the UE utilizing gathered data.

Ref. [4] presents a compressed sensing-based approach for
CSI estimation in mmWave MIMO systems. The proposed al-
gorithm simultaneously estimates dynamic angle-of-departure,
angle-of-arrival, and channel amplitudes. Simulations demon-
strate superior performance compared to Orthogonal Matching
Pursuit in terms of computational efficiency and normalized
mean squared error (NMSE). The paper found that CSI estima-
tion in mmWave MIMO systems is challenging. The proposed



model successfully addressed this challenge by leveraging
measurements obtained from the sub-6 GHz system to estimate
the received signal power in the mmWave band.

Ref. [5] examines the potential of using out-of-band infor-
mation for mmWave signal power estimation. While it con-
siders three sources of out-of-band data (spatial information,
sub-6 GHz signals, and wireless sensor networks), it neglects
statistical learning, temporal reuse of mmWave measurements,
and diverse radio protocols, including the HO procedure. Our
study aims to address these shortcomings and improve the
accuracy of mmWave signal power estimation. Additionally,
Ref. [5] does not cover diverse radio protocols associated with
the mentioned technologies, including the HO procedure.

This study is based on Ref. [1] in which authors proposed
a model to improve HO success rate using the concept of par-
tially blind HOs for collocated LTE sub-6 GHz and mmWave
bands, and a machine learning (ML)-based algorithm. Partially
blind HOs allow the UE to estimate the mmWave frequencies
from the common LTE service cell measurements in the sub-
6 GHz band. The measurement of mmWave frequency by the
UE prior to HO is not explicitly performed, hence enabling a
more precise estimation of the potential success of the HO.

Partially blind HOs have the following advantages over
blind HOs and measured HOs:

• They make more accurate predictions than the blind
HOs. The blind HOs predict whether a HO will be
successful based only on the conditions of the current
cell. The partially blind HOs, on the other hand, make
more accurate predictions by considering the conditions
of both the current and target cells.

• They are more efficient than the measured HOs which
measure the conditions of both cells to determine whether
the HO will be successful, and this may reduce the UE’s
data rates. However, the partially blind HOs measure only
the conditions of the current cell to spot whether the HO
will be successful. Therefore, this helps preserve data
rates of the UE.

The concept of partial blind HOs works as follows: (i) the
UE performs measurements of the common LTE service cells
in the sub-6 GHz band; (ii) these measurements are used by
an ML algorithm to estimate the mmWave frequencies; (iii)
the estimation is used to determine whether the HO will be
successful.

We build our study on the work of Ref. [1] by modifying
the originally proposed algorithm for partially blind HOs.
The originally proposed algorithm used eXtreme Gradient
Boosting (XGBoost) for prediction of HO success or failure,
and we replace this ML method with a novel one-that is
Categorical Boosting (CatBoost). As a result, we outstrip the
originally proposed algorithm with XGBoost. This achieve-
ment of CatBoost may stem from its symmetric tree use in
model construction leading to get higher performance without
using more complex tree structures in modelling, and avoiding
overfitting issue. In this sense, the paper brings a novelty for
partially blind HO models in the literature by extending the
extant algorithm for self-organizing networks (SONs) for 5G
communication systems.

II. SYSTEM MODEL

System model comprises of two components as in Ref.
[1]; radio network of system and ML model. The network
part includes connected users and two co-located cells in an
urban-environment. On the other hand, the ML model part
includes CatBoost classifier method to orchestrate HO decision
by overriding if it is necessary as per the estimation obtained
from history of HO decision success for a relevant user in the
system.

In the context of the system model, the collection period T
is constrained by the channel coherence time, which represents
a temporal interval during which measurements are gathered.
It is important to note that T must not surpass this coherence
time. Given that HOs are not required for all users within
the system, it is imperative that the quantity of data points
collected does not exceed the number of HO attempts. The
method is done again by the eNodeB for a specific UE
whenever the UE establishes a radio connection or undergoes
a HO to a new eNodeB [1].

A. System Radio Network

The radio network used in this study consists of two
collocated circular cells in a dense urban environment with
a radius of R. The cells employ distinct technologies and
frequencies.

In any cellular network, the UE measures the signal strength
and quality of signals received from BSs, and then reports
them to BSs. In this network, the BSs possess the capability
to determine the necessity of implementing a measurement
gap in LTE. This determination is made by leveraging the
insights generated by an ML algorithm, which forecasts the
adequacy of signal strength in the 5G mmWave band for a
certain UE. HOs are employed to ensure the uninterrupted
provision of services as the UE approaches the boundary of
network coverage.

The UEs inside the network are spatially dispersed in
accordance with a homogeneous Poisson point process (PPP)
[6]. The PPP has an intensity parameter λ, which represents
expected number of UEs per unit area. The number of UEs in
the network service area W is a Poisson random variable with
mean λW

∆
= λπR2.

Position of each UE is independently and identically (i.i.d.)
sampled from a continuous uniform distribution in the plane
R2 using polar coordinates (ri, θi), where 0 ≤ ri ≤ r and
0 ≤ θi ≤ 2π. Figure 1 shows a simulated network layout
at time t=0. In the figure, blue dots represent the users in
the system while red triangle in the origin represents the BS.
Poisson point process resampling is performed while the users
move throughout 1 < t ≤ Tsim. The radio parameters of this
network are presented in Table III.

B. Machine Learning Model

In this part of the system model, we utilize CatBoost classi-
fier method, which was proposed by Yandex research team [7],
to predict HO success or failure to make decision of overriding
action based on historical HO success for the user. CatBoost
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Fig. 1. The simulated network layout at time t=0 [1].

TABLE I
FEATURES FOR MACHINE LEARNING METHOD

Parameter Type Description of the parameter

x1 (x,y) float UE coordinates

x2 Distance float Euclidian distance between
the UE and BS

x3 RSRP x float RSRP in x=LTE,mmWave bands

x4 Gap closed boolean Was event A1 based on UE’s
RSRP measurement reported?

x5 Gap open boolean Was event A2 based on UE’s
RSRP measurement reported?

method replaces previously utilized ML method in the original
algorithm [1], XGBoost, to outstrip it in the prediction of HO
success or failure to guide a 5G SON system. This method is
one of the boosting methods similar to XGBoost. It is scale
invariant, robust to overfitting problem, and adept in better
capturing relationship between inputs and output, and learning
higher order relationships as well [8]. The method tries to
minimize convex loss function by differentiation to get an
optimum solution. Input set used in the paper is an m × n
matrix that is X. The input set X contains features showcased
in Table I as is the same in Ref. [1].

We use supervisory label vector y correspondingly to the
input matrix X. These y values are boolean which represent
whether HO execution is done or not. In this sense, y value
with integer 1 represents HO execution while it is with integer
0 represents HO non-execution. The features x3, x4, and x5 in
Table I are directly results of UE measurements. On the other
hand, the remaining x1 and x2 are modified values according
to standards to make UEs report their coordinates through
Radio Resoruce Control (RRC) messaging. The generation of
coordinates can be facilitated using positioning technologies
[1], such as global navigation systems (GNSS) or observed
time difference of arrival (OTDOA), as proposed by LTE
positioning protocol (Ref. [9]).

III. HANDOVER ALGORITHMS

A. Baseline Algorithm (Inter-RAT Handover Algorithm)

The baseline Inter-RAT HO algorithm ensures seamless
HOs between sub-6 GHz LTE and mmWave frequency bands

as specified by 3GPP standards [10]. This subsection explains
the basic principles and steps of the baseline algorithm’s
operation.

1) Activation Mechanisms for Inter-RAT Measurements:
The algorithm’s initiation is contingent upon specific events
detected by the UE within the cellular network. These events
trigger the commencement and conclusion of Inter-RAT mea-
surements which are essential for informed decision-making
during HOs.

a) Event A2 (Measurement Initiation): The UE contin-
uously monitors the serving cell’s reference signal received
power (RSRP). If the RSRP falls below a predefined threshold,
it initiates Inter-RAT measurements during scheduled measure-
ment gaps. These measurements evaluate neighboring cells’
RSRP values, enabling the UE to identify potential handover
opportunities and maintain uninterrupted connectivity.

b) Event A1 (Measurement Termination): Upon obtain-
ing an RSRP measurement surpassing a predefined threshold,
the UE concludes the Inter-RAT measurements triggered by
Event A2. This indicates that the UE has acquired sufficient
information for potential HO decision-making.

2) Initiating Handover to mmWave: The HO procedure
to the mmWave frequency band involves distinct sequential
stages:

a) Threshold-Based Activation (Event B2): The UE con-
tinuously monitors the mmWave signal’s power level. Once
the mmWave power surpasses a designated threshold, the UE
initiates an RRC event termed B2. This event serves as an in-
dicator that favorable conditions for mmWave communication
may be attainable.

b) Random Access and Handover Execution: Following
the B2 event, the UE proceeds with a random access procedure
targeting the mmWave carrier. Successful execution of this
procedure denotes readiness for HO to the mmWave frequency
band. The culmination of this process results in a successful
HO, thereby maintaining uninterrupted communication via
mmWave.

B. Visualizing the Baseline Procedure

Figure 2 provides an illustrative representation of the se-
quential stages comprising the baseline procedure leading to
and executing the HO. Noteworthy trigger points are delin-
eated for enhanced clarity:

• Trigger Point A: At this juncture, the HO attempt
is activated, prompted by the UE’s measurements and
associated events.

• Trigger Point B: The HO execution counter advances
when the eNodeB (BS) authorizes the HO. This denotes
the transition from preparatory stages to the tangible
execution of the HO process.

The baseline Inter-RAT HO algorithm employs these trigger
mechanisms, events, and decision points to facilitate seamless
transitions between sub-6 GHz LTE and mmWave frequency
bands. While fundamental, the algorithm’s reliance on imme-
diate local metrics and threshold-based triggers motivates the
exploration of more sophisticated approaches to elevate HO
success rates.
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Fig. 2. This figure shows the HO signaling procedure adapted from [2]. The
dashed gray lines represent the signals that are impacted by the proposed
algorithm. The diagram additionally displays the HO decision point (D) as
well as the metric trigger points (A and B). (eNodeB is the LTE BS, EUTRA
is the evolved universal terrestrial radio access, HO is abbreviated as HO) [1].
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Fig. 3. The presented diagram illustrates the suggested HO signaling protocol,
wherein the HO decision point (D) is shifted to an earlier stage in the
process. This adjustment enables the eNodeB to anticipate the mmWave band
measurement [1].

C. Partially Blind Handover Algorithm

In this algorithm, the decision of whether to accept or
override the UE measurement is made based on the receiver
operating characteristic (ROC) area under the curve (AUC).
This curve is an outcome of a ML technique to predict
whether a HO execution will be successful. If the ROC-AUC
value indicates that the predictions are accurate, the algorithm
utilizes this information to determine whether a HO should
be attempted. On the other hand, if the ROC-AUC value is
low or indicates uncertainty, the algorithm may follow a more
cautious approach by sticking to a predetermined procedure.

In the traditional approach (baseline algorithm), each step
of the HO procedure is followed regardless of the specific
circumstances. However, in the proposed algorithm, the ML
model predicts whether a HO is likely to succeed or fail based
on various factors, including signal strengths and historical
data. This prediction hence allows the algorithm to skip
unnecessary steps when a HO is predicted to be unsuccessful.

If the power of the signal from the LTE network is lower
than a certain threshold (A2 threshold) defined in the baseline
algorithm, and the predicted mmWave received power is
higher than another threshold (B2 threshold), or if the ROC
AUC prediction is adequate, then the algorithm follows the

same steps as is the baseline algorithm. However, if predicted
mmWave received power is lower than a certain threshold, it
means the mmWave connection might not be good. In this
case, the eNodeB preempts the UE from attempting to switch
its connection to the mmWave frequency band. This action
prevents the UE from going through a HO that is likely to
fail.

D. CatBoost-assisted Algorithm for Handover

This paper utilizes the same proposed algorithm in Ref. [1]
for Inter-RAT HO which makes decision of whether accepting
the UE measurement or skip it according to ROC-AUC value
that is a landmark measurement of classification tasks. In
the originally proposed algorithm, one of the aforementioned
three conditions are monitored to maintain performing the
baseline algorithm. On the other hand, a different condition
is monitored to execute HO for a UE to avoid failure for
the executed HO. Details of the executions of the algorithm
is given in Ref. [1], and the proposed algorithm with our
modification is given in Algorithm 1. In this paper, we replace
used ML method in Ref. [1], XGBoost, with a novel ML
method-CatBoost, proposed by Yandex researchers [7], to
extend the performance of the previous work. In addition,
we utilize Support Vector Machine (SVM) with the originally
proposed algorithm to see the clear performance difference
between the methods used as well. Fig. 3 shows the reduction
in the proposed procedure by ML deployment [1].

Algorithm 1 Partially blind HO success estimation
Input: CatBoost classifier and radio environment parameters presented in the tables, ϵ

the acceptance threshold, and the simulation time Tsim.
Output: Time sequence of decisions whether the HO to 5G must be overridden or not

according to estimated mmWave received signal level.
1: Compute N the total number of UEs in the cell per Section (Mismar)
2: for i ∈1. . . N do
3: Obtain the generated simulation data for UE i for all times t = 1, ..., Tsim for

the features given.
4: Compute the HO success of the relevant UE by using the values measurement

gap opened AND mmWave power exceeding the threshold that is label.y value
of the relevant UE. i.e. yi is the label of UE i.

5: Split ith UE’s dataset into training and test parts. Training data is collected over
a period 1, ..., T, where T ≜ min(Tcoherence, ⌈ttraining × Tsim⌉).

6: Train CatBoost method on training data by using K-fold cross validation by using
grid search to tune the hyperparameters of the methods.

7: Obtain the proposed HO decision ŷ through the trained ML model.
8: Obtain the model’s ROC-AUC value.
9: if (ROC-AUC value ≥ ϵ) then

10: Use ŷ as a valid estimation of HO execution decision (Follow Fig. 3)
11: else
12: Use the reported UE measurements (the baseline algorithm).
13: end if
14: end for

IV. SIMULATION RESULTS AND DISCUSSIONS

We used our modified algorithm, and compared the obtained
results of the methods used in this paper. Table II and
Table III present parameters of CatBoost method found by
cross-validation and radio environment parameters in order.
Graphical outputs of an arbitrarily selected UE are produced
as well. For signals in the frequencies of both mmWave and
sub-6 GHz, the RSRP values for the same UE throughout the
simulation time with the RRC events’ thresholds are depicted
in Fig. 4. In Fig. 5 both algorithms’ corresponding HO
executions in relation to simulation time, which the identical



TABLE II
HYPERPARAMETERS FOR CATBOOST MODEL

Parameter Value

Training data split ratio 0.7
Cross-validation fold K 5
depth [4,5,7,8,10]
learning rate [0.01, 0.02, 0.03, 0.04]
# of iterations [50, 90, 150, 200]

TABLE III
RADIO ENVIRONMENT PARAMETERS [1]

Parameter Value

LTE Bandwidth 20 MHz
LTE center frequency 2.1 GHz
LTE cyclic prefix normal
5G mmWave bandwidth 100 MHz
5G mmWave center frequency 28 GHz
LTE Propagation model COST 231 (LOS; no shadowing)
5G mmWave propagation model [11]
PPP intensity parameter λ 2 x 10-5, 10-4

Simulation time Tsim 40, 400, 800 ms
Cell radius r 350 m
LTE BS power 46 dBm
5G BS power 46 dBm
Antenna pattern omnidirectional
Antenna height 20 m
Antenna sub-6 GHz gain 17dBi
Antenna mmWave gain 24 dBi
RRC event A1 trigger -125 dBm
RRC event A2 trigger -130 dBm
RRC event B2 trigger -95 dBm

HO decision are made for a determined period-that is 28
ms, (=0.7 x 40 ms) are visualized. It is followed by ML
method prediction to spot whether upcoming HO will probably
succeed or fail, thereby producing different HO decisions with
respect to the baseline algorithm. Lastly, performance of the
proposed algorithm where its ROC-AUC performance is below
a certain threshold (thr=0.7) is visualized in Fig. 6. Through
ROC-AUC curve which covers an area and shows the trade-off
between true positive rate and false positive rate for the utilized
algorithm, prediction capability of the algorithm for an IRAT
HO success is spotted. The threshold is generally in-between
0.5 and 1, and it is denoted by epsilon in the algorithm. We
use the same threshold used in Ref. [1] that is above 0.5 which
corresponds to random guess without using any model for the
prediction.

The simulations were made for different time spans which
represent short and long durations, and the coherence time of
the channel does not go beyond the range. Different time spans
and different number of UEs in the cell provide robustness
of the utilized algorithm as well [1]. In Table II, obtained
paremeter results from the simulations with respect to previous
work are presented. The best results of each simulation results
are given in boldface in Table IV as well.

As per the results given in Table IV, number of failures with
both the originally proposed algorithm and the baseline one are
the same with the least number of users. However, CatBoost
integrated-proposed algorithm outperforms the rest of the other
ones with the least number of failures. SVM method produces
the worst results in the whole comparison, and the baseline
algorithm results spot the upper bound for the number of
failures for us as well as previously mentioned in Ref. [1].
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Obtained results are showcased in Table IV in a compact
form where compared methods denoted by baseline, originally
proposed one in Ref. [1], proposed with SVM (PwSVM), and
proposed with CatBoost Classifier (PwCBC) in the figures,
respectively.

As per seen from Table IV, PwCBC outstrips baseline
algorithm, originally proposed algorithm, and PwSVM in
majority of the HO prediction results. While simulation time
is equal to 40 ms, our method (PwCBC) has improved the
results of originally proposed algorithm by 0.67% and 0.76%
for N = 78 and N = 8, respectively. The method is only able
to outstrip the originally proposed one by 0.98% improvement
with the settings which the simulation time is equal to 400
ms and N = 78. PwCBC algorithm only falls behind the
originally proposed algorithm with a slight difference with
the settings N = 8 and the simulation time is equal to
400 ms. This may be because of the least number of the
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TABLE IV
RESULTS

Sim. time Rate Algorithm Attempts Failures Success Rate

T = 40 ms

λ = 2 × 10-4 Baseline 1259 58 95,39%
(N=78) Proposed 1259 55 95,63%

Pr. with SVM 1259 224 82,2%
Pr. with CBC 1259 47 96,27%

λ = 2 × 10-5 Baseline 1259 6 95,56%
(N=8) Proposed 135 6 95,56%

Pr. with SVM 135 11 91,85%
Pr. with CBC 135 5 96,29%

T = 400 ms

λ = 2 × 10-4 Baseline 12,601 695 94,48%
(N=78) Proposed 12,601 450 96,43%

Pr. with SVM 12,601 3,997 68,28%
Pr. with CBC 12,601 332 97,37%

λ = 2 × 10-5 Baseline 1254 70 94,42%
(N=8) Proposed 1254 13 98,96%

Pr. with SVM 1254 264 78,95%
Pr. with CBC 1254 25 98,01%

T = 800 ms

λ = 2 × 10-4 Baseline 25,070 1,378 94.50%
(N=78) Proposed 25,070 757 96.98%

Pr. with SVM 25,070 11,726 53.23%
Pr. with CBC 25,070 543 97.83%

λ = 2 × 10-5 Baseline 2,535 132 94.79%
(N=8) Proposed 2,535 19 99.25%

Pr. with SVM 2,535 270 89.35%
Pr. with CBC 2,535 0 100%

users in mobility in the network as it is equal to 8. Lastly,
with the setting that the simulation time is equal to 800 ms,
PwCBC method has also improved the results of originally
proposed algorithm by 0.88% and 0.76% for N = 78 and
N = 8, respectively. As per the results in Table IV, the
performance of PwCBC increases when the number of the
users and/or the simulation time increase. Ref. [1] proposed the
original algorithm with a powerful ML method, XGBoost, and
exceeded a baseline algorithm. In general, it is apparent from
the obtained results that the improved algorithm with CatBoost
(PwCBC) makes better prediction of HO success or failure
rate with respect to the compared ones including the originally
proposed algorithm as it has decreased number of failures in
the HO predictions seen in the table. Since ML employment
further improves the results with respect to the originally
proposed algorithm, it may be seen as a clear indication of
efficiency of ML in mobility management and HO prediction
issue in 5G networks. A noteworthy takeaway from the results
is that prediction performance of our method usually increases
when the simulation time is increased. Another noteworthy
takeaway of the results from ML perspective is that SVM
method performs worse than the baseline algorithm, and
boosting methods improve the results. This may be due to
the fact that SVM method is not capable of capturing the
relationship between feature space and corresponding output
value well. Boosting methods’ superior performance may be
due to the fact that they are adept in dealing with tabular data,
and the used data set is in this kind of tabular data form.
Hence, they have exhibited good performance with respect to
the baseline algorithm and the proposed method with SVM.

V. CONCLUDING REMARKS

This paper improves the previously proposed algorithm for
predicting HO success rate. The originally proposed algorithm
incorporated ML in order to make BSs predict HO success
rate by utilizing both prior measurements of mmWave and

sub-6 GHz. The proposed algorithm efficiently overrides the
UE measurements by utilizing data acquired in the range
of coherence time. We replace XGBoost algorithm in the
proposed scheme with CatBoost, and have improved inter-RAT
HO success rate found by the originally proposed algorithm
with this replacement. Hence, CatBoost integrated-proposed
algorithm has outperformed the originally proposed one. The
results clearly show the contribution of ML in next generation
network systems’ performance which HO is one of their
inherited characteristics.
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