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Abstract

Recent research has indicated that the relationship between age-related cognitive decline and falling may be mediated by the

individual’s capacity to quickly cancel or inhibit a motor response. This longitudinal investigation demonstrates that higher

white matter fibre density in the motor inhibition network paired with low physical activity was associated with falling in

elderly participants. We measured the density of white matter fibre tracts connecting key nodes in the inhibitory control

network in a large sample (n=414) of older adults. We modelled their self-reported frequency of falling over a four year period

with white matter fibre density in pathways corresponding to the direct and hyperdirect cortical-subcortical loops implicated

in the inhibitory control network. Only connectivity between right Inferior Frontal Gyrus and right Subthalamic Nucleus was

associated with falling as measured cross-sectionally. The connectivity was not, however, predictive of future falling when

measured two and four years later. Higher white matter fibre density was associated with falling, but only in combination with

low levels of physical activity. No such relationship existed for selected control brain regions that are not implicated in the

inhibitory control network. The direction of this effect was counterintuitive and warrants further longitudinal investigation into

whether white matter fibre density changes over time in a manner correlated with falling, and mediated by physical activity.

1
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Abstract 27 

Recent research has indicated that the relationship between age-related cognitive decline and 28 

falling may be mediated by the individual’s capacity to quickly cancel or inhibit a motor 29 

response. This longitudinal investigation demonstrates that higher white matter fibre density in 30 

the motor inhibition network paired with low physical activity was associated with falling in 31 

elderly participants. We measured the density of white matter fibre tracts connecting key nodes 32 

in the inhibitory control network in a large sample (n=414) of older adults. We modelled their 33 

self-reported frequency of falling over a four year period with white matter fibre density in 34 

pathways corresponding to the direct and hyperdirect cortical-subcortical loops implicated in 35 

the inhibitory control network. Only connectivity between right Inferior Frontal Gyrus and 36 

right Subthalamic Nucleus was associated with falling as measured cross-sectionally. The 37 

connectivity was not, however, predictive of future falling when measured two and four years 38 

later. Higher white matter fibre density was associated with falling, but only in combination 39 

with low levels of physical activity. No such relationship existed for selected control brain 40 

regions that are not implicated in the inhibitory control network. The direction of this effect 41 

was counterintuitive and warrants further longitudinal investigation into whether white matter 42 

fibre density changes over time in a manner correlated with falling, and mediated by physical 43 

activity. 44 

 45 
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1. Introduction  47 

It is now well established that as higher order cognitive abilities decline with ageing, the 48 

incidence of falling increases proportionally (Amboni et al., 2013; Ambrose et al., 2013; 49 

Herman et al., 2010; Kearney et al., 2013; Li et al., 2018; Mirelman et al., 2012; Montero-50 

Odasso et al., 2012; Muir et al., 2012). However, the structural and functional neural 51 

mechanisms underlying this relationship remain undefined. In-depth behavioural testing has 52 

revealed that inhibitory control, a specific facet of executive function, is especially predictive 53 

of falling. In a longitudinal study, Mirelman et al., (2012) demonstrated that an individual’s 54 

capacity for effective inhibitory control measured by computerised tests was predictive of fall 55 

prevalence in the subsequent 5 year period. This suggests that response inhibition, the ability 56 

to suppress highly automatic action in situations where such instinctive action is unwarranted 57 

(Fuster, 2008), may play a significant role in fall prevention. Furthermore, response inhibition 58 

is closely related to cognitive flexibility or the ability to adapt to complex and rapidly changing 59 

environments (Diamond, 2013) which correlates with fall prevalence (Kearney et al., 2013; 60 

Pieruccini-Faria et al., 2019). While the ability to stop may seem an unusual prerequisite for 61 

effective balance control, we often need to rapidly adapt our posture while navigating real-62 

world settings. This entails occasional but appropriate suppression and revision of reflexive 63 

movements. 64 

Many factors contribute to maintaining postural equilibrium such as strength (Okubo et al., 65 

2022; Pijnappels et al., 2008), sensory acuity (Brown et al., 2015; Reed-Jones et al., 2013), 66 

blood pressure regulation (Kenny et al., 2017), and cognitive ability  Mirelman et al. (2012), 67 

and this makes it difficult to ascribe a particular role to any one culprit leading to a fall. Several 68 

studies have attempted to tease out the relative contribution of convergent factors that affect 69 

fall risk, including the influence of distinct cognitive abilities. For example, Holtzer et al. 70 

(2007) studied if specific cognitive abilities were related to falls in a large sample of community 71 

dwelling older adults without cognitive impairment while also accounting for gait 72 

abnormalities (another factor related to falls (Tinetti et al., 1988). Among separate cognitive 73 

domains of verbal IQ, speed/executive attention, and memory, only speed/executive attention 74 

was related to retrospective falls. This suggested that global cognitive ability was not driving 75 

this effect (a finding consistent with Mirelman et al. (2012) where Executive Function 76 

predicted falls but overall cognitive scores were uninformative). Notably, Holtzer et al. (2007) 77 

revealed an effect independent of gait-related issues. More recently, Okubo et al. (2022) 78 

measured several standard fall-risk variables such as leg strength, postural sway, simple and 79 



choice reaction time, etc., in relation to performance on a laboratory-based perturbation 80 

paradigm where participants needed to adapt their gait to prevent a fall and the strongest 81 

predictor of balance recovery was performance on a hand-based test (ReacStick) of rapid 82 

inhibition accuracy. The aforementioned studies collectively suggest that inhibitory control 83 

plays an important role in preventing falls. This seems to be the case even when global 84 

cognitive measures fail to correlate with falls, and this role is independent of strength and 85 

general processing speed. 86 

Beyond correlational data linking cognitive performance with falls, there have been 87 

several laboratory-based studies showing empirically how response inhibition contributes to 88 

postural equilibrium (Cohen et al., 2011; England et al., 2021; Potocanac et al., 2014; Rydalch 89 

et al., 2019; Sparto et al., 2012). The aforementioned studies focused on the execution of rapid 90 

stepping, since change-of-support reactions are often needed to regain balance (Maki & 91 

McIlroy, 1997). Older adults make more anticipatory postural adjustment errors during a 92 

choice reaction voluntary step task compared with younger adults (Cohen et al., 2011). In this 93 

case, initial acceptance of body load onto the wrong stance leg needed to first be corrected 94 

before shifting weight onto the other leg to allow the step to proceed. This led to increased 95 

choice-reaction times. Interestingly, the same study also revealed that Stroop task performance 96 

correlated with anticipatory postural adjustment errors preceding the step. The authors 97 

surmised that what may underlie an increased choice reaction time for older adults could in 98 

fact be a deficit in response inhibition versus a generic drop in processing speed due to age. 99 

Accordingly, Schoene et al. (2017) revealed that inhibitory choice reactive stepping time was 100 

associated with falls independently of  reduced processing speed, lack of attention, or balance 101 

impairment. See Rey-Mermet et al. (2018), Rey-Mermet & Gade (2018), and Verhaeghen 102 

(2011) for a more nuanced discussion on the topic of inhibitory deficits and ageing.  103 

We have recently demonstrated that performance on a balance recovery step task was 104 

correlated with speed of response inhibition in a computerised test of inhibitory control 105 

(England et al., 2021; Rydalch et al., 2019). These results, holding true for both young and 106 

older adults, suggest a common neural mechanism underlying inhibitory performance on a 107 

seated task with finger responses and a whole-body postural response to regain balance (Okubo 108 

et al., 2022). 109 

The underlying mechanisms of response inhibition (Enz et al., 2021; Jana et al., 2020) has 110 

received much attention in the field of cognitive psychology in a wide range of disorders 111 

(Penadés et al., 2007; Slaats-Willemse et al., 2003;  Whelan et al., 2012). Using neuroimaging 112 



three underlying neural networks of response inhibition have been identified: the right inferior 113 

frontal cortex (rIFC), the presupplementary motor area (preSMA), and the subthalamic nucleus 114 

(STN) (Aron et al., 2007; Aron & Poldrack, 2006; Swann et al., 2012). Coxon et al. (2012) 115 

demonstrated that these nodes, and the strength of connectivity between them, are related to 116 

performance on response inhibition tasks. They showed that the integrity of white matter 117 

connections between the rIFC and the STN predicted response inhibition task performance and 118 

so did tract strength between preSMA and STN, but only in older adults.   119 

 120 

The theoretical framework has been outlined in Figure 1. We hypothesise that there will be an 121 

association between white matter structures related to the motor inhibition network (STN, 122 

preSMA, and right Inferior Frontal Gyrus - rIFG) and real world falls. The present study makes 123 

use of an extensive data set from the Irish Longitudinal Study on Aging (TILDA), which is a 124 

large-scale, longitudinal study with data on cognitive function, socioeconomic status, 125 

education, health history and many other variables to provide insight into the aging process 126 

from a broad perspective. Brain scans were collected from a subgroup (n=519) of TILDA 127 

participants. These scans were used to analyse white matter microstructural integrity between 128 

established nodes in the neural stopping network and determine if this was related to self-129 

reported falls. We predicted that individuals with diminished connectivity between these 130 

specific networks would be more likely to experience falls. Overall, this study aims to provide 131 

 
Figure 1. Theoretical framework. Schoene et al. (2017) have shown that improved 
performance on movement inhibition tasks are associated with a reduced number of falls 
in the real world. Coxon et al (2012) have shown that better performance on movement 
inhibition tasks is associated with higher fractional anisotropy (FA) in right IFC and 
stronger connectivity between left preSMA and left STN, only in older adults. We 
therefore tested whether individuals who fall less may show stronger white matter 
microstructure in the regions identified as key nodes for inhibitory control.  



insight into the neural mechanism underlying a specific cognitive ability - inhibitory control - 132 

and its relationship with fall prevalence in older adults. 133 

2. Materials & methods 134 

2.1 Participant recruitment 135 

TILDA is a prospective, longitudinal cohort study that collects health, economic and social 136 

data from a nationally representative sample of community-dwelling Irish residents aged 50 137 

and over (Kearney et al., 2013). Ethical approval for the TILDA study was obtained from the 138 

Faculty of Health Sciences Research Ethics Committee the Trinity College Dublin Research 139 

Ethics Committee. Signed informed consent was obtained from all respondents prior to 140 

participation. Additional ethics approval was received for the MRI sub-study from the St 141 

James's Hospital/Adelaide and Meath Hospital, Inc. National Children's Hospital, Tallaght 142 

(SJH/AMNCH) Research Ethic Committee, Dublin, Ireland. Those attending for MRI were 143 

also required to complete an additional MRI-specific consent form. 144 

We analysed participant data collected at waves 3, 4 and 5 of the study. The data collection 145 

waves are approximately two years apart. Wave 1 was collected in 2009-2010,  wave 2 was 146 

collected in 2012, wave 3 was collected in 2014-2015, wave 4 was collected in 2016, and wave 147 

5 was collected in 2018. A collection for wave 6 is currently ongoing. 148 

Neuroimaging data was collected at wave 3 (Whelan & Savva, 2013). Of all participants 149 

attending the wave 3 health assessment centre, a random subset were invited to return for multi-150 

parametric brain MRI at the National Centre for Advanced Medical Imaging (CAMI) at St 151 

James’s Hospital, Dublin. Participants with Mild Cognitive Impairment and stroke may exhibit 152 

different fall profiles to those noted for typically ageing individuals and introduce additional 153 

heterogeneity (Campbell & Matthews, 2010; Härlein et al., 2009; Lamb et al., 2003; Sheridan 154 

& Hausdorff, 2007; Simpson et al., 2011). Therefore, we excluded participants with MOCA (< 155 

20) or MMSE (< 24) scores at wave 3, and additionally individuals with history of stroke or 156 

occurrence of stroke between data collection waves in the analysis. 157 

Demographic variables applied as control variables in the models are presented in Table 1. 158 

They include age, sex, medical history (Education levels, physical disability, Blood Pressure, 159 

and polypharmacy), (Donoghue et al., 2018).  160 

 161 



2.2 MRI protocol.  162 

Participants were briefed on the MRI protocol ahead of acquisition, which comprised a variety 163 

of scans including structural T1 weighted images and Diffusion Weighted Imaging (DWI) 164 

sequences. Scans were acquired via 3T Philips Achieva system and 32-channel head coil. 165 

For the T1 3D Magnetisation-prepared Rapid Gradient Echo (MP-RAGE) sequence the 166 

acquisition parameters were: FOV (mm): 240 x 240 x 162; voxel size (mm): 0.8 × 0.8 × 0.9; 167 

SENSE factor: 2; TR: 6.7 ms; TE: 3.1 ms; flip angle: 8°; acquisition time 5:24 minutes. 168 

Diffusion Weighted Images (DWI) were acquired with 66 slices in transverse plane with field 169 

of view  244 x 244 x 140mm; voxel size (mm): 1.9 × 1.9 × 2.0; SENSE factor 2; TR: 12887 170 

ms; TE: 55 ms; flip angle: 90°; Diffusion was measured along 61 noncollinear directions (b = 171 

1200 s/mm2) preceded by a non-diffusion - weighted volume (reference volume, b = 0 s/mm2). 172 

Total DWI acquisition time was 17:31 minutes. 173 

 174 

2.3 DTI pre-processing 175 

DWI data were processed using ExploreDTI (Leemans et al., 2009). Images were corrected for 176 

subject motion and eddy currents using the procedure described in Leemans & Jones (2009). 177 

Tensor estimation was performed using the iteratively reweighted linear least-squares approach 178 

(Veraart et al., 2013). Fibre trajectories were computed with CSD based tractography (Tournier 179 

et al., 2007) using recursive calibration of the response function to optimise the estimation of 180 

the fibre orientation distribution (FOD) functions (Tax et al., 2014). A uniform grid of 181 

tractography seed points at a resolution of 2 x 2 x 2 mm3 was used with an angle threshold of 182 

30 degrees, an FOD threshold of 0.1, and maximum harmonic order of eight. The median 183 

number of streamlines computed for each participant was 55,221 (IQR 8665). A restricted 184 

tractography analysis was performed subsequently to reconstruct streamlines passing through 185 

pairs of ROIs that form part of the Shen 268 atlas (Shen et al., 2013). Reconstructed fibre 186 

trajectories for each individual were quantified in terms of the (median) fractional anisotropy 187 

(FA), Apparent Fibre Density (AFD), mean diffusivity (MD), and radial diffusivity (RD), 188 

which are all measures that reflect the directional coherence of intracellular water diffusion. 189 

Using Constrained Spherical Deconvolution for tractography rather than the traditional 190 

diffusion tensor model allows calculation of the Apparent Fibre Density (AFD), a measure of 191 

microstructural white matter integrity that performs better than standard Fractional Anisotropy 192 

(FA) in regions with densely crossing fibres  (Dell’Acqua & Tournier, 2019). As AFD provides 193 



a superior measure, we focussed our inferential statistics on this metric,  but have provided 194 

comparable results with FA in the supplementary material for completeness and to allow 195 

comparison with previous research studies.  196 

 197 

2.4 Statistical Analysis Demographic Variables 198 

Statistical analysis of the demographic variables at wave 3 were performed using independent 199 

two-sample t-tests for age, sex, disability and number of medications, and chi-square tests for 200 

the variables education, hypertension, and physical activity. 201 

 202 

2.5 Logistic Regression 203 

A logistic regression model was used to investigate the association between white matter 204 

structures connecting selected regions of interest (ROI) and whether older individuals reported 205 

falling. The model was created in RStudio (RStudio Team, 2022). For each ROI a logistic 206 

model was generated. The binary dependent variable was whether participants had a fall (1) or 207 

did not fall (0) between wave 3 (2014-2015) and wave 5 (2018). The independent variables of 208 

interest were the respective measurements of reconstructed fibre trajectories for each ROI-ROI 209 

pair. There were 6 independent control variables: Age, Sex, Education, Number of Medications 210 

(Polypharmacy), Blood pressure, and a measure of physical disability. The following 211 

paragraphs will describe elements of the model and add a rational for including them. 212 

2.5.1 Regions of Interest 213 

The Shen 268 atlas was used (Figure 2A-D), which is a parcellation of the brain into 268 areas 214 

based on resting functional state data (Shen et al., 2013). We selected 5 ROIs representing the 215 

movement inhibition network: the right inferior frontal gyrus (rIFG), the left and right 216 

subthalamic nuclei (r/l STN), and the left and right presupplementary motor area (r/l preSMA, 217 

see Figure 2 E-I). All ROIs except the IFG consisted of individual shen atlas ROIs. However, 218 

the IFG ROI consists of 3 individual shen atlas ROIs. Therefore, results involving the IFG will 219 

be further analysed by looking that the individual ROIs.  220 

The tractographies were conducted between the r/l STN and the other ROIs (rIFG, r/l preSMA), 221 

or between the individual ROIs of the IFG and the r/l STN, resulting in 6 comparisons every 222 

time. Therefore, the significance threshold was adapted using a Bonferroni correction for six 223 

tests yielding a new critical alpha of 0.0083. 224 



The tractography was conducted in a hypothesis driven manner between restricted pairs of 225 

nodes based upon structural networks known to mediate inhibitory control (Table 2). To allow 226 

for comparisons between ROIs, the AFD values were z-transformed.   227 



 228 

Figure 2. Regions of Interest and Reconstructed Streamlines. Panel A shows the Shen atlas parcellation that was 229 
used, with ROIs shown in Panels B-D selected for analysis. Panels E-F show different viewpoints of the ROIs 230 
with reconstructed streamlines passing between right and left STN and right IFG for one representative participant. 231 
Panels G,H and I show different viewpoints of reconstructed streamlines passing between bilateral STN and 232 
preSMA.  233 
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2.5.2 Control Analysis 234 

As an additional experimental control a separate tractography analysis between selected control 235 

regions and the r/l STN was performed. As a control region for the rIFG, the left IFG was 236 

chosen for topographical similarity but different functionality (Amunts & Zilles, 2012; Aron 237 

et al., 2014; Deng et al., 2017; Du et al., 2020). For the r/l preSMA control region, we chose 238 

the r/l FFA as a pair of symmetrical areas not related to movement inhibition (Burns et al., 239 

2019). Table 1 in the supplementary material describes the ROI characteristics.  240 

2.5.3 Control variables  241 

We included 6 control variables known to influence fall rates in our original logistic regression 242 

model: Age, Sex, Education, Blood Pressure, Disability Score and Polypharmacy. An 243 

additional variable of physical activity was added for the post-hoc analysis of the results. Age 244 

is known to increase fall rate and was left untransformed as a numerical value (Chang et al., 245 

2015; Deandrea et al., 2010; Franse et al., 2017; Karlsson et al., 2013). Female sex increases 246 

the severity of falls due to more prevalent osteoporosis and may increase fallrate, although the 247 

findings on the latter are inconsistent (Deandrea et al., 2010; Franse et al., 2017; Karlsson et 248 

al., 2013). Education is known to correlate with a wide array of neurologically relevant 249 

characteristics. Education serves as an indirect measurement of socioeconomic status aside 250 

from its protective effects against neurodegeneration. Both socioeconomic status and 251 

neurodegenerative processes have been discussed in their relation to falls in the older 252 

population (Khalatbari-Soltani et al., 2021; Then et al., 2016). In the linear models education 253 

was coded as a numeric variable with numbers 1-3 for primary, secondary and tertiary 254 

education.  255 

Blood Pressure (BP) measurements were categorised after clinical criteria. For 256 

Systolic BP the four thresholds were: Normal <120, Elevated < 130, Hypertension 1 < 140, 257 

Hypertension 2 > 140 , and for Diastolic the four thresholds were: Normal <80, Elevated < 80, 258 

Hypertension 1 < 89, Hypertension 2 > 90. If an individual presented two different 259 

categorisation for systolic and diastolic blood pressure, the higher BP category was chosen. 260 

High blood pressure may protect against falls caused by syncope due to low blood pressure 261 

(Butt et al., 2012), however, contradictory results exist (Ha et al., 2021). 262 

Physical disabilities are known to increase fall rates. Our disability score, recorded in 263 

TILDA as a series of 11 self-reported yes or no questions asking if the respondant has difficulty 264 

performing certain tasks (e.g. “Do you have difficulty walking 100m?”, or “Do you have 265 



difficulty walking up 1 flight of stairs without resting”), was summed for each participant 266 

resulting in a score of 1-12 (Deandrea et al., 2010; Ha et al., 2021). Different types of drugs, 267 

such as antihypertensives, antiepileptics, sedatives and psychotropics are known to affect fall 268 

rate. Therefore, the number of medicines used by a participant was included in the model as 269 

measure of medicinal drug use (Bloch et al., 2011; Deandrea et al., 2010; Hartikainen et al., 270 

2007). 271 

For an additional analysis the variable of physical activity was used. Physical activity 272 

was coded per the IPAC standard (Craig et al., 2003). The IPAC asks participants to note the 273 

amount of time they spent doing vigorous, moderate or walking activities and gives them 274 

different weights to calculate a score and categorise participants into high, moderate and low 275 

physical activity.  276 

2.5.4 Predictive Model  277 

For the logistic model aiming to predict future falling, fallers at wave 3 were removed, and 278 

fallers at wave 4 and 5 were aggregated and labelled “fallers after wave 3”. Other parameters 279 

were the same as for the cross-sectional model. 280 

3. Result 281 

3.1 Demographics 282 

Fallers had a significantly higher number of disabilities t(412)= 2.3738 , p= 0.018, and a 283 

significant difference in the proportion of blood pressure categories between groups, 𝑋!(3) = 284 

17.0452, p= 0.00069. The significant result for blood pressure is driven by hypertension 1. 285 

Without Hypertension 1 the result loses significance 𝑋!(2) = 0.25, p= 0.88. 286 



3.2 Prevalence of Falling 287 

For the cross-sectional analysis our criteria resulted in the inclusion of 414 participants that 288 

underwent MRI acquisition at wave 3. Ninety seven of the 414 participants at wave 3 reported 289 

having fallen since the last interview. For the predictive analysis our criteria resulted in the 290 

inclusion of 317 participants of which 96 fell between waves 3 and 4, or between waves 4 and 291 

5. 292 

Table 1           
Demographic variables of selected participants at wave 3   

      Fallers W3 (n = 
97) 

Nonfallers W3 (n = 
317) p-Value 

Age   Mean (sd) 69.21 (8.23) 68.2 (7.39) 0.2524b 

Sex Male n (%)a 42 (43.3) 158 (49.8)  0.31c 

  Female n (%)a 55 (56.7) 159 (50.2)   
Education         0.29c 

  Level 1 n (%)a 22 (22.7) 51 (16.1)   
  Level 2 n (%)a 36 (37.1) 119 (37.5)   
  Level 3 n (%)a 39 (40.2) 147 (46.4)   
Disability   Mean (sd) 2.05 (1.88) 1.58 (1.65) 0.018b 

Blood Pressure         0.00069c 

  Normal n (%)a 25 (25.8) 69 (21.8)   
  Elevated n (%)a 16 (16.5) 39 (12.3)   
  Hypertension 1 n (%)a 10 (10.3) 99 (31.2)   
  Hypertension 2 n (%)a 46 (47.4) 110 (34.7)   
Number of Meds   Mean (sd) 2.94 (2.34) 2.5 (2.52) 0.13b 

Physical Activity   n 92 302 
0.21c 

  Low n (%)a 35 (38.0) 106 (35.1)   
  Moderate n (%)a 40 (43.5) 113 (37.4)   
  High n (%)a 17 (18.5) 83 (27.5)   

Table 1. Table showing the basic demographic variables of participants at wave 3 selected for this study.  
Participants were grouped into fallers and nonfallers. a Valid percent b Independent two-sample t-test c Chi-square test 
over all levels and categories. 



3.3 Associative (cross-sectional) logistic regression results 293 

The results of the cross-sectional logistic regression are depicted in Table 2. The model using 294 

the AFD values between the rIFG and rSTN achieved a p value of 0.005. This implies that an 295 

increase in AFD of 1 standard deviation in the tracts connecting rIFG and rSTN significantly 296 

increased the odds of falling by 1.49 (CI: 1.13, 1.98).  297 

The model fulfilled all assumptions for a logistic regression (see supplementary material 5.2). 298 

A Chi square fit showed that the model was a good fit for the data (𝑥! = 	0.00003), and the 299 

McFadden 𝑅! Improved from 0.054 (model without AFD) to 0.094 by including the variable 300 

of interest. An additional observation is that the control variable blood pressure with category 301 

hypertension 1 significantly decreased the odds of falling by 0.18 (CI: 0.065, 0.48, p-value: 302 

0.00067) (Figure 3). 303 

Table 2: 

Association between microstructural integrity in inhibitory control networks and odds of falls in elderly. 

Region Odds CI Low CI High P Value Chi Square Fit n 
r IFG - r STN 1.49 1.13 1.98 0.005 0.00003 360 
l preSMA - r STN 1.38 0.93 2.05 0.113 0.00046 200 
r IFG - l STN 1.28 0.91 1.8 0.161 0.00172 237 
r preSMA - r STN 0.84 0.61 1.16 0.288 0.02334 257 
r preSMA - l STN 0.91 0.65 1.26 0.557 0.00976 228 
l preSMA - l STN 0.97 0.73 1.29 0.855 0.00096 343 

Table 2. Results of a logistic regression showing the association between the tractography of ROIs and the risk of falling in 
older people. A single result (r IFG to r STN) is significant after correcting for multiple comparisons (Bonferroni, new p 
threshold: 0.0083), in bold. The Chi Square and number of observations in the model are included.  



 304 

Figure 3. Figure 3 shows rIFG – rSTN fibre density (AFD) by Age, separated by Blood Pressure categories, with 305 
separate lines for fallers and nonfallers . There were significantly less fallers in the ‘Hypertension 1’ category.  In 306 
the cohort with normal blood pressure, there are a total of 84 participants, 21 (25%) of which fell. For elevated 307 
blood pressure there are a total of 54 participants,  16 (29.63%) of which fell. For hypertension 1 there are a total 308 
of 93 participants, 6 (6.45%) of which fell. For hypertension 2 there are a total of 129 participants, 37 (28.68%) 309 
of which fell.  310 
Figure 4A  shows that older individuals who fell (M = 0.23, SD = 1.1) had higher AFD values 311 

in the white matter pathways connecting rIFG to rSTN (Nonfallers M = -0.066, SD = 092, 312 

directional Wilcoxon Rank Sum test, W = 9716, p= 0.035). This effect was most pronounced 313 

in the 50-65yr old fallers, as AFD values appeared to be lower in the older 65+ fallers.  314 

Nonfallers show no such trend in AFD values cross sectionally over the age range. We 315 

investigated this post hoc by adding an age-AFD interaction term to the rIFG-rSTN model. The 316 

age-AFD interaction term did not reach significance, reducing odds of a fall by 0.038 (CI: 317 

0.072, 1.28,  p= 0.058) while the AFD term was still significant, increasing the odds of a fall 318 

by 21.87 (CI: 16.47, 29.04, p= 0.03). The increase in odds for the rIFG to rSTN AFD value is 319 

mathematically inflated in the model with the interaction term, as the value features twice in 320 

the model as part of the interaction and main effect. It is also further inflated due to the 321 

comparatively high numeric range of age.   322 
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Figure 4. Figure A shows differences in the distribution of fallers vs nonfallers. Fallers seem to have overall higher 324 
AFD values. Figure B shows the difference in distribution according to age. Fallers also have a higher average 325 
AFD value, although this relationship is dependent on age. Figure C and D show the difference in distribution of 326 
fallers, but only including fallers of age 65 or more. 327 
 328 

Constraining the analysis to individuals aged 65 + has no effect on the overall distribution 329 

(Figure 4 C & D). However, no significant results were found using a sample of people aged 330 

65 or more – likely due to the reduced sample size.  331 
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3.3.1 Interaction with physical activity 332 

We hypothesized that higher AFD values indicative of dense white matter connectivity in older 333 

people would be associated with lower risk of falling. However, this relationship was not found 334 

in our data – instead, we found that higher AFD led to increased fall risk. We investigated this 335 

relationship deeper, hypothesizing that more active older people may be generally healthier 336 

and have higher AFD values, and be more likely to fall due to greater physical activity than 337 

their sedentary counterparts. 338 

Adding an interaction between physical activity level and AFD values to the model required 339 

the inclusion of a main effect term. Therefore, the updated logistic regression model contained 340 

two new elements; a term for physical activity and the term for the interaction between physical 341 

activity and AFD values.  342 

The results of the cross-sectional logistic regression are depicted in Table 3. The model using 343 

the AFD values between the rIFG and rSTN achieved a p value of 0.00082. This means that an 344 

increase in rIFG - rSTN AFD by 1 standard deviation significantly increased the odds of falling 345 

by 2.31 (CI: 1.42, 3.78). The McFadden Pseudo R squared of this model improves to 0.12 346 

compared to a model with no AFD and no AFD * physical activity interaction. 347 

Moderate physical activity increased the odds of falling by 1.44 (CI: 0.75, 2.75), 348 

although not significantly (p= 0.28). However, the interaction term of moderate physical 349 

activity and AFD value significantly  (p= 0.014) decreased the odds of falling by 0.44 (CI: 0.22, 350 

0.84). High physical activity does not significantly affect outcomes, neither as a main or 351 

interaction effect.  352 

Table 3:  

Association between microstructural integrity in inhibitory control networks and odds of falls in older adults. 

Region Odds CI Low CI High p-Value Chi Square Fit n 

rIFG - r STN 2.31 1.42 3.78 0.00082 0.000061 360 
l preSMA - r STN 1.31 0.74 2.3 0.35 0.0098 200 
l preSMA - l STN 1.23 0.76 2 0.41 0.0037 343 
r preSMA - l STN 0.8 0.43 1.49 0.48 0.041 228 
r preSMA - r STN 0.83 0.47 1.47 0.53 0.1 257 
rIFG - l STN 1.06 0.61 1.86 0.83 0.0083 237 

Table 3. Results of a logistic regression showing the association between the tractography of ROIs and the risk of 
falling in older people when accounting for physical activity. A result (r IFG to r STN) is significant after 
correcting for multiple comparisons (Bonferroni, new p threshold: 0.0083), the pis bold. The Chi Square and 
number of observation of the model are included.  
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Figure 5. Panel A shows differences in the distribution of fallers vs nonfallers. Fallers have overall higher AFD 353 
values in the low activity condition, but not in high or moderate physical activity. Figure B shows the difference 354 
in distribution according to age. Fallers also have a higher average AFD value, and this relationship is less 355 
dependent on age when accounting for physical activity. 356 

 357 

In Figure 5 it is visible that AFD is significantly (t(125) = -3.87, p= 0.00018) higher 358 

for fallers (m = 0.58, sd = 1.12; nonfallers = m = -0.19, sd = 0.92) that are not physically active, 359 

however, the same is not true for moderately active (Fallers: m = -0.023, sd = 1.13; nonfallers: 360 

m = 0.066, sd = 0.92; t(127) = 0.44, p= 0.66), or highly active older people (Fallers: m = 0.13, 361 
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sd = 0.82; nonfallers: m = -0.007, sd = 0.9; t(86) = -0.5, p= 0.62). The data presented in Figure 362 

5B further suggests that much of the interaction between falling and age is cleared up when the 363 

model accounts for physical activity.  364 

3.3.1.1 ROI Subregion Analysis 365 

366 
The results of the cross-sectional logistic regression testing three further sub-divisions of rIFG 367 

are depicted in Table 4. When analysing subregions of the rIFG, one region is significant. Area 368 

68 -  R.BA.37.10 in the Shen atlas – near to the parahippocampal gyrus is significant (p= 369 

0.00079). Increases of 1 SD of AFD in this region increases the odds of falling by 3.59 (CI: 370 

1.7, 7.56).  371 

  372 

Table 4:  

Association between microstructural integrity in inhibitory control networks and odds of falls in older adults. 

Region Odds CI Low CI High p-Value Chi 
Square Fit n 

rIFG (subregion 68) - r STN 3.59 1.7 7.56 0.00079 0.000027 221 
rIFG (subregion 79) - r STN 2.08 1.06 4.05 0.032 0.007 249 
rIFG (subregion 79) - l STN 1.79 0.84 3.8 0.13 0.16 130 
rIFG (subregion 90) - r STN 0.58 0.28 1.19 0.14 0.21 186 
rIFG (subregion 68) - l STN 1.22 0.45 3.31 0.7 0.0016 139 
rIFG (subregion 90) - l STN 8.93E+21 0 - 1 0.0014 35 

Table 4. Results of a logistic regression showing the association between the tractography of ROIs and the risk of falling in 
older people when accounting for physical activity. A result (r IFG to r STN) is significant after correcting for multiple 
comparisons (Bonferroni, new p threshold: 0.0083), the pis bold. The Chi Square and number of observation of the model 
are included.  
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Figure 6. Figure A shows differences in the distribution of fallers vs non fallers. Fallers seem to have overall 373 
higher AFD values in the low activity condition, but not in high or moderate physical activity. Figure B shows the 374 
difference in distribution according to age. Fallers also have a higher average AFD value. 375 
 376 

Compared to the model using the whole rIFG structure, the McFadden pseudo R squared 377 

improves from 0.054 in a model with no AFD or AFD and physical activity interaction term to 378 

0.2. 379 

In this model, moderate physical activity significantly increased the odds of falling by 2.6 (CI: 380 

1.05, 6.4, p= 0.038). Similarly, the interaction term of moderate physical activity and AFD 381 
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value significantly  (p= 0.006) decreased the odds of falling by 0.27 (CI: 0.1, 0.68). High 382 

physical activity did not significantly affect outcomes, neither as a main or interaction effect. 383 

Looking at Figure 6 we can see that AFD is significantly (t(76) = -3.85, p= 0.00025) higher for 384 

fallers (m = 0.79, sd = 0.83; nonfallers: m = -0.21, sd = 1.03) that are not physically active, 385 

however, the same is not true for moderately active (Fallers: m = -0.12, sd = 0.88; nonfallers: 386 

m = 0.012, sd = 0.94; t(79) = 0.59, p= 0.56), or highly active older people (Fallers: m = -0.033, 387 

sd = 0.65; nonfallers: m = 0.06, sd = 1; t(53) = -0.058, p= 0.95).  388 

 389 

3.4 Predicting future falling from structural brain data 390 

We combined data on falling that occurred at any point following the MRI scan at wave 3 until 391 

wave 5. The results of the predictive logistic regression are depicted in table 5. AFD of white 392 

matter pathways connecting any of the aforementioned ROIs did not predict future falling at 393 

waves 4 or 5.  (Table 5).  394 

The results of the predictive logistic regression accounting for physical activity are depicted in 395 

table 6. No significant association between the independent and dependent variables were 396 

observed (Table 5). 397 

 398 

 399 

 400 

Table 5: 

Prediction of fall risk in older adults by white matter microstructure. 

Region Odds CI Low CI High P Value Chi Square Fit n 
l preSMA - l STN 1.42 1.05 1.92 0.023 0.023 265 
r preSMA - r STN 0.74 0.52 1.06 0.097 0.017 200 
r preSMA - l STN 0.81 0.54 1.2 0.29 0.026 171 
r IFG - r STN 1.04 0.78 1.39 0.776 0.125 276 
r IFG - l STN 0.97 0.66 1.42 0.861 0.330 180 
l preSMA - r STN 0.98 0.69 1.4 0.926 0.387 156 

Table 5. Results of a logistic regression showing the prediction of the risk of falling in older adults using Apparent 
Fibre Density in pathways connecting targeted ROIs. No result is significant after correcting for multiple comparisons 
(Bonferroni, new p threshold: 0.0083). The Chi Square and number of observation of the model are included.  



 401 

3.5 Control ROI analysis 402 

To further guard against false positives, we also performed a control analysis using areas not 403 

directly implicated in inhibitory control. To maintain similarity with the experimental analyses, 404 

we still targeted bilateral STN, but instead of analysing the rIFG and preSMA connections to 405 

STN, we chose the FFA (Fusiform Face Area), an area generally not considered to be 406 

substantial components of the inhibitory control network. We also added the lIFG area 407 

(consisting of 3 shen ROIs). The lIFG was included to increase the validity of the control ROIs. 408 

However, as task challenge, age or impairment increase, lIFG may influence inhibitory 409 

performance (Heilbronner & Münte, 2013; Swick et al., 2008). This yielded no significant 410 

results when any of the aforementioned models were conducted with the control regions.  411 

Voxel count (with rIFG and lIFG split up into their individual ROIs) between control 412 

ROIs (Mean = 3391, SD = 738.99) and experimental ROIs (Mean = 3919.86, SD = 899.14) did 413 

not differ significantly  (t(11.567) = 1.20, p = .25).  414 

3.5.1 Cross-Sectional Models for Control ROIs 415 

The results of the cross-sectional logistic regression are depicted in table 3. No significant 416 

association between the independent and dependent variables were observed (Table 7).  417 

Table 6: 

Association between microstructural integrity in inhibitory control networks and odds of falls in older adults 

Region Odds CI Low CI High p-Value Chi Square Fit n 

r preSMA - r STN 0.43 0.22 0.84 0.014 0.039 201 
l preSMA - l STN 1.55 0.93 2.58 0.09 0.14 268 
rIFG - r STN 1.16 0.74 1.84 0.52 0.28 282 
rIFG - l STN 0.92 0.5 1.7 0.79 0.34 186 
l preSMA - r STN 1.04 0.64 1.69 0.88 0.24 158 
r preSMA - l STN 1.03 0.5 2.12 0.94 0.12 173 

Table 6. Results of a logistic regression showing the prediction of the risk of falling in older adults using the Apparent 
Fibre Density. No result is significant after correcting for multiple comparisons (Bonferroni, new p threshold: 
0.0083). The Chi Square and number of observation of the model are included.  

 



3.5.1 Predictive Models for Control ROIs 418 

The results of the predictive logistic regression are depicted in table 8. No significant 419 

association between the independent and dependent variables were observed (Table 8).   420 

Table 7 

Association between microstructural integrity in inhibitory control networks and odds of falls in older adults. 

       

Region Odds CI Low CI High p-Value Chi Square Fit n 

r FFA - r STN 1.56 1.04 2.33 0.03 0.0227 178 
lIFG - l STN 0.73 0.53 1 0.05 0.0001 282 
lIFG - r STN 0.84 0.59 1.21 0.36 0.0042 197 
l FFA - l STN 0.85 0.54 1.35 0.5 0.0050 124 
r FFA - l STN 1.34 0.44 4.08 0.61 0.2286 39 
l FFA - r STN 0.92 0.42 2 0.83 0.0192 70 

Table 7. Results of a logistic regression showing the prediction of the risk of falling in older adults using the Apparent 
Fibre Density. No result is significant after correcting for multiple comparisons (Bonferroni, new p threshold: 
0.0083). The Chi Square and number of observation of the model are included.  

 

Table 8 

Association between microstructural integrity in inhibitory control networks and odds of falls in older adults. 

       
Region Odds CI Low CI High p-Value Chi Square Fit n 
l IFG - l STN 1.38 1 1.91 0.05 0.0015 223 
r FFA - l STN 0.34 0.09 1.3 0.12 0.1150 29 
r FFA - r STN 1.37 0.89 2.09 0.15 0.0081 138 
l FFA - r STN 1.42 0.73 2.78 0.3 0.2500 55 
l FFA - l STN 0.99 0.54 1.84 0.98 0.1232 89 
l IFG - r STN 1 0.65 1.53 1 0.1557 147 

Table 8. Results of a logistic regression showing the prediction of the risk of falling in older adults using Apparent 
Fibre Density. No result is significant after correcting for multiple comparisons (Bonferroni, new p threshold: 0.0083). 
The Chi Square and number of observation of the model are included.  

 



4. Discussion 421 

In the current longitudinal investigation we demonstrated a significant association between 422 

white matter fibre density in pathways connecting two key regions in the brain’s inhibitory 423 

control network, and falling in a large sample (n=414) of older participants. We tested the 424 

microstructural integrity of white matter pathways corresponding to the direct and hyperdirect 425 

cortical-subcortical loops implicated in inhibitory control, and found that only connectivity 426 

between right Inferior Frontal Gyrus (rIFG) and right Subthalamic Nucleus (rSTN) was 427 

implicated in falling. This was observed cross-sectionally by modelling self-reported falling 428 

that had already occurred in the time period preceding structural brain measurements. The 429 

rIFG-rSTN connectivity was not, however, predictive of future falling when measured two and 430 

four years later. Further, no such relationships existed for selected control brain regions that 431 

are not implicated in inhibitory control. While statistically robust and surviving strict multiple 432 

comparison corrections, our key finding was counterintuitive as the direction of the effect was 433 

opposite to that which we hypothesised. Higher Apparent Fibre Density (AFD) values in the 434 

rIFG-rSTN pathways were associated with greater likelihood of falling. We performed post-435 

hoc analyses to unpick the effect further, revealing that this finding was significantly influenced 436 

by physical activity levels in the older individuals. Higher AFD values only yielded higher 437 

odds of falling in combination with low levels of physical activity. In individuals with moderate 438 

or high physical activity levels, AFD had no bearing on falling.  439 

Having a large sample size allowed us to construct a complex logistical model with falling as 440 

the dependant variable, using a set of known influences as control variables (Age, sex, 441 

education, blood pressure, polypharmacy, disabilities of daily living) and the AFD values 442 

between ROIs as independent variables. We focussed our analysis on apparent fibre density 443 

(AFD) instead of the traditionally reported FA values to measure white matter structures within 444 

the brain. AFD offers several advantages over FA, the most pertinent being increased accuracy 445 

for measuring crossing fibres tracts within voxels (Dell’Acqua & Tournier, 2019). The model 446 

reaffirmed the previous finding that high blood pressure may act as a protective factor against 447 

falls – likely by preventing falls due to syncope from blood pressure drops (Butt et al., 2012).  448 

A further strength of the study was that an investigation into control areas not related to 449 

movement inhibition yielded no significant results.   450 

Coxon et al. (2012) initially established a relationship between right Inferior Frontal Cortex 451 

(rIFC) white matter structure and decreased response inhibition time in young and older adults. 452 

They additionally reported higher FA in white matter projections bilaterally between the IFC 453 



and STN in older (but not younger) adults with fastest response inhibition times. Schoene et al. 454 

(2017) demonstrated an association between step response inhibition and real life falls and 455 

consistent with this idea, Nagamatsu et al. (2013) found hypo-activation in prefrontal brain 456 

regions during a test of inhibitory control in individuals who fell more often. Hence, we 457 

hypothesised that greater microstructural integrity of white matter pathways in these networks 458 

may predict current and future falling. While we did detect a significant relationship, our 459 

finding that the individuals with most densely connected pathways fell more was surprising.  460 

Our approach was to use AFD in a move towards more complex models that take into account 461 

the complexity of fibre density and directionality such as AFD, and this is notably different 462 

from the method employed by Coxon et al (2012) where FA was the main measure of white 463 

matter microstructure. However, we did verify that the same pattern of results reported here 464 

holds true with FA (see supplementary material for analyses). Furthermore, while FA values 465 

generally decline with increasing age, this relationship does not apply to AFD values (Choy et 466 

al., 2020). Therefore, a complex relationship between AFD in traditional stopping networks 467 

and falling behaviour is likely. It is also possible that the higher density connectivity we 468 

detected is a structural correlate of a less efficient, diffuse signal recruiting more neural units 469 

as compensation for resources extended beyond their limits, but this is merely conjecture. 470 

Considering how older adults show more widespread brain activity compared to younger adults 471 

(Seidler et al., 2010), our results may be consistent with the theory that more effort and neural 472 

resources are required in the older brain to achieve the same task that younger brains 473 

accomplish more effortlessly. 474 

As this was an observational study and the predictive models yielded no significant findings, 475 

we cannot infer causality or directionality in the relationship between fibre density and falling. 476 

The fact that individuals who fall tended to already have higher fibre density in inhibitory 477 

control pathways may be a cause or consequence of the falling.  For example, it is conceivable 478 

that increased AFD values in fallers may be related to increased attention to balance and active 479 

learning processes subsequent to a fall, rather than bring pre-existing. Follow-up MRI scanning 480 

with the same cohort of participants may unpick this relationship further to disentangle whether 481 

changes in rIFG-rSTN microstructure drive changes in falling or vice versa. 482 

To define this relationship further, we investigated the mediating effects of physical activity. 483 

By definition physical activity implies that people are engaging in behaviours that make falls 484 

more likely. It is therefore not surprising that physical activity itself leads to an increase in 485 

falling behaviour in our models. Interestingly there was no correlation between falling and 486 



AFD in those with higher physical activity levels. This warrants follow-up investigation with 487 

more objective measurement methodologies as the activity levels reported in TILDA rely on 488 

self-reported activity levels within the last 7 days of interviewing, which has been shown to be 489 

subject to over- and underestimation (Lee et al., 2011; Prince et al., 2008).  490 

5. Conclusion 491 

Using MRI and self-reported data from 414 participants from the Irish longitudinal study on 492 

ageing we showed that higher microstructural integrity in white matter pathways connecting 493 

the right inferior frontal gyrus and right subthalamic nucleus was associated with falling in 494 

older adults. This relationship was pre-existing at the time of structural MRI data acquisition, 495 

and therefore precludes establishing causality or directionality of the effect. Fibre density at 496 

the time of MRI data collection did not predict future falling two or four years later. Follow-497 

up MRI data will be required in order to determine whether densely connected regions in the 498 

inhibitory control network change over time in a manner correlated with falling, or whether 499 

this relationship is purely cross-sectional, and perhaps mediated by a third currently undefined 500 

factor.   501 
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 775 
  776 



Tables 777 

Table 1 778 

 

Demographic variables of selected participants at wave 3 

      Fallers W3 (n = 
97) 

Nonfallers W3 (n = 
317) p-Value 

Age   Mean (sd) 69.21 (8.23) 68.2 (7.39) 0.2524b 

Sex Male n (%)a 42 (43.3) 158 (49.8)  0.31c 

  Female n (%)a 55 (56.7) 159 (50.2)   
Education         0.29c 

  Level 1 n (%)a 22 (22.7) 51 (16.1)   
  Level 2 n (%)a 36 (37.1) 119 (37.5)   
  Level 3 n (%)a 39 (40.2) 147 (46.4)   
Disability   Mean (sd) 2.05 (1.88) 1.58 (1.65) 0.018b 

Blood Pressure         0.00069c 

  Normal n (%)a 25 (25.8) 69 (21.8)   
  Elevated n (%)a 16 (16.5) 39 (12.3)   
  Hypertension 1 n (%)a 10 (10.3) 99 (31.2)   
  Hypertension 2 n (%)a 46 (47.4) 110 (34.7)   
Number of Meds   Mean (sd) 2.94 (2.34) 2.5 (2.52) 0.13b 

Physical Activity   n 92 302 
0.21c 

  Low n (%)a 35 (38.0) 106 (35.1)   
  Moderate n (%)a 40 (43.5) 113 (37.4)   
  High n (%)a 17 (18.5) 83 (27.5)   

Table 1. Table showing the basic demographic variables of participants at wave 3 selected for this study.  779 
Participants were grouped into fallers and nonfallers. a Valid percent b Independent two-sample t-test c Chi-780 
square test over all levels and categories. 781 
 782 

Table 2 783 

Association between microstructural integrity in inhibitory control networks and odds of falls in older adults. 784 

Region Odds CI Low CI High P Value Chi Square Fit n 
r IFG - r STN 1.49 1.13 1.98 0.005 0.00003 360 
l preSMA - r STN 1.38 0.93 2.05 0.113 0.00046 200 
r IFG - l STN 1.28 0.91 1.8 0.161 0.00172 237 
r preSMA - r STN 0.84 0.61 1.16 0.288 0.02334 257 
r preSMA - l STN 0.91 0.65 1.26 0.557 0.00976 228 
l preSMA - l STN 0.97 0.73 1.29 0.855 0.00096 343 

Table 2. Results of a logistic regression showing the association between the tractography of ROIs and the risk of 785 
falling in older people. A single result (r IFG to r STN) is significant after correcting for multiple comparisons 786 



(Bonferroni, new p threshold: 0.0083), in bold. The Chi Square and number of observations in the model are 787 
included.  788 
 789 
 790 

Table 3 791 

Association between microstructural integrity in inhibitory control networks and odds of falls in older adults. 792 

Region Odds CI Low CI High p-Value Chi Square Fit n 

rIFG - r STN 2.31 1.42 3.78 0.00082 0.000061 360 
l preSMA - r STN 1.31 0.74 2.3 0.35 0.0098 200 
l preSMA - l STN 1.23 0.76 2 0.41 0.0037 343 
r preSMA - l STN 0.8 0.43 1.49 0.48 0.041 228 
r preSMA - r STN 0.83 0.47 1.47 0.53 0.1 257 
rIFG - l STN 1.06 0.61 1.86 0.83 0.0083 237 

Table 3. Results of a logistic regression showing the association between the tractography of ROIs and the risk 793 
of falling in older people when accounting for physical activity. A result (r IFG to r STN) is significant after 794 
correcting for multiple comparisons (Bonferroni, new p threshold: 0.0083), the pis bold. The Chi Square and 795 
number of observation of the model are included.  796 
 797 

Table 4 798 

Association between microstructural integrity in inhibitory control networks and odds of falls in older adults. 799 

Region Odds CI Low CI High p-Value Chi 
Square Fit n 

rIFG (subregion 68) - r STN 3.59 1.7 7.56 0.00079 0.000027 221 
rIFG (subregion 79) - r STN 2.08 1.06 4.05 0.032 0.007 249 
rIFG (subregion 79) - l STN 1.79 0.84 3.8 0.13 0.16 130 
rIFG (subregion 90) - r STN 0.58 0.28 1.19 0.14 0.21 186 
rIFG (subregion 68) - l STN 1.22 0.45 3.31 0.7 0.0016 139 
rIFG (subregion 90) - l STN 8.93E+21 0 - 1 0.0014 35 

Table 4. Results of a logistic regression showing the association between the tractography of ROIs and the risk of 800 
falling in older people when accounting for physical activity. A result (r IFG to r STN) is significant after 801 
correcting for multiple comparisons (Bonferroni, new p threshold: 0.0083), the pis bold. The Chi Square and 802 
number of observation of the model are included.  803 
 804 

Table 5 805 

Prediction of fall risk in older adults by white matter microstructure. 806 

Region Odds CI Low CI High P Value Chi Square Fit n 
l preSMA - l STN 1.42 1.05 1.92 0.023 0.023 265 
r preSMA - r STN 0.74 0.52 1.06 0.097 0.017 200 
r preSMA - l STN 0.81 0.54 1.2 0.29 0.026 171 
r IFG - r STN 1.04 0.78 1.39 0.776 0.125 276 
r IFG - l STN 0.97 0.66 1.42 0.861 0.330 180 
l preSMA - r STN 0.98 0.69 1.4 0.926 0.387 156 

Table 5. Results of a logistic regression showing the prediction of the risk of falling in older adults using 807 
Apparent Fibre Density in pathways connecting targeted ROIs. No result is significant after correcting for 808 



multiple comparisons (Bonferroni, new p threshold: 0.0083). The Chi Square and number of observation of the 809 
model are included.  810 
 811 
 812 
 813 

Table 6 814 

Association between microstructural integrity in inhibitory control networks and odds of falls in older adults 815 

Region Odds CI Low CI High p-Value Chi Square Fit n 

r preSMA - r STN 0.43 0.22 0.84 0.014 0.039 201 
l preSMA - l STN 1.55 0.93 2.58 0.09 0.14 268 
rIFG - r STN 1.16 0.74 1.84 0.52 0.28 282 
rIFG - l STN 0.92 0.5 1.7 0.79 0.34 186 
l preSMA - r STN 1.04 0.64 1.69 0.88 0.24 158 
r preSMA - l STN 1.03 0.5 2.12 0.94 0.12 173 

Table 6. Results of a logistic regression showing the prediction of the risk of falling in older adults using the 816 
Apparent Fibre Density. No result is significant after correcting for multiple comparisons (Bonferroni, new p 817 
threshold: 0.0083). The Chi Square and number of observation of the model are included.  818 
 819 

Table 7 820 

Association between microstructural integrity in inhibitory control networks and odds of falls in older adults. 821 

       

Region Odds CI Low CI High p-Value Chi Square Fit n 

r FFA - r STN 1.56 1.04 2.33 0.03 0.0227 178 
lIFG - l STN 0.73 0.53 1 0.05 0.0001 282 
lIFG - r STN 0.84 0.59 1.21 0.36 0.0042 197 
l FFA - l STN 0.85 0.54 1.35 0.5 0.0050 124 
r FFA - l STN 1.34 0.44 4.08 0.61 0.2286 39 
l FFA - r STN 0.92 0.42 2 0.83 0.0192 70 

Table 7. Results of a logistic regression showing the prediction of the risk of falling in older adults using the 822 
Apparent Fibre Density. No result is significant after correcting for multiple comparisons (Bonferroni, new p 823 
threshold: 0.0083). The Chi Square and number of observation of the model are included.  824 
 825 

Table 8 826 

Association between microstructural integrity in inhibitory control networks and odds of falls in older adults. 827 

       
Region Odds CI Low CI High p-Value Chi Square Fit n 
l IFG - l STN 1.38 1 1.91 0.05 0.0015 223 
r FFA - l STN 0.34 0.09 1.3 0.12 0.1150 29 
r FFA - r STN 1.37 0.89 2.09 0.15 0.0081 138 
l FFA - r STN 1.42 0.73 2.78 0.3 0.2500 55 
l FFA - l STN 0.99 0.54 1.84 0.98 0.1232 89 
l IFG - r STN 1 0.65 1.53 1 0.1557 147 



Table 8. Results of a logistic regression showing the prediction of the risk of falling in older adults using Apparent 828 
Fibre Density. No result is significant after correcting for multiple comparisons (Bonferroni, new p threshold: 829 
0.0083). The Chi Square and number of observation of the model are included.  830 
  831 



Figures 832 

Figure 1 833 

834 

 835 

 
Figure 1. Theoretical framework. Schoene et al. (2017) have shown that improved 
performance on movement inhibition tasks are associated with a reduced number of falls 
in the real world. Coxon et al (2012) have shown that improved performance on 
movement inhibition tasks is associated with higher fractional anisotropy (FA) in right 
IFC and stronger connectivity between left preSMA and left STN, only in older adults. 
We therefore tested whether individuals who fall less may show stronger white matter 
microstructure in the regions identified as key nodes for inhibitory control.  



Figure 2 836 

 837 

Figure 2. Regions of Interest and Reconstructed Streamlines. Panel A shows the Shen atlas parcellation that was 838 
used, with ROIs shown in Panels C-D selected for analysis. Panels E-F show different viewpoints of the ROIs 839 
with reconstructed streamlines passing between right and left STN and right IFG for one representative participant. 840 

A B

C D

E F

G H I



Panels G,H and I show different viewpoints of reconstructed streamlines passing between bilateral STN and 841 
preSMA.  842 

Figure 3 843 

 844 

Figure 3. Figure 3 shows rIFG – rSTN fibre density (AFD) by Age, separated by Blood Pressure categories, with 845 
separate lines for fallers and nonfallers . There were significantly less fallers in the ‘Hypertension 1’ category.  In 846 
the cohort with normal blood pressure, there are a total of 84 participants, 21 (25%) of which fell. For elevated 847 
blood pressure there are a total of 54 participants,  16 (29.63%) of which fell. For hypertension 1 there are a total 848 
of 93 participants, 6 (6.45%) of which fell. For hypertension 2 there are a total of 129 participants, 37 (28.68%) 849 
of which fell.  850 
 851 
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Figure 4 853 

A B 

  

C D 

  

Figure 4. Figure A shows differences in the distribution of fallers vs nonfallers. Fallers seem to have overall higher 854 
AFD values. Figure B shows the difference in distribution according to age. Fallers also have a higher average 855 
AFD value, although this relationship is dependent on age. Figure C and D show the difference in distribution of 856 
fallers, but only including fallers of age 65 or more. 857 
 858 
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Figure 5 860 

A 

 

B

 

Figure 5. Panel A shows differences in the distribution of fallers vs nonfallers. Fallers have overall higher AFD 861 
values in the low activity condition, but not in high or moderate physical activity. Figure B shows the difference 862 
in distribution according to age. Fallers also have a higher average AFD value, and this relationship is less 863 
dependent on age when accounting for physical activity. 864 
 865 
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White matter fibre density in the brain’s inhibitory control 

network is associated with falling in older adults
C. Simon, D. A. E. Bolton, J. F. Meaney, R. A. Kenny, V. A. Simon, C. De Looze, S. Knight, K. L. Ruddy*
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Recent research has indicated that the relationship between age-related cognitive
decline and falling may be mediated by the individual’s capacity to quickly cancel or
inhibit a motor response. This longitudinal investigation demonstrates that higher
white matter fibre density in the motor inhibition network paired with low physical
activity was associated with falling in older adults.
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