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Abstract

We introduce deep generative diffusion for multivariate and regional surrogate modeling learned from sea-ice simulations. Given

initial conditions and atmospheric forcings, the model is trained to generate forecasts for a 12-hour lead time from simulations

by the state-of-the-art sea-ice model neXtSIM. For our regional model setup, the diffusion model outperforms as ensemble

forecast all other tested models, including a free-drift model and a stochastic extension of a deterministic data-driven surrogate

model. The diffusion model additionally retains information at all scales, resolving smoothing issues of deterministic models.

Furthermore, by generating physical consistent forecasts, previously unseen for such kind of completely data-driven surrogates,

the model can almost match the scaling properties of neXtSIM, which are also observed for real sea ice. With these results,

we provide a strong indication that diffusion models can achieve similar results as traditional geophysical models with the

significant advantage of being orders of magnitude faster and solely learned from data.
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Abstract14

We introduce deep generative diffusion for multivariate and regional surrogate model-15

ing learned from sea-ice simulations. Given initial conditions and atmospheric forcings,16

the model is trained to generate forecasts for a 12-hour lead time from simulations by17

the state-of-the-art sea-ice model neXtSIM. For our regional model setup, the diffusion18

model outperforms as ensemble forecast all other tested models, including a free-drift19

model and a stochastic extension of a deterministic data-driven surrogate model. The20

diffusion model additionally retains information at all scales, resolving smoothing issues21

of deterministic models. Furthermore, by generating physical consistent forecasts, pre-22

viously unseen for such kind of completely data-driven surrogates, the model can almost23

match the scaling properties of neXtSIM, which are also observed for real sea ice. With24

these results, we provide a strong indication that diffusion models can achieve similar25

results as traditional geophysical models with the significant advantage of being orders26

of magnitude faster and solely learned from data.27

Plain Language Summary28

Thanks to generative deep learning, computers can generate images that are almost29

indistinguishable from real images. We use this technology to forecast the sea-ice for a30

region North of Svalbard with models that are learned from data, here from simulation31

data. Doing so, we enhance the accuracy of the model and maintain the sharpness of the32

forecasts. The learned model further depicts physical processes as similarly observed for33

the targeted physical-driven model. Therefore, this technology could provide us with the34

necessary tools to learn faster models from data that have similar properties to those based35

on physical equations.36

1 Introduction37

In recent years, surrogate modeling with deep neural networks has made substan-38

tial progress in weather forecasting up to 15 days (Keisler, 2022; Pathak et al., 2022; Bi39

et al., 2023; Lam et al., 2023), which was seen as highly unlikely a few years ago (Dueben40

& Bauer, 2018; Palmer, 2022; Rasp & Thuerey, 2021). This approach of fully data-driven41

modeling also gain appeal for other components of the Earth system, like the ocean (W. Xiong42

et al., 2023; Wang et al., 2024). Usually trained as deterministic surrogates, they tar-43

get the expected future conditions based on given initial conditions. However, predict-44

ing just the expectation can lead to a loss of small-scale information, which in fact is ex-45

pressed as smoothing of the forecasted fields (e.g., Bonavita, 2023). While the dynam-46

ics of the system might be deterministic, the temporal development of the instantiated47

fields is stochastic, since the initial conditions and/or forcings are insufficient to explain48

the full temporal development. Such effects can be exacerbated in discrete-continuous49

processes as found in precipitation (Ravuri et al., 2021) or sea ice (Durand et al., 2023).50

In this work, we introduce the first generative multivariate surrogate for sea ice that is51

trained as denoising diffusion model and which can resolve aforementioned issues. This52

generative surrogate exceeds the performance of deterministic surrogates and allows us53

to generate an ensemble of plausible future trajectories.54

In diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Y. Song, Sohl-Dickstein,55

et al., 2021), neural networks are trained to map from noise to data by iteratively de-56

noising. Designed to reverse a diffusion process, these models learn to sample based on57

training data from the true but unknown data distribution. Conditioned on initial con-58

ditions and forcings, the diffusion model can generate samples from the conditional dis-59

tribution of the targeted fields (Batzolis et al., 2021; Saharia et al., 2022). Such condi-60

tional diffusion models show promise for different geophysical problems, like for weather61

prediction (Price et al., 2023; Hua et al., 2024), downscaling and correction of meteo-62

rological fields (Mardani et al., 2023; Wan et al., 2023; Zhong et al., 2023), the gener-63

–2–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

ation of ensemble forecasts (T. S. Finn, Disson, et al., 2023; L. Li et al., 2023), or pre-64

cipitation forecasts (Asperti et al., 2023; Gao et al., 2023; Leinonen et al., 2023).65

Beside training diffusion model from scratch, they can be also trained on top of an-66

other model, which is then the prior (Lee et al., 2022). Instantiated like this, the so-called67

residual diffusion model (Mardani et al., 2023) acts as model error correction for the other68

model, similar to those instantiated for geophysical sea-ice models (T. S. Finn, Durand,69

et al., 2023; Gregory et al., 2023). In addition to training from scratch, we also train such70

a residual diffusion model on top of a deterministic surrogate. Since the residual diffu-71

sion model performs as well as the one trained from scratch, we show that we can har-72

ness diffusion models for model error corrections.73

The breakthrough in surrogate modeling for weather prediction can be partially74

accounted (Ben-Bouallegue et al., 2023; Bocquet, 2023) to the availability of the large75

reanalysis dataset ERA5 from the ECMWF (Hersbach et al., 2020), which contains weather76

data at a 1/4◦ resolution from more than 40 years. This large dataset has unlocked the77

training of neural networks with tens of millions of parameters. To enable a similar ef-78

fort for sea ice, we rely on more than 20 years of high-resolution free-running sea-ice sim-79

ulations (Boutin et al., 2023), performed with the state-of-the-art sea-ice model neXtSIM80

(Rampal et al., 2016; Ólason et al., 2022) coupled to the ocean component of the NEMO81

modeling framework (Madec, 2008). Differing from the usual approach in weather fore-82

casting, we target a surrogate model for the geophysical model and not a surrogate model83

for the dynamics as seen by a reanalysis, a subtle but important difference. We train the84

surrogates for a 12-hour forecast and them for up to 50 days. Since we want to prove the85

concept and to reduce the computational costs, we instantiate the problem as a challeng-86

ing regional modeling dataset with 64×64 grid points and unknown lateral boundary87

conditions; the surrogates have to generate the inflow and outflow of sea ice solely based88

on the initial conditions and forcings.89

Characterized by multifractality and scale-invariance (Marsan et al., 2004; Ram-90

pal et al., 2008; Girard et al., 2009), processes in sea ice exhibit a discrete-continuous91

behavior. Caused by this scale-invariance, fracturing propagates from small-scales to large-92

scales (Weiss & Schulson, 2009) and can suddenly show up at the resolved scales, here93

at around 10 km. From the point of view of the resolved scales, this behavior is seem-94

ingly stochastic and surrogate models could benefit from a probabilistic formulation (Andersson95

et al., 2021; Durand et al., 2023) Sea-ice models with brittle rheologies, like neXtSIM,96

parameterize these processes by introducing a damage variable, which keeps track of the97

sub-grid scale fracturing of sea ice. As we want to find the best surrogate for the geo-98

physical model, we treat the damage as another predicted variable beside the sea-ice thick-99

ness, sea-ice concentration, and the two components of the horizontal sea-ice velocity.100

Thereby, we are the first providing a surrogate model for the most important sea-ice vari-101

ables, altogether modeled within one single neural network.102

The fracturing process links the deformation of sea ice to the temporal develop-103

ment of the sea-ice thickness and sea-ice concentration. A physical consistent surrogate104

should represent these links between deformation and other state variables. Caused by105

their regression-to-the-mean behavior, deterministic surrogate models fail to represent106

physical consistency (Bonavita, 2023; Kochkov et al., 2023). While we confirm this lack107

of consistency for our deterministic surrogate, we also show that our diffusion surrogate108

can represent these aforementioned links. We see the discovery of such capabilities for109

generative diffusion as important step towards physical consistent surrogates based on110

deep neural networks.111

In Sect. 2, we introduce the dataset used in this study, we explain therein the sim-112

ulations performed with the geophysical model neXtSIM and the used forcing fields from113

the ERA5 atmospheric reanalysis. We elaborate the goal and methodology of training114

our surrogate models in Sect. 3, where we state our used loss functions and parameter-115
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Figure 1. The sea-ice thickness as simulated by neXtSIM for 2015-01-01 03:00 UTC from the

validation dataset. The red marked region north of Svalbard depicts the 64 × 64 grid points that

are used for the regional setup. The land areas are based on the Natural Earth dataset.

izations to train deterministic and diffusion surrogates. In Sect. 4, we explain our ex-116

periments and indicate which hyperparameters were used during the training of the neu-117

ral networks. We present our results in Sect. 5, while we discuss and summarize these118

results in Sect. 6. We briefly conclude this study in Sect. 7.119

2 Data120

The target of this study is to train regional surrogate models on sea-ice simulations121

from the state-of-the-art sea-ice model neXtSIM. Our data comes from simulations per-122

formed with neXtSIM coupled to an ocean model with forcings from the ERA5 atmo-123

spheric reanalysis.124

Ranging from 1995 to 2018, the dataset is available in six-hourly steps. In accor-125

dance with Durand et al. (2023), we train the surrogate model for a 12-hour lead time126

to increase the signal-to-noise ratio in the data.127

The regional dataset contains of a region north of Svalbard with 64×64 grid points,128

as depicted in Fig. 1. This region has no land masses and is characterized by heavy forc-129

ings from ocean currents and temporally changing sea-ice conditions. While the southern-130

eastern border contains examples of marginal ice zones, the northern part has an inflow131

of thick sea ice during the winter season. Since our goal is to evaluate the performance132

of surrogate models in a regionally constrained setup, we impose no lateral boundary con-133

ditions in the surrogate model: outflowing sea ice is lost and the type of inflowing sea134

ice is unknown. The surrogate must learn to generate the type of inflowing sea ice based135

on the initial conditions and the atmospheric forcings. We elaborate on the dataset of136

sea-ice states stemming from neXtSIM in Sect. 2.1, while we explain our strategy in us-137

ing atmospheric forcings from ERA5 in Sect. 2.2.138
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2.1 Simulations from the sea-ice model neXtSIM139

The purely Lagrangian sea-ice model neXtSIM (Rampal et al., 2016) is designed140

to model sea-ice over regions as large as the whole Arctic. The simulations (Boutin et141

al., 2023) were performed with the brittle Bingham-Maxwell rheology (Ólason et al., 2022),142

which builds upon the Maxwell-Elasto-Brittle rheology (Dansereau et al., 2016). The re-143

sulting model has been shown to reproduce some properties of sea-ice dynamics, for in-144

stance the observed temporal and spatial scaling of the sea-ice deformation over a wide145

range of scales. (Rampal et al., 2019; Ólason et al., 2022; Bouchat et al., 2022). For more146

information about neXtSIM, we refer to Rampal et al. (2016); Ólason et al. (2022).147

In our used simulations, neXtSIM has been coupled via the OASIS3-MCT coupler148

(Valcke, 2013; Craig et al., 2017) to OPA, the ocean component of the NEMO model-149

ing framework (Nucleus for European modeling of the Ocean, v3.6, Madec, 2008). In ad-150

dition to the ocean coupling, the sea ice is driven from the atmosphere by forcings from151

the deterministic reanalysis run of the ERA5 reanalysis dataset (Hersbach et al., 2020)152

on an hourly basis. Run at a horizontal resolution of 1/4◦ ≈ 12 km, the coupled model153

simulates processes over the full Arctic. The curvilinear mesh for the ocean component154

is given by the regional CREG025 configuration (Talandier & Lique, 2021), while neXtSIM155

uses a dynamical Lagrangian mesh with remeshing. For a more detailed introduction to156

the modeling setup, we refer to Boutin et al. (2023).157

Our targeted prognostic model variables are the sea-ice thickness (SIT), sea-ice con-158

centration (SIC), sea-ice damage (SID), and sea-ice velocity in x- (SIU) and y-direction159

(SIV). The model output is interpolated with a conservative scheme from the Lagrangian160

neXtSIM mesh to the aforemented fixed curvilinear mesh from the ocean model. While161

SID represents instantaneous values every six hours, all other model variables are aver-162

aged on a six-hourly basis. Initialized on 1995-01-01, the coupled model is run up to 2018-163

12-31. While the first five years are normally treated as spin-up phase (Boutin et al., 2023),164

we include them into our dataset to increase the data amount, since our goal is here to165

find the best surrogate for neXtSIM.166

2.2 Forcings from the ERA5 reanalysis167

The external forcings for our surrogate model are given from the deterministic re-168

analysis run of the ERA5 dataset (Hersbach et al., 2020), acquired from the Coperni-169

cus Climate Change Service (Hersbach et al., 2023). While the neXtSIM simulations are170

driven by hourly ERA5 output, we use as input into our surrogate model output every171

12 hours; our surrogate has less information from the atmosphere than the targeted sim-172

ulations. As additional constrain, we just use atmospheric forcings, while neglecting forc-173

ings from the ocean.174

As forcing variables, we choose the 2-meter temperature (T2m), 2-meter specific175

humidity (Q2m), and the 10-meter wind velocities in meridional (U10m) and zonal (V10m)176

direction, neglecting other variables like the solar insulation which are used in neXtSIM.177

These four variables are usually also available on a six-hourly basis in the CMIP6 datasets178

(Eyring et al., 2016), such that, in the future, we could apply the surrogates to climate179

projections. All variables are interpolated from the 1/4◦ lat-lon mesh to the curvilinear180

CREG025 mesh by nearest neighbor interpolation. The wind velocities are rotated from181

meridional and zonal direction to the native x- and y-direction of the curvilinear grid182

as internally done within the NEMO modeling framework. Combined with the state vari-183

ables, we have a total of nine variables (five state variables plus four forcing variables)184

per six-hourly timestep in our dataset.185
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3 Surrogate modeling with diffusion models186

With the current sea-ice conditions xt and current and future atmospheric forc-187

ings ft:t+12 h, we want to forecast the future sea-ice conditions 12 hours later xt+12 h. Here,188

the sea-ice conditions contain the sea-ice thickness, concentration, damage, velocity in189

x-direction, and the velocity in y-direction; in total, we have 13 input fields and 5 tar-190

get fields. For this task, we employ a statistical forecast model Mθ(xt, ft:t+12 h) with its191

parameters θ. The forecast model outputs a forecast x̂θ,t+12 h, which should best esti-192

mate the true future sea-ice conditions,193

xt+12 h ≈ x̂t+12 h = xt +Mθ(xt, ft:t+12 h). (1)

To get the forecast, the output of the neural network is added to the persistence fore-194

cast, as the dynamics are additive and this tends to improve the forecasting results (e.g.,195

Durand et al., 2023; Lam et al., 2023).196

We employ as statistical model a deep neural network which predicts all five model197

variables at the same time. The model parameters θ are the weights and biases of this198

deep neural network. We train the neural network by minimizing a loss function with199

a variant of stochastic gradient descent based on a mini-batch of data samples drawn from200

the training dataset (xt, ft:t+12 h,xt+12 h) ∼ D.201

After its training, we can cycle the surrogate model for longer lead times than the202

trained 12 hours. To do so, the forecasts of the model are clipped to their physical bounds203

(SIT: [0,∞), SIC: [0, 1], SID: [0, 1], SIU: (−∞,∞), SIV: (−∞,∞)) and used as initial204

conditions for the following cycle, e.g., x̂t+24 h = x̂t+12 h +Mθ(x̂t+12 h, ft+12 h:t+24 h).205

We apply surrogates in four different flavors: first, we train a deterministic surro-206

gate predicting the expected future conditions, as explained in Sect. 3.1. Secondly, we207

extend the determinstic surrogate to stochastic forecasts by introducing a stochastic term,208

which is fitted to the validation dataset, as elucidated in Sect. 3.2. Thirdly, we use gen-209

erative diffusion models as stochastic surrogates to sample from the probability distri-210

bution of the future conditions, as introduced in Sect. 3.3. Fourthly, we correct the fore-211

casts of the deterministic surrogate with residual diffusion models, as presented in Sect.212

3.4.213

3.1 Deterministic surrogate modeling214

The deterministic surrogate takes as input the current sea-ice conditions xt and215

forcings ft:t+12 h and is trained to give one single forecast of the future sea-ice conditions.216

As usual approach to train such deterministic models, we take the mean-squared error217

(MSE) between the forecast and the true sea-ice conditions after 12 hours as loss func-218

tion. Since the five predicted variables have different physical meaning, we have to weight219

the contribution of these variables to the loss, which results into a weighted MSE. The220

deterministic surrogate is optimized over the K variables with221

Ldet(θ) =

K∑
k=1

wk

∥∥∥xt+12 h,k − xt,k −Mθ,k(xt, ft:t+12 h)
∥∥∥2
2
, (2)

where wk is the weighting factor for the k-th variable. The weighting factor is kept con-222

stant throughout the optimization and set wk = 1
s2k
. s2k is the variance of the dynam-223

ics, ∆xt+12 h,k = xt+12 h,k−xt,k, estimated over Nsamples samples and Ngrid grid points224

in the training dataset,225

s2k =
1

Nsamples ·Ngrid − 1

Nsamples∑
i=1

Ngrid∑
j=1

(∆xt+12 h,i,j,k −∆xt+12 h,k)
2, (3)

where ∆xt+12 h,k corresponds to the mean dynamics for the k-th variable.226
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As shown in Appendix A1, we can recover Eq. (2) using maximum likelihood es-227

timation and a local Gaussian distribution with the forecast as its mean and a diago-228

nal covariance matrix with s2k on its diagonal. By optimizing Eq. (2), the target of the229

deterministic surrogate is to predict the expected sea-ice conditions after 12 hours given230

the initial conditions and forcings, x̂t+12 h = E(xt+12 h | xt, ft:t+12 h).231

3.2 Stochastic surrogate modeling232

While the deterministic surrogate is trained to imitate an ensemble mean for a 12-233

hour forecast, cycling such a deterministic surrogate differs from an ensemble mean and234

can lead to unphysical behavior in the forecasts and to smoothing effects (Bonavita, 2023;235

Kochkov et al., 2023; Durand et al., 2023). Additionally, although trained by a deter-236

ministic loss function, the surrogate model is thought to have stochastic dynamics rather237

than deterministic ones (Bocquet et al., 2020), based on the underlying Gaussian assump-238

tions of Eq. (2).239

Instead of using the deterministic surrogate as single forecast, we can also sample240

from an assumed Gaussian distribution, here for the i-th ensemble member,241

x̂
(i)
t+12 h = xt +Mθ(xt, ft:t+12 h) + Lϵ(i), ϵ(i) ∼ N (0, I), (4)

where L is matrix factor of the covariance matrix Q, i.e. Q = LL⊤, such as the Cholesky242

decomposition of Q. Comparing Eq. (1) with Eq. (4), we see that we get an additional243

stochastic term, which should represent the predictive uncertainty.244

To apply Eq. (4) for forecasts, we have to find the covariance matrix Q. In this study,245

we decompose the covariance matrix into a cross-covariance between variables and spa-246

tial correlations within a single variable. The spatial correlations are efficiently modeled247

by using a two-dimensional FFT-based approach, as shown in Appendix A2. To avoid248

issues with overfitting, we fit the cross-covariance and the spectrum for the spatial cor-249

relations on the validation dataset as a post-processing step, after training the determin-250

istic surrogate. This surrogate serves as baseline approach for a stochastic model. De-251

rived from a Gaussian assumption of the forecast distribution, its forecasts are always252

constrained to this assumption.253

3.3 Diffusion models254

Besides training neural networks as deterministic forecasts, we also train genera-255

tive diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Y. Song, Sohl-Dickstein,256

et al., 2021) for stochastic forecasts to generate samples from the full probability distri-257

bution (Mohamed & Lakshminarayanan, 2016; J. Song et al., 2020) without making a258

Gaussian assumption. The idea behind such diffusion models is to iteratively denoise fields259

towards forecast samples by starting with fields of pure noise.260

Diffusion models work with zτ , a noised version of our targeted fields xt+12 h, where261

τ is a pseudo time going from τ = 1 for pure noise to τ = 0 for cleaned data samples.262

We parameterize the output of the neural network as263

v̂ϕ(zτ ,xt, ft:t+12 h, τ), (5)

with the neural network parameters ϕ. The output of the neural network v̂ϕ(·) corre-264

sponds to a surrogate target, internally used within the diffusion model to iteratively de-265

noise the fields (Salimans & Ho, 2022).266

During training, we sample data pairs from our training dataset, which then also267

include samples of our targeted fields. Assuming that these samples are normalized to268

have mean 0 and standard deviation 1, we increasingly replace the signal in the samples269

–7–
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by Gaussian noise, defining a variance-preserving diffusion process,270

zτ = ατxt+12 h + στϵ, ϵ ∼ N (0, I), (6)

where zτ is the noised data sample at pseudo time τ ∈ [0, 1] with the signal amplitude271

ατ and the noise amplitude στ . We define the signal and noise amplitude in terms of log-272

arithmic signal-to-noise ratio273

λ(τ) = log

(
α2
τ

σ2
τ

)
, (7)

which monotonically decreases with increasing pseudo time. During training, we use a274

dynamic noise scheduling (D. P. Kingma & Gao, 2023), which is adapted to the approx-275

imation error of the neural network and further explained in A4. On the one end, by set-276

ting λ(0) large enough, we achieve α0 ≈ 1 and approximately recover xt+12 h from z0.277

On the other end, by setting λ(1) small enough, the signal amplitude goes towards zero,278

α1 ≈ 0, and p(z1) ≈ N (0, I) approximately holds (D. Kingma et al., 2021).279

To train the diffusion model, we use280

vτ := ατϵ− στxt+12 h (8)

as surrogate target, which has been shown to be more stable during training and sam-281

pling for small signal amplitudes (Salimans & Ho, 2022). We optimize our neural net-282

work approximation from Eq. (5) by sampling a pseudo time step from a uniform dis-283

tribution U(0, 1) and minimizing284

LDiff(ϕ) = Eτ∼U(0,1)

[
w(τ) ·

(
−dλ(τ)

dτ

)
· (e−λ(τ)+1)−1

∥∥vτ − v̂ϕ(zτ ,xt, ft:t+12 h, τ)
∥∥2
2

]
, (9)

as loss function with w(τ) as weighting factor. The multiplicative factor −dλτ

dτ ·(e−λτ+285

1)−1 ensures that the loss function optimizes a lower bound on the likelihood of xt+12 h286

(ELBO, D. Kingma et al., 2021; Y. Song, Durkan, et al., 2021). Although the target vτ287

is independent from the conditioning information, Eq. (9) optimizes the ELBO of the288

conditional distribution p(xt+12 h | xt, ft:t+12 h), as we condiiton the neural network (Batzolis289

et al., 2021; Saharia et al., 2022).290

If the weighting function w(τ) monotonically increases with increasing pseudo time,291

the loss function corresponds to the ELBO with additive data augmentation (D. P. Kingma292

& Gao, 2023), which has been shown to lead to better results (e.g., Karras et al., 2022).293

As proposed in Salimans and Ho (2022), we use an exponential weighting function294

w(τ) = exp

(
−λ(τ)

2

)
, (10)

which is monotonically increasing, since λ(τ) decreases with increasing pseudo time.295

We generate data samples by drawing fields of random noise z1 = ϵ ∼ N (0, I)296

and integrating the ordinary differential equation (ODE) that corresponds to the denois-297

ing problem (see also A3, Y. Song, Sohl-Dickstein, et al., 2021) with a deterministic second-298

order Heun integrator (Karras et al., 2022). Within the integration, we make use of the299

trained neural network by defining the following denoiser function300

D̂ϕ(zτ ,xt, ft:t+12 h) = ατzτ − στ v̂ϕ(zτ ,xt, ft:t+12 h, τ), (11)

where zτ corresponds to the states backward integrated from 1 to τ . The denoiser ap-301

proximates the cleaned states based on all information up to time τ . This approxima-302

tion is then used within the integration scheme to denoise zτ one integration step fur-303

ther. In the following, we denote Dϕ(xt, ft:t+12 h, ϵ) as the final integrated solution of the304

ODE.305
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The pseudo time steps used for the integration from τ = 1 to τ = 0 are defined306

by an additional noise scheduling, which can be independent from the one used during307

training. To reduce the truncation errors, we choose the sampling scheduling as proposed308

by Karras et al. (2022) and modified by D. P. Kingma and Gao (2023) for wider ranges309

of λ, also shown in Fig. A2.310

By drawing different initial conditions for the ODE, we get different forecasts from311

the diffusion model. Hence, the forecasts with the diffusion surrogate are inherently stochas-312

tic and allow us to create an ensemble of forecasts. In practice, as proposed in Eq. (1),313

we train the diffusion model to predict the dynamics instead of the states directly. Then,314

the forecast of the diffusion surrogate for the i-th ensemble member can be described as315

x̂
(i)
t+12 h = xt +Dϕ(xt, ft:t+12 h, ϵ

(i)), ϵ(i) ∼ N (0, I). (12)

3.4 Residual diffusion models316

When we directly predict the dynamics for 12 hours with a diffusion model, it must317

do all the heavy lifting. However, we can also split the dynamics into two different parts:318

one deterministic and one stochastic part, similarly to what we have done in Sect. 3.2.319

We leverage this splitting and fit residual diffusion models (Mardani et al., 2023), where320

the deterministic surrogate serves as prior (Lee et al., 2022).321

During training of the residual diffusion model, we replace the target xt+12 h by the322

residuals of the deterministic surrogate xt+12 h−Mθ(xt, ft:t+12 h). We additionally con-323

dition the diffusion model on the output of the deterministic surrogate, since it is avail-324

able before the diffusion model is applied. Beside these changes, we train the diffusion325

model with the same loss function and weighting as in Eq. (9). The forecast of the resid-326

ual diffusion surrogate for the i-th ensemble member reads then327

x̂
(i)
t+12 h = xt +Mθ(xt, ft:t+12 h) +Dϕ(xt, ft:t+12 h,Mθ(xt, ft:t+12 h), ϵ

(i)), (13)

again with ϵ(i) ∼ N (0, I) and Dϕ(·) as integrated solution of the diffusion model.328

The forecast of the deterministic surrogate is the prior and refined by the diffusion329

model. As the diffusion model is trained on the residuals of the deterministic surrogate,330

it can be seen as model error correction. This splitting of the surrogate model into one331

deterministic and one stochastic part speeds up the convergence of the diffusion model,332

as illustrated in Fig. 2.333

4 Experiments334

We perform our experiments with the data as described in Sect. 2 and train neu-335

ral networks for surrogate modeling as presented in Sect. 3. In these experiments, we336

want to compare determinstic surrogates to stochastic surrogates, either applied on top337

of the deterministic ones or trained independently. To make the experiments compara-338

ble, we used almost the same neural network architecture and hyperparameters for train-339

ing of the neural networks.340

Our neural network architecture is inspired by the UViT architecture of Hoogeboom341

et al. (2023), which builds upon the vision transformer (ViT) architecture (Dosovitskiy342

et al., 2021) for diffusion models (Peebles & Xie, 2023). In the encoding and decoding343

part of our architecture with a U-form and skip-connection (Ronneberger et al., 2015),344

we use ConvNeXt blocks (Z. Liu et al., 2022) and two additional types of layers to de-345

crease and increase the spatial dimensionality of our data: we decrease the spatial di-346

mensions by convolution layers with a kernel size of 2 and a stride of 2. To increase the347

spatial dimensions, the features are interpolated with a nearest neighbor interpolation348

followed by a convolutional layer with a kernel size of 3. The bottleneck at the bottom349
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Figure 2. Normalized root-mean-squared error (nRMSE) for a lead time of 12 hours in the

validation dataset as function of training iterations for the deterministic model (blue), the diffu-

sion model (red), and the residual diffusion model (dashed, violet). The nRMSE for the diffusion

and residual diffusion model are for a single ensemble member. The yellow dots correspond to the

model selected by the best validation loss, which is different from the nRMSE for the diffusion

and residual diffusion model. Note, the diffusion models are trained with a 2.5× lower learning

rate than the deterministic model.

of the UViT architecture consists of transformer blocks (Vaswani et al., 2017), where self-350

attention layers (Bahdanau et al., 2016) are followed by feed-forward layers to extract351

global features and mix these features up. The architecture is further explained in A6.352

As architectural scaling parameter, we use the number of transformer blocks in the353

bottleneck layer as similarly done in Hoogeboom et al. (2023). To reduce overfitting, we354

apply dropout (p = 0.2) in these transformer blocks. In addition to dropout, we use355

data augmentation to artificially increase the training dataset size. As data augmenta-356

tion, we use random horizontal flip (probability p = 0.5), random vertical flips (p =357

0.5), and random rotations counter-clockwise by 90◦ (p = 0.5). The information about358

the activated augmentation is given as additional conditioning input to the neural net-359

work and linearly embedded. In Appendix B3, we show that this data augmentation im-360

proves our results, something also observed for probabilistic and generative models in361

general (Jun et al., 2020; Karras et al., 2022; Podell et al., 2023). During forecast, we362

deactivate all data augmentation and give an empty conditioning by zeros to the neu-363

ral network.364

For the diffusion model, we additionally condition the neural network on the pseudo365

time in terms of λ(τ) and use a fixed sinusoidal embedding (Vaswani et al., 2017). Within366

the neural network, all embedded information is added together and then transformed367

into the scale and shift parameters of the normalization layers.368

The deterministic model easily overfits on the training dataset, and we found the369

optimum of 2 transformer blocks. Contrastingly, our diffusion models suffer less from over-370

fitting since they are trained with additive noise. We use 8 transformer blocks for the371

diffusion model, and yet the model has less overfitting than the deterministic one for the372

RMSE, as can be seen in Fig. 2. In total, the deterministic model has 7.6×106 param-373

eters, while the diffusion models have 19.4× 106 parameters.374
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The neural networks are trained on neXtSIM data from 1995 to 2014. The full year375

2015 is used as validation dataset and the architectures and hyperparameters are tuned376

on this dataset. The results in Sect. 5 are calculated on data from 2016 to 2018. All in-377

puts for the neural network are normalized based on the global per-variable mean and378

standard deviation in the training dataset, while the targets are normalized with the global379

per-variable mean and standard deviation of the dynamics.380

As optimizer, we use AdamW (Loshchilov & Hutter, 2019), which decouples the381

optimizer Adam (D. P. Kingma & Ba, 2017) from weight decay, which we set as a con-382

stant to λ = 0.01. The learning rate is linearly increased to γ = 5 × 104 (determinis-383

tic) or γ = 2×104 (diffusion) within the first 5000 iterations, and afterwards decreased384

with a cosine scheduling up to the maximum number of iterations. We optimize all neu-385

ral networks with a batch size of 256 for a maximum of 1 × 105 iterations (determin-386

istic) or 5×105 iterations (diffusion) with early stopping if the validation loss was not387

improving. To note, one epoch contains 115 iterations at this batch size. After stopping388

the training, the best performing model in terms of validation loss is selected, as marked389

in Fig. 2 by yellow dots.390

As training devices, we use an Nvidia RTX A5000 with 24 GB memory and an Nvidia391

RTX A6000 with 48 GB memory. The models are implemented in Python (Van Rossum,392

1995) with PyTorch (Paszke et al., 2019), PyTorch lightning (Falcon et al., 2020), and393

Hydra (Yadan, 2019). The code for a PyTorch toolbox to instantiate diffusion models394

is available under https://github.com/cerea-daml/ddm-dynamical, while the code395

for the experiments can be found under https://github.com/cerea-daml/diffusion396

-nextsim-regional. All models are trained in bfloat16 and evaluated in float32.397

In total, we compare our four different surrogates with two baseline methods. As398

first baseline, The persistence forecast constantly predicts the initial conditions, x̂t+∆t =399

xt,∀∆t ∈ [0,∞). In the free-drift model, our second baseline, we calculate the sea-ice400

velocity based on the atmospheric wind velocity (Thorndike & Colony, 1982; Brunette401

et al., 2022), which is given in the atmospheric forcings. Using the so-calculated sea-ice402

velocity, we advect the tracer variables SIT, SIC, and SID with a semi-Lagrangian ad-403

vection scheme and a linear interpolation, as explained in A5. Per surrogate modeling404

strategies explained in Sect. 3, we present the results of a single surrogate model.405

All models have been tuned for a 12-hour lead time in the validation dataset. For406

forecasting, the weights in the network of the diffusion models are replaced by their ex-407

ponential moving average (rate γ = 0.999) as this can further stabilize diffusion mod-408

els (Y. Song & Ermon, 2020b). The forecasts of the diffusion models are sampled in 20409

integration steps with a second-order Heun integrator and the sampling noise scheduler410

from Karras et al. (2022), where the limits are set to λmin = −10 and λmax = 15 by411

truncation (D. P. Kingma & Gao, 2023). Because of these 20 integration step, the neu-412

ral network is evaluated 39 times per forecasting step in our diffusion surrogates.413

5 Results414

In the following, we analyze the results of the diffusion surrogates compared to the415

deterministic surrogate and its stochastic extension. We start by evaluating the ensem-416

ble mean forecasts in terms of their root-mean-square errors (RMSE). Later, we will ex-417

amine the results for the deterministic and residual diffusion surrogate more in detail.418

We present additional results, like the evaluation of the ensemble, in Appendix B.419

The deterministic surrogate outperforms the persistence forecast and the free-drift420

model for all model variables, Table 1 and Table 2, showing the efficiency of deep learn-421

ing for surrogate modeling of sea ice. With only one ensemble member, stochastic sur-422

rogates are in general inferior to deterministic surrogates, even for diffusion, and in sev-423

eral cases, they also have an increased error compared to the baseline methods. These424
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Table 1. Normalized root-mean-squared error (nRMSE) of the ensemble means for the sea-ice

thickness (SIT), sea-ice concentration (SIC), sea-ice damage (SID), sea-ice velocity in x-direction

(SIU), and sea-ice velocity in y-direction (SIV) after a lead time of 12 hours, averaged across the

testing dataset. N is the number of ensemble members and Σ the average across all five vari-

ables. The rows above the line are the nRMSE for the baseline models and below the line for the

deep learning surrogates. All scores are normalized by the climatology from the training dataset.

The best performing models in a column are marked by bold values.

Experiment N SIT SIC SID SIU SIV Σ

Persistence 1 0.15 0.19 0.30 0.73 0.69 0.48
Free-drift 1 0.11 0.15 0.21 0.57 0.62 0.40

Deterministic 1 0.07 0.09 0.15 0.18 0.18 0.14
Stochastic 1 0.10 0.12 0.19 0.26 0.26 0.20
Diffusion 1 0.09 0.11 0.20 0.20 0.19 0.17
ResDiffusion 1 0.09 0.11 0.20 0.20 0.19 0.17
Stochastic 16 0.07 0.09 0.15 0.19 0.18 0.15
Diffusion 16 0.07 0.09 0.16 0.18 0.17 0.14
ResDiffusion 16 0.07 0.09 0.15 0.18 0.17 0.14

Table 2. NRMSEs after a lead time of 15 days (30 iterations). The columns and rows have the

same meaning as Tab. 1.

Experiment N SIT SIC SID SIU SIV Σ

Persistence 1 0.59 0.89 1.10 1.41 1.45 1.14
Free-drift 1 0.49 0.77 0.86 0.57 0.62 0.68

Deterministic 1 0.41 0.53 0.79 0.41 0.39 0.53
Stochastic 1 0.51 0.63 0.90 0.52 0.51 0.63
Diffusion 1 0.43 0.55 0.81 0.39 0.39 0.54
ResDiffusion 1 0.44 0.56 0.82 0.40 0.38 0.55
Stochastic 16 0.39 0.55 0.74 0.42 0.41 0.52
Diffusion 16 0.37 0.49 0.70 0.36 0.36 0.47
ResDiffusion 16 0.37 0.48 0.69 0.36 0.35 0.47

stochastic surrogates add noise to the forecast which hurts their performance. With 16425

ensemble members, the stochastic surrogates perform similar to the deterministic sur-426

rogate after a 12-hour lead time, since the deterministic surrogate targets a mean fore-427

cast for this lead time. However, for longer lead times, diffusion with 16 ensemble mem-428

bers outperforms the deterministic surrogate. The trajectory of the deterministic sur-429

rogate differs from the ensemble mean of the diffusion runs, see also Fig. 3.430

Even though tuned on the validation dataset, the stochastic surrogate only gains431

performance on longer lead times compared to the deterministic surrogate, as can be seen432

in Fig. 3. However, residual diffusion outperforms the deterministic model for all vari-433

ables and lead times, performing similar to diffusion trained from scratch. Residual dif-434

fusion seems efficient to correct forecast errors of other models.435

Examining the resulting power spectrum in Fig. 4, the deterministic surrogate loses436

small-scale information, especially for the discrete-continuous sea-ice thickness and dam-437

age. Caused by a double penalty effect of the weighted MSE, this loss of information comes438
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Figure 3. The normalized root-mean-squared error for the deterministic surrogate (blue), the

ensemble mean of the stochastic (dashed, yellow), the diffusion (red), and the residual diffusion

surrogate (dashed, violet), averaged across all five variables and the testing dataset.

inherently with the optimization of the surrogate. Contrastingly, the residual diffusion439

surrogate is optimized to generate forecast samples without the Gaussian assumption440

in data space. Therefore, generative diffusion retains information across all spatial scales,441

resolving the issues of the deterministic surrogate.442

Until now, we have quantitatively analyzed the results averaged across the whole443

testing dataset. We move on and show results for forecasts started on the 2017-11-10 at444

03:00 UTC. With the deterministic and the residual diffusion surrogate, we make a 50-445

day forecast to showcase their physical consistency and possible problems in the fore-446

casts.447

The loss of small-scale information leads to a smoothing of the deterministic fore-448

casts which becomes especially visible for a lead time of 50 days as seen in Fig. 5. The449

surrogate additionally tends to generate recurring patterns of artificially large strains.450

Driven by the external forcings and using the deterministic surrogate as base model, the451

residual diffusion forecast has a similar general structure as the deterministic one, while452

the strains appear much more realistic. Since small-scale information is retained, gen-453

erative diffusion keeps the forecasts as sharp as seen for the targeted neXtSIM simula-454

tions.455

In Fig. 6, we present snapshots of divergence and shear rate, which are estimated456

based on the gradients in the velocity fields and related to the external stress imposed457

on the sea ice. Sea ice can be especially deformed where the sea-ice is weaker and its con-458

centration lower. There, convergence leads to ridging and divergence to further thinning459

of sea ice.460

The deterministic surrogate is unable to represent the mechanics as observed in the461

targeted simulation, caused by its loss of small-scale information. The gradients of the462

velocity and the divergence and shear are smoothed out, leading to fewer pixels with weak463

and strong deformation. This results into missing grid points with strong shear, diver-464

gence, or convergence, as additionally shown in Fig. 7. The connection between strains465

and weaker sea ice is much more blurry, weakening the link between shear and concen-466

tration. While a relation between divergence and change in the sea-ice thickness still ex-467
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Figure 4. The spectral density of the deterministic and the residual diffusion surrogate for

sea-ice thickness (a & b), sea-ice damage (c & d), and sea-ice velocity in x-direction (e & f) after

a two days lead time (a, c & e) or a 15 days lead time (b, d & f). The spectra are estimated over

the full three-year-long testing dataset.

ists, the thickness change exhibits much longer correlations and artificial ridging and thin-468

ning, amplifying the artificial strains. The deterministic surrogate consequently loses its469

physical consistency to the processes within sea ice.470

The diffusion forecast clearly exposes the link between the divergence, shear, and471

concentration. Compared to the deterministic forecast, the thickness change resembles472

much more the targeted simulation, with similar correlation lengths. However, the dif-473

fusion surrogate results into noisier deformation fields, leading to fewer pixels with low474

shear, divergence, and convergence than in neXtSIM, see Fig. 7. This issue appears sim-475

ilar to the brightness issues discovered in diffusion models for image and video genera-476

tion (Everaert et al., 2024; M. Li et al., 2023; Lin et al., 2024; Wu et al., 2023). Never-477

theless, the diffusion surrogate can match the probability of strong deformations in neXtSIM.478

In Fig. 8, we assess the dependence of the first three moments in the distribution479

of the total deformation rate on the spatial scale. The total deformation rate is estimated480

the square-root of the sum of the squared divergence and shear fields. Since the sea-ice481

velocities in our dataset are six-hourly averaged values, the derived total deformation482

fields correspond to the total deformation rates within these six hours. The estimated483

rates have been scaled to daily rates. As we only perform a spatial analysis, we stick to484

the Eulerian point of view in estimating the deformation (Herman & Glowacki, 2012),485

differing from the usual analysis of pseudo trajectories (Rampal et al., 2019; Ólason et486

al., 2022). For the spatial scaling, we coarse-grain the fields by averaging the total de-487

formation rate within an increasing spatial window size. Expecting a power-law scaling488

of the distributional moments ⟨ϵ̇qtot⟩ ∼ L−β(q), we estimate the scaling exponents β(q)489

with a least-squares regression in log-log space. If the predicted fields are multi-fractal,490
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Figure 5. Snapshots of the sea-ice thickness for a forecast started on 2017-11-10 at 03:00

UTC for our target simulation from neXtSIM (a–c), the forecast with the deterministic surrogate

(d–f), and the forecast with the residual diffusion surrogate (g–i) with lead times of 12 hours (a,

d, & g), 10 days (b, e, & h), and 50 days (c, f, & i).

the exponents should increase with increasing moment (Marsan et al., 2004; Rampal et491

al., 2008), resulting into a quadratic dependency of the scaling exponents on the moments,492

also called structure function. We can additionally estimate an uncertainty in the up-493

per bound estimates for the scaling exponent based on the difference between pairs of494

spatial scales (Rampal et al., 2019).495

Simulations with neXtSIM and its brittle rheology can reproduce the scaling laws496

as observed by satellites (from e.g., Synthetic Aperture Radar images, Rampal et al., 2019;497

Ólason et al., 2022). Compared to these simulations, the deterministic surrogate shows498

a much weaker scaling, leading to a flatter structure function, more similar to the one499

obtained when sea ice is simulated with a standard viscous-plastic rheology (cf., Ólason500

et al., 2022, Fig. 7).501

The noisier deformation fields from residual diffusion result into larger values for502

the moments than observed in neXtSIM. However, the derived spatial scaling laws are503

similar to neXtSIM’s and quite remarkable in their scaling exponents and the derived504

structure function. Therefore, generative diffusion shows the ability to forecast spatially505

multi-fractal processes in the total deformation rate of sea-ice, a diagnostic variable de-506

rived from the sea-ice velocity.507
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Figure 6. Snapshots of the divergence (a, e, and i), shear rate (b, f, and j), sea-ice concen-

tration (c, g, and k), and change in the sea-ice thickness within 12 hours (d, h, and l) for the

neXtSIM simulations (a–d), the deterministic forecast (e–h), and an ensemble member from the

the diffusion forecast (i–l), the forecast is valid for 2017-12-30 at 03:00 UTC, a lead time of 50

days.

Events with linear kinematic features can be characterized by a few grid points with508

strong shear (Ólason et al., 2022). In Fig. 9, we analyze the tail of the shear distribu-509

tion by tracking its 90-th percentile throughout our 50-day-long trajectories. While neXtSIM510

can represent such strong shear events, the deterministic surrogate generally fails to do511

so, leading to much a weaker tail. Contrastingly, the diffusion surrogate has a much smaller512

bias to neXtSIM, especially visible in the beginning of the trajectories. With unknown513

lateral boundary conditions, the trajectories between the diffusion surrogate and neXtSIM514

diverge after a few days. Afterwards, the shear rates of the diffusion follow more closely515

the ones from the deterministic surrogate, exhibiting However, if supported by the forc-516

ings, the diffusion surrogate can show sudden bursts in the shear as similarly observed517

in neXtSIM, e.g., before December 05. Therefore, the diffusion surrogate indicates a phys-518

ical consistency in its forecast, something difficult to demonstrate with the determinis-519

tic surrogate.520

6 Summary and Discussion521

In this paper, we introduce the generative diffusion model specifically designed for522

sea-ice physics. Our model is built as a regional multivariate surrogate model learned523
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Figure 7. Empirical distributions of (a) divergence, (b) shear, and (c) convergence over the

50-days-long trajectories as in Fig. 5. The histogram for the residual diffusion model is an aver-

age across all 16 ensemble members.

from more than 20 years of data provided by the simulation analyzed in (Boutin et al.,524

2023). We select a region north of Svalbard and use a simulation, where neXtSIM (Rampal525

et al., 2016; Ólason et al., 2022) is coupled to the ocean component of NEMO (Madec,526

2008). We train the diffusion surrogate to predict five different variables related to sea527

ice for a 12-hour lead time. We compare the diffusion surrogate to other surrogates like528

a deterministic surrogate trained with a weighted mean-squared error. In our experiments,529

generative diffusion consistently outperforms the other surrogates.530

6.1 Surrogate modeling with diffusion models531

The surrogates with generative diffusion are inherently stochastic and allow us to532

generate an ensemble of trajectories out of a single initial condition. Since the forecast533

error of its ensemble mean is lower than the error of all other competing models, gen-534

erative diffusion has a large potential to generate cheap ensembles. The generated en-535

semble is however poorly calibrated with a too small ensemble spread, as shown in Ap-536

pendix B5.537

In our diffusion experiments, we generate the forecasts with the deterministic ver-538

sion of the second-order Heun integrator and the sampling noise scheduler from Karras539

et al. (2022), extend to a wider range of noise amplitudes. Out of the initial noise, the540

samples are generated without adding additional noise. Consequently, this sampler di-541

rectly exhibits the quality of the diffusion model and of the chosen noise scheduling. As542

examined in Appendix B4, the diffusion model seems to suffer from an unbalanced train-543

ing and might be improved by dynamically weighting of the loss function during train-544

ing. Additionally, the results can be likely further improved by using a sampling noise545

scheduler adapted to geophysical problems. In the end, there might be a need of find-546

ing good sampling parameters and noise schedulers that are specifically tuned for geo-547

physical problems.548

The forecasts must be clipped into physical bounds, because otherwise they can549

become unstable and especially the deterministic surrogate would perform much worse,550

as shown in Appendix B1. The clipping introduces a bias into the forecasting procedure551

as the model are trained with an unconstrained criterion, e.g., the mean-squared error.552

To circumvent this bias, we need to explicitly incorporate the physical bounds into the553

optimization of the surrogates. A possibility for deterministic models could be to train554
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Figure 8. Spatial scaling analysis of the total deformation rate calculated over a timescale of

6 h in the 50-days-long trajectories for the fields from the true simulations (black), the determin-

istic surrogate (dashed, blue), and the diffusion surrogate (red). (a) Distributional moments of

order q = 1, 2, and3 for the total deformation rate for spatial scales estimated based on coarse-

graining of the total deformation fields. The solid lines show the power-law scaling of the mo-

ments by the relation ⟨ϵ̇qtot⟩ ∼ L−β(q), where β(q) is the scaling factor. (b) The structure functions

that corresponds to the estimated scaling factors with error bars indicating a sort of uncertainty

in the scaling factors, see also (Rampal et al., 2019).

the neural network by assuming a censored Gaussian distribution. However, for diffu-555

sion models, this is an open problem, where only approximative solutions exist (Luo et556

al., 2023; Fishman, Klarner, De Bortoli, et al., 2023; Fishman, Klarner, Mathieu, et al.,557

2023).558

6.2 Physical consistency of the surrogate models559

Training a deterministic surrogate with a (weighted) mean-squared error corresponds560

to making a local Gaussian assumption around the forecast of the surrogate; the surro-561

gate implicitly targets the mean for the trained lead time, see also Appendix A1. Tar-562

getting a mean can result into unphysical and blurry forecasts, a problem that still per-563

sists in the newest generation of surrogates for the atmosphere (Bonavita, 2023; Lam et564
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Figure 9. The temporal development of the 90-th percentile in the shear for neXtSIM, the

deterministic surrogate and the diffusion surrogate in the 50-day-long trajectories.

al., 2023; Kochkov et al., 2023) and which has been also found for sea-ice surrogates in565

Durand et al. (2023). If cycled for longer lead times than originally trained for, the fore-566

casted mean is reused as initial conditions for the next cycle, which amplifies the issue.567

Trained to remove noise that has been artificially added during training, diffusion568

models learn to generate samples from the data-generating distribution without mak-569

ing a Gaussian assumption or whatsoever in data space. While this implicit sample gen-570

eration could make the tuning of the model more difficult than explicitly assuming a dis-571

tribution, it seems to improve the results for ensemble forecasts compared to a simple572

stochastic extension of the deterministic surrogate.573

In addition to training diffusion surrogates from scratch, we also train a residual574

diffusion model (Mardani et al., 2023) on top of the deterministic surrogate. The gen-575

erative diffusion then provides the missing stochastic term and can be seen as model er-576

ror correction for the deterministic surrogate. Residual diffusion converges faster than577

training a diffusion model from scratch, while achieving similar scores. Therefore, gen-578

erative diffusion models can be used for stochastic model error corrections, which enables579

us their use on top of physics-driven geophysical models, as possibly needed for sea-ice580

models (T. S. Finn, Durand, et al., 2023).581

Since diffusion surrogates are trained to sample from the conditional probability582

distribution, they elegantly circumvent the mean-forecast issues of deterministic surro-583

gates. Diffusion models consequently have the potential to generate physically-consistent584

trajectories.585

Without being explicitly trained for, generative diffusion can match the spectral586

density of the neXtSIM simulations, even if cycled for longer lead times than the trained587

12 hours. Further confirmed by inspecting single snapshots of predicted fields, genera-588

tive diffusion can completely resolve the smoothing issue for sea-ice surrogates raised by589

Durand et al. (2023).590

Going beyond the visual analysis of predicted fields, we also investigate if the pre-591

dicted fields exhibit a physical consistency. We concentrate on the sea-ice dynamics in592

form of the divergence and shear rate as derived from the sea-ice velocity components.593

The deterministic surrogate with its regression-to-the-mean leads to smoothing, ar-594

tificial linear kinematic features, and wrong correlation lengths in the changes of the sea-595

ice thickness. Additionally exhibiting multi-fractality to a lesser degree than neXtSIM,596
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deterministic surrogates can hardly represent a physical consistency, as also observed for597

atmospheric surrogates by Bonavita (2023).598

Generative diffusion can represent linear kinematic features as they are observed599

in neXtSIM. The link between weaker sea ice and divergence and shear is clearly exhib-600

ited and also the changes in the sea-ice thickness resemble those observed in neXtSIM.601

The spatial scaling laws derived from the moments of the total deformation distribution602

shows a clear multi-fractal signature which is similar to neXtSIM. Since we impose no603

lateral boundary conditions and constrain the available atmospheric forcing, the trajec-604

tories of the diffusion surrogate diverge from the neXtSIM simulations after a few days.605

Nevertheless, the tails of the derived shear fields indicate that the diffusion surrogate has606

a similar temporal behavior as neXtSIM. Therefore, diffusion surrogates show their po-607

tential for physical-consistent trajectories in our regional setup. However, it is too early608

to say if these results also hold for larger and even global setups as needed for, e.g., weather609

forecasts or climate projections.610

If diffusion surrogates exhibit such a physical consistency, they might also lead to611

more stable long-term forecasts/projections. The forecasts of the diffusion surrogate are612

stable even if we remove clipping, see also Appendix B1. Furthermore, in early tests (not613

shown), we find that our trained diffusion surrogate can keep predictive power over a time614

period of two years, while the deterministic model shows this for just half a year. This615

would confirm results like Kohl et al. (2023) where diffusion surrogate have a superior616

stability compared to deterministic ones for turbulence modeling. However, its treatment617

would exceed the frame of this study, and we leave this open for future studies.618

6.3 Scalability619

One of the important question for diffusion models remains open: their computa-620

tional scalability to very high-dimensional problems and the reduction of their forecast621

costs. Since the trained neural network is applied many times for one single forecast step,622

diffusion surrogates are n-times more expensive than deterministic ones, where n is the623

number of neural network evaluations, in our case n = 39. Additionally, they show their624

full predictive power if run as ensemble forecasts, which makes them further expensive.625

Evaluating our deterministic surrogate over the whole testing dataset takes 3 minutes,626

while the diffusion surrogate takes around 1.5 hours. Compared to classical geophysi-627

cal models, this is still much cheaper but nevertheless one to two orders of magnitude628

bigger than for the deterministic surrogate.629

Training of a diffusion surrogate is supposedly as expensive as training a determin-630

istic surrogate, since both are trained with a supervised loss function. However, noise631

injection during training perturbs the gradient, requiring a lower learning rate, and slow-632

ing down the training of the diffusion model. Additionally, generative diffusion is trained633

to denoise for many amplitudes of noise, a multi-task problem (Hang et al., 2023), and634

we have to train bigger neural networks. On the one hand, this can unlock large-scale635

training where previously only small neural networks were trainable. On the other hand,636

these large-scales make their training more expensive. In our case, on one GPU, we trained637

the deterministic surrogate within 12 hours, while the training of the diffusion models638

took us several days.639

This question of the scaling can prohibit the use of diffusion models for high-resolution640

and full-Arctic setups. However, the same question is raised for image generation, and641

there has been progress by integrating diffusion models within a latent space (D. Kingma642

et al., 2021; Vahdat et al., 2021; Rombach et al., 2022). The latent space is often spanned643

by a pre-trained autoencoder, which possibly makes the training of the diffusion surro-644

gate more difficult. We could also try to tackle the problem directly in the core of the645

diffusion model, in the diffusion process: one way is the possible use of consistency mod-646

els (Y. Song et al., 2023) which impose a consistency restriction on the neural network.647
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Another way can be rectified flows (X. Liu et al., 2022; Lipman et al., 2023) which abol-648

ish the diffusion process for a simpler linear mixing, and which show promise for large-649

scale image generation (Esser et al., 2024).650

Despite these open questions, our results show the benefit of generative diffusion651

for geophysical modeling and specifically sea-ice physics. Our completely data-driven mod-652

els exhibit a glimpse of physical consistency with possibly wide-reaching consequences.653

Hence, we see a huge potential of generative diffusion to resolve currently persisting is-654

sues with deterministic surrogates.655

7 Conclusions656

We introduce the first (denoising) diffusion model for sea ice physics, designed for657

multivariate surrogate modeling. In this study, we focus on a quantitative and qualita-658

tive analysis of the surrogate’s properties. Based on our results, we conclude the follow-659

ing:660

• Ensemble forecasting with generative diffusion outperforms deterministic surro-661

gate models and their stochastic extensions across all prognostic sea-ice variables.662

While on par with the deterministic surrogate for the trained 12-hour lead time,663

the ensemble forecast improves the scores for longer lead times, tested up to 15664

days. The training as generative diffusion enables us thereby the use of larger neu-665

ral networks, which could improve their performance even more.666

• Residual diffusion models can be trained as model error correction on top of other667

forecast models, like a deterministic surrogate. Applied like this, they enable us668

a stochastic forecast from a previously deterministic predictive model. Combined669

with a deterministic surrogate, residual diffusion surrogates can converge faster670

than diffusion surrogates trained from scratch.671

• Diffusion surrogates retain information at all scales, enabling them to match the672

power spectral density of the data. Surrogate modeling with diffusion consequently673

yield sharp forecasts even for very long lead times, way outside what they were674

trained for. Diffusion surrogates hence resolves the smoothing issues of determin-675

istic surrogates.676

• The forecasts from diffusion surrogates exhibit a higher physical consistency than677

the deterministic surrogates’. For sea-ice models, diffusion surrogates clearly show678

the link between deformation, sea-ice concentration, and change in sea-ice thick-679

ness. The resulting fields hereby resemble those modeled by neXtSIM and exhibit680

a multi-fractal scaling behavior similar to that derived from observations.681

Therefore, we see a huge potential for generative diffusion to unlock the next step in geo-682

physical surrogate modeling.683

Open Research Section684

The code for a PyTorch toolbox to instantiate diffusion models is available under685

https://github.com/cerea-daml/ddm-dynamical, while the code for the experiments686

can be found under https://github.com/cerea-daml/diffusion-nextsim-regional.687

A Zenodo capsule, https://doi.org/10.5281/zenodo.10949057, contains the weights688

of the used neural networks (T. Finn et al., 2024). Extracted from https://github.com/689

sasip-climate/catalog-shared-data-SASIP, the capsule additionally includes the pro-690

cessed neXtSIM and ERA5 data. Disclaimer for the use of the included ERA5 data: the691

results contain modified Copernicus Climate Change Service information, 2023. Neither692

the European Commission nor ECMWF is responsible for any use that may be made of693

the Copernicus information or data it contains.694
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Appendix A Additional methods712

In this Appendix, we introduce additional methods and an more extensive treat-713

ment of the methods introduced in Sect. 3.714

A1 Maximum likelihood estimation with a Gaussian assumption715

In Sect. 3.1, we have introduced a weighted mean-squared error (MSE) as loss func-716

tion to optimize the deterministic surrogate model. In the following, we will generalize717

this loss function in to maximum likelihood estimation and show that the weighted MSE718

corresponds to a Gaussian assumption for the predictive distribution.719

Maximum likelihood estimation is derived from the idea that the future sea-ice con-720

ditions xt+12 h are drawn from the true but unknown conditional probability distribu-721

tion with its density function p(xt+12 h | xt, ft:t+12 h). This distribution includes the un-722

resolved processes, which remain unexplained given the initial conditions xt and the forc-723

ings ft:t+12 h. Since this distribution is unknown, we use a parameterized version pθ(xt+12 h |724

xt, ft:t+12 h), where θ denotes the distributional parameters (e.g., the mean and standard725

deviation of a univariate Gaussian distribution). This parameterized density function726

describes the likelihood of the future sea-ice conditions in dependence on the distribu-727

tional parameters.728

Our goal is to maximize the likelihood of the trainings data (xt, ft:t+12 h,xt+12 h) ∼729

D given the distributional parameters. Since the logarithm is strictly increasing, the op-730

timum of maximizing the likelihood is the same as the one maximizing the log-likelihood.731

Maximizing the log-likelihood is the same as minimizing the negative log-likelihood, our732

generalized loss function,733

LNLL(θ) = − log pθ(xt+12 h | xt, ft:t+12 h). (A1)

As conditional distribution, we assume a univariate Gaussian distribution with its734

density N (xt+12 h | xt +Mθ(xt, ft:t+12 h), s
2I), where the forecast of the deterministic735

surrogate model is the mean and the covariance is given as diagonal matrix with s2 on736
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its diagonal. Given this assumed Gaussian with its density, Eq. (A1) reads,737

LGauss,s(θ) =
1

2

∥∥∥xt+12 h − xt −Mθ(xt, ft:t+12 h)

s

∥∥∥2
2
+

1

2

k∑
i=1

log(s2i ) + C, (A2)

with C, a constant independent of θ and s. By setting a global per-variable constant s,738

log(s2) becomes a constant, and we can factorize out 1
s2 of the remaining loss function.739

With such a constant variance as weighting factor, we hence recover the loss function740

used to optimize the deterministic surrogate model, Eq. (2). Consequently, the deter-741

ministic surrogate model is optimized to give predict the mean of a Gaussian distribu-742

tion after a lead time of 12 hours.743

A2 Covariance matrix estimation for the stochastic surrogate744

To convert the deterministic surrogate into a stochastic surrogate, we can add noise745

to the deterministic forecast, as shown in Eq. (4). Since we assume a Gaussian distri-746

bution to train the deterministic model, we can naturally assume that the additive noise747

is also Gaussian distributed with Q as covariance. We can encode cross-variable and spa-748

tial correlations into the covariance, however, we are always confined to the Gaussian749

noise assumption. In the following, we show how we construct this covariance matrix.750

We make thereby extensively use of the deterministic forecast residuals after one iter-751

ation before the clipping is applied,752

r = xt+12 h − xt −Mθ(xt, ft:t+12 h). (A3)

We decompose the covariance matrix Q into two terms: a univariate spatial cor-753

relation term and a cross-covariance term between variables. We describe the spatial cor-754

relation term by a two-dimensional Fourier spectrum which we impose on drawn ran-755

dom samples and the cross-covariance term by an explicit covariance matrix Qcross ∈756

R5×5.757

The univariate spatial correlations are represented by two-dimensional power spec-758

trum. The residuals from the validation dataset are transformed into Fourier space and759

averaged across all samples in this space. We present the averaged power spectrum trans-760

formed back into physical space in Fig. A1, indicating typical textures we expect for the761

residuals of the five forecasted variables. To circumvent issues with the boundary val-762

ues, we split the power spectrum into a periodic and smooth component as described in763

Moisan (2011). We draw random samples from the periodic component by convolution764

with random Gaussian fields, ϵ ∼ N (0, I). Afterwards, the smooth component is added765

to the random fields. This procedure to synthesize new samples out of known textures766

by convolution is called asymptotic discrete spot noise (ADSN, Galerne et al., 2011) and767

also used for generation of random precipitation fields (Seed et al., 2013; Pulkkinen et768

al., 2019). With this procedure, we efficiently generate samples with spatial correlations769

extracted from the validation dataset, while still allowing anisotropy.770

The cross-covariance term is approximated based on the cross-covariance of the resid-771

uals for the i-th and j-th variable, averaged across all Nsamples samples and Ngrid grid772

points,773

Qcross,i,j ≈
1

Nsamples ·Ngrid − 1

Nsamples∑
k=1

Ngrid∑
l=1

(ri,k,l − ri)(rj,k,l − rj), (A4)

with ri =
1

Nsamples·Ngrid

∑Nsamples

k=1

∑Ngrid

l=1 ri,k,l. We show the estimated cross-covariance,774

decomposed into correlations and standard deviation, in Tab. A1a. To avoid spurious775

correlations, we take the estimated cross-covariance rounded to two decimals and sup-776

press all correlations below 0.05. After the random fields are added to the determinis-777

tic forecast, the forecasts are clipped into their physical bounds, reducing the ensemble778
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Figure A1. Textures extracted from the power spectrum of the residuals, averaged in Fourier

space across all samples in the validation dataset. The random perturbations are generated based

on a convolution with random Gaussian noise. The sea-ice thickness (a) shows almost no spatial

correlations, while the velocity components (d) and (e) exhibit quite long correlations.

Table A1. Cross-correlations and standard deviations (σ) as estimated based on the residuals

in the validation dataset (a) or as used for sampling (b).

(a) SIT SIC SID SIU SIV

SIT 1.00 0.57 -0.05 0.01 -0.00
SIC 0.57 1.00 0.01 0.00 0.01
SID -0.05 0.01 1.00 0.00 0.00
SIU 0.01 0.00 0.00 1.00 -0.07
SIV -0.00 0.01 0.00 -0.07 1.00
σ 0.05 0.01 0.02 0.02 0.02

(b) SIT SIC SID SIU SIV

SIT 1.00 0.57 -0.05 0.00 0.00
SIC 0.57 1.00 0.00 0.00 0.00
SID -0.05 0.00 1.00 0.00 0.00
SIU 0.00 0.00 0.00 1.00 -0.06
SIV 0.00 0.00 0.00 -0.06 1.00
σ 0.05 0.02 0.02 0.02 0.02

spread. To counteract this reduced spread, we artificially inflate the standard deviations779

by factors. The modeled cross-covariance is shown in Tab. A1b.780

We have tested several different methods to generate the noise but achieved hardly781

a stochastic surrogate that consistently outperforms the deterministic forecast.782

A3 Score-based diffusion models783

In Sect. 3.3, we briefly introduced our formulation of diffusion models. Here, we784

extend this formulation and give a stochastic differential equation (SDE) point of view.785

We define in Eq. (6) a variance-preserving diffusion process, where the signal is pro-786

gressively replaced by noise,787

zτ = ατxt+12 h + στϵ, ϵ ∼ N (0, I). (6)
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By defining a new variable z̃τ = zτ

ατ
, we can do a change of variables and convert into788

a variance-exploding process, where noise is progressively added to the signal,789

z̃τ = xt+12 h +
στ

ατ
ϵ, ϵ ∼ N (0, I). (A5)

In the following, we will describe στ

ατ
= σ̃τ = e−λ(τ) as the amount of noise added to790

the signal. Note, differently to Karras et al. (2022), we assume that our data is normal-791

ized to unit standard deviation, σ̃data = 1. The noised state from the variance-exploding792

process can be equivalently written as793

z̃τ ∼ q(z̃τ | xt+12 h) = N
(
xt+12 h, (σ̃τ )

2I
)
. (A6)

This diffusion process can be described by the following stochastic differential equa-794

tion (SDE, Y. Song, Sohl-Dickstein, et al., 2021; Karras et al., 2022),795

dz̃ = g(τ)dw, (A7)

where g(τ) is the diffusion term and dw a Wiener process, i.e. infinitesimal small Gaus-796

sian noise. Using the definition of the variance exploding process Eq. (A5), the diffu-797

sion term is given as798

g(τ)2 =
d

dτ
log

(
1 + e−λ(τ)

)
. (A8)

Corresponding to the SDE that describes the diffusion process, there is a reversed799

SDE for the denoising process (Anderson, 1982; Y. Song, Sohl-Dickstein, et al., 2021),800

dz̃ = −g(τ)2∇z̃ log pτ (z̃)dτ + g(τ)dw̃, (A9)

where dτ is an infinitesimal pseudo time step and dw̃ a Wiener process, both running801

in negative pseudo time direction. ∇z̃ log pτ (z̃) is the so-called score function. Instead802

of solving the SDE, we can solve the following probability flow ordinary differential equa-803

tion (ODE, Y. Song, Sohl-Dickstein, et al., 2021), which results into the same marginals804

as Eq. (A9),805

dz̃ = −1

2
g(τ)2∇z̃ log pτ (z̃)dτ. (A10)

To solve the denoising problem by either integrating the SDE or the ODE, we need806

access to the score function, which we approximate with a deep neural network in prac-807

tice. Our target is thus to best estimate the weight and biases of the neural network θ808

such that809

sθ(z̃, τ) ≈ ∇z̃ log pτ (z̃) (A11)

holds for all pseudo time steps τ ∈ [0, 1]. As loss function, we can make use of denois-810

ing score matching (DSM, Vincent, 2011; Y. Song & Ermon, 2020a),811

L(θ) = Eτ∼U(0,1)Eϵ∼N (0,I)

[
w̃(τ)

∥∥sθ(z̃τ , τ)−∇z̃τ
log q(z̃τ | xt+12 h)

∥∥2
2

]
, (A12)

with weighting w̃(τ) and uniform distribution U(0, 1) with 0 and 1 as bounds. Choos-812

ing as weighting w̃(τ) = dλ(τ)
dτ σ̃τ , ensures that the loss function Eq. (A12) maximizes813

a lower-bound on the data likelihood (Y. Song, Durkan, et al., 2021). Given the defini-814

tion of the variance-exploding diffusion process, Eq. (A5), the denoising score function815

can be easily expressed as816

∇z̃τ
log q(z̃τ | xt+12 h) = − ϵ

σ̃τ
. (A13)

The denoising score matching loss function can be then optimized with Monte-Carlo sam-817

pling of the time and noise, converting the time into λ(τ) as defined by the noise sched-818

uler and the noise into z̃τ by Eq. (A5).819
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Figure A2. Two noise schedulers defining the log signal-to-noise ratio as function of

the pseudo time. They are either adapated during the training process (blue dashed curve,

D. P. Kingma & Gao, 2023) or fixed for sampling (red solid curve) as proposed by Karras et al.

(2022) and modified by D. P. Kingma and Gao (2023). For the integration of the denoising ODE,

the diffusion model is evaluated at 21 time steps as indicated by the red crosses.

Our used loss function Eq. (9) is a special case of the DSM loss Eq. (A12). Con-820

sequently, by setting821

∇z̃τ
log q(z̃τ | xt+12 h) ≈ −στατ z̃τ + ατ v̂ϕ(ατ z̃τ ,xt, ft:t+12 h, τ)

στ
, (A14)

we can approximate the denoising score, which can be used within the integration of the822

SDE, Eq. (A9), or the ODE, Eq. (A10).823

A4 Adaptive noise scheduling824

For the diffusion model, we need noise schedulers for training and for forecasting.825

In this study, we apply two different noise schedulers: an adaptive scheduler for train-826

ing and a fixed one for forecasting. Instances of these noise schedulers are shown in Fig.827

A2.828

The fixed noise scheduler for forecasting corresponds to the sampling scheduler of829

Karras et al. (2022),830

λ(τ) = −2ρ log
(
σ

1
ρ
max + (1− τ)(σ

1
ρ

min − σ
1
ρ
max)

)
, (A15)

where ρ = 7 is the form factor and σmin = 0.002 and σmax = 80 the minimum and831

maximum amplitude of noise added during the diffusion process. The support of this noise832

scheduler is only in the range λ ∈ [−8.76, 12.43] and we extend this range to λ ∈ [−10, 15]833

by truncation as proposed in D. P. Kingma and Gao (2023).834

For training, we make use of the adaptive noise scheduler as introduced in D. P. Kingma835

and Gao (2023). Building upon variational diffusion models (D. Kingma et al., 2021),836

where the noise scheduler is learned together with the neural network, the idea is to adapt837

the scheduler to the loss function that is used for the training of the diffusion model.838
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As a reminder, the loss function for our diffusion model reads839

LDiff(ϕ) = Eτ∼U(0,1)

[
w(τ) ·

(
−dλ(τ)

dτ

)
· (e−λ(τ)+1)−1

∥∥vτ − v̂ϕ(zτ ,xt, ft:t+12 h, τ)
∥∥2
2

]
. (9)

During training, we convert a sampled time step with the noise scheduler into the log-840

signal-to-noise ratio λ(τ). The resulting ratio distribution reads then p(λ(τ)) = −dλ(τ)
dτ841

(D. P. Kingma & Gao, 2023). Consequently, the multiplicative weighting factor is −dλ(τ)
dτ =842

1
p(λ(τ)) and the ratio distribution acts as importance sampling distribution. With a change843

of variables from τ to λ, the loss function results into844

LDiff(ϕ) = Eλ∼p(λ)

[
w(λ)

p(λ)
· (e−λ + 1)−1

∥∥vλ − v̂ϕ(zλ,xt, ft:t+12 h, λ)
∥∥2
2

]
. (A16)

The diffusion model should be optimized over the whole range from λmin to λmax. To845

focus the optimization on noise amplitudes where the weighted error is large, we set the846

ratio distribution to847

p(λ) ∝

[
w(λ) · (e−λ + 1)−1

∥∥vλ − v̂ϕ(zλ,xt, ft:t+12 h, λ)
∥∥2
2

]
. (A17)

As proposed in D. P. Kingma and Gao (2023), we approximate the distribution by track-848

ing an exponential moving average of the weighted errors in the diffusion model. To track849

the weighted errors, we make use of 100 equal-distant bins going from λmin to λmax. Given850

a λ-value, we determine the corresponding i-th bin, estimate the local error of diffusion851

model, and update the value of the bin by exponential moving average,852

lnewi = 0.999 · loldi + 0.001 · w(λ) · (e−λ + 1)−1
∥∥vλ − v̂ϕ(zλ,xt, ft:t+12 h, λ)

∥∥2
2
. (A18)

After updating the errors of the bins with a mini-batch of data, we construct an empir-853

ical distribution function, where the tracked values are proportional to the probability854

of the bin. This empirical distribution function then provides the mapping from λ to pseudo-855

time. To obtain the inverted mapping from pseudo-time to λ, we evaluate the empiri-856

cal distribution function at the bin bounds and construct a piece-wise linear function that857

interpolates between two support values.858

While this construction of the training noise scheduler seems difficult compared to859

a fixed scheduler, it provides the advantage that there are almost no tuning factors, ex-860

cept the rate for the exponential moving average. Additionally, this adaptive noise sched-861

uler seems to improve the optimization of diffusion models (D. P. Kingma & Gao, 2023)862

as the model is preferably trained at noise amplitudes with large errors.863

A5 Free-drift model864

The ice velocity ui is then analytically given as865

ui = αe−iθiua + uw, (A19)

where α =
√

ρaCa

ρwCw
is a transfer coefficient and θi is the combined turning angle. Fol-866

lowing the values of (Rampal et al., 2019; Boutin et al., 2023), we obtain α ≈ 0.0174867

and θi ≈ 25◦ as values. Since we exclusively have atmospheric forcings, the additional868

velocity term coming from the ocean is unknown and we neglect it by setting uw = 0.869

To estimate the grid-point-based sea-ice velocity with Eq. (A19) for times between two870

available lead times (every 12 hours), we linearly interpolate the atmospheric velocities871

in time and estimate the sea-ice velocities based on these interpolated values.872

To advect the SIT, SIC, and damage with given sea-ice velocities, we construct a873

two-dimensional advection scheme, solving874

∂s(x, t)

∂t
+ u(x, t)

∂s(x, t)

∂x
= 0, (A20)
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Figure A3. Comparison of the forecasting error for the sea-ice thickness between different

interpolation methods for a cycled semi-Lagrangian advection scheme. nearest uses a nearest

neighbor interpolation, linear a bilinear interpolation, cubic a bicubic interpolation, perfect linear

a bilinear interpolation with a perfect knowledge of the sea-ice velocities. For reference, determin-

istic are the results from the deterministic surrogate model.

for the general tracer s(x, t) and velocity u(x, t) at position x and time t. We solve Eq.875

(A20) from a Lagrangian perspective, satisfying876

s(x, t+∆t) = s(x− δ, t), (A21)

for a time difference ∆t and the displacement δ. The displacement corresponds to the877

velocities integrated from time t to time t+∆t.878

We use a backward semi-Lagrangian integration scheme, where we start at time879

∆t = 12h and take dt = 1200 s steps. At time t+∆t−n·dt, where n is the integration880

step, we estimate the sea-ice velocity with Eq. (A19) for all grid points and take the near-881

est neighboring grid points to the backward advected position. The velocities are kept882

constant for a window of dt, and we advect the positions further backward in time, un-883

til we reach n · dt = ∆t.884

Each grid point x at time t + ∆t has then a corresponding displaced grid point885

x−δ at time t. Since the initial conditions at time t are only known at the original grid886

point position, we have to interpolate the initial conditions from the grid point positions887

x to the displaced positions x − δ. We test three different schemes to achieve this in-888

terpolation: a simple nearest neighbor interpolation, a bilinear interpolation, and a bicu-889

bic interpolation, with results shown for the sea-ice thickness in Fig. A3.890

From all three interpolation scheme, the bilinear interpolation is the most stable891

and performs the best across all lead times. While initially the bicubic interpolation has892

a similar RMSE as the bilinear interpolation, it is more unstable because of oscillations,893

a well-known problem of higher-order interpolation schemes.894

The difference between a bilinear interpolation and a bilinear interpolation with895

a perfect knowledge of the sea-ice velocities every 12 hours is on a similar scale as the896
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difference between the nearest neighbor and the bilinear interpolation. Furthermore, the897

deterministic surrogate model outperforms all free-drift model version, even if the ve-898

locities are perfectly known. The approximations of a pre-defined α and θ factor and the899

neglection of the ocean velocities do not change the general results. Therefore, we use900

as baseline method the semi-Lagrangian free-drift model with the linear interpolation.901

A6 UViT neural network architecture902

As neural network architecture, we use a UViT architecture (Hoogeboom et al., 2023),903

where we combine ConvNeXt blocks with transformer blocks, see also Fig. A4 for a gen-904

eral schematic of the architecture and the two different blocks. The number of param-905

eters per block and the input and output dimensions are given in Table A2 for the de-906

terministic model and in Table A3 for the diffusion model. In the following, we will briefly907

explain the blocks, for more details we refer to the official implementation, https://github908

.com/cerea-daml/diffusion-nextsim-regional/blob/main/diffusion nextsim/network909

.py.910

The initial projection expand the input channels to 64 latent features with a con-911

volution that uses a 1×1 kernel. On top of these extracted features, we apply a U-Net-912

like architecture (Ronneberger et al., 2015), where three downsampling blocks are fol-913

lowed by n transformer blocks and three upsampling blocks. This way the architecture914

can extract features across four different scales. Shortcut connections between downsam-915

pling blocks and upsampling blocks enable the network to maintain the initial sharpness916

of the fields.917

Throughout the network, we make use of layer normalization conditioned on the918

inputted labels from the data augmentation and, in the case of diffusion models, the pseudo919

time. The conditioning information determines hereby the affine scaling and shifting pa-920

rameters of the normalization (Perez et al., 2017). The inputted labels are linearly em-921

bedded, while we extract features from the pseudo time by sinusoidal features (Vaswani922

et al., 2017) and a small MLP afterwards. The linear embedding and the extracted fea-923

tures are added together and activated by a Gelu before they are projected into the affine924

parameters.925

Each downsampling block includes two ConvNeXt blocks and a downsampling layer.926

The ConvNeXt blocks (Z. Liu et al., 2022) try to imitate transformer blocks with purely927

convolutional layers: first, spatial features are extracted with convolutions, group-wise928

operation (no mixing of the feature channels) and a 7×7 kernel. After extracting spa-929

tial features, the features are normalized by conditioned layer normalization. Secondly,930

a small multi-layered perceptron (MLP) with a Gaussian error linear unit (Gelu, Hendrycks931

& Gimpel, 2016) as activation in-between mixes the channels point-wise. Using resid-932

ual connections (He et al., 2015), the input from the ConvNeXt block is added to its out-933

put with a learnable gamma scaling (Bachlechner et al., 2020; De & Smith, 2020). Af-934

ter the second ConvNeXt block, before the downsampling layer, conditioned layer nor-935

malization is applied to normalize the extracted features, which stabilizes the downsam-936

pling operation (Z. Liu et al., 2022). The downsampling layer halves the field size and937

doubles the number of channels by a learnable convolution with a 2 × 2 kernel and a938

stride size of 2.939

The transformer blocks combine multi-head attention with a MLP (Vaswani et al.,940

2017). We use pre-layer normalization (R. Xiong et al., 2020), where the multi-head at-941

tention and MLP block are started by a conditioned layer normalization. Additionally,942

we regularize both blocks by incorporating dropout into the attention and MLP with a943

probability of p = 0.2. For the multi-head attention, A 1×1 convolution layer extracts944

the needed values, keys, and queries. Multiplied to attention weights, the keys and queries945

are used to reweight the extracted values. Using 8 different heads per self-attention, the946

multi-head attention can learn to attend to different parts of the data. The output of947
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Figure A4. (a) The instantiated UViT architecture with (b) ConvNeXt (blue) and (c) trans-

former blocks (red). The dashed arrows indicate shortcut and residual connections. In the archi-

tecture, the ConvNeXt blocks are repeated twice, while the number of transformer blocks is kept

as scaling parameter repeated N -times (for the deterministic surrogate N = 2, for the diffusion

surrogate N = 8).

the multi-head attention is projected back into feature space and added to the input of948

the attention block by a learnable gamma factor. The following MLP is constructed as949

the MLP within the ConvNeXt block, mixing the channels up and extracting additional950

non-linear features.951

The upsampling blocks mirror the downsampling blocks as close as possible: an up-952

sampling layer is followed by two ConvNeXt blocks. Before upsampling, the data is nor-953

malized by conditioned layer normalization. To upsample, we use nearest neighbour in-954

terpolation, doubling the field size. Concatenated to the shortcut connections, the in-955

terpolated fields are convolved with a 3×3 kernel. We use this interpolation followed956

by convolution scheme to avoid checkerboard artifacts which can be caused by transposed957

convolutions (Odena et al., 2016).958
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Table A2. The U-Vit architecture as used for the deterministic surrogate model. Each layer

and block is shown by its number of parameters, the number of input channels nin, the number

of output channels nout, and the grid dimensions of the output in x- and y-direction, nx and ny,

respectively. In total, the network has 7.6× 106 parameters.

Stage Operation Params nin nout nx ny

Embedding Labels 256 4 64 1 1
Input 1× 1 Conv 896 13 64 64 64
Down 1 ConvNeXt 19 904 64 64 64 64

ConvNeXt 19 904 64 64 64 64
Down 41 216 64 128 32 32

Down 2 ConvNeXt 56 192 128 128 32 32
ConvNeXt 56 192 128 128 32 32
Down 147 968 128 256 16 16

Down 3 ConvNeXt 177 920 256 256 16 16
ConvNeXt 177 920 256 256 16 16
Down 558 080 256 512 8 8

Bottleneck Transformer 1 710 080 512 512 8 8
Transformer 1 710 080 512 512 8 8

Up 1 Up 1 836 288 512 256 16 16
ConvNeXt 177 920 256 256 16 16
ConvNeXt 177 920 256 256 16 16

Up 2 Up 475 776 256 128 32 32
ConvNeXt 56 192 128 128 32 32
ConvNeXt 56 192 128 128 32 32

Up 3 Up 127 296 128 64 64 64
ConvNeXt 19 904 64 64 64 64
ConvNeXt 19 904 64 64 64 64

Output LayerNorm 128 64 64 64 64
relu – 64 64 64 64
1× 1 Conv 325 64 5 64 64

For the output, the extracted features from the last upsampling block are normal-959

ized by layer normalization without conditioning and activated by a rectified linear unit960

(relu). Here, we replace Gelu by relu as this can help to represent discrete-continuous961

behavior for sea-ice applications (T. S. Finn, Durand, et al., 2023). These activated fea-962

tures are then combined by a 1× 1 convolution to the output channels.963

Appendix B Additional results964

In Sect. 5, we concentrate on the performance of a single diffusion model without965

justifying certain hypothesizes. In the following, we present additional results for the de-966

terministic surrogate and the diffusion surrogate to provide a complete picture. Note,967

compared to the results in the main manuscript, we show results with the diffusion sur-968

rogate instead with the residual diffusion surrogate to point towards possible issues with969

generative diffusion trained from scratch.970

B1 Surrogate modeling without clipping971

To apply our surrogates, we clip the values for the sea-ice thickness, sea-ice con-972

centration, and damage into physical bounds. However, the surrogates are trained for973
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Table A3. The U-Vit architecture as used for the diffusion surrogate model. The columns have

the same meaning as in Table A2. In total, the network has 19.4 × 106 parameters. The residual

diffusion model has five more input channels, which increases the number of the parameters for

the input layer to 1 536. Note, the number of parameters is increased for the same layer com-

pared to the deterministic model as the embedding size is increased from 64 to 128.

Stage Operation Params nin nout nx ny

Embedding Labels 512 4 128 1 1
Time MLP 82 176 1 128 1 1

Input 1× 1 Conv 1 216 18 64 64 64
Down 1 ConvNeXt 28 096 64 64 64 64

ConvNeXt 28 096 64 64 64 64
Down 49 408 64 128 32 32

Down 2 ConvNeXt 72 576 128 128 32 32
ConvNeXt 72 576 128 128 32 32
Down 164 352 128 256 16 16

Down 3 ConvNeXt 210 688 256 256 16 16
ConvNeXt 210 688 256 256 16 16
Down 590 848 256 512 8 8

Bottleneck Transformer 1 841 152 512 512 8 8
Transformer 1 841 152 512 512 8 8
Transformer 1 841 152 512 512 8 8
Transformer 1 841 152 512 512 8 8
Transformer 1 841 152 512 512 8 8
Transformer 1 841 152 512 512 8 8
Transformer 1 841 152 512 512 8 8
Transformer 1 841 152 512 512 8 8

Up 1 Up 1 901 824 512 256 16 16
ConvNeXt 210 688 256 256 16 16
ConvNeXt 210 688 256 256 16 16

Up 2 Up 508 544 256 128 32 32
ConvNeXt 72 576 128 128 32 32
ConvNeXt 72 576 128 128 32 32

Up 3 Up 143 680 128 64 64 64
ConvNeXt 28 096 64 64 64 64
ConvNeXt 28 096 64 64 64 64

Output LayerNorm 128 64 64 64 64
relu – 64 64 64 64
1× 1 Conv 453 64 5 64 64

unclipped values, which leads to a inconsistency between training and application of the974

surrogates.975

In Fig. B1, we compare the deterministic surrogate with and without clipping, both976

version are based on the same model, trained for no clipping. While the unclipped sur-977

rogate performs initially as well as the clipped one, it becomes easily unstable, leading978

to a rapid error increases within several days. In the end, the unclipped surrogate per-979

forms much worse than the clipped one, showing the need of clipping.980

Contrastingly, the diffusion surrogate is always stable and clipping has almost no981

impact on its scores. This confirms the results from Kohl et al. (2023), where they show982

for a turbulent flow that diffusion surrogates are much more stable than deterministic983

ones. Nevertheless, training a diffusion surrogate without explicitly taking physical con-984
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Figure B1. Effect of clipping on the nRMSE of the deterministic (blue) and diffusion (red)

surrogate averaged all variables and all samples in the testing dataset. Without clipping (dotted),

the deterministic surrogate become easily unstable, while the diffusion one remains stable. Note,

the scores for a single ensemble member are shown here, and the nRMSE has a logarithmic scale.

straints into account can introduce a bias into the surrogate, which could lead to sub-985

optimal results.986

B2 Impact of sea-ice damage987

In this manuscript, our goal is to learn a surrogate model for the dynamics of neXtSIM,988

a geophysical model. Therefore, we forecast with our surrogates all prognostic variables989

available in our dataset, even the sea-ice damage. Originally introduced as memory for990

past stresses and to simulate the existence of subgrid-scale cracks and leads (Girard et991

al., 2011), its mechanics are somewhat artifical, acting like an additional latent variable.992

In our dataset, the damage is treated differently than the other variables and kept as in-993

stantaneous variable, while all other are averaged within a 6-hour window. Furthermore,994

there are no observational equivalents to the damage variable and there is no similar out-995

put in the CMIP6 dataset (Eyring et al., 2016). This raises the question if the sea-ice996

damage variable is needed and if it can improve the surrogate model if cycled over sev-997

eral days.998

As comparison, we trained an additional deterministic surrogate by leaving the dam-999

age variable out, while keeping everything else the same. In Fig. B2, we compare the fore-1000

cast error with increasing lead time between the two deterministic surrogates.1001

For the two shown variables, sea-ice thickness, and sea-ice velocity, the surrogate1002

without damage slightly improves the error compared to the one with damage. However,1003

the difference is smaller than the difference between the deterministic and diffusion sur-1004

rogate. This result holds also for the other not shown variables. One of the reasons why1005

the neural network performs better without damage might be that the number of its tasks1006
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Figure B2. Comparison of root-mean-squared error (RMSE) with the deterministic surrogate

with (blue) and without the forecast of damage (blacked, dashed) for (a) the sea-ice thickness

and (b) the sea-ice velocity in x-direction, averaged across all samples in the testing dataset.

is reduced from five to four, freeing capacity to better forecast the other variables. Ad-1007

ditionally, we have seen that the instabilities if clipping is deactivated, see also Appendix1008

B1, are reduced for the surrogate without damage (not shown). Consequently, if the goal1009

is to get the best possible forecast, independent of the goal to best emulate the geophys-1010

ical model, we can recommend to use a surrogate without prognostic damage. This can1011

improve the scores, make the model more stable and simplify the evaluation procedure.1012

However, since our goal was to find an emulator for neXtSIM, we kept the determinis-1013

tic model with predicting the damage.1014

B3 Impact of data augmentation1015

A way to artificially increase the data amount is to apply data augmentation. In1016

data augmentation, the drawn samples from the dataset are randomly distorted by given1017

transformations. During the training of our surrogates, we apply random horizontal flip-1018

ping with a probability of p = 0.5, random vertical flipping with p = 0.5, and random1019

rotation by 90◦ with p = 0.5. This should help the surrogates to learn features that are1020

invariant to flipping and to rotations, possibly providing an additional physical prior in-1021

formation. During inference time, when we forecast, we deactivate any data augmenta-1022

tion. Applying this data augmentation helps us to reduce the amount of overfitting present1023

in our surrogate model, as illustrated in Fig. B3, when comparing the green to the vi-1024

olet curve. Although the final loss might be lower with data augmentation, the time un-1025

til convergence is increased.1026
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Figure B3. The validation loss of the deterministic surrogate with augmentation and labels

(blue), the surrogate without labels (green), and the surrogate without augmentation and labels

(violet).

In addition to the initial conditions and external forcing, we can also give the sur-1027

rogate information about the data augmentation. The surrogate is conditioned by pro-1028

viding label information about which augmentation is activated. This label information1029

is then linearly embedded and influences the affine transformations in the normalization1030

layers. During inference time, we use an empty label vector, filled with zeros. This dis-1031

tributional augmentation approach (Jun et al., 2020) allows us to see the augmentation1032

as data-dependent regularizer or as additional tasks on which the surrogate is trained1033

on. This labelling helps generative modeling in settings with a low amount of data and1034

is also used in some of the state-of-the-art diffusion models (Karras et al., 2022). In our1035

case, the deterministic surrogate reached with this additional labelling the lowest val-1036

idation loss. Furthermore, this labelling resolves the issues with the speed of convergence1037

when data augmentation is applied. Therefore, we use distributional augmentation dur-1038

ing the training of our surrogates.1039

B4 Weighting in the diffusion surrogate1040

The diffusion model optimizes a weighted mean-squared error in predicting v, see1041

also Eq. (8). As weighting factor, we use an exponential weighting, while the additional1042

density of the noise scheduler is adapted to a binarized exponential moving average dur-1043

ing training, see also Appendix A4. The target data is normalized to mean 0 and stan-1044

dard deviation 1 by per-variable statistics estimated based on the climatology of the dy-1045

namics. Consequently, the contribution of the five different variables is implicitly weighted1046

by these climatological statistics.1047

Variables like the sea-ice velocities might be better constrained by the initial con-1048

ditions and forcings and easier to predict than others, resulting into smaller errors, Fig.1049

B4. Their contribution to the total loss is then downweighted. The diffusion model would1050
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be more optimized for the other variables, which could lead to problems with the cal-1051

ibration of the surrogate, as shown in Sec. 5.1052

Figure B4. The error of the diffusion model in predicting v (see also Eq. (8)) for a randomly

selected data batch of 1024 samples in the training dataset (orange and red) and in the validation

dataset (grey and black), weighted by an exponential weighting as used for the training of the

diffusion model. Since the data is normalized by the climatology, also the different error terms

are implicitly weighted by this climatology. The five different variables (orange and grey) show

in general an unequal error behavior, which is absorbed by the averaged loss. Additionally, the

validation errors are generally higher than the training errors, indicating slight overfitting.

One way to tackle such problems could be to alter the weighting for different vari-1053

ables, as similarly done in GenCast (Price et al., 2023). Inspired by the solution of max-1054

imum likelihood estimation, we can also weight the different contributions by the expected1055

error for a given variable as proposed in Rybkin et al. (2020) and used in T. S. Finn, Du-1056

rand, et al. (2023) for model error corrections. In the end, the density of the noise sched-1057

uler would not have one single value per λ bin but one for each variable, proportional1058

to the error of this variable within the given bin. The λ values resulting out of the noise1059

scheduler would be still given by the average of all variables, its density is shown by the1060

red and black line in Fig. B4.1061

Fig. B4 shows a different behavior between the training loss and validation loss,1062

especially for the sea-ice velocities. The training loss is additionally slightly smaller than1063

the validation loss, possibly indicating overfitting, which is also discussed in Appendix1064

B6.1065

B5 Evaluation of the diffusion ensemble1066

Here, we discuss the calibration of the ensembles steming from the stochastic sur-1067

rogate and the diffusion surrogate models. In Fig. B5, we show the spread-skill ratio for1068

the ensembles and the rank histograms of the diffusion ensemble for the sea-ice thick-1069

ness and the sea-ice velocity in x-direction.1070

Dissecting the ensembles shows their underdispersion with a decreasing spread-skill1071

ratio for an increasing lead time, as shown in Fig. B5. Since sea ice is heavily driven by1072
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Figure B5. The spread-skill ratio (a & b) and rank histograms (c–f) with the stochastic sur-

rogate (yellow), diffusion surrogate (red) and the residual diffusion surrogate (dashed, violet) for

the sea-ice concentration (a, c, & e) and the the sea-ice velocity in x-direction (b, d & f). The

spread-skill ratio (a & b) are estimated by ratio of the square-root of the averaged ensemble vari-

ance to the square-root of the mean-squared error. The rank histograms are for a lead time of 12

hours (c & d) and a lead time of 10 days (e & f) and normalized by the expected density, 1
17
. All

metrics are averaged across all samples and grid points in the testing dataset.

the external forcings, the instantiated models are dissipative, something also observed1073

in geophysical sea-ice models (Chen et al., 2023; Cheng et al., 2023). The models must1074

additionally generate the lateral boundary conditions, which further increases their dis-1075

sipative behavior. These two factors lead to the reduction of the ensemble spread with1076

lead time.1077

While initially quite well-calibrated for the tracer variables, e.g., for the shown sea-1078

ice thickness, the ensemble spread is too small compared to the errors for the velocities.1079

This might be a result out of balancing issues during the training of the diffusion sur-1080

rogates. The loss terms for the different variables are implicitly weighted by their cli-1081

matology because of data normalization, whereas the velocities seem to be easier to fore-1082

cast than the tracers, see also Appendix B4. As a consequence, the contribution of the1083
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velocities to the total loss is smaller than that of the tracers, and the model seems un-1084

balanced. Consequently, the system’s dissipative behavior and possible balancing issue1085

seem to cause the poorly calibrated ensemble for the diffusion surrogate.1086

B6 Overfitting in the diffusion surrogate1087

Diffusion models optimize the ELBO on the targetted data, minimizing the Kullback-1088

Leibler divergence between the true generating distribution and the distribution as ap-1089

proximated by the diffusion model. The loss function shows the quality of the whole dis-1090

tribution, while the RMSE only measures the performance of the first moment. Find-1091

ing the best model in terms from RMSE might consequently differ from the best model1092

in terms of loss function. This mismatch between network calibration and accuracy has1093

been also observed in neural networks for classification (Nguyen et al., 2015; Guo et al.,1094

2017; Minderer et al., 2021).1095

Figure B6. (a) The logarithm of the loss function for the training dataset (red) and valida-

tion dataset (black), (b) the nRMSE for a 12-hour lead time of the five predicted variables (grey)

and as average across the five variables (black) in the validation dataset. The yellow dot repre-

sents the lowest validation loss and the yellow star the lowest nRMSE. While the loss indicates

an onset of overfitting at 1.25× 105 iterations, the nRMSE exhibits almost no overfitting.

In Fig. B6, we show the difference between selecting the best model with the loss1096

(a) and with the MSE (b). The loss in the validation dataset shows sign of overfitting1097

much earlier than the RMSE in the same dataset. Higher moments of the distribution1098

become worse while the first moment still improves with higher number of iterations. In1099

the end, it seems like there is a trade-off between optimizing the model in terms of RMSE1100

or in terms of predicted distribution.1101
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Boutin, G., Ólason, E., Rampal, P., Regan, H., Lique, C., Talandier, C., . . . Ricker,1161

R. (2023, February). Arctic sea ice mass balance in a new coupled ice–ocean1162

model using a brittle rheology framework. The Cryosphere, 17 (2), 617–638.1163

Retrieved 2023-12-20, from https://tc.copernicus.org/articles/17/617/1164

2023/ (Publisher: Copernicus GmbH) doi: 10.5194/tc-17-617-20231165

Brunette, C., Tremblay, L. B., & Newton, R. (2022, February). A new state-1166

dependent parameterization for the free drift of sea ice. The Cryosphere,1167

16 (2), 533–557. Retrieved 2024-02-06, from https://tc.copernicus.org/1168

articles/16/533/2022/ (Publisher: Copernicus GmbH) doi: 10.5194/1169

tc-16-533-20221170

Chen, Y., Smith, P., Carrassi, A., Pasmans, I., Bertino, L., Bocquet, M., . . .1171

Dansereau, V. (2023, October). Multivariate state and parameter esti-1172

mation with data assimilation on sea-ice models using a Maxwell-Elasto-1173

Brittle rheology. EGUsphere, 1–36. Retrieved 2023-12-06, from https://1174

egusphere.copernicus.org/preprints/2023/egusphere-2023-1809/ (Pub-1175

lisher: Copernicus GmbH) doi: 10.5194/egusphere-2023-18091176
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Abstract14

We introduce deep generative diffusion for multivariate and regional surrogate model-15

ing learned from sea-ice simulations. Given initial conditions and atmospheric forcings,16

the model is trained to generate forecasts for a 12-hour lead time from simulations by17

the state-of-the-art sea-ice model neXtSIM. For our regional model setup, the diffusion18

model outperforms as ensemble forecast all other tested models, including a free-drift19

model and a stochastic extension of a deterministic data-driven surrogate model. The20

diffusion model additionally retains information at all scales, resolving smoothing issues21

of deterministic models. Furthermore, by generating physical consistent forecasts, pre-22

viously unseen for such kind of completely data-driven surrogates, the model can almost23

match the scaling properties of neXtSIM, which are also observed for real sea ice. With24

these results, we provide a strong indication that diffusion models can achieve similar25

results as traditional geophysical models with the significant advantage of being orders26

of magnitude faster and solely learned from data.27

Plain Language Summary28

Thanks to generative deep learning, computers can generate images that are almost29

indistinguishable from real images. We use this technology to forecast the sea-ice for a30

region North of Svalbard with models that are learned from data, here from simulation31

data. Doing so, we enhance the accuracy of the model and maintain the sharpness of the32

forecasts. The learned model further depicts physical processes as similarly observed for33

the targeted physical-driven model. Therefore, this technology could provide us with the34

necessary tools to learn faster models from data that have similar properties to those based35

on physical equations.36

1 Introduction37

In recent years, surrogate modeling with deep neural networks has made substan-38

tial progress in weather forecasting up to 15 days (Keisler, 2022; Pathak et al., 2022; Bi39

et al., 2023; Lam et al., 2023), which was seen as highly unlikely a few years ago (Dueben40

& Bauer, 2018; Palmer, 2022; Rasp & Thuerey, 2021). This approach of fully data-driven41

modeling also gain appeal for other components of the Earth system, like the ocean (W. Xiong42

et al., 2023; Wang et al., 2024). Usually trained as deterministic surrogates, they tar-43

get the expected future conditions based on given initial conditions. However, predict-44

ing just the expectation can lead to a loss of small-scale information, which in fact is ex-45

pressed as smoothing of the forecasted fields (e.g., Bonavita, 2023). While the dynam-46

ics of the system might be deterministic, the temporal development of the instantiated47

fields is stochastic, since the initial conditions and/or forcings are insufficient to explain48

the full temporal development. Such effects can be exacerbated in discrete-continuous49

processes as found in precipitation (Ravuri et al., 2021) or sea ice (Durand et al., 2023).50

In this work, we introduce the first generative multivariate surrogate for sea ice that is51

trained as denoising diffusion model and which can resolve aforementioned issues. This52

generative surrogate exceeds the performance of deterministic surrogates and allows us53

to generate an ensemble of plausible future trajectories.54

In diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Y. Song, Sohl-Dickstein,55

et al., 2021), neural networks are trained to map from noise to data by iteratively de-56

noising. Designed to reverse a diffusion process, these models learn to sample based on57

training data from the true but unknown data distribution. Conditioned on initial con-58

ditions and forcings, the diffusion model can generate samples from the conditional dis-59

tribution of the targeted fields (Batzolis et al., 2021; Saharia et al., 2022). Such condi-60

tional diffusion models show promise for different geophysical problems, like for weather61

prediction (Price et al., 2023; Hua et al., 2024), downscaling and correction of meteo-62

rological fields (Mardani et al., 2023; Wan et al., 2023; Zhong et al., 2023), the gener-63
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ation of ensemble forecasts (T. S. Finn, Disson, et al., 2023; L. Li et al., 2023), or pre-64

cipitation forecasts (Asperti et al., 2023; Gao et al., 2023; Leinonen et al., 2023).65

Beside training diffusion model from scratch, they can be also trained on top of an-66

other model, which is then the prior (Lee et al., 2022). Instantiated like this, the so-called67

residual diffusion model (Mardani et al., 2023) acts as model error correction for the other68

model, similar to those instantiated for geophysical sea-ice models (T. S. Finn, Durand,69

et al., 2023; Gregory et al., 2023). In addition to training from scratch, we also train such70

a residual diffusion model on top of a deterministic surrogate. Since the residual diffu-71

sion model performs as well as the one trained from scratch, we show that we can har-72

ness diffusion models for model error corrections.73

The breakthrough in surrogate modeling for weather prediction can be partially74

accounted (Ben-Bouallegue et al., 2023; Bocquet, 2023) to the availability of the large75

reanalysis dataset ERA5 from the ECMWF (Hersbach et al., 2020), which contains weather76

data at a 1/4◦ resolution from more than 40 years. This large dataset has unlocked the77

training of neural networks with tens of millions of parameters. To enable a similar ef-78

fort for sea ice, we rely on more than 20 years of high-resolution free-running sea-ice sim-79

ulations (Boutin et al., 2023), performed with the state-of-the-art sea-ice model neXtSIM80

(Rampal et al., 2016; Ólason et al., 2022) coupled to the ocean component of the NEMO81

modeling framework (Madec, 2008). Differing from the usual approach in weather fore-82

casting, we target a surrogate model for the geophysical model and not a surrogate model83

for the dynamics as seen by a reanalysis, a subtle but important difference. We train the84

surrogates for a 12-hour forecast and them for up to 50 days. Since we want to prove the85

concept and to reduce the computational costs, we instantiate the problem as a challeng-86

ing regional modeling dataset with 64×64 grid points and unknown lateral boundary87

conditions; the surrogates have to generate the inflow and outflow of sea ice solely based88

on the initial conditions and forcings.89

Characterized by multifractality and scale-invariance (Marsan et al., 2004; Ram-90

pal et al., 2008; Girard et al., 2009), processes in sea ice exhibit a discrete-continuous91

behavior. Caused by this scale-invariance, fracturing propagates from small-scales to large-92

scales (Weiss & Schulson, 2009) and can suddenly show up at the resolved scales, here93

at around 10 km. From the point of view of the resolved scales, this behavior is seem-94

ingly stochastic and surrogate models could benefit from a probabilistic formulation (Andersson95

et al., 2021; Durand et al., 2023) Sea-ice models with brittle rheologies, like neXtSIM,96

parameterize these processes by introducing a damage variable, which keeps track of the97

sub-grid scale fracturing of sea ice. As we want to find the best surrogate for the geo-98

physical model, we treat the damage as another predicted variable beside the sea-ice thick-99

ness, sea-ice concentration, and the two components of the horizontal sea-ice velocity.100

Thereby, we are the first providing a surrogate model for the most important sea-ice vari-101

ables, altogether modeled within one single neural network.102

The fracturing process links the deformation of sea ice to the temporal develop-103

ment of the sea-ice thickness and sea-ice concentration. A physical consistent surrogate104

should represent these links between deformation and other state variables. Caused by105

their regression-to-the-mean behavior, deterministic surrogate models fail to represent106

physical consistency (Bonavita, 2023; Kochkov et al., 2023). While we confirm this lack107

of consistency for our deterministic surrogate, we also show that our diffusion surrogate108

can represent these aforementioned links. We see the discovery of such capabilities for109

generative diffusion as important step towards physical consistent surrogates based on110

deep neural networks.111

In Sect. 2, we introduce the dataset used in this study, we explain therein the sim-112

ulations performed with the geophysical model neXtSIM and the used forcing fields from113

the ERA5 atmospheric reanalysis. We elaborate the goal and methodology of training114

our surrogate models in Sect. 3, where we state our used loss functions and parameter-115

–3–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 1. The sea-ice thickness as simulated by neXtSIM for 2015-01-01 03:00 UTC from the

validation dataset. The red marked region north of Svalbard depicts the 64 × 64 grid points that

are used for the regional setup. The land areas are based on the Natural Earth dataset.

izations to train deterministic and diffusion surrogates. In Sect. 4, we explain our ex-116

periments and indicate which hyperparameters were used during the training of the neu-117

ral networks. We present our results in Sect. 5, while we discuss and summarize these118

results in Sect. 6. We briefly conclude this study in Sect. 7.119

2 Data120

The target of this study is to train regional surrogate models on sea-ice simulations121

from the state-of-the-art sea-ice model neXtSIM. Our data comes from simulations per-122

formed with neXtSIM coupled to an ocean model with forcings from the ERA5 atmo-123

spheric reanalysis.124

Ranging from 1995 to 2018, the dataset is available in six-hourly steps. In accor-125

dance with Durand et al. (2023), we train the surrogate model for a 12-hour lead time126

to increase the signal-to-noise ratio in the data.127

The regional dataset contains of a region north of Svalbard with 64×64 grid points,128

as depicted in Fig. 1. This region has no land masses and is characterized by heavy forc-129

ings from ocean currents and temporally changing sea-ice conditions. While the southern-130

eastern border contains examples of marginal ice zones, the northern part has an inflow131

of thick sea ice during the winter season. Since our goal is to evaluate the performance132

of surrogate models in a regionally constrained setup, we impose no lateral boundary con-133

ditions in the surrogate model: outflowing sea ice is lost and the type of inflowing sea134

ice is unknown. The surrogate must learn to generate the type of inflowing sea ice based135

on the initial conditions and the atmospheric forcings. We elaborate on the dataset of136

sea-ice states stemming from neXtSIM in Sect. 2.1, while we explain our strategy in us-137

ing atmospheric forcings from ERA5 in Sect. 2.2.138
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2.1 Simulations from the sea-ice model neXtSIM139

The purely Lagrangian sea-ice model neXtSIM (Rampal et al., 2016) is designed140

to model sea-ice over regions as large as the whole Arctic. The simulations (Boutin et141

al., 2023) were performed with the brittle Bingham-Maxwell rheology (Ólason et al., 2022),142

which builds upon the Maxwell-Elasto-Brittle rheology (Dansereau et al., 2016). The re-143

sulting model has been shown to reproduce some properties of sea-ice dynamics, for in-144

stance the observed temporal and spatial scaling of the sea-ice deformation over a wide145

range of scales. (Rampal et al., 2019; Ólason et al., 2022; Bouchat et al., 2022). For more146

information about neXtSIM, we refer to Rampal et al. (2016); Ólason et al. (2022).147

In our used simulations, neXtSIM has been coupled via the OASIS3-MCT coupler148

(Valcke, 2013; Craig et al., 2017) to OPA, the ocean component of the NEMO model-149

ing framework (Nucleus for European modeling of the Ocean, v3.6, Madec, 2008). In ad-150

dition to the ocean coupling, the sea ice is driven from the atmosphere by forcings from151

the deterministic reanalysis run of the ERA5 reanalysis dataset (Hersbach et al., 2020)152

on an hourly basis. Run at a horizontal resolution of 1/4◦ ≈ 12 km, the coupled model153

simulates processes over the full Arctic. The curvilinear mesh for the ocean component154

is given by the regional CREG025 configuration (Talandier & Lique, 2021), while neXtSIM155

uses a dynamical Lagrangian mesh with remeshing. For a more detailed introduction to156

the modeling setup, we refer to Boutin et al. (2023).157

Our targeted prognostic model variables are the sea-ice thickness (SIT), sea-ice con-158

centration (SIC), sea-ice damage (SID), and sea-ice velocity in x- (SIU) and y-direction159

(SIV). The model output is interpolated with a conservative scheme from the Lagrangian160

neXtSIM mesh to the aforemented fixed curvilinear mesh from the ocean model. While161

SID represents instantaneous values every six hours, all other model variables are aver-162

aged on a six-hourly basis. Initialized on 1995-01-01, the coupled model is run up to 2018-163

12-31. While the first five years are normally treated as spin-up phase (Boutin et al., 2023),164

we include them into our dataset to increase the data amount, since our goal is here to165

find the best surrogate for neXtSIM.166

2.2 Forcings from the ERA5 reanalysis167

The external forcings for our surrogate model are given from the deterministic re-168

analysis run of the ERA5 dataset (Hersbach et al., 2020), acquired from the Coperni-169

cus Climate Change Service (Hersbach et al., 2023). While the neXtSIM simulations are170

driven by hourly ERA5 output, we use as input into our surrogate model output every171

12 hours; our surrogate has less information from the atmosphere than the targeted sim-172

ulations. As additional constrain, we just use atmospheric forcings, while neglecting forc-173

ings from the ocean.174

As forcing variables, we choose the 2-meter temperature (T2m), 2-meter specific175

humidity (Q2m), and the 10-meter wind velocities in meridional (U10m) and zonal (V10m)176

direction, neglecting other variables like the solar insulation which are used in neXtSIM.177

These four variables are usually also available on a six-hourly basis in the CMIP6 datasets178

(Eyring et al., 2016), such that, in the future, we could apply the surrogates to climate179

projections. All variables are interpolated from the 1/4◦ lat-lon mesh to the curvilinear180

CREG025 mesh by nearest neighbor interpolation. The wind velocities are rotated from181

meridional and zonal direction to the native x- and y-direction of the curvilinear grid182

as internally done within the NEMO modeling framework. Combined with the state vari-183

ables, we have a total of nine variables (five state variables plus four forcing variables)184

per six-hourly timestep in our dataset.185
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3 Surrogate modeling with diffusion models186

With the current sea-ice conditions xt and current and future atmospheric forc-187

ings ft:t+12 h, we want to forecast the future sea-ice conditions 12 hours later xt+12 h. Here,188

the sea-ice conditions contain the sea-ice thickness, concentration, damage, velocity in189

x-direction, and the velocity in y-direction; in total, we have 13 input fields and 5 tar-190

get fields. For this task, we employ a statistical forecast model Mθ(xt, ft:t+12 h) with its191

parameters θ. The forecast model outputs a forecast x̂θ,t+12 h, which should best esti-192

mate the true future sea-ice conditions,193

xt+12 h ≈ x̂t+12 h = xt +Mθ(xt, ft:t+12 h). (1)

To get the forecast, the output of the neural network is added to the persistence fore-194

cast, as the dynamics are additive and this tends to improve the forecasting results (e.g.,195

Durand et al., 2023; Lam et al., 2023).196

We employ as statistical model a deep neural network which predicts all five model197

variables at the same time. The model parameters θ are the weights and biases of this198

deep neural network. We train the neural network by minimizing a loss function with199

a variant of stochastic gradient descent based on a mini-batch of data samples drawn from200

the training dataset (xt, ft:t+12 h,xt+12 h) ∼ D.201

After its training, we can cycle the surrogate model for longer lead times than the202

trained 12 hours. To do so, the forecasts of the model are clipped to their physical bounds203

(SIT: [0,∞), SIC: [0, 1], SID: [0, 1], SIU: (−∞,∞), SIV: (−∞,∞)) and used as initial204

conditions for the following cycle, e.g., x̂t+24 h = x̂t+12 h +Mθ(x̂t+12 h, ft+12 h:t+24 h).205

We apply surrogates in four different flavors: first, we train a deterministic surro-206

gate predicting the expected future conditions, as explained in Sect. 3.1. Secondly, we207

extend the determinstic surrogate to stochastic forecasts by introducing a stochastic term,208

which is fitted to the validation dataset, as elucidated in Sect. 3.2. Thirdly, we use gen-209

erative diffusion models as stochastic surrogates to sample from the probability distri-210

bution of the future conditions, as introduced in Sect. 3.3. Fourthly, we correct the fore-211

casts of the deterministic surrogate with residual diffusion models, as presented in Sect.212

3.4.213

3.1 Deterministic surrogate modeling214

The deterministic surrogate takes as input the current sea-ice conditions xt and215

forcings ft:t+12 h and is trained to give one single forecast of the future sea-ice conditions.216

As usual approach to train such deterministic models, we take the mean-squared error217

(MSE) between the forecast and the true sea-ice conditions after 12 hours as loss func-218

tion. Since the five predicted variables have different physical meaning, we have to weight219

the contribution of these variables to the loss, which results into a weighted MSE. The220

deterministic surrogate is optimized over the K variables with221

Ldet(θ) =

K∑
k=1

wk

∥∥∥xt+12 h,k − xt,k −Mθ,k(xt, ft:t+12 h)
∥∥∥2
2
, (2)

where wk is the weighting factor for the k-th variable. The weighting factor is kept con-222

stant throughout the optimization and set wk = 1
s2k
. s2k is the variance of the dynam-223

ics, ∆xt+12 h,k = xt+12 h,k−xt,k, estimated over Nsamples samples and Ngrid grid points224

in the training dataset,225

s2k =
1

Nsamples ·Ngrid − 1

Nsamples∑
i=1

Ngrid∑
j=1

(∆xt+12 h,i,j,k −∆xt+12 h,k)
2, (3)

where ∆xt+12 h,k corresponds to the mean dynamics for the k-th variable.226
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As shown in Appendix A1, we can recover Eq. (2) using maximum likelihood es-227

timation and a local Gaussian distribution with the forecast as its mean and a diago-228

nal covariance matrix with s2k on its diagonal. By optimizing Eq. (2), the target of the229

deterministic surrogate is to predict the expected sea-ice conditions after 12 hours given230

the initial conditions and forcings, x̂t+12 h = E(xt+12 h | xt, ft:t+12 h).231

3.2 Stochastic surrogate modeling232

While the deterministic surrogate is trained to imitate an ensemble mean for a 12-233

hour forecast, cycling such a deterministic surrogate differs from an ensemble mean and234

can lead to unphysical behavior in the forecasts and to smoothing effects (Bonavita, 2023;235

Kochkov et al., 2023; Durand et al., 2023). Additionally, although trained by a deter-236

ministic loss function, the surrogate model is thought to have stochastic dynamics rather237

than deterministic ones (Bocquet et al., 2020), based on the underlying Gaussian assump-238

tions of Eq. (2).239

Instead of using the deterministic surrogate as single forecast, we can also sample240

from an assumed Gaussian distribution, here for the i-th ensemble member,241

x̂
(i)
t+12 h = xt +Mθ(xt, ft:t+12 h) + Lϵ(i), ϵ(i) ∼ N (0, I), (4)

where L is matrix factor of the covariance matrix Q, i.e. Q = LL⊤, such as the Cholesky242

decomposition of Q. Comparing Eq. (1) with Eq. (4), we see that we get an additional243

stochastic term, which should represent the predictive uncertainty.244

To apply Eq. (4) for forecasts, we have to find the covariance matrix Q. In this study,245

we decompose the covariance matrix into a cross-covariance between variables and spa-246

tial correlations within a single variable. The spatial correlations are efficiently modeled247

by using a two-dimensional FFT-based approach, as shown in Appendix A2. To avoid248

issues with overfitting, we fit the cross-covariance and the spectrum for the spatial cor-249

relations on the validation dataset as a post-processing step, after training the determin-250

istic surrogate. This surrogate serves as baseline approach for a stochastic model. De-251

rived from a Gaussian assumption of the forecast distribution, its forecasts are always252

constrained to this assumption.253

3.3 Diffusion models254

Besides training neural networks as deterministic forecasts, we also train genera-255

tive diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Y. Song, Sohl-Dickstein,256

et al., 2021) for stochastic forecasts to generate samples from the full probability distri-257

bution (Mohamed & Lakshminarayanan, 2016; J. Song et al., 2020) without making a258

Gaussian assumption. The idea behind such diffusion models is to iteratively denoise fields259

towards forecast samples by starting with fields of pure noise.260

Diffusion models work with zτ , a noised version of our targeted fields xt+12 h, where261

τ is a pseudo time going from τ = 1 for pure noise to τ = 0 for cleaned data samples.262

We parameterize the output of the neural network as263

v̂ϕ(zτ ,xt, ft:t+12 h, τ), (5)

with the neural network parameters ϕ. The output of the neural network v̂ϕ(·) corre-264

sponds to a surrogate target, internally used within the diffusion model to iteratively de-265

noise the fields (Salimans & Ho, 2022).266

During training, we sample data pairs from our training dataset, which then also267

include samples of our targeted fields. Assuming that these samples are normalized to268

have mean 0 and standard deviation 1, we increasingly replace the signal in the samples269
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by Gaussian noise, defining a variance-preserving diffusion process,270

zτ = ατxt+12 h + στϵ, ϵ ∼ N (0, I), (6)

where zτ is the noised data sample at pseudo time τ ∈ [0, 1] with the signal amplitude271

ατ and the noise amplitude στ . We define the signal and noise amplitude in terms of log-272

arithmic signal-to-noise ratio273

λ(τ) = log

(
α2
τ

σ2
τ

)
, (7)

which monotonically decreases with increasing pseudo time. During training, we use a274

dynamic noise scheduling (D. P. Kingma & Gao, 2023), which is adapted to the approx-275

imation error of the neural network and further explained in A4. On the one end, by set-276

ting λ(0) large enough, we achieve α0 ≈ 1 and approximately recover xt+12 h from z0.277

On the other end, by setting λ(1) small enough, the signal amplitude goes towards zero,278

α1 ≈ 0, and p(z1) ≈ N (0, I) approximately holds (D. Kingma et al., 2021).279

To train the diffusion model, we use280

vτ := ατϵ− στxt+12 h (8)

as surrogate target, which has been shown to be more stable during training and sam-281

pling for small signal amplitudes (Salimans & Ho, 2022). We optimize our neural net-282

work approximation from Eq. (5) by sampling a pseudo time step from a uniform dis-283

tribution U(0, 1) and minimizing284

LDiff(ϕ) = Eτ∼U(0,1)

[
w(τ) ·

(
−dλ(τ)

dτ

)
· (e−λ(τ)+1)−1

∥∥vτ − v̂ϕ(zτ ,xt, ft:t+12 h, τ)
∥∥2
2

]
, (9)

as loss function with w(τ) as weighting factor. The multiplicative factor −dλτ

dτ ·(e−λτ+285

1)−1 ensures that the loss function optimizes a lower bound on the likelihood of xt+12 h286

(ELBO, D. Kingma et al., 2021; Y. Song, Durkan, et al., 2021). Although the target vτ287

is independent from the conditioning information, Eq. (9) optimizes the ELBO of the288

conditional distribution p(xt+12 h | xt, ft:t+12 h), as we condiiton the neural network (Batzolis289

et al., 2021; Saharia et al., 2022).290

If the weighting function w(τ) monotonically increases with increasing pseudo time,291

the loss function corresponds to the ELBO with additive data augmentation (D. P. Kingma292

& Gao, 2023), which has been shown to lead to better results (e.g., Karras et al., 2022).293

As proposed in Salimans and Ho (2022), we use an exponential weighting function294

w(τ) = exp

(
−λ(τ)

2

)
, (10)

which is monotonically increasing, since λ(τ) decreases with increasing pseudo time.295

We generate data samples by drawing fields of random noise z1 = ϵ ∼ N (0, I)296

and integrating the ordinary differential equation (ODE) that corresponds to the denois-297

ing problem (see also A3, Y. Song, Sohl-Dickstein, et al., 2021) with a deterministic second-298

order Heun integrator (Karras et al., 2022). Within the integration, we make use of the299

trained neural network by defining the following denoiser function300

D̂ϕ(zτ ,xt, ft:t+12 h) = ατzτ − στ v̂ϕ(zτ ,xt, ft:t+12 h, τ), (11)

where zτ corresponds to the states backward integrated from 1 to τ . The denoiser ap-301

proximates the cleaned states based on all information up to time τ . This approxima-302

tion is then used within the integration scheme to denoise zτ one integration step fur-303

ther. In the following, we denote Dϕ(xt, ft:t+12 h, ϵ) as the final integrated solution of the304

ODE.305
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The pseudo time steps used for the integration from τ = 1 to τ = 0 are defined306

by an additional noise scheduling, which can be independent from the one used during307

training. To reduce the truncation errors, we choose the sampling scheduling as proposed308

by Karras et al. (2022) and modified by D. P. Kingma and Gao (2023) for wider ranges309

of λ, also shown in Fig. A2.310

By drawing different initial conditions for the ODE, we get different forecasts from311

the diffusion model. Hence, the forecasts with the diffusion surrogate are inherently stochas-312

tic and allow us to create an ensemble of forecasts. In practice, as proposed in Eq. (1),313

we train the diffusion model to predict the dynamics instead of the states directly. Then,314

the forecast of the diffusion surrogate for the i-th ensemble member can be described as315

x̂
(i)
t+12 h = xt +Dϕ(xt, ft:t+12 h, ϵ

(i)), ϵ(i) ∼ N (0, I). (12)

3.4 Residual diffusion models316

When we directly predict the dynamics for 12 hours with a diffusion model, it must317

do all the heavy lifting. However, we can also split the dynamics into two different parts:318

one deterministic and one stochastic part, similarly to what we have done in Sect. 3.2.319

We leverage this splitting and fit residual diffusion models (Mardani et al., 2023), where320

the deterministic surrogate serves as prior (Lee et al., 2022).321

During training of the residual diffusion model, we replace the target xt+12 h by the322

residuals of the deterministic surrogate xt+12 h−Mθ(xt, ft:t+12 h). We additionally con-323

dition the diffusion model on the output of the deterministic surrogate, since it is avail-324

able before the diffusion model is applied. Beside these changes, we train the diffusion325

model with the same loss function and weighting as in Eq. (9). The forecast of the resid-326

ual diffusion surrogate for the i-th ensemble member reads then327

x̂
(i)
t+12 h = xt +Mθ(xt, ft:t+12 h) +Dϕ(xt, ft:t+12 h,Mθ(xt, ft:t+12 h), ϵ

(i)), (13)

again with ϵ(i) ∼ N (0, I) and Dϕ(·) as integrated solution of the diffusion model.328

The forecast of the deterministic surrogate is the prior and refined by the diffusion329

model. As the diffusion model is trained on the residuals of the deterministic surrogate,330

it can be seen as model error correction. This splitting of the surrogate model into one331

deterministic and one stochastic part speeds up the convergence of the diffusion model,332

as illustrated in Fig. 2.333

4 Experiments334

We perform our experiments with the data as described in Sect. 2 and train neu-335

ral networks for surrogate modeling as presented in Sect. 3. In these experiments, we336

want to compare determinstic surrogates to stochastic surrogates, either applied on top337

of the deterministic ones or trained independently. To make the experiments compara-338

ble, we used almost the same neural network architecture and hyperparameters for train-339

ing of the neural networks.340

Our neural network architecture is inspired by the UViT architecture of Hoogeboom341

et al. (2023), which builds upon the vision transformer (ViT) architecture (Dosovitskiy342

et al., 2021) for diffusion models (Peebles & Xie, 2023). In the encoding and decoding343

part of our architecture with a U-form and skip-connection (Ronneberger et al., 2015),344

we use ConvNeXt blocks (Z. Liu et al., 2022) and two additional types of layers to de-345

crease and increase the spatial dimensionality of our data: we decrease the spatial di-346

mensions by convolution layers with a kernel size of 2 and a stride of 2. To increase the347

spatial dimensions, the features are interpolated with a nearest neighbor interpolation348

followed by a convolutional layer with a kernel size of 3. The bottleneck at the bottom349
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Figure 2. Normalized root-mean-squared error (nRMSE) for a lead time of 12 hours in the

validation dataset as function of training iterations for the deterministic model (blue), the diffu-

sion model (red), and the residual diffusion model (dashed, violet). The nRMSE for the diffusion

and residual diffusion model are for a single ensemble member. The yellow dots correspond to the

model selected by the best validation loss, which is different from the nRMSE for the diffusion

and residual diffusion model. Note, the diffusion models are trained with a 2.5× lower learning

rate than the deterministic model.

of the UViT architecture consists of transformer blocks (Vaswani et al., 2017), where self-350

attention layers (Bahdanau et al., 2016) are followed by feed-forward layers to extract351

global features and mix these features up. The architecture is further explained in A6.352

As architectural scaling parameter, we use the number of transformer blocks in the353

bottleneck layer as similarly done in Hoogeboom et al. (2023). To reduce overfitting, we354

apply dropout (p = 0.2) in these transformer blocks. In addition to dropout, we use355

data augmentation to artificially increase the training dataset size. As data augmenta-356

tion, we use random horizontal flip (probability p = 0.5), random vertical flips (p =357

0.5), and random rotations counter-clockwise by 90◦ (p = 0.5). The information about358

the activated augmentation is given as additional conditioning input to the neural net-359

work and linearly embedded. In Appendix B3, we show that this data augmentation im-360

proves our results, something also observed for probabilistic and generative models in361

general (Jun et al., 2020; Karras et al., 2022; Podell et al., 2023). During forecast, we362

deactivate all data augmentation and give an empty conditioning by zeros to the neu-363

ral network.364

For the diffusion model, we additionally condition the neural network on the pseudo365

time in terms of λ(τ) and use a fixed sinusoidal embedding (Vaswani et al., 2017). Within366

the neural network, all embedded information is added together and then transformed367

into the scale and shift parameters of the normalization layers.368

The deterministic model easily overfits on the training dataset, and we found the369

optimum of 2 transformer blocks. Contrastingly, our diffusion models suffer less from over-370

fitting since they are trained with additive noise. We use 8 transformer blocks for the371

diffusion model, and yet the model has less overfitting than the deterministic one for the372

RMSE, as can be seen in Fig. 2. In total, the deterministic model has 7.6×106 param-373

eters, while the diffusion models have 19.4× 106 parameters.374
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The neural networks are trained on neXtSIM data from 1995 to 2014. The full year375

2015 is used as validation dataset and the architectures and hyperparameters are tuned376

on this dataset. The results in Sect. 5 are calculated on data from 2016 to 2018. All in-377

puts for the neural network are normalized based on the global per-variable mean and378

standard deviation in the training dataset, while the targets are normalized with the global379

per-variable mean and standard deviation of the dynamics.380

As optimizer, we use AdamW (Loshchilov & Hutter, 2019), which decouples the381

optimizer Adam (D. P. Kingma & Ba, 2017) from weight decay, which we set as a con-382

stant to λ = 0.01. The learning rate is linearly increased to γ = 5 × 104 (determinis-383

tic) or γ = 2×104 (diffusion) within the first 5000 iterations, and afterwards decreased384

with a cosine scheduling up to the maximum number of iterations. We optimize all neu-385

ral networks with a batch size of 256 for a maximum of 1 × 105 iterations (determin-386

istic) or 5×105 iterations (diffusion) with early stopping if the validation loss was not387

improving. To note, one epoch contains 115 iterations at this batch size. After stopping388

the training, the best performing model in terms of validation loss is selected, as marked389

in Fig. 2 by yellow dots.390

As training devices, we use an Nvidia RTX A5000 with 24 GB memory and an Nvidia391

RTX A6000 with 48 GB memory. The models are implemented in Python (Van Rossum,392

1995) with PyTorch (Paszke et al., 2019), PyTorch lightning (Falcon et al., 2020), and393

Hydra (Yadan, 2019). The code for a PyTorch toolbox to instantiate diffusion models394

is available under https://github.com/cerea-daml/ddm-dynamical, while the code395

for the experiments can be found under https://github.com/cerea-daml/diffusion396

-nextsim-regional. All models are trained in bfloat16 and evaluated in float32.397

In total, we compare our four different surrogates with two baseline methods. As398

first baseline, The persistence forecast constantly predicts the initial conditions, x̂t+∆t =399

xt,∀∆t ∈ [0,∞). In the free-drift model, our second baseline, we calculate the sea-ice400

velocity based on the atmospheric wind velocity (Thorndike & Colony, 1982; Brunette401

et al., 2022), which is given in the atmospheric forcings. Using the so-calculated sea-ice402

velocity, we advect the tracer variables SIT, SIC, and SID with a semi-Lagrangian ad-403

vection scheme and a linear interpolation, as explained in A5. Per surrogate modeling404

strategies explained in Sect. 3, we present the results of a single surrogate model.405

All models have been tuned for a 12-hour lead time in the validation dataset. For406

forecasting, the weights in the network of the diffusion models are replaced by their ex-407

ponential moving average (rate γ = 0.999) as this can further stabilize diffusion mod-408

els (Y. Song & Ermon, 2020b). The forecasts of the diffusion models are sampled in 20409

integration steps with a second-order Heun integrator and the sampling noise scheduler410

from Karras et al. (2022), where the limits are set to λmin = −10 and λmax = 15 by411

truncation (D. P. Kingma & Gao, 2023). Because of these 20 integration step, the neu-412

ral network is evaluated 39 times per forecasting step in our diffusion surrogates.413

5 Results414

In the following, we analyze the results of the diffusion surrogates compared to the415

deterministic surrogate and its stochastic extension. We start by evaluating the ensem-416

ble mean forecasts in terms of their root-mean-square errors (RMSE). Later, we will ex-417

amine the results for the deterministic and residual diffusion surrogate more in detail.418

We present additional results, like the evaluation of the ensemble, in Appendix B.419

The deterministic surrogate outperforms the persistence forecast and the free-drift420

model for all model variables, Table 1 and Table 2, showing the efficiency of deep learn-421

ing for surrogate modeling of sea ice. With only one ensemble member, stochastic sur-422

rogates are in general inferior to deterministic surrogates, even for diffusion, and in sev-423

eral cases, they also have an increased error compared to the baseline methods. These424
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Table 1. Normalized root-mean-squared error (nRMSE) of the ensemble means for the sea-ice

thickness (SIT), sea-ice concentration (SIC), sea-ice damage (SID), sea-ice velocity in x-direction

(SIU), and sea-ice velocity in y-direction (SIV) after a lead time of 12 hours, averaged across the

testing dataset. N is the number of ensemble members and Σ the average across all five vari-

ables. The rows above the line are the nRMSE for the baseline models and below the line for the

deep learning surrogates. All scores are normalized by the climatology from the training dataset.

The best performing models in a column are marked by bold values.

Experiment N SIT SIC SID SIU SIV Σ

Persistence 1 0.15 0.19 0.30 0.73 0.69 0.48
Free-drift 1 0.11 0.15 0.21 0.57 0.62 0.40

Deterministic 1 0.07 0.09 0.15 0.18 0.18 0.14
Stochastic 1 0.10 0.12 0.19 0.26 0.26 0.20
Diffusion 1 0.09 0.11 0.20 0.20 0.19 0.17
ResDiffusion 1 0.09 0.11 0.20 0.20 0.19 0.17
Stochastic 16 0.07 0.09 0.15 0.19 0.18 0.15
Diffusion 16 0.07 0.09 0.16 0.18 0.17 0.14
ResDiffusion 16 0.07 0.09 0.15 0.18 0.17 0.14

Table 2. NRMSEs after a lead time of 15 days (30 iterations). The columns and rows have the

same meaning as Tab. 1.

Experiment N SIT SIC SID SIU SIV Σ

Persistence 1 0.59 0.89 1.10 1.41 1.45 1.14
Free-drift 1 0.49 0.77 0.86 0.57 0.62 0.68

Deterministic 1 0.41 0.53 0.79 0.41 0.39 0.53
Stochastic 1 0.51 0.63 0.90 0.52 0.51 0.63
Diffusion 1 0.43 0.55 0.81 0.39 0.39 0.54
ResDiffusion 1 0.44 0.56 0.82 0.40 0.38 0.55
Stochastic 16 0.39 0.55 0.74 0.42 0.41 0.52
Diffusion 16 0.37 0.49 0.70 0.36 0.36 0.47
ResDiffusion 16 0.37 0.48 0.69 0.36 0.35 0.47

stochastic surrogates add noise to the forecast which hurts their performance. With 16425

ensemble members, the stochastic surrogates perform similar to the deterministic sur-426

rogate after a 12-hour lead time, since the deterministic surrogate targets a mean fore-427

cast for this lead time. However, for longer lead times, diffusion with 16 ensemble mem-428

bers outperforms the deterministic surrogate. The trajectory of the deterministic sur-429

rogate differs from the ensemble mean of the diffusion runs, see also Fig. 3.430

Even though tuned on the validation dataset, the stochastic surrogate only gains431

performance on longer lead times compared to the deterministic surrogate, as can be seen432

in Fig. 3. However, residual diffusion outperforms the deterministic model for all vari-433

ables and lead times, performing similar to diffusion trained from scratch. Residual dif-434

fusion seems efficient to correct forecast errors of other models.435

Examining the resulting power spectrum in Fig. 4, the deterministic surrogate loses436

small-scale information, especially for the discrete-continuous sea-ice thickness and dam-437

age. Caused by a double penalty effect of the weighted MSE, this loss of information comes438
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Figure 3. The normalized root-mean-squared error for the deterministic surrogate (blue), the

ensemble mean of the stochastic (dashed, yellow), the diffusion (red), and the residual diffusion

surrogate (dashed, violet), averaged across all five variables and the testing dataset.

inherently with the optimization of the surrogate. Contrastingly, the residual diffusion439

surrogate is optimized to generate forecast samples without the Gaussian assumption440

in data space. Therefore, generative diffusion retains information across all spatial scales,441

resolving the issues of the deterministic surrogate.442

Until now, we have quantitatively analyzed the results averaged across the whole443

testing dataset. We move on and show results for forecasts started on the 2017-11-10 at444

03:00 UTC. With the deterministic and the residual diffusion surrogate, we make a 50-445

day forecast to showcase their physical consistency and possible problems in the fore-446

casts.447

The loss of small-scale information leads to a smoothing of the deterministic fore-448

casts which becomes especially visible for a lead time of 50 days as seen in Fig. 5. The449

surrogate additionally tends to generate recurring patterns of artificially large strains.450

Driven by the external forcings and using the deterministic surrogate as base model, the451

residual diffusion forecast has a similar general structure as the deterministic one, while452

the strains appear much more realistic. Since small-scale information is retained, gen-453

erative diffusion keeps the forecasts as sharp as seen for the targeted neXtSIM simula-454

tions.455

In Fig. 6, we present snapshots of divergence and shear rate, which are estimated456

based on the gradients in the velocity fields and related to the external stress imposed457

on the sea ice. Sea ice can be especially deformed where the sea-ice is weaker and its con-458

centration lower. There, convergence leads to ridging and divergence to further thinning459

of sea ice.460

The deterministic surrogate is unable to represent the mechanics as observed in the461

targeted simulation, caused by its loss of small-scale information. The gradients of the462

velocity and the divergence and shear are smoothed out, leading to fewer pixels with weak463

and strong deformation. This results into missing grid points with strong shear, diver-464

gence, or convergence, as additionally shown in Fig. 7. The connection between strains465

and weaker sea ice is much more blurry, weakening the link between shear and concen-466

tration. While a relation between divergence and change in the sea-ice thickness still ex-467
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Figure 4. The spectral density of the deterministic and the residual diffusion surrogate for

sea-ice thickness (a & b), sea-ice damage (c & d), and sea-ice velocity in x-direction (e & f) after

a two days lead time (a, c & e) or a 15 days lead time (b, d & f). The spectra are estimated over

the full three-year-long testing dataset.

ists, the thickness change exhibits much longer correlations and artificial ridging and thin-468

ning, amplifying the artificial strains. The deterministic surrogate consequently loses its469

physical consistency to the processes within sea ice.470

The diffusion forecast clearly exposes the link between the divergence, shear, and471

concentration. Compared to the deterministic forecast, the thickness change resembles472

much more the targeted simulation, with similar correlation lengths. However, the dif-473

fusion surrogate results into noisier deformation fields, leading to fewer pixels with low474

shear, divergence, and convergence than in neXtSIM, see Fig. 7. This issue appears sim-475

ilar to the brightness issues discovered in diffusion models for image and video genera-476

tion (Everaert et al., 2024; M. Li et al., 2023; Lin et al., 2024; Wu et al., 2023). Never-477

theless, the diffusion surrogate can match the probability of strong deformations in neXtSIM.478

In Fig. 8, we assess the dependence of the first three moments in the distribution479

of the total deformation rate on the spatial scale. The total deformation rate is estimated480

the square-root of the sum of the squared divergence and shear fields. Since the sea-ice481

velocities in our dataset are six-hourly averaged values, the derived total deformation482

fields correspond to the total deformation rates within these six hours. The estimated483

rates have been scaled to daily rates. As we only perform a spatial analysis, we stick to484

the Eulerian point of view in estimating the deformation (Herman & Glowacki, 2012),485

differing from the usual analysis of pseudo trajectories (Rampal et al., 2019; Ólason et486

al., 2022). For the spatial scaling, we coarse-grain the fields by averaging the total de-487

formation rate within an increasing spatial window size. Expecting a power-law scaling488

of the distributional moments ⟨ϵ̇qtot⟩ ∼ L−β(q), we estimate the scaling exponents β(q)489

with a least-squares regression in log-log space. If the predicted fields are multi-fractal,490
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Figure 5. Snapshots of the sea-ice thickness for a forecast started on 2017-11-10 at 03:00

UTC for our target simulation from neXtSIM (a–c), the forecast with the deterministic surrogate

(d–f), and the forecast with the residual diffusion surrogate (g–i) with lead times of 12 hours (a,

d, & g), 10 days (b, e, & h), and 50 days (c, f, & i).

the exponents should increase with increasing moment (Marsan et al., 2004; Rampal et491

al., 2008), resulting into a quadratic dependency of the scaling exponents on the moments,492

also called structure function. We can additionally estimate an uncertainty in the up-493

per bound estimates for the scaling exponent based on the difference between pairs of494

spatial scales (Rampal et al., 2019).495

Simulations with neXtSIM and its brittle rheology can reproduce the scaling laws496

as observed by satellites (from e.g., Synthetic Aperture Radar images, Rampal et al., 2019;497

Ólason et al., 2022). Compared to these simulations, the deterministic surrogate shows498

a much weaker scaling, leading to a flatter structure function, more similar to the one499

obtained when sea ice is simulated with a standard viscous-plastic rheology (cf., Ólason500

et al., 2022, Fig. 7).501

The noisier deformation fields from residual diffusion result into larger values for502

the moments than observed in neXtSIM. However, the derived spatial scaling laws are503

similar to neXtSIM’s and quite remarkable in their scaling exponents and the derived504

structure function. Therefore, generative diffusion shows the ability to forecast spatially505

multi-fractal processes in the total deformation rate of sea-ice, a diagnostic variable de-506

rived from the sea-ice velocity.507
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Figure 6. Snapshots of the divergence (a, e, and i), shear rate (b, f, and j), sea-ice concen-

tration (c, g, and k), and change in the sea-ice thickness within 12 hours (d, h, and l) for the

neXtSIM simulations (a–d), the deterministic forecast (e–h), and an ensemble member from the

the diffusion forecast (i–l), the forecast is valid for 2017-12-30 at 03:00 UTC, a lead time of 50

days.

Events with linear kinematic features can be characterized by a few grid points with508

strong shear (Ólason et al., 2022). In Fig. 9, we analyze the tail of the shear distribu-509

tion by tracking its 90-th percentile throughout our 50-day-long trajectories. While neXtSIM510

can represent such strong shear events, the deterministic surrogate generally fails to do511

so, leading to much a weaker tail. Contrastingly, the diffusion surrogate has a much smaller512

bias to neXtSIM, especially visible in the beginning of the trajectories. With unknown513

lateral boundary conditions, the trajectories between the diffusion surrogate and neXtSIM514

diverge after a few days. Afterwards, the shear rates of the diffusion follow more closely515

the ones from the deterministic surrogate, exhibiting However, if supported by the forc-516

ings, the diffusion surrogate can show sudden bursts in the shear as similarly observed517

in neXtSIM, e.g., before December 05. Therefore, the diffusion surrogate indicates a phys-518

ical consistency in its forecast, something difficult to demonstrate with the determinis-519

tic surrogate.520

6 Summary and Discussion521

In this paper, we introduce the generative diffusion model specifically designed for522

sea-ice physics. Our model is built as a regional multivariate surrogate model learned523
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Figure 7. Empirical distributions of (a) divergence, (b) shear, and (c) convergence over the

50-days-long trajectories as in Fig. 5. The histogram for the residual diffusion model is an aver-

age across all 16 ensemble members.

from more than 20 years of data provided by the simulation analyzed in (Boutin et al.,524

2023). We select a region north of Svalbard and use a simulation, where neXtSIM (Rampal525

et al., 2016; Ólason et al., 2022) is coupled to the ocean component of NEMO (Madec,526

2008). We train the diffusion surrogate to predict five different variables related to sea527

ice for a 12-hour lead time. We compare the diffusion surrogate to other surrogates like528

a deterministic surrogate trained with a weighted mean-squared error. In our experiments,529

generative diffusion consistently outperforms the other surrogates.530

6.1 Surrogate modeling with diffusion models531

The surrogates with generative diffusion are inherently stochastic and allow us to532

generate an ensemble of trajectories out of a single initial condition. Since the forecast533

error of its ensemble mean is lower than the error of all other competing models, gen-534

erative diffusion has a large potential to generate cheap ensembles. The generated en-535

semble is however poorly calibrated with a too small ensemble spread, as shown in Ap-536

pendix B5.537

In our diffusion experiments, we generate the forecasts with the deterministic ver-538

sion of the second-order Heun integrator and the sampling noise scheduler from Karras539

et al. (2022), extend to a wider range of noise amplitudes. Out of the initial noise, the540

samples are generated without adding additional noise. Consequently, this sampler di-541

rectly exhibits the quality of the diffusion model and of the chosen noise scheduling. As542

examined in Appendix B4, the diffusion model seems to suffer from an unbalanced train-543

ing and might be improved by dynamically weighting of the loss function during train-544

ing. Additionally, the results can be likely further improved by using a sampling noise545

scheduler adapted to geophysical problems. In the end, there might be a need of find-546

ing good sampling parameters and noise schedulers that are specifically tuned for geo-547

physical problems.548

The forecasts must be clipped into physical bounds, because otherwise they can549

become unstable and especially the deterministic surrogate would perform much worse,550

as shown in Appendix B1. The clipping introduces a bias into the forecasting procedure551

as the model are trained with an unconstrained criterion, e.g., the mean-squared error.552

To circumvent this bias, we need to explicitly incorporate the physical bounds into the553

optimization of the surrogates. A possibility for deterministic models could be to train554
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Figure 8. Spatial scaling analysis of the total deformation rate calculated over a timescale of

6 h in the 50-days-long trajectories for the fields from the true simulations (black), the determin-

istic surrogate (dashed, blue), and the diffusion surrogate (red). (a) Distributional moments of

order q = 1, 2, and3 for the total deformation rate for spatial scales estimated based on coarse-

graining of the total deformation fields. The solid lines show the power-law scaling of the mo-

ments by the relation ⟨ϵ̇qtot⟩ ∼ L−β(q), where β(q) is the scaling factor. (b) The structure functions

that corresponds to the estimated scaling factors with error bars indicating a sort of uncertainty

in the scaling factors, see also (Rampal et al., 2019).

the neural network by assuming a censored Gaussian distribution. However, for diffu-555

sion models, this is an open problem, where only approximative solutions exist (Luo et556

al., 2023; Fishman, Klarner, De Bortoli, et al., 2023; Fishman, Klarner, Mathieu, et al.,557

2023).558

6.2 Physical consistency of the surrogate models559

Training a deterministic surrogate with a (weighted) mean-squared error corresponds560

to making a local Gaussian assumption around the forecast of the surrogate; the surro-561

gate implicitly targets the mean for the trained lead time, see also Appendix A1. Tar-562

getting a mean can result into unphysical and blurry forecasts, a problem that still per-563

sists in the newest generation of surrogates for the atmosphere (Bonavita, 2023; Lam et564
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Figure 9. The temporal development of the 90-th percentile in the shear for neXtSIM, the

deterministic surrogate and the diffusion surrogate in the 50-day-long trajectories.

al., 2023; Kochkov et al., 2023) and which has been also found for sea-ice surrogates in565

Durand et al. (2023). If cycled for longer lead times than originally trained for, the fore-566

casted mean is reused as initial conditions for the next cycle, which amplifies the issue.567

Trained to remove noise that has been artificially added during training, diffusion568

models learn to generate samples from the data-generating distribution without mak-569

ing a Gaussian assumption or whatsoever in data space. While this implicit sample gen-570

eration could make the tuning of the model more difficult than explicitly assuming a dis-571

tribution, it seems to improve the results for ensemble forecasts compared to a simple572

stochastic extension of the deterministic surrogate.573

In addition to training diffusion surrogates from scratch, we also train a residual574

diffusion model (Mardani et al., 2023) on top of the deterministic surrogate. The gen-575

erative diffusion then provides the missing stochastic term and can be seen as model er-576

ror correction for the deterministic surrogate. Residual diffusion converges faster than577

training a diffusion model from scratch, while achieving similar scores. Therefore, gen-578

erative diffusion models can be used for stochastic model error corrections, which enables579

us their use on top of physics-driven geophysical models, as possibly needed for sea-ice580

models (T. S. Finn, Durand, et al., 2023).581

Since diffusion surrogates are trained to sample from the conditional probability582

distribution, they elegantly circumvent the mean-forecast issues of deterministic surro-583

gates. Diffusion models consequently have the potential to generate physically-consistent584

trajectories.585

Without being explicitly trained for, generative diffusion can match the spectral586

density of the neXtSIM simulations, even if cycled for longer lead times than the trained587

12 hours. Further confirmed by inspecting single snapshots of predicted fields, genera-588

tive diffusion can completely resolve the smoothing issue for sea-ice surrogates raised by589

Durand et al. (2023).590

Going beyond the visual analysis of predicted fields, we also investigate if the pre-591

dicted fields exhibit a physical consistency. We concentrate on the sea-ice dynamics in592

form of the divergence and shear rate as derived from the sea-ice velocity components.593

The deterministic surrogate with its regression-to-the-mean leads to smoothing, ar-594

tificial linear kinematic features, and wrong correlation lengths in the changes of the sea-595

ice thickness. Additionally exhibiting multi-fractality to a lesser degree than neXtSIM,596
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deterministic surrogates can hardly represent a physical consistency, as also observed for597

atmospheric surrogates by Bonavita (2023).598

Generative diffusion can represent linear kinematic features as they are observed599

in neXtSIM. The link between weaker sea ice and divergence and shear is clearly exhib-600

ited and also the changes in the sea-ice thickness resemble those observed in neXtSIM.601

The spatial scaling laws derived from the moments of the total deformation distribution602

shows a clear multi-fractal signature which is similar to neXtSIM. Since we impose no603

lateral boundary conditions and constrain the available atmospheric forcing, the trajec-604

tories of the diffusion surrogate diverge from the neXtSIM simulations after a few days.605

Nevertheless, the tails of the derived shear fields indicate that the diffusion surrogate has606

a similar temporal behavior as neXtSIM. Therefore, diffusion surrogates show their po-607

tential for physical-consistent trajectories in our regional setup. However, it is too early608

to say if these results also hold for larger and even global setups as needed for, e.g., weather609

forecasts or climate projections.610

If diffusion surrogates exhibit such a physical consistency, they might also lead to611

more stable long-term forecasts/projections. The forecasts of the diffusion surrogate are612

stable even if we remove clipping, see also Appendix B1. Furthermore, in early tests (not613

shown), we find that our trained diffusion surrogate can keep predictive power over a time614

period of two years, while the deterministic model shows this for just half a year. This615

would confirm results like Kohl et al. (2023) where diffusion surrogate have a superior616

stability compared to deterministic ones for turbulence modeling. However, its treatment617

would exceed the frame of this study, and we leave this open for future studies.618

6.3 Scalability619

One of the important question for diffusion models remains open: their computa-620

tional scalability to very high-dimensional problems and the reduction of their forecast621

costs. Since the trained neural network is applied many times for one single forecast step,622

diffusion surrogates are n-times more expensive than deterministic ones, where n is the623

number of neural network evaluations, in our case n = 39. Additionally, they show their624

full predictive power if run as ensemble forecasts, which makes them further expensive.625

Evaluating our deterministic surrogate over the whole testing dataset takes 3 minutes,626

while the diffusion surrogate takes around 1.5 hours. Compared to classical geophysi-627

cal models, this is still much cheaper but nevertheless one to two orders of magnitude628

bigger than for the deterministic surrogate.629

Training of a diffusion surrogate is supposedly as expensive as training a determin-630

istic surrogate, since both are trained with a supervised loss function. However, noise631

injection during training perturbs the gradient, requiring a lower learning rate, and slow-632

ing down the training of the diffusion model. Additionally, generative diffusion is trained633

to denoise for many amplitudes of noise, a multi-task problem (Hang et al., 2023), and634

we have to train bigger neural networks. On the one hand, this can unlock large-scale635

training where previously only small neural networks were trainable. On the other hand,636

these large-scales make their training more expensive. In our case, on one GPU, we trained637

the deterministic surrogate within 12 hours, while the training of the diffusion models638

took us several days.639

This question of the scaling can prohibit the use of diffusion models for high-resolution640

and full-Arctic setups. However, the same question is raised for image generation, and641

there has been progress by integrating diffusion models within a latent space (D. Kingma642

et al., 2021; Vahdat et al., 2021; Rombach et al., 2022). The latent space is often spanned643

by a pre-trained autoencoder, which possibly makes the training of the diffusion surro-644

gate more difficult. We could also try to tackle the problem directly in the core of the645

diffusion model, in the diffusion process: one way is the possible use of consistency mod-646

els (Y. Song et al., 2023) which impose a consistency restriction on the neural network.647
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Another way can be rectified flows (X. Liu et al., 2022; Lipman et al., 2023) which abol-648

ish the diffusion process for a simpler linear mixing, and which show promise for large-649

scale image generation (Esser et al., 2024).650

Despite these open questions, our results show the benefit of generative diffusion651

for geophysical modeling and specifically sea-ice physics. Our completely data-driven mod-652

els exhibit a glimpse of physical consistency with possibly wide-reaching consequences.653

Hence, we see a huge potential of generative diffusion to resolve currently persisting is-654

sues with deterministic surrogates.655

7 Conclusions656

We introduce the first (denoising) diffusion model for sea ice physics, designed for657

multivariate surrogate modeling. In this study, we focus on a quantitative and qualita-658

tive analysis of the surrogate’s properties. Based on our results, we conclude the follow-659

ing:660

• Ensemble forecasting with generative diffusion outperforms deterministic surro-661

gate models and their stochastic extensions across all prognostic sea-ice variables.662

While on par with the deterministic surrogate for the trained 12-hour lead time,663

the ensemble forecast improves the scores for longer lead times, tested up to 15664

days. The training as generative diffusion enables us thereby the use of larger neu-665

ral networks, which could improve their performance even more.666

• Residual diffusion models can be trained as model error correction on top of other667

forecast models, like a deterministic surrogate. Applied like this, they enable us668

a stochastic forecast from a previously deterministic predictive model. Combined669

with a deterministic surrogate, residual diffusion surrogates can converge faster670

than diffusion surrogates trained from scratch.671

• Diffusion surrogates retain information at all scales, enabling them to match the672

power spectral density of the data. Surrogate modeling with diffusion consequently673

yield sharp forecasts even for very long lead times, way outside what they were674

trained for. Diffusion surrogates hence resolves the smoothing issues of determin-675

istic surrogates.676

• The forecasts from diffusion surrogates exhibit a higher physical consistency than677

the deterministic surrogates’. For sea-ice models, diffusion surrogates clearly show678

the link between deformation, sea-ice concentration, and change in sea-ice thick-679

ness. The resulting fields hereby resemble those modeled by neXtSIM and exhibit680

a multi-fractal scaling behavior similar to that derived from observations.681

Therefore, we see a huge potential for generative diffusion to unlock the next step in geo-682

physical surrogate modeling.683

Open Research Section684

The code for a PyTorch toolbox to instantiate diffusion models is available under685

https://github.com/cerea-daml/ddm-dynamical, while the code for the experiments686

can be found under https://github.com/cerea-daml/diffusion-nextsim-regional.687

A Zenodo capsule, https://doi.org/10.5281/zenodo.10949057, contains the weights688

of the used neural networks (T. Finn et al., 2024). Extracted from https://github.com/689

sasip-climate/catalog-shared-data-SASIP, the capsule additionally includes the pro-690

cessed neXtSIM and ERA5 data. Disclaimer for the use of the included ERA5 data: the691

results contain modified Copernicus Climate Change Service information, 2023. Neither692

the European Commission nor ECMWF is responsible for any use that may be made of693

the Copernicus information or data it contains.694
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Appendix A Additional methods712

In this Appendix, we introduce additional methods and an more extensive treat-713

ment of the methods introduced in Sect. 3.714

A1 Maximum likelihood estimation with a Gaussian assumption715

In Sect. 3.1, we have introduced a weighted mean-squared error (MSE) as loss func-716

tion to optimize the deterministic surrogate model. In the following, we will generalize717

this loss function in to maximum likelihood estimation and show that the weighted MSE718

corresponds to a Gaussian assumption for the predictive distribution.719

Maximum likelihood estimation is derived from the idea that the future sea-ice con-720

ditions xt+12 h are drawn from the true but unknown conditional probability distribu-721

tion with its density function p(xt+12 h | xt, ft:t+12 h). This distribution includes the un-722

resolved processes, which remain unexplained given the initial conditions xt and the forc-723

ings ft:t+12 h. Since this distribution is unknown, we use a parameterized version pθ(xt+12 h |724

xt, ft:t+12 h), where θ denotes the distributional parameters (e.g., the mean and standard725

deviation of a univariate Gaussian distribution). This parameterized density function726

describes the likelihood of the future sea-ice conditions in dependence on the distribu-727

tional parameters.728

Our goal is to maximize the likelihood of the trainings data (xt, ft:t+12 h,xt+12 h) ∼729

D given the distributional parameters. Since the logarithm is strictly increasing, the op-730

timum of maximizing the likelihood is the same as the one maximizing the log-likelihood.731

Maximizing the log-likelihood is the same as minimizing the negative log-likelihood, our732

generalized loss function,733

LNLL(θ) = − log pθ(xt+12 h | xt, ft:t+12 h). (A1)

As conditional distribution, we assume a univariate Gaussian distribution with its734

density N (xt+12 h | xt +Mθ(xt, ft:t+12 h), s
2I), where the forecast of the deterministic735

surrogate model is the mean and the covariance is given as diagonal matrix with s2 on736
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its diagonal. Given this assumed Gaussian with its density, Eq. (A1) reads,737

LGauss,s(θ) =
1

2

∥∥∥xt+12 h − xt −Mθ(xt, ft:t+12 h)

s

∥∥∥2
2
+

1

2

k∑
i=1

log(s2i ) + C, (A2)

with C, a constant independent of θ and s. By setting a global per-variable constant s,738

log(s2) becomes a constant, and we can factorize out 1
s2 of the remaining loss function.739

With such a constant variance as weighting factor, we hence recover the loss function740

used to optimize the deterministic surrogate model, Eq. (2). Consequently, the deter-741

ministic surrogate model is optimized to give predict the mean of a Gaussian distribu-742

tion after a lead time of 12 hours.743

A2 Covariance matrix estimation for the stochastic surrogate744

To convert the deterministic surrogate into a stochastic surrogate, we can add noise745

to the deterministic forecast, as shown in Eq. (4). Since we assume a Gaussian distri-746

bution to train the deterministic model, we can naturally assume that the additive noise747

is also Gaussian distributed with Q as covariance. We can encode cross-variable and spa-748

tial correlations into the covariance, however, we are always confined to the Gaussian749

noise assumption. In the following, we show how we construct this covariance matrix.750

We make thereby extensively use of the deterministic forecast residuals after one iter-751

ation before the clipping is applied,752

r = xt+12 h − xt −Mθ(xt, ft:t+12 h). (A3)

We decompose the covariance matrix Q into two terms: a univariate spatial cor-753

relation term and a cross-covariance term between variables. We describe the spatial cor-754

relation term by a two-dimensional Fourier spectrum which we impose on drawn ran-755

dom samples and the cross-covariance term by an explicit covariance matrix Qcross ∈756

R5×5.757

The univariate spatial correlations are represented by two-dimensional power spec-758

trum. The residuals from the validation dataset are transformed into Fourier space and759

averaged across all samples in this space. We present the averaged power spectrum trans-760

formed back into physical space in Fig. A1, indicating typical textures we expect for the761

residuals of the five forecasted variables. To circumvent issues with the boundary val-762

ues, we split the power spectrum into a periodic and smooth component as described in763

Moisan (2011). We draw random samples from the periodic component by convolution764

with random Gaussian fields, ϵ ∼ N (0, I). Afterwards, the smooth component is added765

to the random fields. This procedure to synthesize new samples out of known textures766

by convolution is called asymptotic discrete spot noise (ADSN, Galerne et al., 2011) and767

also used for generation of random precipitation fields (Seed et al., 2013; Pulkkinen et768

al., 2019). With this procedure, we efficiently generate samples with spatial correlations769

extracted from the validation dataset, while still allowing anisotropy.770

The cross-covariance term is approximated based on the cross-covariance of the resid-771

uals for the i-th and j-th variable, averaged across all Nsamples samples and Ngrid grid772

points,773

Qcross,i,j ≈
1

Nsamples ·Ngrid − 1

Nsamples∑
k=1

Ngrid∑
l=1

(ri,k,l − ri)(rj,k,l − rj), (A4)

with ri =
1

Nsamples·Ngrid

∑Nsamples

k=1

∑Ngrid

l=1 ri,k,l. We show the estimated cross-covariance,774

decomposed into correlations and standard deviation, in Tab. A1a. To avoid spurious775

correlations, we take the estimated cross-covariance rounded to two decimals and sup-776

press all correlations below 0.05. After the random fields are added to the determinis-777

tic forecast, the forecasts are clipped into their physical bounds, reducing the ensemble778
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Figure A1. Textures extracted from the power spectrum of the residuals, averaged in Fourier

space across all samples in the validation dataset. The random perturbations are generated based

on a convolution with random Gaussian noise. The sea-ice thickness (a) shows almost no spatial

correlations, while the velocity components (d) and (e) exhibit quite long correlations.

Table A1. Cross-correlations and standard deviations (σ) as estimated based on the residuals

in the validation dataset (a) or as used for sampling (b).

(a) SIT SIC SID SIU SIV

SIT 1.00 0.57 -0.05 0.01 -0.00
SIC 0.57 1.00 0.01 0.00 0.01
SID -0.05 0.01 1.00 0.00 0.00
SIU 0.01 0.00 0.00 1.00 -0.07
SIV -0.00 0.01 0.00 -0.07 1.00
σ 0.05 0.01 0.02 0.02 0.02

(b) SIT SIC SID SIU SIV

SIT 1.00 0.57 -0.05 0.00 0.00
SIC 0.57 1.00 0.00 0.00 0.00
SID -0.05 0.00 1.00 0.00 0.00
SIU 0.00 0.00 0.00 1.00 -0.06
SIV 0.00 0.00 0.00 -0.06 1.00
σ 0.05 0.02 0.02 0.02 0.02

spread. To counteract this reduced spread, we artificially inflate the standard deviations779

by factors. The modeled cross-covariance is shown in Tab. A1b.780

We have tested several different methods to generate the noise but achieved hardly781

a stochastic surrogate that consistently outperforms the deterministic forecast.782

A3 Score-based diffusion models783

In Sect. 3.3, we briefly introduced our formulation of diffusion models. Here, we784

extend this formulation and give a stochastic differential equation (SDE) point of view.785

We define in Eq. (6) a variance-preserving diffusion process, where the signal is pro-786

gressively replaced by noise,787

zτ = ατxt+12 h + στϵ, ϵ ∼ N (0, I). (6)
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By defining a new variable z̃τ = zτ

ατ
, we can do a change of variables and convert into788

a variance-exploding process, where noise is progressively added to the signal,789

z̃τ = xt+12 h +
στ

ατ
ϵ, ϵ ∼ N (0, I). (A5)

In the following, we will describe στ

ατ
= σ̃τ = e−λ(τ) as the amount of noise added to790

the signal. Note, differently to Karras et al. (2022), we assume that our data is normal-791

ized to unit standard deviation, σ̃data = 1. The noised state from the variance-exploding792

process can be equivalently written as793

z̃τ ∼ q(z̃τ | xt+12 h) = N
(
xt+12 h, (σ̃τ )

2I
)
. (A6)

This diffusion process can be described by the following stochastic differential equa-794

tion (SDE, Y. Song, Sohl-Dickstein, et al., 2021; Karras et al., 2022),795

dz̃ = g(τ)dw, (A7)

where g(τ) is the diffusion term and dw a Wiener process, i.e. infinitesimal small Gaus-796

sian noise. Using the definition of the variance exploding process Eq. (A5), the diffu-797

sion term is given as798

g(τ)2 =
d

dτ
log

(
1 + e−λ(τ)

)
. (A8)

Corresponding to the SDE that describes the diffusion process, there is a reversed799

SDE for the denoising process (Anderson, 1982; Y. Song, Sohl-Dickstein, et al., 2021),800

dz̃ = −g(τ)2∇z̃ log pτ (z̃)dτ + g(τ)dw̃, (A9)

where dτ is an infinitesimal pseudo time step and dw̃ a Wiener process, both running801

in negative pseudo time direction. ∇z̃ log pτ (z̃) is the so-called score function. Instead802

of solving the SDE, we can solve the following probability flow ordinary differential equa-803

tion (ODE, Y. Song, Sohl-Dickstein, et al., 2021), which results into the same marginals804

as Eq. (A9),805

dz̃ = −1

2
g(τ)2∇z̃ log pτ (z̃)dτ. (A10)

To solve the denoising problem by either integrating the SDE or the ODE, we need806

access to the score function, which we approximate with a deep neural network in prac-807

tice. Our target is thus to best estimate the weight and biases of the neural network θ808

such that809

sθ(z̃, τ) ≈ ∇z̃ log pτ (z̃) (A11)

holds for all pseudo time steps τ ∈ [0, 1]. As loss function, we can make use of denois-810

ing score matching (DSM, Vincent, 2011; Y. Song & Ermon, 2020a),811

L(θ) = Eτ∼U(0,1)Eϵ∼N (0,I)

[
w̃(τ)

∥∥sθ(z̃τ , τ)−∇z̃τ
log q(z̃τ | xt+12 h)

∥∥2
2

]
, (A12)

with weighting w̃(τ) and uniform distribution U(0, 1) with 0 and 1 as bounds. Choos-812

ing as weighting w̃(τ) = dλ(τ)
dτ σ̃τ , ensures that the loss function Eq. (A12) maximizes813

a lower-bound on the data likelihood (Y. Song, Durkan, et al., 2021). Given the defini-814

tion of the variance-exploding diffusion process, Eq. (A5), the denoising score function815

can be easily expressed as816

∇z̃τ
log q(z̃τ | xt+12 h) = − ϵ

σ̃τ
. (A13)

The denoising score matching loss function can be then optimized with Monte-Carlo sam-817

pling of the time and noise, converting the time into λ(τ) as defined by the noise sched-818

uler and the noise into z̃τ by Eq. (A5).819
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Figure A2. Two noise schedulers defining the log signal-to-noise ratio as function of

the pseudo time. They are either adapated during the training process (blue dashed curve,

D. P. Kingma & Gao, 2023) or fixed for sampling (red solid curve) as proposed by Karras et al.

(2022) and modified by D. P. Kingma and Gao (2023). For the integration of the denoising ODE,

the diffusion model is evaluated at 21 time steps as indicated by the red crosses.

Our used loss function Eq. (9) is a special case of the DSM loss Eq. (A12). Con-820

sequently, by setting821

∇z̃τ
log q(z̃τ | xt+12 h) ≈ −στατ z̃τ + ατ v̂ϕ(ατ z̃τ ,xt, ft:t+12 h, τ)

στ
, (A14)

we can approximate the denoising score, which can be used within the integration of the822

SDE, Eq. (A9), or the ODE, Eq. (A10).823

A4 Adaptive noise scheduling824

For the diffusion model, we need noise schedulers for training and for forecasting.825

In this study, we apply two different noise schedulers: an adaptive scheduler for train-826

ing and a fixed one for forecasting. Instances of these noise schedulers are shown in Fig.827

A2.828

The fixed noise scheduler for forecasting corresponds to the sampling scheduler of829

Karras et al. (2022),830

λ(τ) = −2ρ log
(
σ

1
ρ
max + (1− τ)(σ

1
ρ

min − σ
1
ρ
max)

)
, (A15)

where ρ = 7 is the form factor and σmin = 0.002 and σmax = 80 the minimum and831

maximum amplitude of noise added during the diffusion process. The support of this noise832

scheduler is only in the range λ ∈ [−8.76, 12.43] and we extend this range to λ ∈ [−10, 15]833

by truncation as proposed in D. P. Kingma and Gao (2023).834

For training, we make use of the adaptive noise scheduler as introduced in D. P. Kingma835

and Gao (2023). Building upon variational diffusion models (D. Kingma et al., 2021),836

where the noise scheduler is learned together with the neural network, the idea is to adapt837

the scheduler to the loss function that is used for the training of the diffusion model.838
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As a reminder, the loss function for our diffusion model reads839

LDiff(ϕ) = Eτ∼U(0,1)

[
w(τ) ·

(
−dλ(τ)

dτ

)
· (e−λ(τ)+1)−1

∥∥vτ − v̂ϕ(zτ ,xt, ft:t+12 h, τ)
∥∥2
2

]
. (9)

During training, we convert a sampled time step with the noise scheduler into the log-840

signal-to-noise ratio λ(τ). The resulting ratio distribution reads then p(λ(τ)) = −dλ(τ)
dτ841

(D. P. Kingma & Gao, 2023). Consequently, the multiplicative weighting factor is −dλ(τ)
dτ =842

1
p(λ(τ)) and the ratio distribution acts as importance sampling distribution. With a change843

of variables from τ to λ, the loss function results into844

LDiff(ϕ) = Eλ∼p(λ)

[
w(λ)

p(λ)
· (e−λ + 1)−1

∥∥vλ − v̂ϕ(zλ,xt, ft:t+12 h, λ)
∥∥2
2

]
. (A16)

The diffusion model should be optimized over the whole range from λmin to λmax. To845

focus the optimization on noise amplitudes where the weighted error is large, we set the846

ratio distribution to847

p(λ) ∝

[
w(λ) · (e−λ + 1)−1

∥∥vλ − v̂ϕ(zλ,xt, ft:t+12 h, λ)
∥∥2
2

]
. (A17)

As proposed in D. P. Kingma and Gao (2023), we approximate the distribution by track-848

ing an exponential moving average of the weighted errors in the diffusion model. To track849

the weighted errors, we make use of 100 equal-distant bins going from λmin to λmax. Given850

a λ-value, we determine the corresponding i-th bin, estimate the local error of diffusion851

model, and update the value of the bin by exponential moving average,852

lnewi = 0.999 · loldi + 0.001 · w(λ) · (e−λ + 1)−1
∥∥vλ − v̂ϕ(zλ,xt, ft:t+12 h, λ)

∥∥2
2
. (A18)

After updating the errors of the bins with a mini-batch of data, we construct an empir-853

ical distribution function, where the tracked values are proportional to the probability854

of the bin. This empirical distribution function then provides the mapping from λ to pseudo-855

time. To obtain the inverted mapping from pseudo-time to λ, we evaluate the empiri-856

cal distribution function at the bin bounds and construct a piece-wise linear function that857

interpolates between two support values.858

While this construction of the training noise scheduler seems difficult compared to859

a fixed scheduler, it provides the advantage that there are almost no tuning factors, ex-860

cept the rate for the exponential moving average. Additionally, this adaptive noise sched-861

uler seems to improve the optimization of diffusion models (D. P. Kingma & Gao, 2023)862

as the model is preferably trained at noise amplitudes with large errors.863

A5 Free-drift model864

The ice velocity ui is then analytically given as865

ui = αe−iθiua + uw, (A19)

where α =
√

ρaCa

ρwCw
is a transfer coefficient and θi is the combined turning angle. Fol-866

lowing the values of (Rampal et al., 2019; Boutin et al., 2023), we obtain α ≈ 0.0174867

and θi ≈ 25◦ as values. Since we exclusively have atmospheric forcings, the additional868

velocity term coming from the ocean is unknown and we neglect it by setting uw = 0.869

To estimate the grid-point-based sea-ice velocity with Eq. (A19) for times between two870

available lead times (every 12 hours), we linearly interpolate the atmospheric velocities871

in time and estimate the sea-ice velocities based on these interpolated values.872

To advect the SIT, SIC, and damage with given sea-ice velocities, we construct a873

two-dimensional advection scheme, solving874

∂s(x, t)

∂t
+ u(x, t)

∂s(x, t)

∂x
= 0, (A20)
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Figure A3. Comparison of the forecasting error for the sea-ice thickness between different

interpolation methods for a cycled semi-Lagrangian advection scheme. nearest uses a nearest

neighbor interpolation, linear a bilinear interpolation, cubic a bicubic interpolation, perfect linear

a bilinear interpolation with a perfect knowledge of the sea-ice velocities. For reference, determin-

istic are the results from the deterministic surrogate model.

for the general tracer s(x, t) and velocity u(x, t) at position x and time t. We solve Eq.875

(A20) from a Lagrangian perspective, satisfying876

s(x, t+∆t) = s(x− δ, t), (A21)

for a time difference ∆t and the displacement δ. The displacement corresponds to the877

velocities integrated from time t to time t+∆t.878

We use a backward semi-Lagrangian integration scheme, where we start at time879

∆t = 12h and take dt = 1200 s steps. At time t+∆t−n·dt, where n is the integration880

step, we estimate the sea-ice velocity with Eq. (A19) for all grid points and take the near-881

est neighboring grid points to the backward advected position. The velocities are kept882

constant for a window of dt, and we advect the positions further backward in time, un-883

til we reach n · dt = ∆t.884

Each grid point x at time t + ∆t has then a corresponding displaced grid point885

x−δ at time t. Since the initial conditions at time t are only known at the original grid886

point position, we have to interpolate the initial conditions from the grid point positions887

x to the displaced positions x − δ. We test three different schemes to achieve this in-888

terpolation: a simple nearest neighbor interpolation, a bilinear interpolation, and a bicu-889

bic interpolation, with results shown for the sea-ice thickness in Fig. A3.890

From all three interpolation scheme, the bilinear interpolation is the most stable891

and performs the best across all lead times. While initially the bicubic interpolation has892

a similar RMSE as the bilinear interpolation, it is more unstable because of oscillations,893

a well-known problem of higher-order interpolation schemes.894

The difference between a bilinear interpolation and a bilinear interpolation with895

a perfect knowledge of the sea-ice velocities every 12 hours is on a similar scale as the896
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difference between the nearest neighbor and the bilinear interpolation. Furthermore, the897

deterministic surrogate model outperforms all free-drift model version, even if the ve-898

locities are perfectly known. The approximations of a pre-defined α and θ factor and the899

neglection of the ocean velocities do not change the general results. Therefore, we use900

as baseline method the semi-Lagrangian free-drift model with the linear interpolation.901

A6 UViT neural network architecture902

As neural network architecture, we use a UViT architecture (Hoogeboom et al., 2023),903

where we combine ConvNeXt blocks with transformer blocks, see also Fig. A4 for a gen-904

eral schematic of the architecture and the two different blocks. The number of param-905

eters per block and the input and output dimensions are given in Table A2 for the de-906

terministic model and in Table A3 for the diffusion model. In the following, we will briefly907

explain the blocks, for more details we refer to the official implementation, https://github908

.com/cerea-daml/diffusion-nextsim-regional/blob/main/diffusion nextsim/network909

.py.910

The initial projection expand the input channels to 64 latent features with a con-911

volution that uses a 1×1 kernel. On top of these extracted features, we apply a U-Net-912

like architecture (Ronneberger et al., 2015), where three downsampling blocks are fol-913

lowed by n transformer blocks and three upsampling blocks. This way the architecture914

can extract features across four different scales. Shortcut connections between downsam-915

pling blocks and upsampling blocks enable the network to maintain the initial sharpness916

of the fields.917

Throughout the network, we make use of layer normalization conditioned on the918

inputted labels from the data augmentation and, in the case of diffusion models, the pseudo919

time. The conditioning information determines hereby the affine scaling and shifting pa-920

rameters of the normalization (Perez et al., 2017). The inputted labels are linearly em-921

bedded, while we extract features from the pseudo time by sinusoidal features (Vaswani922

et al., 2017) and a small MLP afterwards. The linear embedding and the extracted fea-923

tures are added together and activated by a Gelu before they are projected into the affine924

parameters.925

Each downsampling block includes two ConvNeXt blocks and a downsampling layer.926

The ConvNeXt blocks (Z. Liu et al., 2022) try to imitate transformer blocks with purely927

convolutional layers: first, spatial features are extracted with convolutions, group-wise928

operation (no mixing of the feature channels) and a 7×7 kernel. After extracting spa-929

tial features, the features are normalized by conditioned layer normalization. Secondly,930

a small multi-layered perceptron (MLP) with a Gaussian error linear unit (Gelu, Hendrycks931

& Gimpel, 2016) as activation in-between mixes the channels point-wise. Using resid-932

ual connections (He et al., 2015), the input from the ConvNeXt block is added to its out-933

put with a learnable gamma scaling (Bachlechner et al., 2020; De & Smith, 2020). Af-934

ter the second ConvNeXt block, before the downsampling layer, conditioned layer nor-935

malization is applied to normalize the extracted features, which stabilizes the downsam-936

pling operation (Z. Liu et al., 2022). The downsampling layer halves the field size and937

doubles the number of channels by a learnable convolution with a 2 × 2 kernel and a938

stride size of 2.939

The transformer blocks combine multi-head attention with a MLP (Vaswani et al.,940

2017). We use pre-layer normalization (R. Xiong et al., 2020), where the multi-head at-941

tention and MLP block are started by a conditioned layer normalization. Additionally,942

we regularize both blocks by incorporating dropout into the attention and MLP with a943

probability of p = 0.2. For the multi-head attention, A 1×1 convolution layer extracts944

the needed values, keys, and queries. Multiplied to attention weights, the keys and queries945

are used to reweight the extracted values. Using 8 different heads per self-attention, the946

multi-head attention can learn to attend to different parts of the data. The output of947
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Figure A4. (a) The instantiated UViT architecture with (b) ConvNeXt (blue) and (c) trans-

former blocks (red). The dashed arrows indicate shortcut and residual connections. In the archi-

tecture, the ConvNeXt blocks are repeated twice, while the number of transformer blocks is kept

as scaling parameter repeated N -times (for the deterministic surrogate N = 2, for the diffusion

surrogate N = 8).

the multi-head attention is projected back into feature space and added to the input of948

the attention block by a learnable gamma factor. The following MLP is constructed as949

the MLP within the ConvNeXt block, mixing the channels up and extracting additional950

non-linear features.951

The upsampling blocks mirror the downsampling blocks as close as possible: an up-952

sampling layer is followed by two ConvNeXt blocks. Before upsampling, the data is nor-953

malized by conditioned layer normalization. To upsample, we use nearest neighbour in-954

terpolation, doubling the field size. Concatenated to the shortcut connections, the in-955

terpolated fields are convolved with a 3×3 kernel. We use this interpolation followed956

by convolution scheme to avoid checkerboard artifacts which can be caused by transposed957

convolutions (Odena et al., 2016).958
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Table A2. The U-Vit architecture as used for the deterministic surrogate model. Each layer

and block is shown by its number of parameters, the number of input channels nin, the number

of output channels nout, and the grid dimensions of the output in x- and y-direction, nx and ny,

respectively. In total, the network has 7.6× 106 parameters.

Stage Operation Params nin nout nx ny

Embedding Labels 256 4 64 1 1
Input 1× 1 Conv 896 13 64 64 64
Down 1 ConvNeXt 19 904 64 64 64 64

ConvNeXt 19 904 64 64 64 64
Down 41 216 64 128 32 32

Down 2 ConvNeXt 56 192 128 128 32 32
ConvNeXt 56 192 128 128 32 32
Down 147 968 128 256 16 16

Down 3 ConvNeXt 177 920 256 256 16 16
ConvNeXt 177 920 256 256 16 16
Down 558 080 256 512 8 8

Bottleneck Transformer 1 710 080 512 512 8 8
Transformer 1 710 080 512 512 8 8

Up 1 Up 1 836 288 512 256 16 16
ConvNeXt 177 920 256 256 16 16
ConvNeXt 177 920 256 256 16 16

Up 2 Up 475 776 256 128 32 32
ConvNeXt 56 192 128 128 32 32
ConvNeXt 56 192 128 128 32 32

Up 3 Up 127 296 128 64 64 64
ConvNeXt 19 904 64 64 64 64
ConvNeXt 19 904 64 64 64 64

Output LayerNorm 128 64 64 64 64
relu – 64 64 64 64
1× 1 Conv 325 64 5 64 64

For the output, the extracted features from the last upsampling block are normal-959

ized by layer normalization without conditioning and activated by a rectified linear unit960

(relu). Here, we replace Gelu by relu as this can help to represent discrete-continuous961

behavior for sea-ice applications (T. S. Finn, Durand, et al., 2023). These activated fea-962

tures are then combined by a 1× 1 convolution to the output channels.963

Appendix B Additional results964

In Sect. 5, we concentrate on the performance of a single diffusion model without965

justifying certain hypothesizes. In the following, we present additional results for the de-966

terministic surrogate and the diffusion surrogate to provide a complete picture. Note,967

compared to the results in the main manuscript, we show results with the diffusion sur-968

rogate instead with the residual diffusion surrogate to point towards possible issues with969

generative diffusion trained from scratch.970

B1 Surrogate modeling without clipping971

To apply our surrogates, we clip the values for the sea-ice thickness, sea-ice con-972

centration, and damage into physical bounds. However, the surrogates are trained for973
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Table A3. The U-Vit architecture as used for the diffusion surrogate model. The columns have

the same meaning as in Table A2. In total, the network has 19.4 × 106 parameters. The residual

diffusion model has five more input channels, which increases the number of the parameters for

the input layer to 1 536. Note, the number of parameters is increased for the same layer com-

pared to the deterministic model as the embedding size is increased from 64 to 128.

Stage Operation Params nin nout nx ny

Embedding Labels 512 4 128 1 1
Time MLP 82 176 1 128 1 1

Input 1× 1 Conv 1 216 18 64 64 64
Down 1 ConvNeXt 28 096 64 64 64 64

ConvNeXt 28 096 64 64 64 64
Down 49 408 64 128 32 32

Down 2 ConvNeXt 72 576 128 128 32 32
ConvNeXt 72 576 128 128 32 32
Down 164 352 128 256 16 16

Down 3 ConvNeXt 210 688 256 256 16 16
ConvNeXt 210 688 256 256 16 16
Down 590 848 256 512 8 8

Bottleneck Transformer 1 841 152 512 512 8 8
Transformer 1 841 152 512 512 8 8
Transformer 1 841 152 512 512 8 8
Transformer 1 841 152 512 512 8 8
Transformer 1 841 152 512 512 8 8
Transformer 1 841 152 512 512 8 8
Transformer 1 841 152 512 512 8 8
Transformer 1 841 152 512 512 8 8

Up 1 Up 1 901 824 512 256 16 16
ConvNeXt 210 688 256 256 16 16
ConvNeXt 210 688 256 256 16 16

Up 2 Up 508 544 256 128 32 32
ConvNeXt 72 576 128 128 32 32
ConvNeXt 72 576 128 128 32 32

Up 3 Up 143 680 128 64 64 64
ConvNeXt 28 096 64 64 64 64
ConvNeXt 28 096 64 64 64 64

Output LayerNorm 128 64 64 64 64
relu – 64 64 64 64
1× 1 Conv 453 64 5 64 64

unclipped values, which leads to a inconsistency between training and application of the974

surrogates.975

In Fig. B1, we compare the deterministic surrogate with and without clipping, both976

version are based on the same model, trained for no clipping. While the unclipped sur-977

rogate performs initially as well as the clipped one, it becomes easily unstable, leading978

to a rapid error increases within several days. In the end, the unclipped surrogate per-979

forms much worse than the clipped one, showing the need of clipping.980

Contrastingly, the diffusion surrogate is always stable and clipping has almost no981

impact on its scores. This confirms the results from Kohl et al. (2023), where they show982

for a turbulent flow that diffusion surrogates are much more stable than deterministic983

ones. Nevertheless, training a diffusion surrogate without explicitly taking physical con-984
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Figure B1. Effect of clipping on the nRMSE of the deterministic (blue) and diffusion (red)

surrogate averaged all variables and all samples in the testing dataset. Without clipping (dotted),

the deterministic surrogate become easily unstable, while the diffusion one remains stable. Note,

the scores for a single ensemble member are shown here, and the nRMSE has a logarithmic scale.

straints into account can introduce a bias into the surrogate, which could lead to sub-985

optimal results.986

B2 Impact of sea-ice damage987

In this manuscript, our goal is to learn a surrogate model for the dynamics of neXtSIM,988

a geophysical model. Therefore, we forecast with our surrogates all prognostic variables989

available in our dataset, even the sea-ice damage. Originally introduced as memory for990

past stresses and to simulate the existence of subgrid-scale cracks and leads (Girard et991

al., 2011), its mechanics are somewhat artifical, acting like an additional latent variable.992

In our dataset, the damage is treated differently than the other variables and kept as in-993

stantaneous variable, while all other are averaged within a 6-hour window. Furthermore,994

there are no observational equivalents to the damage variable and there is no similar out-995

put in the CMIP6 dataset (Eyring et al., 2016). This raises the question if the sea-ice996

damage variable is needed and if it can improve the surrogate model if cycled over sev-997

eral days.998

As comparison, we trained an additional deterministic surrogate by leaving the dam-999

age variable out, while keeping everything else the same. In Fig. B2, we compare the fore-1000

cast error with increasing lead time between the two deterministic surrogates.1001

For the two shown variables, sea-ice thickness, and sea-ice velocity, the surrogate1002

without damage slightly improves the error compared to the one with damage. However,1003

the difference is smaller than the difference between the deterministic and diffusion sur-1004

rogate. This result holds also for the other not shown variables. One of the reasons why1005

the neural network performs better without damage might be that the number of its tasks1006
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Figure B2. Comparison of root-mean-squared error (RMSE) with the deterministic surrogate

with (blue) and without the forecast of damage (blacked, dashed) for (a) the sea-ice thickness

and (b) the sea-ice velocity in x-direction, averaged across all samples in the testing dataset.

is reduced from five to four, freeing capacity to better forecast the other variables. Ad-1007

ditionally, we have seen that the instabilities if clipping is deactivated, see also Appendix1008

B1, are reduced for the surrogate without damage (not shown). Consequently, if the goal1009

is to get the best possible forecast, independent of the goal to best emulate the geophys-1010

ical model, we can recommend to use a surrogate without prognostic damage. This can1011

improve the scores, make the model more stable and simplify the evaluation procedure.1012

However, since our goal was to find an emulator for neXtSIM, we kept the determinis-1013

tic model with predicting the damage.1014

B3 Impact of data augmentation1015

A way to artificially increase the data amount is to apply data augmentation. In1016

data augmentation, the drawn samples from the dataset are randomly distorted by given1017

transformations. During the training of our surrogates, we apply random horizontal flip-1018

ping with a probability of p = 0.5, random vertical flipping with p = 0.5, and random1019

rotation by 90◦ with p = 0.5. This should help the surrogates to learn features that are1020

invariant to flipping and to rotations, possibly providing an additional physical prior in-1021

formation. During inference time, when we forecast, we deactivate any data augmenta-1022

tion. Applying this data augmentation helps us to reduce the amount of overfitting present1023

in our surrogate model, as illustrated in Fig. B3, when comparing the green to the vi-1024

olet curve. Although the final loss might be lower with data augmentation, the time un-1025

til convergence is increased.1026
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Figure B3. The validation loss of the deterministic surrogate with augmentation and labels

(blue), the surrogate without labels (green), and the surrogate without augmentation and labels

(violet).

In addition to the initial conditions and external forcing, we can also give the sur-1027

rogate information about the data augmentation. The surrogate is conditioned by pro-1028

viding label information about which augmentation is activated. This label information1029

is then linearly embedded and influences the affine transformations in the normalization1030

layers. During inference time, we use an empty label vector, filled with zeros. This dis-1031

tributional augmentation approach (Jun et al., 2020) allows us to see the augmentation1032

as data-dependent regularizer or as additional tasks on which the surrogate is trained1033

on. This labelling helps generative modeling in settings with a low amount of data and1034

is also used in some of the state-of-the-art diffusion models (Karras et al., 2022). In our1035

case, the deterministic surrogate reached with this additional labelling the lowest val-1036

idation loss. Furthermore, this labelling resolves the issues with the speed of convergence1037

when data augmentation is applied. Therefore, we use distributional augmentation dur-1038

ing the training of our surrogates.1039

B4 Weighting in the diffusion surrogate1040

The diffusion model optimizes a weighted mean-squared error in predicting v, see1041

also Eq. (8). As weighting factor, we use an exponential weighting, while the additional1042

density of the noise scheduler is adapted to a binarized exponential moving average dur-1043

ing training, see also Appendix A4. The target data is normalized to mean 0 and stan-1044

dard deviation 1 by per-variable statistics estimated based on the climatology of the dy-1045

namics. Consequently, the contribution of the five different variables is implicitly weighted1046

by these climatological statistics.1047

Variables like the sea-ice velocities might be better constrained by the initial con-1048

ditions and forcings and easier to predict than others, resulting into smaller errors, Fig.1049

B4. Their contribution to the total loss is then downweighted. The diffusion model would1050
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be more optimized for the other variables, which could lead to problems with the cal-1051

ibration of the surrogate, as shown in Sec. 5.1052

Figure B4. The error of the diffusion model in predicting v (see also Eq. (8)) for a randomly

selected data batch of 1024 samples in the training dataset (orange and red) and in the validation

dataset (grey and black), weighted by an exponential weighting as used for the training of the

diffusion model. Since the data is normalized by the climatology, also the different error terms

are implicitly weighted by this climatology. The five different variables (orange and grey) show

in general an unequal error behavior, which is absorbed by the averaged loss. Additionally, the

validation errors are generally higher than the training errors, indicating slight overfitting.

One way to tackle such problems could be to alter the weighting for different vari-1053

ables, as similarly done in GenCast (Price et al., 2023). Inspired by the solution of max-1054

imum likelihood estimation, we can also weight the different contributions by the expected1055

error for a given variable as proposed in Rybkin et al. (2020) and used in T. S. Finn, Du-1056

rand, et al. (2023) for model error corrections. In the end, the density of the noise sched-1057

uler would not have one single value per λ bin but one for each variable, proportional1058

to the error of this variable within the given bin. The λ values resulting out of the noise1059

scheduler would be still given by the average of all variables, its density is shown by the1060

red and black line in Fig. B4.1061

Fig. B4 shows a different behavior between the training loss and validation loss,1062

especially for the sea-ice velocities. The training loss is additionally slightly smaller than1063

the validation loss, possibly indicating overfitting, which is also discussed in Appendix1064

B6.1065

B5 Evaluation of the diffusion ensemble1066

Here, we discuss the calibration of the ensembles steming from the stochastic sur-1067

rogate and the diffusion surrogate models. In Fig. B5, we show the spread-skill ratio for1068

the ensembles and the rank histograms of the diffusion ensemble for the sea-ice thick-1069

ness and the sea-ice velocity in x-direction.1070

Dissecting the ensembles shows their underdispersion with a decreasing spread-skill1071

ratio for an increasing lead time, as shown in Fig. B5. Since sea ice is heavily driven by1072
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Figure B5. The spread-skill ratio (a & b) and rank histograms (c–f) with the stochastic sur-

rogate (yellow), diffusion surrogate (red) and the residual diffusion surrogate (dashed, violet) for

the sea-ice concentration (a, c, & e) and the the sea-ice velocity in x-direction (b, d & f). The

spread-skill ratio (a & b) are estimated by ratio of the square-root of the averaged ensemble vari-

ance to the square-root of the mean-squared error. The rank histograms are for a lead time of 12

hours (c & d) and a lead time of 10 days (e & f) and normalized by the expected density, 1
17
. All

metrics are averaged across all samples and grid points in the testing dataset.

the external forcings, the instantiated models are dissipative, something also observed1073

in geophysical sea-ice models (Chen et al., 2023; Cheng et al., 2023). The models must1074

additionally generate the lateral boundary conditions, which further increases their dis-1075

sipative behavior. These two factors lead to the reduction of the ensemble spread with1076

lead time.1077

While initially quite well-calibrated for the tracer variables, e.g., for the shown sea-1078

ice thickness, the ensemble spread is too small compared to the errors for the velocities.1079

This might be a result out of balancing issues during the training of the diffusion sur-1080

rogates. The loss terms for the different variables are implicitly weighted by their cli-1081

matology because of data normalization, whereas the velocities seem to be easier to fore-1082

cast than the tracers, see also Appendix B4. As a consequence, the contribution of the1083
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velocities to the total loss is smaller than that of the tracers, and the model seems un-1084

balanced. Consequently, the system’s dissipative behavior and possible balancing issue1085

seem to cause the poorly calibrated ensemble for the diffusion surrogate.1086

B6 Overfitting in the diffusion surrogate1087

Diffusion models optimize the ELBO on the targetted data, minimizing the Kullback-1088

Leibler divergence between the true generating distribution and the distribution as ap-1089

proximated by the diffusion model. The loss function shows the quality of the whole dis-1090

tribution, while the RMSE only measures the performance of the first moment. Find-1091

ing the best model in terms from RMSE might consequently differ from the best model1092

in terms of loss function. This mismatch between network calibration and accuracy has1093

been also observed in neural networks for classification (Nguyen et al., 2015; Guo et al.,1094

2017; Minderer et al., 2021).1095

Figure B6. (a) The logarithm of the loss function for the training dataset (red) and valida-

tion dataset (black), (b) the nRMSE for a 12-hour lead time of the five predicted variables (grey)

and as average across the five variables (black) in the validation dataset. The yellow dot repre-

sents the lowest validation loss and the yellow star the lowest nRMSE. While the loss indicates

an onset of overfitting at 1.25× 105 iterations, the nRMSE exhibits almost no overfitting.

In Fig. B6, we show the difference between selecting the best model with the loss1096

(a) and with the MSE (b). The loss in the validation dataset shows sign of overfitting1097

much earlier than the RMSE in the same dataset. Higher moments of the distribution1098

become worse while the first moment still improves with higher number of iterations. In1099

the end, it seems like there is a trade-off between optimizing the model in terms of RMSE1100

or in terms of predicted distribution.1101
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Cheng, S., Chen, Y., Aydoğdu, A., Bertino, L., Carrassi, A., Rampal, P., & Jones,1177

C. K. R. T. (2023, April). Arctic sea ice data assimilation combining an1178

ensemble Kalman filter with a novel Lagrangian sea ice model for the win-1179

ter 2019–2020. The Cryosphere, 17 (4), 1735–1754. Retrieved 2023-09-10,1180

from https://tc.copernicus.org/articles/17/1735/2023/ (Publisher:1181

Copernicus GmbH) doi: 10.5194/tc-17-1735-20231182

Craig, A., Valcke, S., & Coquart, L. (2017, September). Development and perfor-1183

mance of a new version of the OASIS coupler, OASIS3-MCT 3.0. Geoscientific1184

Model Development , 10 (9), 3297–3308. Retrieved 2024-03-04, from https://1185

gmd.copernicus.org/articles/10/3297/2017/gmd-10-3297-2017.html1186

(Publisher: Copernicus GmbH) doi: 10.5194/gmd-10-3297-20171187

Dansereau, V., Weiss, J., Saramito, P., & Lattes, P. (2016, July). A Maxwell elasto-1188

brittle rheology for sea ice modelling. The Cryosphere, 10 (3), 1339–1359.1189

Retrieved 2021-11-16, from https://tc.copernicus.org/articles/10/1339/1190

2016/ (publisher: Copernicus GmbH) doi: 10.5194/tc-10-1339-20161191

De, S., & Smith, S. L. (2020, December). Batch Normalization Biases Residual1192

Blocks Towards the Identity Function in Deep Networks. arXiv. Retrieved1193

2022-11-23, from http://arxiv.org/abs/2002.10444 (arXiv:2002.10444 [cs,1194

stat]) doi: 10.48550/arXiv.2002.104441195

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,1196

T., . . . Houlsby, N. (2021, June). An Image is Worth 16x16 Words: Trans-1197

formers for Image Recognition at Scale. arXiv. Retrieved 2024-02-19,1198

from http://arxiv.org/abs/2010.11929 (arXiv:2010.11929 [cs]) doi:1199

10.48550/arXiv.2010.119291200

Dueben, P. D., & Bauer, P. (2018, October). Challenges and design choices for1201

global weather and climate models based on machine learning. Geoscien-1202

tific Model Development , 11 (10), 3999–4009. Retrieved 2023-11-10, from1203

https://gmd.copernicus.org/articles/11/3999/2018/ (Publisher: Coper-1204

nicus GmbH) doi: 10.5194/gmd-11-3999-20181205

Durand, C., Finn, T. S., Farchi, A., Bocquet, M., & Òlason, E. (2023, Au-1206
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