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Abstract

Edge computing has been proved an efficient approach to provisioning computation offloading service to vehicles on road through
Road-Side Units (RSUs). However, the traffic volume on road is highly dynamic, while RSU-based edge servers are static in
terms of geographical location and computation capacity. To address this problem, this paper proposes a mobile edge server
placement strategy using cruising UAVs along the roads based on the genetic algorithm. We first build a mathematical model
to characterize the deployment cost of these UAV-mounted servers and their routes. Next, we design a heuristic UAV-mounted
edge server deployment scheme based on K-medoid clustering and genetic algorithms. Experimental results verify that our
proposed UAV deployment scheme satisfies the offloading demand of IoV nodes while reducing the total deployment cost by
17.05% to 48.94% compared with existing popular approaches.
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Edge computing has been proved an efficient approach to provisioning
computation offloading service to vehicles on road through Road-Side
Units (RSUs). However, the traffic volume on road is highly dynamic,
while RSU-based edge servers are static in terms of geographical loca-
tion and computation capacity. To address this problem, this paper pro-
poses a mobile edge server placement strategy using cruising UAVs
along the roads based on the genetic algorithm. We first build a math-
ematical model to characterize the deployment cost of these UAV-
mounted servers and their routes. Next, we design a heuristic UAV-
mounted edge server deployment scheme based on K-medoid clustering
and genetic algorithms. Experimental results verify that our proposed
UAV deployment scheme satisfies the offloading demand of IoV nodes
while reducing the total deployment cost by 17.05% to 48.94% com-
pared with existing popular approaches.

Introduction: The rapid development of the Vehicle-to-Everything
(V2X) technology has become an integral part of modern Internet of
Vehicles (IoV) [1-3]. Nevertheless, with the emergence of new applica-
tions such as autonomous driving and high-precision real-time map nav-
igation, there has been a surge in on-board computing demands where
the in-car computation capacity is insufficient [4, 5].

Edge computing has emerged as one of the most suitable solutions
to addressing such challenge. Edge computing provides a decentralized
processing architecture by deploying computing resources near the IoV
nodes (vehicles), i.e., the data source, which significantly lightens the
computation load on IoV nodes. This distributed computing model is
particularly suitable for those applications that are extremely sensitive
to latency [6].

Despite numerous benefits edge computing brings to IoV systems,
the traditional static edge computing model still faces great chal-
lenges [7] [8]. Static edge servers, located at fixed locations, inherently
fail to adapt to the dynamically changing traffic [9] [10]. To this end,
mobile carriers have been proposed, such as using Unmanned Aerial
vehicles (UAV) equipped with edge servers to follow the dynamic traf-
fic and offer elastic computation services to the vehicles on road. These
carriers can dynamically adjust their locations based on real-time traffic
conditions and user demand [11].

Efficient route plan of the routes of UAV-mounted edge servers
remains a critical opening problem. Existing work usually focus on route
planning of a small number of UAVs and static user demands, while
ignoring the collision risk of overlapping flight paths of a large number
of UAVs and their limited battery capacity [12] [13]. To address these
issues, we propose a deployment scheme for UAV-mounted edge servers
based on Genetic Algorithms (GA). We make a set of UAVs carry edge
servers and fly along a variety of roads, i.e., routes, to serve the offload-
ing requests on the way. Each route is formed as a queue of UAVs to
avoid collision. We also place charge stations for these routes to ensure
continuous service of these UAV-mounted servers. We carefully opti-
mize the cruising routes of the UAVs to reduce the overlapping chance
of different routes, cover all the offloading requests on each road, and
reduce the deployment cost of the UAVs. The major contributions of our
work can be summarized as follows.

* We develop a mathematical model of the deployment and route plan-
ning of UAV-mounted edge servers for an IoV system, aiming at
minimizing the total deployment cost while meeting the offloading
requirements of the IoV nodes on road.

e We design an efficient heuristic UAV deployment strategy based
on K-medoid clustering and the genetic algorithm. We use the K-
medoid algorithm to partition the map into regions and place one
charging station at the medoid of each region, and design a GA-
based algorithm to determine the routes in each region. Each route
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must go through one charge station. We iteratively explore different
combinations of the number of regions and routes to find the best
solution.

¢ We perform trace-driven experiments on real GPS data of the Shang-
hai traffic trace. Compared with existing popular algorithms, our
proposed strategy can reduce the deployment cost by 17.05% to
48.94% in typical scenarios.

Related Works: The strategic deployment of edge servers to effectively
serve the computational needs of IoT nodes poses a complex chal-
lenge [14]. Static edge servers struggle with adaptability due to inflexi-
ble placement and limited capacity. To address this, researchers explore
innovative solutions, such as using mobile edge servers on UAVs [14—
16].

In addition to addressing adaptability issues, various algorithms have
been proposed to efficiently schedule tasks and minimize communica-
tion costs in dynamic computational resource provisioning scenarios.
Saurez et al. introduced a task graph partition offloading algorithm that
takes into account end device capabilities [17], while Lv et al. applied
Q-learning techniques to schedule microservice containers, aiming to
reduce resource variance and communication overhead [18].

Resource allocation in Mobile Edge Computing (MEC) systems is
another prominent area of research. Xiong et al. contributed to enhanc-
ing resource utilization with an improved DQN algorithm [19]. This
optimization is crucial for the efficient operation of MEC systems.

Furthermore, researchers have explored the integration of UAV-based
mobile edge computing in Intelligent Transportation Systems (ITS), par-
ticularly in traffic flow monitoring and management [20]. The incor-
poration of UAVs into MEC networks has demonstrated improvements
in computational performance and reductions in execution latency [21].
The utilization of drones for IoT traffic monitoring further underscores
the potential of edge computing in intelligent transportation system
applications [22, 23].

Notwithstanding these noteworthy advancements, it is imperative to
acknowledge that variations in workload within IoT environments can
potentially jeopardize the continuity of communication. In addressing
this formidable challenge, our research endeavors are dedicated to the
meticulous optimization of UAV-based edge computing, with the over-
arching goals of enhancing energy efficiency and quality of service. Our
specific focus lies in the optimization of UAV service routes and the
strategic positioning of charging stations to ameliorate the efficiency and
efficacy of IoT node services.

The Deployment Model of UAV-Mounted Edge Servers:

System Model: We consider an IoV system with vehicles on road as loV
nodes. These IoV nodes continuously generate offloading requests. The
road network is modeled as a graph, M = (V, &), where V = {v;|i =
1,..., N} is the set of the vertices representing the road intersections,
and & = {e; j|vi, vj € V;i < j} is the set of the edges representing the
road sections. For a given time interval, let /; ; denote the total volume
of the computation demand of the offloading requests generated within
road section e; j, and d; ; denote its length. We assume K bases need
to be placed to some intersections, acting as the manage and charge sta-
tions. Let 8 = {b;|i =1, ..., K;b; € V} represent the set of all bases.

We need to determine a variety of cruising routes of the UAV-
mounted edge servers to offer offloading services, ensuring that all the
demand of all the road sections is covered with sufficient computation
capacity. We also need to place a number of charge stations on the map,
and each route must go through a charge station. The problem is to find
the locations of these UAV charge stations and plan the cruising routes
of the UAVs with minimum deployment cost. Fig. 1 illustrates the model
of the problem.

The Deployment Cost: We define the deployment cost as the sum of
the cost on deploying charge stations and the cost on the routes of the
UAV-mounted edge servers. The deployment cost of the charge stations
is simply calculated as

Call charge stations _ Ccharge stauonK (1)
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Fig 1 The IoV system with UAV-mounted edge servers.

where Ccharge station jq the deployment cost of deploying a single charge
station.

To deploy a route, we consider the number of UAV-mounted edge
servers on road with certain density to serve the load of each road section
in route. We use u; =< ex ylex,y € & >, an ordered set of edges, to
denote route i. Such deployment cost of route i is calculated as

C{oute — Z Cdmdxy n.::erver )

ex,y€u;

where C%* is the deployment cost on one unit travelling distance by
a single UAV-mounted edge server, and n*¥* is the number of UAV-
mounted edge servers in route #, calculated as

server server
m = Y deyE ©)

ex,yEu;

where €™ is the density of the UAV-mounted edge servers in the
route, i.e., number of UAV-mounted edge servers per KM.

To satisfy all the requests along the route, it must follow that the load
of any road section should be no greater than the supply by all the routes,

ie.,

l .
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where the computation capacity of a UAV-mounted edge server is 77.
Each UAV-mounted edge server has a communication range with

diameter D, and the UAV-mounted edge servers must cover all the road

sections in length. Therefore,

dx,y
Server < D. (5)

Vexy €u:

The Formulation of the Optimization Problem: Our goal is to minimize
the total deployment cost, so the optimization problem is formulated as

M
min: C = Call charge stations + Z C{outc (6)
i=1
1
st.  Venxy €8: dx’y < Z ne; @)
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d
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Vi : u; is a loop passing vy € 8 (10)

The problem above can be converted to a variant of the Vehicle Rout-
ing Problems (VRP), which is NP-hard [24].

Heuristic Algorithms:

Methodology: Given the complexity of Problem 6, we employ heuris-
tic algorithms, combining K-medoid clustering and Genetic Algorithm
(GA). Initially, we partition the map into regions, deploying a single
charge station in each to break down the problem. Subsequently, a
genetic algorithm is utilized for route determination and UAV-mounted
edge server density within these regions. Finally, we employ an iterative

2

optimization approach to assess deployment costs for varying numbers
of regions/bases (K) and routes (M), identifying the optimal parameter
combination to address the charge station deployment and route plan-
ning challenge.

Map Partitioning Using K-medoid Clustering: We treat the load of a
road section as the number of offloading points uniformly distributed
along the section, and use K-medoid clustering to partition these points
into clusters, referred to as regions. Initially, we select k random points
as medoids, assign each point to the nearest medoid’s cluster, and update
medoids to minimize distances within clusters iteratively. The charge
station is placed at the medoid of each region. This map partitioning
reduces the scale of Problem 6. We chose K-medoid over K-means for
its robustness in handling GPS signal bias and ensuring more reliable
results.

Route Planning Using GA: The route planning problem is a complex
combinatorial problem which can be difficult even for a small region,
so we design a genetic algorithm which efficiently generates desirable
solutions, with the key components as follows.

Individual Representation: We use a numerical sequence to represent a
route. Each number corresponds to a road intersection or vertex. For
example, the sequence [1,2,3,4] represents the route of the UAV-
mounted edge servers moving in the order of intersection 1, 2, 3, and
4.

Population Initialization: The initial population consists of multiple
sequences of numbers. They are randomly generated by shuffling the
indices of road intersections other than the charge station. We set the
number of routes in region k to be M}, and randomly choose Mj — 1
breakpoints in a sequence to divide it into M} subsequences where each
subsequence represents a route. To ensure that each route starts and ends
at the charge station, we set the first and last number of each subse-
quence to the charge station’s index. We check the sequence and add
any missing edges to it to form a solution. The population size is set to
80.

Fitness Function: The fitness function assesses the total deployment
cost in the region, encompassing the charge station’s deployment cost
and route costs using Eqn. 2. Lower deployment costs indicate better
solutions.

Selection Operation: Retains individuals with lower deployment costs
as parents for the next generation.

Crossover Operation: The selected parent individuals perform two-
point crossover operations to generate new offspring individuals. The
crossover operation selects two crossover points from the parent indi-
viduals and exchanges the sequence parts between these two points.

Mutation Operation: The offspring individuals perform mutation oper-
ations to increase the diversity of the population. We achieve individual
mutation by randomly swapping the positions of two numbers in the
sequence.

Flip Operation: Parent individuals choose two index values, and the
sequence between these two index values (excluding the endpoints) is
reversed to create a new offspring individual.

Iterative Evolution: The process of selection, crossover, mutation, and
flip operations is repeated until the maximum specified number of itera-
tions is reached.

The above GA algorithm can gradually improve the fitness of the
individuals, and finally find a desirable solution.

Iterative Optimization: We design an iterative optimization method to
find the best combination of the number of regions/bases K and routes
M that minimizes the total deployment cost. In each iteration, we eval-
uate the deployment cost on the current combination of K and M and
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adjust these parameters for the next iteration accordingly.

We first utilize the K-medoid clustering algorithm to divide the map
into K regions and set the medoids as the bases, where K ranges from 1
to 10. Next, for each region, we change the number of cruising routess
M from 1 to 50 and employ the genetic algorithm to find the solution
routes minimizing the deployment cost of each region.

Finally, we calculate the total deployment cost of the current solution
to the charge station deployment and route planning problem and record
the corresponding values of K and M. Through multiple iterations, we
gradually approach the optimal solution which is the combination of K
and M values that yields the lowest total deployment cost.

Performance Evaluation:

Experiment Setup: We obtained experimental data from GPS records
of Shanghai buses [25]. We focused on a specific area within latitude
31.20-31.30 and longitude 121.40 — 121.50. To analyze the data effec-
tively, we divided the map into 1x1 square kilometer cells. We filtered
out cells without roads using a minimum threshold, eliminating GPS sig-
nal deviations. We processed the map using OpenCV to identify offload-
ing points, representing GPS records. We extracted road network topol-
ogy and shape features, identifying 527 road intersections. These inter-
sections served as the basis for dividing the road network into road sec-
tions. The load for each road section was determined by the number of
GPS records between two intersections, and the length of each section
was obtained from the map.

In our evaluation, we compared our K-medoid and GA-based strat-
egy, referred to as KGA with two benchmark algorithms, GA and PSO.
While GA uses genetic algorithms without map division, PSO (Parti-
cle Swarm Optimization) employs a different individual update method,
focusing on global search but possibly getting trapped in local optima.
In contrast, KGA maintains population diversity and introduces new solu-
tions to achieve global search.

Performance Results and Analysis: Fig. 2 displays the total deployment
cost of different algorithms (KGA, GA, and PSO) as the number of
routes changes. KGA outperforms PSO when K < 7, and it surpasses
GA when K is between 2 and 4. The performance of KGA is influenced
to a greater extent by the quantity of regions rather than the quantity of
routes.
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Fig 2 Total Deployment Cost of Different Algorithms with Varying Number
of Regions and Routes.

In Fig. 3, we see a "v"-shaped trend in the optimal deployment cost
and the number of routes for our KGA algorithm as the number of
regions varies. Therefore, we claim that the optimal solution is to divide
the map into K = 4 regions and maintain M = 13 routes.

In addition, Fig. 4 illustrates the deployment cost in each region when
using KGA to divide the map into 4 regions, as per the optimal solution
mentioned earlier. The deployment cost decreases initially with increas-
ing routes but then rises. This trend is consistent with the observations
in Figure 3. The optimal solution balances route length and density of
UAV-mounted edge servers to minimize deployment cost.
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In summary, our KGA algorithm effectively optimizes charge sta-
tion numbers, locations, and routes to reduce deployment cost. By iter-
atively adjusting the number of regions and routes, we achieve an opti-
mal solution that reduces the cost by 48.94% compared to PSO and by
17.05% compared to GA.

Conclusion and Future Work: This paper proposed a route planning
strategy to optimize the deployment cost of UAV-mounted edge servers,
while meeting the computational offloading requirements of IoV end
users. We built a model to characterize the deployment cost of deploy-
ing multiple UAV-mounted edge servers and planning their routes. A
heuristic algorithm based on K-medoid clustering and genetic algorithm
was proposed to solve the problem. K-medoid clustering was used to
divide the map into multiple regions to reduce the problem scale, and
the GA algorithm was utilized to plan the routes within each region. We
designed an iterative optimization strategy by iteratively performing the
K-medoid clustering and genetic algorithm to find the best combination
of the numbers of the regions and routes. Experimental results verified
that our proposed algorithm achieved the lowest deployment cost com-
pared with other popular algorithms.

In our future work, we aim to improve IoV research using multi-
objective optimization and distributed deep reinforcement learning. This
will enhance factors like latency, network congestion, and reliability,
enabling autonomous decision-making for UAV-mounted edge servers.
Combining these methods will address IoV challenges, enhancing over-
all system performance and user experience.
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