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Abstract

Researchers analyzing data collected from borehole drilling projects can face dozens of terabytes of seismic, hydrologic, geologic,

and rock mechanics data, including complex imagery, physical measurements, and expert-written reports. These diverse data

sets play a pivotal role in understanding solid Earth processes. Ingesting and analyzing such data presents a colossal challenge

that typically demands a team of experts and large amounts of time. The utilization of Artificial Intelligence (AI) and machine

learning emerges as a compelling approach to help tackle the volume and complexity of drilling data. This paper presents

an AI-based pipeline for ingesting data from the Oman Drilling Project’s Multi-borehole Observatory. The study focuses on

the alteration of peridotite core segments taken from Borehole BA1B, utilizing a catboost classification model trained on an

integrated data set of machine learning segmented core images, physical measurements, geological, lithographic data, and AI-

summarized expert texts and feature selection. This paper’s central objective is to establish a repeatable, efficient pattern for

processing such multifaceted borehole data through connecting fracture networks detected in the borehole BA1B imagery to

the host rock alteration.
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Key Points:9

• We demonstrate an AI pipeline for ingesting data from the Oman Drilling Project10

Multi-borehole Observatory to predict peridotite alteration11

• A large language model (ChatGPT) is able to summarize visual core descriptions,12

providing keywords that can be used in regression models13

• Fractures are less predictive than other features for classifying highly altered (>14

90%) peridotites.15
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Abstract16

Researchers analyzing data collected from borehole drilling projects can face dozens of17

terabytes of seismic, hydrologic, geologic, and rock mechanics data, including complex18

imagery, physical measurements, and expert-written reports. These diverse data sets play19

a pivotal role in understanding solid Earth processes. Ingesting and analyzing such data20

presents a colossal challenge that typically demands a team of experts and large amounts21

of time. The utilization of Artificial Intelligence (AI) and machine learning emerges as22

a compelling approach to help tackle the volume and complexity of drilling data. This23

paper presents an AI-based pipeline for ingesting data from the Oman Drilling Project’s24

Multi-borehole Observatory. The study focuses on the alteration of peridotite core seg-25

ments taken from Borehole BA1B, utilizing a catboost classification model trained on26

an integrated data set of machine learning segmented core images, physical measurements,27

geological, lithographic data, and AI-summarized expert texts and feature selection. This28

paper’s central objective is to establish a repeatable, efficient pattern for processing such29

multifaceted borehole data through connecting fracture networks detected in the bore-30

hole BA1B imagery to the host rock alteration.31

Plain Language Summary32

Scientists studying the Earth using data from drilling into the ground often deal33

with huge amounts of information. This can include everything from seismic waves, wa-34

ter measurements, rock types, and complex images to detailed expert reports. Under-35

standing this data is crucial for learning about the Earth’s processes. However, sorting36

through and making sense of it takes much work and requires a team of experts. This37

is where Artificial Intelligence (AI) and machine learning come in handy. They can help38

manage and understand these large and varied sets of data. This research focuses on data39

from the Oman Drilling Project, where scientists wanted to know how rocks in Oman40

change so they can be used to store CO2. To answer this question, we trained several41

different AI models to analyze different kinds of data, including pictures and reports writ-42

ten by other scientists.43

1 Introduction44

Ocean and continental drilling projects typically produce dozens of terabytes of data,45

including seismic, hydrological, geological, and rock mechanics data. These data are multi-46

modal and multi-source including imagery such as core photos or X-ray computed to-47

mography scans, physical measurements such as resistivity, porosity, and permeability48

measurements, and expert data such as written visual core descriptions. The collection49

of these data is driven by scientific knowledge and theory. Given the volume and inter-50

disciplinary scope of these data, analyzing them is a monumental task requiring many51

years of continuous work for a team of individual experts. Thus, there is a current strong52

need in the solid-Earth sciences for computational models and frameworks that ingest53

and interact with multi-modal, multi-source data and aid researchers in hypothesis test-54

ing (Goss, 2020; H. Wang et al., 2023). Artificial Intelligence (AI) and machine learn-55

ing offer an attractive solution to this complex problem. New AI tools can produce more56

accurate simulations of multi-phasic fluid flow (Y. D. Wang et al., 2021) and Large Lan-57

guage Models (e.g., ChatGPT) can be used to summarize expert written drilling reports58

(Zhao et al., 2023). AI can aid scientists in going beyond simply ingesting and manip-59

ulating data and help generate scientific hypotheses from complex data (Schmidt & Lip-60

son, 2009; Guimerà et al., 2020; Li et al., 2022; H. Wang et al., 2023; Cornelio et al., 2023).61

This paper presents a framework for an AI pipeline that ingests multi-modal data (im-62

ages and expert-written text) taken from the Oman Drilling Project (OmanDP).63

The OmanDP multi-borehole observatory (MBO) is an example of a large-scale,64

interdisciplinary continental drilling project that has produced a multi-modal dataset.65
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At site BA1, borehole BA1B was cored and images including complete wrap-around scans,66

physical, chemical, and biological measurements (e.g., mean dry electrical resistivity, cell67

abundance), and lithographic information were recorded. Initial results of the OmanDP68

demonstrate that in borehole BA1B, between 65 and 100% of the peridotite has been69

hydrated to form serpentinite and related rock types. The decrease in the extent of peri-70

dotite alteration with depth may suggest that significant peridotite alteration in the re-71

gion has been relatively young, within the last 50,000 years (Kelemen et al., 2021). H272

and CH4 outgassing have previously been detected in the Oman boreholes and are pos-73

sible products of ongoing peridotite alteration (Ellison et al., 2021; Aiken et al., 2022).74

The chemical reactions associated with peridotite alteration are well understood75

(e.g., (Kelemen & Matter, 2008; Plümper & Matter, 2023)). Olivine and pyroxenes re-76

act with water and carbon dioxide to form mainly serpentine minerals, brucite, iron ox-77

ides, and carbonates. Low-temperature alteration (< 150◦ C) is possible and has been78

observed in Oman and other on-land environments (de Obeso & Kelemen, 2020; Corre79

et al., 2023). Redox reactions further produce H2 and CH4, which can be observed bub-80

bling up continuously in alkaline springs found in peridotite-rich areas. The complete81

conversion of peridotite to serpentinite is not fully understood because the associated82

swelling should “armor” the reactive surfaces of the peridotite, thus preventing water83

from continuing to interact with unaltered rock (Hövelmann et al., 2012; Malvoisin et84

al., 2020, 2021). It is assumed that the volumetric expansion of the rock as a consequence85

of the hydration would induce stress on the surrounding host rock, thus opening new path-86

ways to unaltered rock penetrating the “armor”. This process, known as “reaction-driven87

cracking” (Kelemen & Matter, 2008; Jamtveit et al., 2009; Plümper et al., 2012), is ex-88

pected to create hierarchical fracture networks within the host rock (Jamtveit et al., 2009).89

Thus, in addition to the geological attributes of the Oman peridotite, the density and90

complexity of the fracture networks should be indicative of recent and/or ongoing peri-91

dotite alteration (Iyer et al., 2008). Reaction driven cracking should develop a charac-92

teristic hierarchical network pattern dominated by four-sided domains (Aydin & DeGraff,93

1988; Iyer et al., 2008). These fractures should grow from older fractures, linking differ-94

ent generations of fractures together. Thus, in an altered peridotite environment strongly95

influenced by reaction driven cracking we expect to see a fracture network made up of96

polygons with four or more sides and few single, linear fractures in regions of high al-97

teration. Fractures in the OmanDP MBO cores have been qualitatively described through98

visual core descriptions using classification rubrics developed for ocean drilling expedi-99

tions (Blackman et al., 2006; MacLeod et al., 2017). These descriptions are insufficient100

to describe the complexity of fracture networks which would be necessary to identify po-101

tential regions of ongoing reaction driven cracking. To overcome the limitation of this102

qualitative description, in this study, we use a machine learning-based image segmen-103

tation model to identify fractures in the wrap-around core images. We then use statis-104

tical microstructure descriptors (SMDs) to describe the fracture network complexity (Lu105

& Torquato, 1992; P.-E. Chen et al., 2019; Amiri et al., 2023).106

In this paper, we present a machine learning-oriented approach for treating multi-107

modal data produced during the coring and subsequent investigations of OmanDP bore-108

hole BA1B. This framework is designed to normalize these multi-modal data (in our case,109

wrap around core images, physical measurements, and visual core descriptions) quickly.110

Much of the work presented here typically would take many months of work to complete111

compared to the computational workflow presented here. Specifically, we present two sep-112

arate methods to ingest data from the OmanDP borehole BA1B: 1) we produced a ma-113

chine learning image classifier for wrap-around core images that segmented fractures which114

is then used to calculate fracture network characteristics, and 2) we utilized the large115

language model ChatGPT to summarize handwritten visual core descriptions (VCDs)116

from the coring expedition. The VCDs represent on-site expert knowledge about the ge-117

ology of the cores and also, observations that could help explain the presence of highly118

altered peridotites in the absence of complex fracture networks. They describe different119
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morphometric features such as the presence of veins, alteration, and oxidation, as well120

as structural features and minerology. They are open-ended, semi-structured text doc-121

uments written per core segment and thus make a depth-dependent, expert description122

of the BA1B core. The fracture network statistics and VCD keyword data are then com-123

piled into a single dataset along with physical measurements (e.g., mean dry electrical124

resistivity) which is then used to train a gradient boosted trees (catboost) classification125

model predicting alteration in the peridotite core (Prokhorenkova et al., 2018). This model126

is then used to find a geological explanation from the machine learning classification model127

for the alteration of the core segments. A central objective of this paper is to establish128

a repeatable pattern for processing this type of data, enabling even individuals without129

earth science knowledge to exploit it. Additionally, it is to explore the impact of non-130

tectonic fracturing of rock on peridotite alteration using machine learning methods.131

2 Data and Methods132

We utilize three types of data extracted from the OmanDP borehole BA1B: wrap-133

around images of the borehole core, physical, chemical, and biological measurements made134

after the coring, and textual data comprising geologists’ remarks regarding the drilled135

sections known as the “Visual Core Descriptions” (VCD). This data is processed (Fig-136

ure 1) through fracture labeling via image segmentation of the wrap-around core images,137

fracture density and network connectivity estimation from the labeled fracture images,138

and summarization into keywords of the VCD text using ChatGPT. These data are com-139

bined with physical measurement data to create a depth-dependent database of bore-140

hole BA1B. This database is then used to predict the detected alteration within the core,141

as reported from the expedition (Kelemen et al., 2021).142

Below we provide a full pipeline description (Figure 1) including a site description143

for the OmanDP MBO, describing the wrap-around core image processing, the VCD text144

processing, and the regression models that are built from this analysis.145

2.1 Site Description146

The OmanDP borehole BA1B is part of a multi-borehole observatory (MBO) that147

was established during the second drilling phase of the OmanDP in the Wadi Tayin Mas-148

sif to address a spectrum of questions that connect the deep mantle and the ancient ocean149

floor with modern hydrology and ongoing biogeochemical reactions in the mountains and150

wadis of the Samail Ophiolite (Kelemen et al., 2021). The Wadi Tayin Massif is one of151

the southern massifs of the Oman ophiolite complex, which was formed primarily via a152

mid ocean ridge basalt like, single-stage process at a submarine spreading ridge (Godard153

et al., 2003). The Massif is characterized by an extensive mantle sequence consisting al-154

most entirely of harzburgite and minor lherzolite that host 5%–15% dunites and mul-155

tiple mafic intrusions and is overlain by a 5–7 km thick gabbroic crustal section, sheeted156

dikes, and pillow lavas (Boudier & Coleman, 1981; Pallister & Knight, 1981). Gravity157

anomalies (Ravaut et al., 1997) suggest that the Massif composed of 30%–60% (Falk &158

Kelemen, 2015; de Obeso & Kelemen, 2018) serpentinized mantle peridotite, extending159

up to 5 km below the present-day surface.160

BA1B is one of three boreholes from the active alteration zone (BA) site, which161

targets alteration at temperatures <50 °C. It is of specific interest because it is one of162

the boreholes instrumented with hydrophones (Aiken et al., 2022) which could provide163

direct evidence of ongoing seismic activity due to reaction driven cracking. The cores re-164

covered from BA1B consist of ∼55% harzburgite, ∼35% dunite, and ∼10% mafic dykes165

and alluvium. Contacts between ultramafic and mafic domains are marked by chlorite,166

prehnite, talc, and hydrogrossular, indicating metasomatism on a millimeter scale. Carbonate-167

rich zones occur in the upper 150 m and are characterized by a distinct decrease in vein168

abundance with depth (Kelemen et al., 2021).169
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Modeling 

Dataset 

Processing

Raw Data

Drilling Report (depth 3.2m - 4.0m): 
microcrystalline carbonate visible on vein surfaces. 
clasts are 90% angular and 10% rounded. This 
indicates that the thickness of alluvium is < few 10s 
cm and the bedrock is surfacing. angular fragments 
at 0 to 60 cm with mixed lithologies varying from 
serpentinised harzburgite to dunite. Serpentinization, 
oxidation, carbonation in veins

Core 
Images

Preprocessing filters

Segmentation with 
random forest

Percentage 
of fractures 
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Network 
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Drilling 
Reports
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Segmented 
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Keyword 
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dataset

GPT feature 
selectioncatboost Expert feature 
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Figure 1. Pipeline utilizing AI and machine learning to ingest data taken from Oman Drilling

Project Multi-borehole Observatory borehole BA1B. Ultimately this processes 505 wrap-around

core images, 505 drilling reports per core segment, and 30 physical measurements into a data set

of 96 columns ranging from 0m at the top of the borehole to the cored depth of 400m.

2.2 Core image analysis170

The BA1B wrap around core images provide the primary images to identify frac-171

tures. Following the drilling process, the borehole is segmented into 505 equivalent sec-172

tions, and were photographed. Each of the 505 core cut images typically measures 60173

to 100 cm in length (75 cm average length) and 10 to 20 cm in width. The complete im-174

age set is then made up of 505 core segments of approximately 1 m in depth, spanning175

from the uppermost layer of the core to a depth of 400 m. Additionally, there are sec-176

tions of core that were taken immediately for microbiological analysis, and not photographed,177

such that the entire data set includes 690 core sections. After applying pre-processing178

filters to ensure proper treatment, we use the Ilastik software (Berg et al., 2019) for seg-179

mentation and extraction of fractures (Section 2.2.1). Post-processing filters were sub-180

sequently implemented to enhance the accuracy of our segmentation. These segmented181
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images could then be used to calculate the percentage of fractures at various depths for182

each core image and estimate fracture network connectivity.183

2.2.1 Image segmentation184

We employ a multi-step process for successfully segmenting fractures/alteration prod-185

uct veins. Raw wrap-around core images are first pre-processed using Gaussian, Hessian,186

Roberts, and Sobel edge-enhancing filters. This flattens differences in color content of187

the image, and highlights abrupt changes in edges, making it ultimately easier to pick188

out fracture veins. Twenty images taken from 20 m segments distributed depth-wise along189

the borehole were then labeled using the Ilastik software (Berg et al., 2019). We then190

used the built-in random forest algorithm within Ilastik to label the remaining 485 im-191

ages. We drop all labeled pixel groupings with ≤ 50 pixels. We then apply a post-processing192

eccentricity filter to remove small round erroneously labeled pixel groupings as they are193

not physically representative of a fracture or vein network. This is then considered the194

final labeled fracture/vein network data set. In this study, we do not differentiate frac-195

tures closed by mineral precipitation (veins) from open fractures. This is because if we196

differentiated between these two, we would not capture the full network of fractures and197

would likely underestimate the network connectivity and complexity.198

2.2.2 Estimating fracture density199

The first essential piece of data to acquire is the degree of fracturing in the core200

at any given depth, enabling the establishment of a correlation between depth and the201

number of fractures. We calculate the percentage of fractures using the following rela-202

tionship:203

F% =
Ilabel
Iarea

(1)

Where Ilabel is the number of pixels labeled as a fracture in a wrap around core segment204

and Iarea is the total number of pixels of a wrap around core segment. We calculated205

the fracture percentage using three distinct approaches to segmentation: raw segmen-206

tation, segmentation with an area filter, and segmentation incorporating an eccentric-207

ity filter. In the end, the variations in filters used have negligible impact on the results,208

as the curves share similar trends with a translation shift thus we choose to apply only209

the eccentricity filter to the data sets as it is most relevant to identifying small artifacts210

that are not fractures.211

2.2.3 Estimating Connectivity212

Fracture network connectivity is another property of the observed fracture network213

in the core images that can have an impact on the alteration process. Thus, it is nec-214

essary to quantify such connectivity so we can use it as an additional feature to our ma-215

chine learning model. Our approach involves utilizing n-point spatial correlation func-216

tions, i.e. SMDs (Lu & Torquato, 1992; P.-E. Chen et al., 2019; Amiri et al., 2023). These217

functions represent the probability of n random points separated by a distance r to lie218

in the same phase such as fractures. However, for n ≥ 3 this probability calculation be-219

comes computationally challenging. To address this, we focus on a subset of these func-220

tions: n-point polytope functions. These functions are defined by the probability that221

the n vertices of a random regular n-point polytope with an edge length r will fall within222

the same phase (P.-E. Chen et al., 2019). Given that reaction driven fractures should223

produce network patterns that are most likely to have four-sided polygons (Iyer et al.,224

2008), the detection of these prevelance of such polygons will indicate the complexity225

of the existing fracture network. That is, if the fracture network is made up of mostly226
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longer linear segments and fewer polygons, it is less likely to present a hierarchical net-227

work generated from reaction driven cracking.228

To specifically assess fracture connectivity, we compute the lineal-path L function(Lu229

& Torquato, 1992). This function measures the probability of a whole segment of a ran-230

dom line to lie within the fractures, providing an efficient means to evaluate the linear231

connectivity in complex fracture networks such as those found in serpentinites (Amiri232

et al., 2023). In our study, six correlation functions are calculated: S2 for two-point cor-233

relation, P3H for horizontal triangles, P3V for vertical triangles, P4 for squares, P6 for234

hexagons, and L for the lineal-path function. Alongside these, we also compute normal-235

ized versions of these SMDs, termed “scaled autocovariance functions” (Jiao et al., 2007),236

altogether introducing 12 features representing geometrical patterns and linear connec-237

tivity, and ultimately the complexity, of the fracture network within the BA1B core seg-238

ments.239

In our analysis, the SMDs were computed within 1000x1000 pixel windows (one240

pixel is 0.2mm x 0.2mm) extracted from all core images. In each core image segment,241

a calculated SMD presents a probability curve (Figure 3) for that particular type of poly-242

gon to be present for the specified distance r (r=1 is a single pixel). To reduce these curves243

to data that can be utilized in the catboost model, we utilize the sum of the values for244

each SMD at edge length r < 50 pixels (<10 mm) as input data for our model.245

2.3 Hand Written Expert Visual Core Descriptions246

After successful, drilling the recovered cores are processed and described during core247

description campaign following a protocol created by reviewing and adapting procedures248

of previous scientific ocean drilling expeditions (Blackman et al., 2006; Teagle et al., 2006;249

D. Teagle et al., 2012; Gillis et al., 2014; MacLeod et al., 2017). The protocol contains250

the optical description of the cores and various scientific analyses. Multiple teams per-251

form the core characterization, each focusing on specific aspects. The teams are as fol-252

lows: igneous petrology, alteration/metamorphic petrology, structural geology, geochem-253

istry, paleomagnetism, physical properties, near-visible infrared scanning, microbiology,254

and wireline geophysical logging and hydrogeological testing. At the end of the campaign,255

visual core descriptions (VCDs) are produced, which are section-by-section summaries256

of the core description observables and most pertinent instrumental measurement pa-257

rameters of the recovered cores.258

To ensure consistency throughout the cores, especially during the optical core de-259

scription, each team member was responsible for observing a specific set of character-260

istics; however, an entire team would work together for initial descriptions (e.g., units261

and lithologies, critical features) to guarantee continuity. The terminology and abbre-262

viations during description and classification were adapted from previous expeditions (Blackman263

et al., 2006; Whitney & Evans, 2010; Früh-Green et al., n.d.; MacLeod et al., 2017).264

2.3.1 ChatGPT for Drilling Reports265

Recent efforts in the development of large language models (LLMs) have caused266

a paradigm shift in the availability of easy-to-use text summarizing tools (Zhao et al.,267

2023). We choose to use ChatGPT due to its ease of use Application Programming In-268

terface (API). Other LLMs likely offer similar utility. When compared to the effort and269

lack of utility of traditional text analysis methods (traditional natural language process-270

ing methods such as Lemmatization (Miller, 1995), Frequency distributions and collo-271

cations (Gledhill, 2000), and TextRank (Barrios et al., 2016) did not produce valid key-272

words) new LLMs provide a new way forward for accessing high density, hard to quan-273

tify text data.274
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Visual Core Description (depth 3.2m - 
4.0m): microcrystalline carbonate visible on 
vein surfaces. clasts are 90% angular and 
10% rounded. This indicates that the 
thickness of alluvium is < few 10s cm and 
the bedrock is surfacing. angular fragments 
at 0 to 60 cm with mixed lithologies varying 
from serpentinised harzburgite to dunite. 
Serpentinization, oxidation, carbonation in 
veins

Figure 2. Field researchers cataloging the visual core description (left). An example of the

visual core description text that is summarized into keywords using ChatGPT (right).

The handwritten VCDs (Section 2.3) were given to ChatGPT to summarize. Each275

set of remarks per depth unit (505 in total) was given to ChatGPT (gpt-turbo-3.5) with276

the prompt:277

“Please summarize the following text into ten keywords and explain why you picked278

each keyword. The text to summarize is: {text}”,279

with {text} being replaced by the geologist’s remarks. This produced hundreds of dif-280

ferent keywords that emerged from the process, many of which were close duplicates or281

similar keywords. These keywords were then condensed for duplicates and/or similar-282

ities (e.g., “vein” versus “veins”). Keywords that were reported by ChatGPT less than283

50 times (representing less than 10% of the BA1B total cored depth) were removed. Ul-284

timately, 52 keywords remained. Those keywords were integrated in the dataset as bi-285

nary variables for each core segment. Then, we asked ChatGPT to group the different286

keywords into topics based on the type of information they convey. We plotted the graph287

of keywords depending on depth to have preliminary information about the keyword fea-288

tures of the core (Figure 5).289

2.4 Data set290

Ultimately this process produced a depth-dependent data set composed of 690 rows291

corresponding to 690 different sections of the core and involved image analysis fracture-292

related data, textual data from geologists’ reports, geological data, and physical mea-293

surements. In total, the dataset is comprised of 96 features: 13 of them derived from core294

image segmentation of fractures, 51 from the extracted keywords from VCDs, 30 from295

direct physical measurements, plus the depth and the alteration (we wish to predict the296

alteration). For each of the 690 core segments that include: depth range (in meters), per-297

centage of alteration (≥ 90%), keywords picked by ChatGPT, fracture density estimate,298

fracture network connectivity estimates, and physical measurements including precise299

mineral composition, electrical resistivity, magnetic susceptibility, cell abundance, and300

trace of volatile elements. Not all rows are assigned to an image because the image re-301

port provides only 505 images of the borehole. The physical measurements are only avail-302

able for a limited number of sections throughout the borehole (typically only every 20m303

of core sections, please see the dataset for more details). We extrapolated missing data304

by imputing the sample without physical data using the values from the samples above.305

This data set was then used in a catboost model to predict per core segment if the per-306

centage of alteration was above or below 90%.307
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2.5 catboost Classifier308

Using the data set created via the above pipeline, we analyze this data using cat-309

boost to predict, per core segment, if the percentage of alteration is above or below 90%.310

Catboost is an open-source library designed to implement machine learning model based311

on the Gradient Boosting technique (Friedman, 2002; Prokhorenkova et al., 2018) that312

has been used across Earth sciences to solve problems such as fracture development (McBeck313

et al., 2020), climatic and metamorphic effects on glacier instabilities (Bouchayer et al.,314

2022), and understanding stick-slip motion (Hulbert et al., 2019). Catboost builds se-315

quential decision tree models where each tree is trained on the residuals of the previous316

model using data that is out of the sample of the previous model, effectively improving317

the model’s accuracy with each step. We use 1000 boosting iterations with a learning318

rate of 0.1 with trees having a maximum depth of 3.319

To evaluate this model, we first analyze its accuracy using the area under (AUC)320

the receiver operator characteristic curve (ROC) (Hastie et al., 2009). The ROC is the321

ratio of the True positive rate to the false positive rate for different decision thresholds322

for the classification model. The AUC is the area under this curve. An AUC value of 0.5323

indicates that the model is no better than random chance because it is no more likely324

that the a true positive will occur than a false positive, while an AUC of 1.0 indicates325

a perfect model. By modulating the different features given to the model (by topic of326

feature), we can estimate which class of features are predictive of alteration: fracture net-327

work estimates, physical estimates, geologists remarks, and fracture network data and328

geologist remarks together.329

2.5.1 ChatGPT for Automated Feature Selection330

Automated feature selection has long been a staple of machine learning and is in-331

tegrated in a variety of methods (Zou & Hastie, 2005; X.-w. Chen & Jeong, 2007; Hastie332

et al., 2009; Sharma et al., 2021). These methods often used a combination of model vari-333

ance and complexity to determine which features to eliminate from a training data set.334

For example, recursive feature elimination (X.-w. Chen & Jeong, 2007) removes features335

one by one from the most important feature to the least, re-ordering features after each336

removal, to determine the subset of features that can be kept in the final model. The337

best model then chosen through recursive feature elimination typically minimizes the model338

variance, i.e., maintains the highest amount of fittedness through fit statistics such as339

R2, and minimizes complexity by removing training variables that have little to no im-340

pact on the model output. These methods do not consider the conceptual constraints341

a model may have placed on it by scientists. For example, in this study, we are inter-342

ested in the impact of fracture networks on alteration. Thus, instead of using these meth-343

ods, we rely on ChatGPT to provide expert model feature groupings as an automated344

feature selection tool.345

We asked ChatGPT to classify all model features in the BA1B data set into groups346

that we could use to separate for model comparison analysis (see Section 2.5). We ex-347

cluded the text summarization features already classified since ChatGPT had already348

seen these. We gave ChatGPT the prompt:349

You are an expert physicist, chemist, biologist, and computational scientist ai helper350

bot. I will give you a list of columns for a catboost classifier. These columns are the fea-351

tures in the model. The catboost classifier is designed to determine whether a section of352

a borehole core has greater than 90% peridotite alteration or not. We are attempting to353

measure the impact of fractures in the sample against other features that impact the to-354

tal alteration assuming this is related to reaction driven cracking.355

You are to first:356
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1. define each column357

2. provide an overarching category for the column358

3. describe why you picked this category for the column359

Features provided to you should be grouped into categories. Please reply saying you360

understand the task and then I will give you the column names.361

ChatGPT replied categorizing all of the features into groups. These categorizations are362

then used for model feature selection. We compare these AI-selected feature groupings363

to the expert-selected feature groupings (Figure 6).364

3 Results365

We first report the results of the fracture network detection and ChatGPT’s sum-366

marization of expert geologist remarks (examination of the physical results can be found367

in (Kelemen et al., 2021)). Then we will describe the results of the catboost model.368

Throughout the top section mainly composed of dunite (0-160 m), a moderate amount369

of fractures is detected (Figure 4), from 3% at the very top to 6% near the transition370

area. There appears to be a slight linear trend increasing in fractures between ≈25m and371

100m. This trend decreases in the location at approximately 90m where there is a 5-m372

section of less altered rock. A peak in fractures is detected near the transition zone be-373

tween dunite and harzburgite rocks (160-180 m), with up to 10% of the image fractured.374

Fewer fractures are observed in the bottom harzburgite section (180-400 m).375

Figure 3 shows an example of quantifying geometrical patterns and linear connec-376

tivity using the SMDs. All the SMDs start from the same probability, approximately 0.4,377

at r=0. This probability indicates the phase fraction (aka fracture fraction) as it mea-378

sures the probability of only one point occurring in the same phase. The r at which S2379

stabilizes (≈ 10 − 15 pixels) gives a rough estimation of average fracture width to be380

≈ 2-3mm. Moreover, the lineal-path curve consistently shows higher values compared381

to other polytope functions, suggesting that linear connectivity is a predominant pat-382

tern in these images. That is, there is low network complexity across most regions of the383

borehole.384

The ChatGPT summarization analysis had two steps, first was the keyword anal-385

ysis, and second was the topic analysis of the selected keywords (see Figure 5). Some key-386

words appear prolifically across the entire depth cross-section (e.g., Serpentine veins, Black387

Serpentinization, Gabbro). Others have a clear depth dependence either occurring in the388

upper Dunite sequence (e.g., Irregular, Lineation, Open cracks, Alteration halo) or in389

the lower Harzburgite sequence (e.g., Hydrothermal, Shearing, Magmatic veins). These390

keywords generally appear where we would expect them to when referencing the full-text391

reports. ChatGPT was also able to group keywords into meaningful topics of “veins and392

alteration”, “oxidation and alteration”, “structural features”, “rock type”, “mineralogy”,393

and “physical characteristics”.394

Additionally, we had ChatGPT categorize the other features that were available395

to the catboost model using the prompt given in Section 2.3.1. ChatGPT replied with396

features similar to the expert-chosen features (Figure 6) producing the same result, that397

fracture features are much less predictive than other features collected about the peri-398

dotite alteration. This creates two classes of catboost model (expert-guided and GPT-399

guided).400

The expert-guided catboost model is quite performant when using all data (AUC=0.99).401

When split by expert-guided topic the models (Figure 6, Table 3) perform well for all402

groups of features except for fracture-related features (AUCfractures=0.74, AUCmean=0.93).403

Similarly, the GPT-guided CatBoost models, using analogous feature groupings, demon-404
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Table 1. Area under the receiver operator characteristic curves (AUC) for different feature

groups used in catboost model.

Feature Group AUC

Expert Selected Feature Groups

Chemistry and Biology 0.94
Fractures 0.74
Geology 0.98
Physics 0.90
ChatGPT Keywords 0.93

ChatGPT Selected Feature Groups

Geological Composition 0.93
Physical Properties 0.92
Biological Influence 0.95
Fractures 0.74
Rock Type 0.92
Textural Features 0.89
Color and Visual Properties 0.92

strate comparable performance. (AUCfractures=0.74, AUCmean=0.92). An AUC above405

0.7 is considered to provide some discrimination while an AUC above 0.9 is considered406

to provide excellent discrimination (Hosmer Jr et al., 2013).407

4 Discussion408

This paper presents an AI-based pipeline for ingesting high-density, high-complexity409

disparate data sets into a single data set that can be used for analysis. This included core410

imagery, expert remarks (VCDs), and various physical, chemical, and biological measure-411

ments. These data were condensed into a single data set cataloging various features per412

depth increment of the ODP Multi-borehole Observatory borehole BA1B. A random for-413

est classifier was used to label fractures in the data which were then quantified using frac-414

ture network connectivity statistics. An LLM (ChatGPT) was employed to summarize415

VCD text and describe and group the dataset features into topical groups to compare416

during modeling. This analysis produced the following result: complex fracture networks417

do not appear in high-density arrangements that correlate with a high degree of peri-418

dotite alteration. Moreover, this process used free and open source tools to automate much419

of the workflow reducing the time it would take to identify and label fractures in pic-420

tures, identify relevant text in thousands of comments, and combine this information to-421

gether to visualize and then apply statistical analysis such as the catboost model pre-422

sented in this paper.423

The effort by ChatGPT to categorize the VCDs into summarization via keywords424

represents an enormous amount of person hours worth of work. The summarization is425

not simply the segmentation of individual words, it is the conceptualization of the vi-426

sual core description into a summary that can be represented by descriptive keywords.427

In order to convert this data into keywords, at least two humans would need to first ran-428

domly select a subset of the data (i.e., the training data), agree on the keyword summa-429

rization database (i.e., a list of words that researchers agree should appear in the VCDs),430

then read a subset of VCDs until each researcher agrees with each other (typically de-431

termined by a statistic such as Cohen’s Kappa (Cohen, 2013)). This process would oc-432
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Figure 3. An example of fracture labeling and fracture network polygon identification. In the

left image, segmented fractures are presented with white as a labeled fracture and black as a la-

beled host rock. The blue square represents the 1000px by 1000px selection taken from the larger

core image. On the right, the polytope functions are calculated. Each curve represents the prob-

ability of finding a polygon of different shapes and number of sides in the entire core section (S2

for two-point correlation, P3H for horizontal triangles, P3V for vertical triangles, P4 for squares,

P6 for hexagons, and L for the lineal-path function). As we can see in the left image, there are

typically linear fractures that do not segment into hierarchical regions of larger fractures con-

nected with smaller fracture spaces. This is typical for the entire borehole. This is confirmed in

the curves to the right, it is far more likely to find linear fractures or two points than any other

polygon shape.

cur iteratively until researchers felt there was no need for new keywords and little dis-433

agreement when searching the subset of training data. Then this keyword search would434

be applied to the full data set. This process would take at least days of fulltime work435

for a single borehole. In comparison, approximately ten lines of python codes were writ-436

ten to use ChatGPT to perform the keyword search (in addition to the prompt, Section437

2.3.1) and then the code run time took only a couple hours. Thus, this process allows438

for the processing and quantification of dense, expert derived data that would otherwise439

be time consuming to use.440

For the exploitation of the textual data, relevant keywords were extracted from the441

geologists’ visual core descriptions (VCD) using ChatGPT, and made into binary vari-442

ables for an easy use in our data set. Plotting the graphs of keywords per depth reveals443

internal correlation between keywords, and thus links subsets of properties with a given444

depth, showing a regressive model could effectively predict sample properties. Overall,445

ChatGPT was able to competently summarize expert knowledge. When comparing the446

summarized keywords to the original intent of the language written, we found that these447

were relevant to the original meaning within the text written in the drilling report. More-448

over, by utilizing ChatGPT, we were able to leverage expert knowledge by summariz-449

ing the drilling report within the statistical model (catboost) without needing an expert450

to convert said knowledge to a format that could be used by the statistical model. This451

has profound implications across much field-based science which includes a large collec-452

tion of written notes and remarks by experts. ChatGPT, or other LLMs, are not replace-453

ments for these experts, but they do provide a profound tool for converting long-form454

text data written by experts into data sets that can be ingested and compared using re-455

gression and classification techniques such as catboost with other physical, chemical, and/or456

biological data captured. It is likely that better prompt engineering and a more tightly457

coupled pipeline, general purpose LLMs would greatly extend the ability of the AI pipeline458

presented here (Ge et al., 2023; Lewis et al., 2020; Nori et al., 2023). This was not the459
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Figure 4. A subset of measurements taken in borehole BA1B. The % of fractures and con-

nectivity are calculated from the random forest segmentation. Other quantities were measured

on-site during or after the coring of borehole BA1B. These represent a cross-section of dataset

features related to fracturing, physical and chemical attributes, and biology found in borehole

BA1B. The geology column (furthest left) the colors represent the lithology with blue being

dunite and yellow-green being harzburgite. For a complete description of the lithology please

see (Kelemen et al., 2021). In the connectivity column, the red represents the lineal feature, the

greater the value, the more likely there are to be connected fractures in this region. These data,

along with other connectivity measures, and text keywords (Figure 5) are used to train the cat-

boost model.
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Figure 6. Plotting of the ROC curve for a different subset of features. The left panel has fea-

tures categorized into groups by an expert. The right panel has features categorized into groups

by ChatGPT. Some curves (e.g., Fractures (left) and Fracture Analysis (right)) are identical be-

cause they contain identical feature groups.

case when we attempted to use the general-purpose image segmentation tool Segment460

Anything (Kirillov et al., 2023) which was unable to accurately label fractures.461

In addition to summarizing the drilling reports we also used ChatGPT to group462

dataset features that were put into the BA1B dataset (see Section Supporting informa-463

tion). ChatGPT created feature groupings very similar to the expert groupings (Figure464

6). ChatGPT correctly classified the columns related to the connectivity code which was465

not expected due to these columns being shortened acronyms with very little informa-466

tion provided otherwise and b) coming from a paper publishing a new method for de-467

tecting network connectivity (Amiri et al., 2023). ChatGPT’s reasoning behind each group-468

ing is sensible. It recognizes chemical composition relationships to the mineralogical com-469

position and how that affects alteration. However, in some cases, its reasoning is not very470

deep. For example, it gives the rationale for separating Cell Abundance into its category471

as “Microbial activity can significantly impact mineral alteration processes”. While this472

is true, it does not describe how it may occur. Although we did not prompt ChatGPT473
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for this effort. Ultimately, using ChatGPT for feature selection allowed ChatGPT to ar-474

rive at the same results as the expert reasoned groupings do. Namely, fracture location475

and complexity have much lower predictive power than other features with regard to where476

high peridotite alteration occurs (Figure 6).477

The fracture density and network complexity measurements were less predictive478

than other features in the catboost model (Figure 6). This suggests that peridotite al-479

teration within borehole BA1B could be driven by multiple factors. It is possible that480

some of the primary fractures in the network were created tectonically. These tectonic481

fractures could provide pathways for meteoric fluids to access unaltered peridotites from482

the surface. This corresponds to the in-situ oxygen isotope study of serpentinites from483

the Oman MBO (Scicchitano et al., 2023). Namely, the microscale oxygen isotope com-484

position in two serpentinite samples from the BA1B core confirms varying stages of hy-485

drothermal alteration. This process likely began in an oceanic environment and progressed486

within a continental context, influenced by low-temperature (T < 50◦C) interactions487

with groundwater possessing distinct δ18O values. There does seem to be some hierar-488

chical networks in the Oman peridotite as we can see primary fractures with branching,489

connecting fractures in the example segmented image (Figure 3). Why would these net-490

works occur yet not correlate with alteration? First, it is possible that the predicted value491

of > 90% alteration (or not) is too course grained a measurement of alteration to be of492

value in this setting. Given that bulk density of the rock can be a proxy for peridotite493

alteration as it scales linearly with alteration, we would expect that the fracture den-494

sity would strongly correlate with bulk density (Figure 4). However this is not the case495

(ρ = −0.0225). These fracture networks must act as fluid pathways given adequate fluid496

pressures, and this fluid motion is detected acoustically in BA1B (Aiken et al., 2022).497

And there is evidence that there is ongoing, low-temperature alteration in the Oman peri-498

dotites (Kelemen et al., 2021). Thus, we are left with the conclusion that the relation-499

ship between peridotite alteration and fracture networks is more complex. As such, frac-500

ture network development is likely a result of various processes including reaction driven501

and tectonic fracturing. Future studies may use our classification as a ground basis for502

in depth investigations.503

It is important to note that throughout these results depth is likely the single vari-504

able that dictates how much of the peridotites are altered. This high correlation with505

alteration (ρ=-0.70) is why depth is removed from the training data sets. Many of the506

physical measurements and VCD-based keywords are depth-dependent as well (Figures507

4, 5). This is likely because these measurements correlate with the already altered peri-508

dotite. However, they do not necessarily correlate with the process that drove this al-509

teration.510

4.1 Conclusion511

This paper has presented an AI-based pipeline to ingest and analyse multi-modal512

data from the Oman Drilling Project’s Multi-borehole observatory. In this pipeline, a513

random forest algorithm was used for image segmentation of core images. Additionally,514

ChatGPT was utilised to summarize the expert knowledge from the drilling reports. These515

were coupled with physical, chemical, and biological measurements and used to predict516

the presence of highly altered peridotites via a catboost model. The catboost model pro-517

vided valuable outlooks of the main factors influencing peridotite alteration. It indicates518

textual and physical data such as depth and mineral composition are of primary impor-519

tance in the classification, but the network analysis data taken from segmentation rep-520

resent a suitable alternative and provide acceptable results. Moreover, it shows an AI-521

based treatment of geological data can equal a physical measurements-oriented method,522

and is a viable substitute for this classification problem. While this pipeline is partic-523

ular to the research questions related to the Oman Drilling Project’s Borehole BA1B,524
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much of the AI-based framework presented in this paper applies to a great many drilling-525

related data sets.526

A critical component of this project was also using openly available, easy to use527

tools. Ilastik (Berg et al., 2019) is free and open source and can be used without any pro-528

gramming expertise. OpenAI’s ChatGPT tool is also offered as a free option. Catboost529

(Prokhorenkova et al., 2018) is designed to be used out of the box without a long and530

expert driven hyperparameter search. The single expert driven, programming task in this531

project was the fracture network complexity estimations. In this way, we present a frame-532

work for using modern, sophisticated tools to address multi-modal and interdisciplinary533

data.534

We hope that future work can use AI-agents to bulk process the vast quantities of535

data that have been collected by international continental and oceanic drilling opera-536

tions. Using AI in this way can both automate the extensive work required to ingest such537

datasets, but also it can leverage the massive resources that have been used across the538

world to generate these data sets. As such, our workflow shows how we can utilize AI539

and machine learning to streamline the analysis of large, disparate, and multi-modal datasets.540

This provides the basis to utilize often largely unused data such as the visual core de-541

scription to develop a systematic dataset for the further depth and correlative analyses.542

5 Open Research543

All codes can be found at https://zenodo.org/doi/10.5281/zenodo.10226092, data544

is available on the International Continental Drilling Project Webpage https://www.icdp545

-online.org/projects/by-continent/asia/oodp-oman/. A detailed tutorial about546

the use of Ilastik in this paper is available here. A detailed tutorial of the use of the con-547

nectivity estimation software can be found here.548
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Abstract16

Researchers analyzing data collected from borehole drilling projects can face dozens of17

terabytes of seismic, hydrologic, geologic, and rock mechanics data, including complex18

imagery, physical measurements, and expert-written reports. These diverse data sets play19

a pivotal role in understanding solid Earth processes. Ingesting and analyzing such data20

presents a colossal challenge that typically demands a team of experts and large amounts21

of time. The utilization of Artificial Intelligence (AI) and machine learning emerges as22

a compelling approach to help tackle the volume and complexity of drilling data. This23

paper presents an AI-based pipeline for ingesting data from the Oman Drilling Project’s24

Multi-borehole Observatory. The study focuses on the alteration of peridotite core seg-25

ments taken from Borehole BA1B, utilizing a catboost classification model trained on26

an integrated data set of machine learning segmented core images, physical measurements,27

geological, lithographic data, and AI-summarized expert texts and feature selection. This28

paper’s central objective is to establish a repeatable, efficient pattern for processing such29

multifaceted borehole data through connecting fracture networks detected in the bore-30

hole BA1B imagery to the host rock alteration.31

Plain Language Summary32

Scientists studying the Earth using data from drilling into the ground often deal33

with huge amounts of information. This can include everything from seismic waves, wa-34

ter measurements, rock types, and complex images to detailed expert reports. Under-35

standing this data is crucial for learning about the Earth’s processes. However, sorting36

through and making sense of it takes much work and requires a team of experts. This37

is where Artificial Intelligence (AI) and machine learning come in handy. They can help38

manage and understand these large and varied sets of data. This research focuses on data39

from the Oman Drilling Project, where scientists wanted to know how rocks in Oman40

change so they can be used to store CO2. To answer this question, we trained several41

different AI models to analyze different kinds of data, including pictures and reports writ-42

ten by other scientists.43

1 Introduction44

Ocean and continental drilling projects typically produce dozens of terabytes of data,45

including seismic, hydrological, geological, and rock mechanics data. These data are multi-46

modal and multi-source including imagery such as core photos or X-ray computed to-47

mography scans, physical measurements such as resistivity, porosity, and permeability48

measurements, and expert data such as written visual core descriptions. The collection49

of these data is driven by scientific knowledge and theory. Given the volume and inter-50

disciplinary scope of these data, analyzing them is a monumental task requiring many51

years of continuous work for a team of individual experts. Thus, there is a current strong52

need in the solid-Earth sciences for computational models and frameworks that ingest53

and interact with multi-modal, multi-source data and aid researchers in hypothesis test-54

ing (Goss, 2020; H. Wang et al., 2023). Artificial Intelligence (AI) and machine learn-55

ing offer an attractive solution to this complex problem. New AI tools can produce more56

accurate simulations of multi-phasic fluid flow (Y. D. Wang et al., 2021) and Large Lan-57

guage Models (e.g., ChatGPT) can be used to summarize expert written drilling reports58

(Zhao et al., 2023). AI can aid scientists in going beyond simply ingesting and manip-59

ulating data and help generate scientific hypotheses from complex data (Schmidt & Lip-60

son, 2009; Guimerà et al., 2020; Li et al., 2022; H. Wang et al., 2023; Cornelio et al., 2023).61

This paper presents a framework for an AI pipeline that ingests multi-modal data (im-62

ages and expert-written text) taken from the Oman Drilling Project (OmanDP).63

The OmanDP multi-borehole observatory (MBO) is an example of a large-scale,64

interdisciplinary continental drilling project that has produced a multi-modal dataset.65
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At site BA1, borehole BA1B was cored and images including complete wrap-around scans,66

physical, chemical, and biological measurements (e.g., mean dry electrical resistivity, cell67

abundance), and lithographic information were recorded. Initial results of the OmanDP68

demonstrate that in borehole BA1B, between 65 and 100% of the peridotite has been69

hydrated to form serpentinite and related rock types. The decrease in the extent of peri-70

dotite alteration with depth may suggest that significant peridotite alteration in the re-71

gion has been relatively young, within the last 50,000 years (Kelemen et al., 2021). H272

and CH4 outgassing have previously been detected in the Oman boreholes and are pos-73

sible products of ongoing peridotite alteration (Ellison et al., 2021; Aiken et al., 2022).74

The chemical reactions associated with peridotite alteration are well understood75

(e.g., (Kelemen & Matter, 2008; Plümper & Matter, 2023)). Olivine and pyroxenes re-76

act with water and carbon dioxide to form mainly serpentine minerals, brucite, iron ox-77

ides, and carbonates. Low-temperature alteration (< 150◦ C) is possible and has been78

observed in Oman and other on-land environments (de Obeso & Kelemen, 2020; Corre79

et al., 2023). Redox reactions further produce H2 and CH4, which can be observed bub-80

bling up continuously in alkaline springs found in peridotite-rich areas. The complete81

conversion of peridotite to serpentinite is not fully understood because the associated82

swelling should “armor” the reactive surfaces of the peridotite, thus preventing water83

from continuing to interact with unaltered rock (Hövelmann et al., 2012; Malvoisin et84

al., 2020, 2021). It is assumed that the volumetric expansion of the rock as a consequence85

of the hydration would induce stress on the surrounding host rock, thus opening new path-86

ways to unaltered rock penetrating the “armor”. This process, known as “reaction-driven87

cracking” (Kelemen & Matter, 2008; Jamtveit et al., 2009; Plümper et al., 2012), is ex-88

pected to create hierarchical fracture networks within the host rock (Jamtveit et al., 2009).89

Thus, in addition to the geological attributes of the Oman peridotite, the density and90

complexity of the fracture networks should be indicative of recent and/or ongoing peri-91

dotite alteration (Iyer et al., 2008). Reaction driven cracking should develop a charac-92

teristic hierarchical network pattern dominated by four-sided domains (Aydin & DeGraff,93

1988; Iyer et al., 2008). These fractures should grow from older fractures, linking differ-94

ent generations of fractures together. Thus, in an altered peridotite environment strongly95

influenced by reaction driven cracking we expect to see a fracture network made up of96

polygons with four or more sides and few single, linear fractures in regions of high al-97

teration. Fractures in the OmanDP MBO cores have been qualitatively described through98

visual core descriptions using classification rubrics developed for ocean drilling expedi-99

tions (Blackman et al., 2006; MacLeod et al., 2017). These descriptions are insufficient100

to describe the complexity of fracture networks which would be necessary to identify po-101

tential regions of ongoing reaction driven cracking. To overcome the limitation of this102

qualitative description, in this study, we use a machine learning-based image segmen-103

tation model to identify fractures in the wrap-around core images. We then use statis-104

tical microstructure descriptors (SMDs) to describe the fracture network complexity (Lu105

& Torquato, 1992; P.-E. Chen et al., 2019; Amiri et al., 2023).106

In this paper, we present a machine learning-oriented approach for treating multi-107

modal data produced during the coring and subsequent investigations of OmanDP bore-108

hole BA1B. This framework is designed to normalize these multi-modal data (in our case,109

wrap around core images, physical measurements, and visual core descriptions) quickly.110

Much of the work presented here typically would take many months of work to complete111

compared to the computational workflow presented here. Specifically, we present two sep-112

arate methods to ingest data from the OmanDP borehole BA1B: 1) we produced a ma-113

chine learning image classifier for wrap-around core images that segmented fractures which114

is then used to calculate fracture network characteristics, and 2) we utilized the large115

language model ChatGPT to summarize handwritten visual core descriptions (VCDs)116

from the coring expedition. The VCDs represent on-site expert knowledge about the ge-117

ology of the cores and also, observations that could help explain the presence of highly118

altered peridotites in the absence of complex fracture networks. They describe different119
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morphometric features such as the presence of veins, alteration, and oxidation, as well120

as structural features and minerology. They are open-ended, semi-structured text doc-121

uments written per core segment and thus make a depth-dependent, expert description122

of the BA1B core. The fracture network statistics and VCD keyword data are then com-123

piled into a single dataset along with physical measurements (e.g., mean dry electrical124

resistivity) which is then used to train a gradient boosted trees (catboost) classification125

model predicting alteration in the peridotite core (Prokhorenkova et al., 2018). This model126

is then used to find a geological explanation from the machine learning classification model127

for the alteration of the core segments. A central objective of this paper is to establish128

a repeatable pattern for processing this type of data, enabling even individuals without129

earth science knowledge to exploit it. Additionally, it is to explore the impact of non-130

tectonic fracturing of rock on peridotite alteration using machine learning methods.131

2 Data and Methods132

We utilize three types of data extracted from the OmanDP borehole BA1B: wrap-133

around images of the borehole core, physical, chemical, and biological measurements made134

after the coring, and textual data comprising geologists’ remarks regarding the drilled135

sections known as the “Visual Core Descriptions” (VCD). This data is processed (Fig-136

ure 1) through fracture labeling via image segmentation of the wrap-around core images,137

fracture density and network connectivity estimation from the labeled fracture images,138

and summarization into keywords of the VCD text using ChatGPT. These data are com-139

bined with physical measurement data to create a depth-dependent database of bore-140

hole BA1B. This database is then used to predict the detected alteration within the core,141

as reported from the expedition (Kelemen et al., 2021).142

Below we provide a full pipeline description (Figure 1) including a site description143

for the OmanDP MBO, describing the wrap-around core image processing, the VCD text144

processing, and the regression models that are built from this analysis.145

2.1 Site Description146

The OmanDP borehole BA1B is part of a multi-borehole observatory (MBO) that147

was established during the second drilling phase of the OmanDP in the Wadi Tayin Mas-148

sif to address a spectrum of questions that connect the deep mantle and the ancient ocean149

floor with modern hydrology and ongoing biogeochemical reactions in the mountains and150

wadis of the Samail Ophiolite (Kelemen et al., 2021). The Wadi Tayin Massif is one of151

the southern massifs of the Oman ophiolite complex, which was formed primarily via a152

mid ocean ridge basalt like, single-stage process at a submarine spreading ridge (Godard153

et al., 2003). The Massif is characterized by an extensive mantle sequence consisting al-154

most entirely of harzburgite and minor lherzolite that host 5%–15% dunites and mul-155

tiple mafic intrusions and is overlain by a 5–7 km thick gabbroic crustal section, sheeted156

dikes, and pillow lavas (Boudier & Coleman, 1981; Pallister & Knight, 1981). Gravity157

anomalies (Ravaut et al., 1997) suggest that the Massif composed of 30%–60% (Falk &158

Kelemen, 2015; de Obeso & Kelemen, 2018) serpentinized mantle peridotite, extending159

up to 5 km below the present-day surface.160

BA1B is one of three boreholes from the active alteration zone (BA) site, which161

targets alteration at temperatures <50 °C. It is of specific interest because it is one of162

the boreholes instrumented with hydrophones (Aiken et al., 2022) which could provide163

direct evidence of ongoing seismic activity due to reaction driven cracking. The cores re-164

covered from BA1B consist of ∼55% harzburgite, ∼35% dunite, and ∼10% mafic dykes165

and alluvium. Contacts between ultramafic and mafic domains are marked by chlorite,166

prehnite, talc, and hydrogrossular, indicating metasomatism on a millimeter scale. Carbonate-167

rich zones occur in the upper 150 m and are characterized by a distinct decrease in vein168

abundance with depth (Kelemen et al., 2021).169
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Figure 1. Pipeline utilizing AI and machine learning to ingest data taken from Oman Drilling

Project Multi-borehole Observatory borehole BA1B. Ultimately this processes 505 wrap-around

core images, 505 drilling reports per core segment, and 30 physical measurements into a data set

of 96 columns ranging from 0m at the top of the borehole to the cored depth of 400m.

2.2 Core image analysis170

The BA1B wrap around core images provide the primary images to identify frac-171

tures. Following the drilling process, the borehole is segmented into 505 equivalent sec-172

tions, and were photographed. Each of the 505 core cut images typically measures 60173

to 100 cm in length (75 cm average length) and 10 to 20 cm in width. The complete im-174

age set is then made up of 505 core segments of approximately 1 m in depth, spanning175

from the uppermost layer of the core to a depth of 400 m. Additionally, there are sec-176

tions of core that were taken immediately for microbiological analysis, and not photographed,177

such that the entire data set includes 690 core sections. After applying pre-processing178

filters to ensure proper treatment, we use the Ilastik software (Berg et al., 2019) for seg-179

mentation and extraction of fractures (Section 2.2.1). Post-processing filters were sub-180

sequently implemented to enhance the accuracy of our segmentation. These segmented181
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images could then be used to calculate the percentage of fractures at various depths for182

each core image and estimate fracture network connectivity.183

2.2.1 Image segmentation184

We employ a multi-step process for successfully segmenting fractures/alteration prod-185

uct veins. Raw wrap-around core images are first pre-processed using Gaussian, Hessian,186

Roberts, and Sobel edge-enhancing filters. This flattens differences in color content of187

the image, and highlights abrupt changes in edges, making it ultimately easier to pick188

out fracture veins. Twenty images taken from 20 m segments distributed depth-wise along189

the borehole were then labeled using the Ilastik software (Berg et al., 2019). We then190

used the built-in random forest algorithm within Ilastik to label the remaining 485 im-191

ages. We drop all labeled pixel groupings with ≤ 50 pixels. We then apply a post-processing192

eccentricity filter to remove small round erroneously labeled pixel groupings as they are193

not physically representative of a fracture or vein network. This is then considered the194

final labeled fracture/vein network data set. In this study, we do not differentiate frac-195

tures closed by mineral precipitation (veins) from open fractures. This is because if we196

differentiated between these two, we would not capture the full network of fractures and197

would likely underestimate the network connectivity and complexity.198

2.2.2 Estimating fracture density199

The first essential piece of data to acquire is the degree of fracturing in the core200

at any given depth, enabling the establishment of a correlation between depth and the201

number of fractures. We calculate the percentage of fractures using the following rela-202

tionship:203

F% =
Ilabel
Iarea

(1)

Where Ilabel is the number of pixels labeled as a fracture in a wrap around core segment204

and Iarea is the total number of pixels of a wrap around core segment. We calculated205

the fracture percentage using three distinct approaches to segmentation: raw segmen-206

tation, segmentation with an area filter, and segmentation incorporating an eccentric-207

ity filter. In the end, the variations in filters used have negligible impact on the results,208

as the curves share similar trends with a translation shift thus we choose to apply only209

the eccentricity filter to the data sets as it is most relevant to identifying small artifacts210

that are not fractures.211

2.2.3 Estimating Connectivity212

Fracture network connectivity is another property of the observed fracture network213

in the core images that can have an impact on the alteration process. Thus, it is nec-214

essary to quantify such connectivity so we can use it as an additional feature to our ma-215

chine learning model. Our approach involves utilizing n-point spatial correlation func-216

tions, i.e. SMDs (Lu & Torquato, 1992; P.-E. Chen et al., 2019; Amiri et al., 2023). These217

functions represent the probability of n random points separated by a distance r to lie218

in the same phase such as fractures. However, for n ≥ 3 this probability calculation be-219

comes computationally challenging. To address this, we focus on a subset of these func-220

tions: n-point polytope functions. These functions are defined by the probability that221

the n vertices of a random regular n-point polytope with an edge length r will fall within222

the same phase (P.-E. Chen et al., 2019). Given that reaction driven fractures should223

produce network patterns that are most likely to have four-sided polygons (Iyer et al.,224

2008), the detection of these prevelance of such polygons will indicate the complexity225

of the existing fracture network. That is, if the fracture network is made up of mostly226
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longer linear segments and fewer polygons, it is less likely to present a hierarchical net-227

work generated from reaction driven cracking.228

To specifically assess fracture connectivity, we compute the lineal-path L function(Lu229

& Torquato, 1992). This function measures the probability of a whole segment of a ran-230

dom line to lie within the fractures, providing an efficient means to evaluate the linear231

connectivity in complex fracture networks such as those found in serpentinites (Amiri232

et al., 2023). In our study, six correlation functions are calculated: S2 for two-point cor-233

relation, P3H for horizontal triangles, P3V for vertical triangles, P4 for squares, P6 for234

hexagons, and L for the lineal-path function. Alongside these, we also compute normal-235

ized versions of these SMDs, termed “scaled autocovariance functions” (Jiao et al., 2007),236

altogether introducing 12 features representing geometrical patterns and linear connec-237

tivity, and ultimately the complexity, of the fracture network within the BA1B core seg-238

ments.239

In our analysis, the SMDs were computed within 1000x1000 pixel windows (one240

pixel is 0.2mm x 0.2mm) extracted from all core images. In each core image segment,241

a calculated SMD presents a probability curve (Figure 3) for that particular type of poly-242

gon to be present for the specified distance r (r=1 is a single pixel). To reduce these curves243

to data that can be utilized in the catboost model, we utilize the sum of the values for244

each SMD at edge length r < 50 pixels (<10 mm) as input data for our model.245

2.3 Hand Written Expert Visual Core Descriptions246

After successful, drilling the recovered cores are processed and described during core247

description campaign following a protocol created by reviewing and adapting procedures248

of previous scientific ocean drilling expeditions (Blackman et al., 2006; Teagle et al., 2006;249

D. Teagle et al., 2012; Gillis et al., 2014; MacLeod et al., 2017). The protocol contains250

the optical description of the cores and various scientific analyses. Multiple teams per-251

form the core characterization, each focusing on specific aspects. The teams are as fol-252

lows: igneous petrology, alteration/metamorphic petrology, structural geology, geochem-253

istry, paleomagnetism, physical properties, near-visible infrared scanning, microbiology,254

and wireline geophysical logging and hydrogeological testing. At the end of the campaign,255

visual core descriptions (VCDs) are produced, which are section-by-section summaries256

of the core description observables and most pertinent instrumental measurement pa-257

rameters of the recovered cores.258

To ensure consistency throughout the cores, especially during the optical core de-259

scription, each team member was responsible for observing a specific set of character-260

istics; however, an entire team would work together for initial descriptions (e.g., units261

and lithologies, critical features) to guarantee continuity. The terminology and abbre-262

viations during description and classification were adapted from previous expeditions (Blackman263

et al., 2006; Whitney & Evans, 2010; Früh-Green et al., n.d.; MacLeod et al., 2017).264

2.3.1 ChatGPT for Drilling Reports265

Recent efforts in the development of large language models (LLMs) have caused266

a paradigm shift in the availability of easy-to-use text summarizing tools (Zhao et al.,267

2023). We choose to use ChatGPT due to its ease of use Application Programming In-268

terface (API). Other LLMs likely offer similar utility. When compared to the effort and269

lack of utility of traditional text analysis methods (traditional natural language process-270

ing methods such as Lemmatization (Miller, 1995), Frequency distributions and collo-271

cations (Gledhill, 2000), and TextRank (Barrios et al., 2016) did not produce valid key-272

words) new LLMs provide a new way forward for accessing high density, hard to quan-273

tify text data.274
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Visual Core Description (depth 3.2m - 
4.0m): microcrystalline carbonate visible on 
vein surfaces. clasts are 90% angular and 
10% rounded. This indicates that the 
thickness of alluvium is < few 10s cm and 
the bedrock is surfacing. angular fragments 
at 0 to 60 cm with mixed lithologies varying 
from serpentinised harzburgite to dunite. 
Serpentinization, oxidation, carbonation in 
veins

Figure 2. Field researchers cataloging the visual core description (left). An example of the

visual core description text that is summarized into keywords using ChatGPT (right).

The handwritten VCDs (Section 2.3) were given to ChatGPT to summarize. Each275

set of remarks per depth unit (505 in total) was given to ChatGPT (gpt-turbo-3.5) with276

the prompt:277

“Please summarize the following text into ten keywords and explain why you picked278

each keyword. The text to summarize is: {text}”,279

with {text} being replaced by the geologist’s remarks. This produced hundreds of dif-280

ferent keywords that emerged from the process, many of which were close duplicates or281

similar keywords. These keywords were then condensed for duplicates and/or similar-282

ities (e.g., “vein” versus “veins”). Keywords that were reported by ChatGPT less than283

50 times (representing less than 10% of the BA1B total cored depth) were removed. Ul-284

timately, 52 keywords remained. Those keywords were integrated in the dataset as bi-285

nary variables for each core segment. Then, we asked ChatGPT to group the different286

keywords into topics based on the type of information they convey. We plotted the graph287

of keywords depending on depth to have preliminary information about the keyword fea-288

tures of the core (Figure 5).289

2.4 Data set290

Ultimately this process produced a depth-dependent data set composed of 690 rows291

corresponding to 690 different sections of the core and involved image analysis fracture-292

related data, textual data from geologists’ reports, geological data, and physical mea-293

surements. In total, the dataset is comprised of 96 features: 13 of them derived from core294

image segmentation of fractures, 51 from the extracted keywords from VCDs, 30 from295

direct physical measurements, plus the depth and the alteration (we wish to predict the296

alteration). For each of the 690 core segments that include: depth range (in meters), per-297

centage of alteration (≥ 90%), keywords picked by ChatGPT, fracture density estimate,298

fracture network connectivity estimates, and physical measurements including precise299

mineral composition, electrical resistivity, magnetic susceptibility, cell abundance, and300

trace of volatile elements. Not all rows are assigned to an image because the image re-301

port provides only 505 images of the borehole. The physical measurements are only avail-302

able for a limited number of sections throughout the borehole (typically only every 20m303

of core sections, please see the dataset for more details). We extrapolated missing data304

by imputing the sample without physical data using the values from the samples above.305

This data set was then used in a catboost model to predict per core segment if the per-306

centage of alteration was above or below 90%.307
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2.5 catboost Classifier308

Using the data set created via the above pipeline, we analyze this data using cat-309

boost to predict, per core segment, if the percentage of alteration is above or below 90%.310

Catboost is an open-source library designed to implement machine learning model based311

on the Gradient Boosting technique (Friedman, 2002; Prokhorenkova et al., 2018) that312

has been used across Earth sciences to solve problems such as fracture development (McBeck313

et al., 2020), climatic and metamorphic effects on glacier instabilities (Bouchayer et al.,314

2022), and understanding stick-slip motion (Hulbert et al., 2019). Catboost builds se-315

quential decision tree models where each tree is trained on the residuals of the previous316

model using data that is out of the sample of the previous model, effectively improving317

the model’s accuracy with each step. We use 1000 boosting iterations with a learning318

rate of 0.1 with trees having a maximum depth of 3.319

To evaluate this model, we first analyze its accuracy using the area under (AUC)320

the receiver operator characteristic curve (ROC) (Hastie et al., 2009). The ROC is the321

ratio of the True positive rate to the false positive rate for different decision thresholds322

for the classification model. The AUC is the area under this curve. An AUC value of 0.5323

indicates that the model is no better than random chance because it is no more likely324

that the a true positive will occur than a false positive, while an AUC of 1.0 indicates325

a perfect model. By modulating the different features given to the model (by topic of326

feature), we can estimate which class of features are predictive of alteration: fracture net-327

work estimates, physical estimates, geologists remarks, and fracture network data and328

geologist remarks together.329

2.5.1 ChatGPT for Automated Feature Selection330

Automated feature selection has long been a staple of machine learning and is in-331

tegrated in a variety of methods (Zou & Hastie, 2005; X.-w. Chen & Jeong, 2007; Hastie332

et al., 2009; Sharma et al., 2021). These methods often used a combination of model vari-333

ance and complexity to determine which features to eliminate from a training data set.334

For example, recursive feature elimination (X.-w. Chen & Jeong, 2007) removes features335

one by one from the most important feature to the least, re-ordering features after each336

removal, to determine the subset of features that can be kept in the final model. The337

best model then chosen through recursive feature elimination typically minimizes the model338

variance, i.e., maintains the highest amount of fittedness through fit statistics such as339

R2, and minimizes complexity by removing training variables that have little to no im-340

pact on the model output. These methods do not consider the conceptual constraints341

a model may have placed on it by scientists. For example, in this study, we are inter-342

ested in the impact of fracture networks on alteration. Thus, instead of using these meth-343

ods, we rely on ChatGPT to provide expert model feature groupings as an automated344

feature selection tool.345

We asked ChatGPT to classify all model features in the BA1B data set into groups346

that we could use to separate for model comparison analysis (see Section 2.5). We ex-347

cluded the text summarization features already classified since ChatGPT had already348

seen these. We gave ChatGPT the prompt:349

You are an expert physicist, chemist, biologist, and computational scientist ai helper350

bot. I will give you a list of columns for a catboost classifier. These columns are the fea-351

tures in the model. The catboost classifier is designed to determine whether a section of352

a borehole core has greater than 90% peridotite alteration or not. We are attempting to353

measure the impact of fractures in the sample against other features that impact the to-354

tal alteration assuming this is related to reaction driven cracking.355

You are to first:356
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1. define each column357

2. provide an overarching category for the column358

3. describe why you picked this category for the column359

Features provided to you should be grouped into categories. Please reply saying you360

understand the task and then I will give you the column names.361

ChatGPT replied categorizing all of the features into groups. These categorizations are362

then used for model feature selection. We compare these AI-selected feature groupings363

to the expert-selected feature groupings (Figure 6).364

3 Results365

We first report the results of the fracture network detection and ChatGPT’s sum-366

marization of expert geologist remarks (examination of the physical results can be found367

in (Kelemen et al., 2021)). Then we will describe the results of the catboost model.368

Throughout the top section mainly composed of dunite (0-160 m), a moderate amount369

of fractures is detected (Figure 4), from 3% at the very top to 6% near the transition370

area. There appears to be a slight linear trend increasing in fractures between ≈25m and371

100m. This trend decreases in the location at approximately 90m where there is a 5-m372

section of less altered rock. A peak in fractures is detected near the transition zone be-373

tween dunite and harzburgite rocks (160-180 m), with up to 10% of the image fractured.374

Fewer fractures are observed in the bottom harzburgite section (180-400 m).375

Figure 3 shows an example of quantifying geometrical patterns and linear connec-376

tivity using the SMDs. All the SMDs start from the same probability, approximately 0.4,377

at r=0. This probability indicates the phase fraction (aka fracture fraction) as it mea-378

sures the probability of only one point occurring in the same phase. The r at which S2379

stabilizes (≈ 10 − 15 pixels) gives a rough estimation of average fracture width to be380

≈ 2-3mm. Moreover, the lineal-path curve consistently shows higher values compared381

to other polytope functions, suggesting that linear connectivity is a predominant pat-382

tern in these images. That is, there is low network complexity across most regions of the383

borehole.384

The ChatGPT summarization analysis had two steps, first was the keyword anal-385

ysis, and second was the topic analysis of the selected keywords (see Figure 5). Some key-386

words appear prolifically across the entire depth cross-section (e.g., Serpentine veins, Black387

Serpentinization, Gabbro). Others have a clear depth dependence either occurring in the388

upper Dunite sequence (e.g., Irregular, Lineation, Open cracks, Alteration halo) or in389

the lower Harzburgite sequence (e.g., Hydrothermal, Shearing, Magmatic veins). These390

keywords generally appear where we would expect them to when referencing the full-text391

reports. ChatGPT was also able to group keywords into meaningful topics of “veins and392

alteration”, “oxidation and alteration”, “structural features”, “rock type”, “mineralogy”,393

and “physical characteristics”.394

Additionally, we had ChatGPT categorize the other features that were available395

to the catboost model using the prompt given in Section 2.3.1. ChatGPT replied with396

features similar to the expert-chosen features (Figure 6) producing the same result, that397

fracture features are much less predictive than other features collected about the peri-398

dotite alteration. This creates two classes of catboost model (expert-guided and GPT-399

guided).400

The expert-guided catboost model is quite performant when using all data (AUC=0.99).401

When split by expert-guided topic the models (Figure 6, Table 3) perform well for all402

groups of features except for fracture-related features (AUCfractures=0.74, AUCmean=0.93).403

Similarly, the GPT-guided CatBoost models, using analogous feature groupings, demon-404
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Table 1. Area under the receiver operator characteristic curves (AUC) for different feature

groups used in catboost model.

Feature Group AUC

Expert Selected Feature Groups

Chemistry and Biology 0.94
Fractures 0.74
Geology 0.98
Physics 0.90
ChatGPT Keywords 0.93

ChatGPT Selected Feature Groups

Geological Composition 0.93
Physical Properties 0.92
Biological Influence 0.95
Fractures 0.74
Rock Type 0.92
Textural Features 0.89
Color and Visual Properties 0.92

strate comparable performance. (AUCfractures=0.74, AUCmean=0.92). An AUC above405

0.7 is considered to provide some discrimination while an AUC above 0.9 is considered406

to provide excellent discrimination (Hosmer Jr et al., 2013).407

4 Discussion408

This paper presents an AI-based pipeline for ingesting high-density, high-complexity409

disparate data sets into a single data set that can be used for analysis. This included core410

imagery, expert remarks (VCDs), and various physical, chemical, and biological measure-411

ments. These data were condensed into a single data set cataloging various features per412

depth increment of the ODP Multi-borehole Observatory borehole BA1B. A random for-413

est classifier was used to label fractures in the data which were then quantified using frac-414

ture network connectivity statistics. An LLM (ChatGPT) was employed to summarize415

VCD text and describe and group the dataset features into topical groups to compare416

during modeling. This analysis produced the following result: complex fracture networks417

do not appear in high-density arrangements that correlate with a high degree of peri-418

dotite alteration. Moreover, this process used free and open source tools to automate much419

of the workflow reducing the time it would take to identify and label fractures in pic-420

tures, identify relevant text in thousands of comments, and combine this information to-421

gether to visualize and then apply statistical analysis such as the catboost model pre-422

sented in this paper.423

The effort by ChatGPT to categorize the VCDs into summarization via keywords424

represents an enormous amount of person hours worth of work. The summarization is425

not simply the segmentation of individual words, it is the conceptualization of the vi-426

sual core description into a summary that can be represented by descriptive keywords.427

In order to convert this data into keywords, at least two humans would need to first ran-428

domly select a subset of the data (i.e., the training data), agree on the keyword summa-429

rization database (i.e., a list of words that researchers agree should appear in the VCDs),430

then read a subset of VCDs until each researcher agrees with each other (typically de-431

termined by a statistic such as Cohen’s Kappa (Cohen, 2013)). This process would oc-432
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Figure 3. An example of fracture labeling and fracture network polygon identification. In the

left image, segmented fractures are presented with white as a labeled fracture and black as a la-

beled host rock. The blue square represents the 1000px by 1000px selection taken from the larger

core image. On the right, the polytope functions are calculated. Each curve represents the prob-

ability of finding a polygon of different shapes and number of sides in the entire core section (S2

for two-point correlation, P3H for horizontal triangles, P3V for vertical triangles, P4 for squares,

P6 for hexagons, and L for the lineal-path function). As we can see in the left image, there are

typically linear fractures that do not segment into hierarchical regions of larger fractures con-

nected with smaller fracture spaces. This is typical for the entire borehole. This is confirmed in

the curves to the right, it is far more likely to find linear fractures or two points than any other

polygon shape.

cur iteratively until researchers felt there was no need for new keywords and little dis-433

agreement when searching the subset of training data. Then this keyword search would434

be applied to the full data set. This process would take at least days of fulltime work435

for a single borehole. In comparison, approximately ten lines of python codes were writ-436

ten to use ChatGPT to perform the keyword search (in addition to the prompt, Section437

2.3.1) and then the code run time took only a couple hours. Thus, this process allows438

for the processing and quantification of dense, expert derived data that would otherwise439

be time consuming to use.440

For the exploitation of the textual data, relevant keywords were extracted from the441

geologists’ visual core descriptions (VCD) using ChatGPT, and made into binary vari-442

ables for an easy use in our data set. Plotting the graphs of keywords per depth reveals443

internal correlation between keywords, and thus links subsets of properties with a given444

depth, showing a regressive model could effectively predict sample properties. Overall,445

ChatGPT was able to competently summarize expert knowledge. When comparing the446

summarized keywords to the original intent of the language written, we found that these447

were relevant to the original meaning within the text written in the drilling report. More-448

over, by utilizing ChatGPT, we were able to leverage expert knowledge by summariz-449

ing the drilling report within the statistical model (catboost) without needing an expert450

to convert said knowledge to a format that could be used by the statistical model. This451

has profound implications across much field-based science which includes a large collec-452

tion of written notes and remarks by experts. ChatGPT, or other LLMs, are not replace-453

ments for these experts, but they do provide a profound tool for converting long-form454

text data written by experts into data sets that can be ingested and compared using re-455

gression and classification techniques such as catboost with other physical, chemical, and/or456

biological data captured. It is likely that better prompt engineering and a more tightly457

coupled pipeline, general purpose LLMs would greatly extend the ability of the AI pipeline458

presented here (Ge et al., 2023; Lewis et al., 2020; Nori et al., 2023). This was not the459

–12–



manuscript submitted to JGR: Machine Learning and Computation

0.0 0.5 1.0

0

50

100

150

200

250

300

350

400

De
pt

h 
(m

)

Geology

0.0 0.5 1.0

Alteration >90%

5 10

% of fractures

0 1

Connectivity

105 107

Cell abundance
(cells/g)

102 103 104

Mean dry
electrical
resistivity

(ohm)

2.6 2.8

Bulk density
(g/cm³)

0.000 0.025

AMS bulk
susceptibility

5 10 15

LOI wt%

0 1

CO2 wt%

5 10 15

H20 wt%

0 2

CaCO3 calc

Figure 4. A subset of measurements taken in borehole BA1B. The % of fractures and con-

nectivity are calculated from the random forest segmentation. Other quantities were measured

on-site during or after the coring of borehole BA1B. These represent a cross-section of dataset

features related to fracturing, physical and chemical attributes, and biology found in borehole

BA1B. The geology column (furthest left) the colors represent the lithology with blue being

dunite and yellow-green being harzburgite. For a complete description of the lithology please

see (Kelemen et al., 2021). In the connectivity column, the red represents the lineal feature, the

greater the value, the more likely there are to be connected fractures in this region. These data,

along with other connectivity measures, and text keywords (Figure 5) are used to train the cat-

boost model.
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Figure 5. Presence of keywords per depth, grouped by type of information they convey.
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Figure 6. Plotting of the ROC curve for a different subset of features. The left panel has fea-

tures categorized into groups by an expert. The right panel has features categorized into groups

by ChatGPT. Some curves (e.g., Fractures (left) and Fracture Analysis (right)) are identical be-

cause they contain identical feature groups.

case when we attempted to use the general-purpose image segmentation tool Segment460

Anything (Kirillov et al., 2023) which was unable to accurately label fractures.461

In addition to summarizing the drilling reports we also used ChatGPT to group462

dataset features that were put into the BA1B dataset (see Section Supporting informa-463

tion). ChatGPT created feature groupings very similar to the expert groupings (Figure464

6). ChatGPT correctly classified the columns related to the connectivity code which was465

not expected due to these columns being shortened acronyms with very little informa-466

tion provided otherwise and b) coming from a paper publishing a new method for de-467

tecting network connectivity (Amiri et al., 2023). ChatGPT’s reasoning behind each group-468

ing is sensible. It recognizes chemical composition relationships to the mineralogical com-469

position and how that affects alteration. However, in some cases, its reasoning is not very470

deep. For example, it gives the rationale for separating Cell Abundance into its category471

as “Microbial activity can significantly impact mineral alteration processes”. While this472

is true, it does not describe how it may occur. Although we did not prompt ChatGPT473
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for this effort. Ultimately, using ChatGPT for feature selection allowed ChatGPT to ar-474

rive at the same results as the expert reasoned groupings do. Namely, fracture location475

and complexity have much lower predictive power than other features with regard to where476

high peridotite alteration occurs (Figure 6).477

The fracture density and network complexity measurements were less predictive478

than other features in the catboost model (Figure 6). This suggests that peridotite al-479

teration within borehole BA1B could be driven by multiple factors. It is possible that480

some of the primary fractures in the network were created tectonically. These tectonic481

fractures could provide pathways for meteoric fluids to access unaltered peridotites from482

the surface. This corresponds to the in-situ oxygen isotope study of serpentinites from483

the Oman MBO (Scicchitano et al., 2023). Namely, the microscale oxygen isotope com-484

position in two serpentinite samples from the BA1B core confirms varying stages of hy-485

drothermal alteration. This process likely began in an oceanic environment and progressed486

within a continental context, influenced by low-temperature (T < 50◦C) interactions487

with groundwater possessing distinct δ18O values. There does seem to be some hierar-488

chical networks in the Oman peridotite as we can see primary fractures with branching,489

connecting fractures in the example segmented image (Figure 3). Why would these net-490

works occur yet not correlate with alteration? First, it is possible that the predicted value491

of > 90% alteration (or not) is too course grained a measurement of alteration to be of492

value in this setting. Given that bulk density of the rock can be a proxy for peridotite493

alteration as it scales linearly with alteration, we would expect that the fracture den-494

sity would strongly correlate with bulk density (Figure 4). However this is not the case495

(ρ = −0.0225). These fracture networks must act as fluid pathways given adequate fluid496

pressures, and this fluid motion is detected acoustically in BA1B (Aiken et al., 2022).497

And there is evidence that there is ongoing, low-temperature alteration in the Oman peri-498

dotites (Kelemen et al., 2021). Thus, we are left with the conclusion that the relation-499

ship between peridotite alteration and fracture networks is more complex. As such, frac-500

ture network development is likely a result of various processes including reaction driven501

and tectonic fracturing. Future studies may use our classification as a ground basis for502

in depth investigations.503

It is important to note that throughout these results depth is likely the single vari-504

able that dictates how much of the peridotites are altered. This high correlation with505

alteration (ρ=-0.70) is why depth is removed from the training data sets. Many of the506

physical measurements and VCD-based keywords are depth-dependent as well (Figures507

4, 5). This is likely because these measurements correlate with the already altered peri-508

dotite. However, they do not necessarily correlate with the process that drove this al-509

teration.510

4.1 Conclusion511

This paper has presented an AI-based pipeline to ingest and analyse multi-modal512

data from the Oman Drilling Project’s Multi-borehole observatory. In this pipeline, a513

random forest algorithm was used for image segmentation of core images. Additionally,514

ChatGPT was utilised to summarize the expert knowledge from the drilling reports. These515

were coupled with physical, chemical, and biological measurements and used to predict516

the presence of highly altered peridotites via a catboost model. The catboost model pro-517

vided valuable outlooks of the main factors influencing peridotite alteration. It indicates518

textual and physical data such as depth and mineral composition are of primary impor-519

tance in the classification, but the network analysis data taken from segmentation rep-520

resent a suitable alternative and provide acceptable results. Moreover, it shows an AI-521

based treatment of geological data can equal a physical measurements-oriented method,522

and is a viable substitute for this classification problem. While this pipeline is partic-523

ular to the research questions related to the Oman Drilling Project’s Borehole BA1B,524
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much of the AI-based framework presented in this paper applies to a great many drilling-525

related data sets.526

A critical component of this project was also using openly available, easy to use527

tools. Ilastik (Berg et al., 2019) is free and open source and can be used without any pro-528

gramming expertise. OpenAI’s ChatGPT tool is also offered as a free option. Catboost529

(Prokhorenkova et al., 2018) is designed to be used out of the box without a long and530

expert driven hyperparameter search. The single expert driven, programming task in this531

project was the fracture network complexity estimations. In this way, we present a frame-532

work for using modern, sophisticated tools to address multi-modal and interdisciplinary533

data.534

We hope that future work can use AI-agents to bulk process the vast quantities of535

data that have been collected by international continental and oceanic drilling opera-536

tions. Using AI in this way can both automate the extensive work required to ingest such537

datasets, but also it can leverage the massive resources that have been used across the538

world to generate these data sets. As such, our workflow shows how we can utilize AI539

and machine learning to streamline the analysis of large, disparate, and multi-modal datasets.540

This provides the basis to utilize often largely unused data such as the visual core de-541

scription to develop a systematic dataset for the further depth and correlative analyses.542

5 Open Research543

All codes can be found at https://zenodo.org/doi/10.5281/zenodo.10226092, data544

is available on the International Continental Drilling Project Webpage https://www.icdp545

-online.org/projects/by-continent/asia/oodp-oman/. A detailed tutorial about546

the use of Ilastik in this paper is available here. A detailed tutorial of the use of the con-547

nectivity estimation software can be found here.548

Acknowledgments549

Drilling in the Oman Drilling Project was supported by the Alfred P. Sloan Foundation550

(in association with the Deep Carbon Observatory, DCO), the International Continen-551

tal Scientific Drilling Program (ICDP), US National Science Foundation (NSF) Research552

(Grants NSF-EAR-1516300, the Japanese Marine Science and Technology Center (JAM-553

STEC), and the Japanese Society for the Promotion of Science (JSPS) grant number 16H06347,554

and contributions from the Sultanate of Oman Ministry of Regional Municipalities and555

Water Resources, the Oman Public Authority for Mining, and Sultan Qaboos Univer-556

sity. The project also received funding from the European Research Council (ERC DIME,557

grant no. 669972 and ERC nanoEARTH, grant no. 852069), the US National Science558

Foundation (grant no. EAR-1516313), and the Norwegian Research Council (SerpRateAI,559

grant no. 334395).560

References561

Aiken, J. M., Sohn, R. A., Renard, F., Matter, J., Kelemen, P., & Jamtveit, B.562

(2022). Gas migration episodes observed during peridotite alteration in the563

samail ophiolite, oman. Geophysical Research Letters, 49 (21), e2022GL100395.564

doi: https://doi.org/10.1029/2022GL100395565

Amiri, H., Vasconcelos, I., Jiao, Y., Chen, P.-E., & Plümper, O. (2023). Quantifying566
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1. Text S1

Introduction

This supplemental provides the responses to prompts given to ChatGPT with regards

to the selection of the catboost model features.

1. ChatGPT designing catboost models

Below is the response from ChatGPT in reply to the prompt asking it to categorize the

non-keyword columns in the dataset. These were used to produce the almost identical

feature groupings and catboost comparison models (Figure ??) as the expert groupings

(see Figure ??).
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1.1. ChatGPT reply

Thank you for providing the column names. I’ll define each column, categorize them,

and explain the rationale behind the categorization.

1. Geological Composition and Properties:

• Columns: SiO2, TiO2, Al2O3, Fe2O3t, MnO, MgO, CaO, Na2O, K2O, P2O5,

100*Fe(III)/FeT, Vrecal, Crrecal, Co, Nirecal, Curecal, Znrecal, Srrecal.

• Definition: These columns represent the chemical composition of the borehole

core sample, measured in terms of the concentration of various elements and compounds.

• Rationale: These features are crucial for understanding the mineralogical com-

position of the rock, which is directly related to its alteration characteristics.

2. Physical Properties

• Columns: Mean dry electrical Resistivity (ohmm), Bulk density (g/cm3), AMS

bulk susceptibility, LOI wt%, CO2 wt%, H2O wt%, CaCO3 calc.

• Definition: These columns represent physical properties of the core samples, such

as resistivity, density, magnetic susceptibility, and content of specific compounds.

• Rationale: Physical properties can influence how a rock reacts to geological pro-

cesses, including alteration.

3. Biological Influence

• Column: Cell abundance (cells/g).

• Definition: This measures the abundance of microbial life per gram of the sample.

• Rationale: Microbial activity can significantly impact mineral alteration pro-

cesses.
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4. Fracture Analysis

• Columns: % of fractures, PnS2 sum, PnL sum, PnP3V sum, PnP3H sum,

PnP4 sum, PnP6V sum, FnS2 sum, FnL sum, FnP3V sum, FnP3H sum, FnP4 sum,

FnP6V sum.

• Definition: These columns quantify the presence and characteristics of fractures

in the sample.

• Rationale: Fractures can significantly affect alteration processes, potentially fa-

cilitating fluid flow and chemical reactions.

5. Rock Type and Unit Classification

• Columns: UNIT TYPE Dunite, UNIT TYPE Fault rock, UNIT TYPE Gabbro,

UNIT TYPE Harzburgite, UNIT TYPE Metagabbro, UNIT TYPE Other, UNIT CLASS OPHIO,

UNIT CLASS UND.

• Definition: These columns categorize the rock types and geological units of the

samples.

• Rationale: Different rock types have different susceptibilities to alteration.

6. Textural Features

• Columns: TEXTURES Brecciated, TEXTURES Sheared, GRAINSIZE Cryptocrystalline,

GRAINSIZE Fine grained, GRAINSIZE Medium grained, GRAINSIZE Microcrystalline,

GRAINSIZE2 Coarse grained, GRAINSIZE2 Cryptocrystalline, GRAINSIZE2 Fine

grained, GRAINSIZE2 Medium grained, GRAINSIZE2 Pegmatitic.

• Definition: These columns describe the textural characteristics of the rock sam-

ples.
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• Rationale: Textural features can influence the rate and extent of alteration pro-

cesses.

7. Color and Visual Properties

• Columns: Redness, Greenness, Blueness, Y (luminance).

• Definition: These columns represent the colorimetric properties of the samples.

• Rationale: Color and luminance can be indicative of certain mineralogical changes

and alteration processes.

This categorization helps in understanding the various aspects that influence peridotite

alteration in borehole cores, especially in the context of reaction-driven cracking and

the impact of fractures. Each category represents a different aspect of the geological,

biological, physical, and chemical environment of the rock samples.
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