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Abstract

Remote sensing has been widely applied to investigate fluvial processes, but depth retrievals face significant constraints in

deep and turbid conditions. This study evaluates the potential for depth retrievals under such challenging conditions using

NASA’s Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) imagery. We employ interpretable

machine learning to construct a hyperspectral regressor for water depth and explore the spectral characteristics of deep and

turbid waters in Wax Lake Delta (WLD), LA. The reflectance spectra of WLD show minor effects from depth differences due

to turbidity. Nevertheless, a Random Forest with Recursive Feature Elimination (RF-RFE) effectively generalizes high and low

turbid cases in a single model, achieving a R² of 0.94 ± 0.005. Moreover, this model shows a maximum detectable depth of

approximately 30 m, outperforming other methods. A spectral analysis using Shapley additive explanations (SHAP) points out

the importance of learning various spectral bands and non-linear relationships between depth and reflectance. Specifically, the

short blue and Near-InfraRed (NIR) bands, with high attenuation coefficients, play a crucial role. This finding highlights the

attenuation as the key process for deep-depth retrievals. The depth maps of WLD captured by this model distinctly represent

the spatial distribution of deep river and shallow delta regions. However, the high dependency on short blue and NIR bands

leads to discontinuous areas due to the noise sensitivity of these bands. This result highlights a drawback of remote sensing

using empirical models. Future research will focus on correcting such discontinuities by integrating data from multiple remote

sensing sources.
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Key Points:10

• Hyperspectral imaging spectroscopy detects a depth of approximately 30 m in Wax11

Lake Delta.12

• Machine learning successfully generalizes spectral variability of the deep and tur-13

bid delta.14

• We identify the importance of spectral bands with high attenuation for estimat-15

ing deep and turbid waters.16
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Abstract17

Remote sensing has been widely applied to investigate fluvial processes, but depth re-18

trievals face significant constraints in deep and turbid conditions. This study evaluates19

the potential for depth retrievals under such challenging conditions using NASA’s Air-20

borne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) imagery.21

We employ interpretable machine learning to construct a hyperspectral regressor for wa-22

ter depth and explore the spectral characteristics of deep and turbid waters in Wax Lake23

Delta (WLD), LA. The reflectance spectra of WLD show minor effects from depth dif-24

ferences due to turbidity. Nevertheless, a Random Forest with Recursive Feature Elim-25

ination (RF-RFE) effectively generalizes high and low turbid cases in a single model, achiev-26

ing a R2 of 0.94±0.005. Moreover, this model shows a maximum detectable depth of27

approximately 30 m, outperforming other methods. A spectral analysis using Shapley28

additive explanations (SHAP) points out the importance of learning various spectral bands29

and non-linear relationships between depth and reflectance. Specifically, the short blue30

and Near-InfraRed (NIR) bands, with high attenuation coefficients, play a crucial role.31

This finding highlights the attenuation as the key process for deep-depth retrievals. The32

depth maps of WLD captured by this model distinctly represent the spatial distribution33

of deep river and shallow delta regions. However, the high dependency on short blue and34

NIR bands leads to discontinuous areas due to the noise sensitivity of these bands. This35

result highlights a drawback of remote sensing using empirical models. Future research36

will focus on correcting such discontinuities by integrating data from multiple remote37

sensing sources.38

1 Introduction39

Remote sensing of water depth has been gaining attention across various fields, in-40

cluding fluvial geomorphology, stream ecology, and hydrodynamics owing to its capa-41

bility of mapping spatially distributed information (Harrison et al., 2022; Niroumand-42

Jadidi et al., 2022; Moramarco et al., 2019; Hossain et al., 2022). The conventional ap-43

proach to water depth measurement using acoustic Doppler current profilers (ADCPs)44

or real-time kinematic global positioning systems (RTK-GPS) depends on point mea-45

surements, requiring a substantial investment of time and labor for frequent and spa-46

tial measurements (Zinger et al., 2013). This challenge is particularly pronounced in wa-47

ter regions with rapidly changing bed morphology due to sediment transport, such as48

river deltas.49

Remote sensing-based depth measurements have emerged as promising alternatives.50

Recent development of various sensors and platforms has led to a variety of remote sens-51

ing approaches (Legleiter & Harrison, 2019). In particular, active remote sensing, uti-52

lizing Light Detection And Ranging (lidar), and passive remote sensing techniques based53

on imaging spectroscopy, have been widely used (de Almeida et al., 2019). Lidar, which54

has a low dependence on weather conditions, has become a widely used method for ter-55

rain measurements (Passalacqua et al., 2012). For water depth estimates, lidar equipped56

with a green-wavelength laser is able to penetrate through the water column and thus57

is typically used to measure shallow water depths (McKean et al., 2014). Recent stud-58

ies have significantly improved the ability to estimate depths up to 20 m using the ad-59

vanced topographic laser altimeter system (ATLAS) onboard the Ice, Cloud, and Land60

Elevation Satellite-2 (ICESat-2) (Xie et al., 2023; Chen et al., 2021). However, apply-61

ing lidar in turbid waters remains challenging (Legleiter & Harrison, 2019; Chen et al.,62

2021).Compared to lidar, imaging spectroscopy highly depends on weather conditions,63

but this method is more versatile thanks to abundant spectral bands that allow it to mea-64

sure various parameters in water environments at the same time, such as algal bloom,65

suspended sediment, organic matter, and water depth from one image (Kwon et al., 2022a,66

2022b, 2023b; Legleiter et al., 2022; Hestir et al., 2015). Recently, there has been an in-67

crease in satellites equipped with hyperspectral sensors, enabling their application over68
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wide spatial areas. Additionally, high-resolution information for specific regions can be69

obtained through images captured by aircrafts or drones.70

In terms of water depth (H ) estimates, imaging spectroscopy also has limitations71

in measuring deep water depth since this method relies on the reflected light from the72

bottom under the water column. The bottom-reflected radiance exponentially attenu-73

ates with the distance of transmittance through the water column (Legleiter et al., 2004)74

Consequently, accurately measuring deep water depth becomes challenging due to the75

diminishing strength of bottom-reflected radiance. Legleiter et al. (2018) and Legleiter76

and Harrison (2019) evaluated the maximum detectable depth of passive optical images77

for various sensors, platforms, and algorithms under clean and shallow water conditions78

(H < 10m). They introduced Optimal Band Ratio Analysis (OBRA) of progressively79

truncated input depths (OPTID) and evaluated the performance according to water depth80

ranges. Their results indicated that hyperspectral imagery from unmanned aerial sys-81

tems (UAS) or airborne platforms could measure water depths up to 4 m and exhibited82

superior accuracy compared to multispectral satellite imagery. This result underscores83

the importance of both spectral and spatial resolutions in hyperspectral retrievals. Gwon84

et al. (2023) conducted further assessments of hyperspectral retrievals for shallow depths85

(H < 1m) under varying suspended sediment concentrations and compositions in ex-86

perimental channels. Despite the weak contribution of bottom radiance under turbid con-87

ditions, this study revealed that machine-learning (ML) regression improved the perfor-88

mance of hyperspectral retrievals for water depth compared to the conventional regres-89

sion approach using a few spectral bands (e.g., OBRA). Specifically, among various ML90

regression algorithms, Random forest (RF) showed accurate and robust performance for91

hyperspectral retrievals. This result can be attributed to the insensitivity of RF to noise92

and hyperparameters, a characteristic derived from its ensemble learning approach. The93

key point arising from the superior performance of ML is that handling non-linearity and94

numerous variables is critical due to increased spectral variability under optically com-95

plex conditions. Nevertheless, the inherent black-box structure of ML represents a weak-96

ness, as it prevents the interpretation of causal relationships between inputs and outputs.97

This characteristic not only limits understanding spectral characteristics but also con-98

fines ML-based hyperspectral remote sensing to local applicability.99

To enhance the transferability and robustness of the hyperspectral retrievals, many100

recent studies have attempted to account for spectral variability in water environments101

(Jensen et al., 2019a; Kwon et al., 2023a, 2022b; Dethier et al., 2020; Niroumand-Jadidi102

et al., 2019). Niroumand-Jadidi et al. (2020) improved OBRA through the compilation103

of sample-specific multiple band ratio techniques for satellite-derived bathymetry (SMART-104

SDB), a fusion of the sample-specific k-nearest neighbor (KNN) method with OBRA.105

SMART-SDB was much more robust for inland and coastal waters, but the depth ranges106

of study sites were under 2.5 m. Kwon et al. (2023a) demonstrated the applicability of107

the Gaussian Mixture Model (GMM) for classifying bottom types in shallow rivers. That108

study also emphasized the significance of considering spectral variability from various109

types of river substrates in hyperspectral retrievals of shallow water depth. However, there110

remain a number of challenges for hyperspectral retrievals of water depth related to their111

applicability in various conditions. First, the maximum detectable depth was evaluated112

only with clean and shallow water (Legleiter et al., 2018; Legleiter & Harrison, 2019).113

The applicability to hyperspectral retrievals of water depth in turbid and deeper con-114

ditions is still unknown. ML has the potential to enhance the use of hyperspectral re-115

trievals by capturing the non-linear relationship between water depth and reflectance across116

various spectral bands. Second, bathymetric studies using imaging spectroscopy are con-117

ducted less frequently compared to surveys that focus on the shape or surface dynam-118

ics of delta networks (Teresa Jarriel, 2021; Kuenzer et al., 2019). In delta regions with119

active sediment transport and complex morphodynamics, depth mapping is substantially120

beneficial for understanding the complex dynamics of channel networks. However, these121
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areas are often highly turbid, leading to limited applicability of remote sensing-based wa-122

ter depth estimation.123

It is known that bottom-reflected radiance tends to be weak in turbid and deep wa-124

ters. Nevertheless, we focus on the radiance emanating from the water column, which125

is also correlated with water depth through exponential attenuation (Wong et al., 2019;126

Lee et al., 1999, 2002). The theoretically derived relationship from exponential atten-127

uation (Lee et al., 1999) provides a key insight for hyperspectral retrievals of water depth128

under deep and turbid conditions. We posit that this relationship can be effectively learned129

by accounting for non-linearity and spectral variability through a ML approach. Based130

on this hypothesis, this study aims to evaluate ML-based hyperspectral retrievals of wa-131

ter depth in the turbid and deep region of Wax Lake Delta (WLD) using spatially and132

spectrally abundant HSI, AVIRIS-NG collected by NASA’s Delta-X mission. Subsequently,133

we analyze spectral variability using the Shapley additive explanation (SHAP), an in-134

terpretable ML approach. In particular, we focus on the following specific objectives:135

1. Evaluate the potential of remote sensing to retrieve deep water depth under tur-136

bid conditions.137

2. Compare the maximum detectable depth of hyperspectral retrievals using three138

regression algorithms.139

3. Interpret spectral variability under deep and turbid waters through the SHAP-140

explained RF framework.141

4. Suggest a strategy for accurate and robust depth mapping under diverse condi-142

tions as those encountered in coastal environments.143

2 Materials and Methods144

2.1 Overview145

Passive remote sensing of water depth relies on measuring visible and near-infrared146

(NIR) reflected solar energy (Mobley, 1999). This process takes into account the atten-147

uation within the water column and its interaction with other physical components, which148

influence the detected signals. Therefore, the total below-surface remote sensing reflectance149

(Rrs) in rivers mainly consists of the signal emanating from the water column and the150

bottom-reflected signal (Kwon et al., 2023b; Legleiter et al., 2004; Baek et al., 2019). This151

combination can be expressed by a simple radiative transfer model introduced by Lee152

et al. (1999):153

Rrs(λ) =
Lu(λ)

Ed(λ)
= R∞(λ)

(
1− e−K(λ)H

)
+

ρb
π
e−K(λ)H , (1)

where Rrs is the remote sensing reflectance, λ is the wavelength, Lu is total up-154

welling radiance reaching the sensor, Ed is the irradiance, R∞ is the reflectance of an155

infinitely deep water column. H is the water depth, K(λ) is the attenuation coefficient,156

and ρb is the bottom albedo, which is a distinctive property according to the bed sub-157

strate. Equation (1) shows that the water column reflectance, the first term on the right-158

hand side, exponentially increases with H and has a maximum value under infinitely deep159

depth. The second term on the right-hand side is the bottom reflectance, exponentially160

decreasing with H. Under deep and turbid conditions, the bottom reflectance is negli-161

gible, which is the reason why detecting the water depth in this condition is challeng-162

ing. Recent studies dealt with these optically deep-water areas by masking unmeasur-163

able pixels (Caballero & Stumpf, 2023). Here, instead, we focus on the exponential re-164

lationship between water column reflectance and water depth. We hypothesize that only165

reflectance from the water column has the potential for measuring water depth in op-166
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tically deep-water areas if we can account for non-linearity and abundant spectral in-167

formation using ML.168

Based on this hypothesis, this study consists of five key steps to evaluate a ML model169

and interpret spectral characteristics under deep and turbid conditions (Figure 1). First,170

we matched hyperspectral imagery acquired by the NASA airborne spectrometer, AVIRIS-171

NG, and ADCP water depth measurements from the NASA Delta-X mission (Step 1).172

To achieve this alignment, we averaged the ADCP data on a per-pixel basis correspond-173

ing to AVIRIS-NG. We then filtered reflectance values within each pixel through a slid-174

ing window-based pixel-averaging process. We also investigated the impact of window175

size on depth retrievals. Based on the matched dataset, we compared three regression176

algorithms: Random forest with recursive feature elimination (RF-RFE), partial least177

squared regression (PLSR), and OBRA (Step 2). To evaluate the sensitivity of each al-178

gorithm to depth range, we employed progressively truncated input depth (PTID) as pro-179

posed by Legleiter et al. (2018). Subsequently, the best algorithm was compared with180

cross-sectional depth profiles from ADCP and spatial distributions from the calibrated181

hydrodynamic model, ANUGA (Step 3) (Wright et al., 2022). This step allowed for the182

assessment of the accuracy of the retrieved depth maps in both shallow and deep sec-183

tions, as well as in uncalibrated areas. Following that, the trained RF model was em-184

ployed to understand how reflectance spectra relate to water depth through the utiliza-185

tion of SHAP (Step 4). We also identified significant wavelengths for water depth retrievals186

in turbid and deep conditions, considering the RF-RFE model performance in separate187

and combined learning from two distinct campaign datasets. Ultimately, we visualized188

the depth maps for the two campaigns from the best model and discussed the qualities189

of the maps (Step 5). Each step is described in this section, following a description of190

the study area.191

Figure 1. Flowchart of the proposed framework. AVIRIS-NG = airborne visible infrared

imaging spectrometer - next generation; RF = random forest; PLSR = partial least squares

regression; OBRA = optimal band ratio analysis; SHAP = Shapley additive explanation.

2.2 Study site and field data of Delta-X mission192

Wax Lake Delta (WLD) is a delta with an approximate area of 100km2, located193

in coastal Louisiana, at the mouth of the Wax Lake Outlet (WLO) (Figure 2). This re-194

gion has been steadily building land due to a diversion of the Atchafalaya River with a195

strong sediment supply, resulting in sediment deposition (Hiatt & Passalacqua, 2015).196
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Sediment input to WLD is approximately 38.4 Mt per year, with an 18% of sand frac-197

tion (Kim et al., 2009). Owing to the morphological features of WLD, the deltaic area198

is relatively shallow, while the riverine area is relatively deep (Figure 2a, b).199

The NASA Delta-X mission provides comprehensive datasets for hydrodynamic,200

sediment transport, and eco-geomorphic studies, incorporating both in-situ measurements201

and remote sensing data (Simard et al., 2020). For the depth retrieval model in Step 2202

(Figure 1), we utilized the ADCP depth data from the 2021 Spring (from 2021-03-25 to203

2021-04-11) and Fall (from 2021-08-16 to 2021-09-25) campaigns of Delta-X as the train-204

ing and test datasets. At the measurement transects (Figure 2b), the bathymetry was205

repeatedly measured over two times using a Teledyne RiverPro ADCP or a Sontek M9206

RiverSurveyor ADCP. The resolution of the depth profiles ranged from 0.1m to 1m. The207

overall dataset covered a broader expanse of the Atchafalaya and Terrebonne Basins within208

the Mississippi River Delta floodplain. However, here, we focus specifically on the data209

within a 35 km reach of WLD (Figure 2a). The data in this region were collected for three210

days, specifically from 2021-03-30 to 2021-04-02 (Spring) and 2021-08-20 to 2021-08-22211

(Fall), respectively. This narrowing of the study area allows a distinct separation between212

deep and shallow regions, leading to the isolation of depth difference effects. Addition-213

ally, the substantial turbidity and total suspended solid (TSS) difference between the Spring214

and Fall campaigns in this area makes it particularly suitable for analyzing the effects215

of turbidity (Table 1). More details of depth and water quality data can be found in Christensen216

et al. (2022) and Fichot et al. (2022).217

To match in-situ depth data with AVIRIS-NG, we averaged the data based on the218

pixel size of AVIRIS-NG images, which ranged from 3.8 to 5.4 m (Thompson et al., 2022).219

The number (n) of averaged depth data was 1,871 and 8,308 in the Spring and Fall cam-220

paigns, respectively (Table 1). The mean values of water depth were 7.77m and 5.71m221

in each campaign, while the discharge at the apex of WLO was five times larger in Spring222

than in Fall (Table 1). The depth ranges varied, with the maximum depth approaching223

approximately 30m (Figure 3). This information suggests that the dataset allows the as-224

sessment of the maximum detectable depth from hyperspectral retrievals, extending up225

to a 30m depth.226

Table 1. Field-measured values of hydraulic and water quality parameters in each campaign. n

denotes the number of measurements

Parameter 2021 Spring (n) 2021 Fall (n)

Discharge (m3/s) 5148.3 (Apex) 1646.3 (Apex)

Water depth (m) 7.77±6.98 (1,871) 5.71±4.68 (8,308)

TSS (mg/L) 80.86±40.4 (44) 23.2±8.14 (39)

Turbidity (NTU) 46.2±15.8 (56) 13.59±4.67 (42)

Chl-a (RFU) 0.80±0.11 (56) 1.63±0.75 (42)

Temperature (°C) 16.30±1.31 (56) 30.55±1.27 (42)

2.3 AVIRIS-NG227

The Airborne Visible–Infrared Imaging Spectrometer-Next Generation (AVIRIS-228

NG) is a pushbroom spectral mapping system that captures 14-bit radiance as 425 spec-229

tral bands at 5−nm resolution with a range from 380 to 2510nm wavelengths (Thompson230

et al., 2015; Chapman et al., 2019). In the Delta-X mission, AVIRIS-NG acquired a wide231
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Figure 2. (a) Location of the study site, Wax Lake Delta (WLD), and water depth measure-

ment points by ADCP. (b) Detailed image of the shallow region from AVIRIS-NG and ADCP

depth.

Figure 3. Histograms of measured depths and their corresponding statistics in WLD during

2021 (a) Spring and (b) Fall campaigns.

range of hyperspectral images (HSIs) covering the Atchafalaya and Terrebonne basins232

in the 2021 Spring and Fall campaigns. We used Level 2B (L2B) bidirectional reflectance233

distribution function (BRDF) and sunglint-corrected surface spectral reflectance images234

from AVIRIS-NG for hyperspectral retrievals (Thompson et al., 2023). The atmospheric235

correction of this dataset was conducted using the optimal estimation algorithm (Thompson236

et al., 2018a, 2018b, 2019). This process incorporates a radiometric correction for vicar-237

ious adjustment to mitigate minor differences between laboratory calibration and actual238

flight conditions. Details regarding the radiometric correction, which utilizes in-situ ref-239

erences from the Delta-X flight campaign, as well as the sunglint correction, are docu-240
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mented in Bruegge et al. (2021), Gao and Li (2021), and Greenberg et al. (2022). These241

corrections yield water pixel values that closely approximate the accurate normalized water-242

leaving reflectance (ρw). Consequently, by applying the Lambertian reflection model, the243

remote-sensing reflectance (Rrs) can be directly calculated by dividing ρw by π, reflect-244

ing isotropic reflectance (Mobley et al., 2010).245

In this study, we cropped the mosaic images of the Spring and Fall campaigns within246

the WLD region, aligning them with the ADCP dataset (Figures 2b). The image acqui-247

sition dates were 2021-04-01 (Spring) and 2021-08-20 to 2021-08-22 (Fall). Additionally,248

we selectively utilized the wavelength range between 446nm and 897nm, a range con-249

sistently identified as effective for retrieving both water depth and suspended sediment250

in various studies (Kwon et al., 2023a; Gwon et al., 2023; Legleiter & Harrison, 2019).251

We used the ultimately extracted images for model development and spectral analysis252

by aligning each pixel with preprocessed ADCP depth data, as described in Section 2.2.253

Here, we subjected the pixel values to a 1:1 matching process with the preprocessed im-254

ages generated using sliding-window averaging with window sizes of 3x3 and 5x5, as de-255

scribed in Section 2.1. We conducted a comparative study between the images processed256

with this sliding window and those without preprocessing to examine whether there was257

an improvement in model performance through noise reduction.258

2.4 Regression methods259

2.4.1 Optimal Band Ratio Analysis (OBRA)260

Optimal Band Ratio Analysis (OBRA) is a representative spectrally based depth261

retrieval algorithm proposed by Legleiter et al. (2009b). This algorithm is based on an262

empirical equation for the depth (H) using the log-transformed band ratio (X) as an in-263

dependent variable:264

X = ln

[
R (λ1)

R (λ2)

]
(2)

where R (λ1) and R (λ2) are reflectance values at the two most relevant wavelengths, λ1265

and λ2. These two bands can be identified by evaluating the regression of X versus H266

for all possible band combinations. Following this iterative regression training, the op-267

timal band combination is determined as the one where X versus H achieves the high-268

est coefficient of determination (R2). The regression equation is typically selected as a269

linear form in clear and shallow waters. However, in challenging conditions, non-linear270

forms, such as exponential, power law, and quadratic forms, are considered. For a more271

detailed description of OBRA and its applications, refer to Legleiter and Harrison (2019).272

2.4.2 Partial Least Squares Regression (PLSR)273

While OBRA can only account for two spectral bands, limiting its ability to con-274

sider diverse spectral information, Partial Least Squares Regression (PLSR) can lever-275

age multiple spectral bands (Carrascal et al., 2009). Notably, PLSR demonstrates strength276

in handling multicollinearity and varying sample sizes, a feature that Ordinary Least Squares277

Regression (OLSR) lacks, making PLSR widely adopted for regression using imaging spec-278

trometer data (Jensen et al., 2019a; Meacham-Hensold et al., 2019).279

Specifically, PLSR generates new orthogonal variables called latent variables. These280

latent variables are derived through covariance optimization based on Principal Com-281

ponent Analysis (PCA) with a weighting for the dependent variable (Jensen et al., 2019b;282

Singer et al., 2016). The estimation of regression coefficients entails subjecting the la-283

tent variables to multiple linear regression (MLR) analysis. This transformation of re-284

flectance spectra into latent variables enables PLSR to effectively address non-linear prob-285

lems in the relationship between reflectance spectra and water depth data. Following this286
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transformation, the estimation involves a linear regression process with multiple predic-287

tors using MLR. In this study, we performed Recursive Feature Elimination (RFE) with288

cross-validation (CV) and the calibration of the number of latent variables to identify289

the optimal band set and the number of latent variables with the lowest error for PLSR290

(Guyon et al., 2002). A higher number of latent variables can lead to overfitting due to291

noise, so we calibrated the range of components to be between 2 and 9 (Jensen et al.,292

2019a). We conducted PLSR training and validation using the ’PLSRegression’ function293

from scikit-learn (version 1.3.1). Additionally, we adapted the ’RFE’ function from scikit-294

learn (version 1.3.1) to apply PLSR with RFE-CV and calibration of the number of la-295

tent variables (’n components’ in ’PLSRegression’).296

2.4.3 Random forest (RF)297

Random forest (RF) has gained widespread usage in spectral imaging applications,298

demonstrating notable predictive accuracy (Cao et al., 2020; Demarchi et al., 2020; Kwon299

et al., 2023b, 2022b; Gwon et al., 2023). In particular, RF has shown high interpretabil-300

ity through the estimation of relative variable importance, which can be used for spec-301

tral band selection. When compared to alternative ML algorithms such as the support302

vector regressor (SVR), neural networks, and boosting-based decision tree models (e.g.,303

Gradient Boosting, XGBoost, AdaBoost), RF stands out due to its ensemble learning304

approach (Kwon et al., 2022b). This method offers several distinct advantages, as fol-305

lows: (a) insensitivity to hyperparameters, (b) efficient model development during iter-306

ative training, reducing the required time, (c) robustness in handling noisy data, and (d)307

efficiency in managing input variables.308

Reducing prediction variance through ensemble learning, a concept introduced by
Breiman (2001), can be advantageous for spectral data with inherent noise. RF seam-
lessly integrates multiple decision trees, arriving at predictions by averaging the individ-
ual tree outputs. In this process, each decision tree randomly selects samples and vari-
ables, partitioning the input variable into nodes based on the output variable values. Through-
out the model training phase, the split for each node is strategically determined, aim-
ing to maximize the reduction in overall impurity within the nodes. In this study, we es-
timated impurity through the mean square error (MSE), as follows:

MSE =
1

n

∑
i

(yi − ŷi)
2
, (3)

where n represents the number of observations, yi is the true value (ADCP water depth
data), and ŷi denotes the estimated value (the retrieved water depth from hyperspec-
tral data). From the impurity of the trained model, we can estimate the relative band
importance since impurity reduction in each spectral band indicates a positive effect on
prediction. Therefore, we can estimate the relative band importance (Iλ) by:

Iλ =
∑
nt

∆MSEλ(nt), (4)

where λ is the wavelength of each spectral band and nt is the number of trees in the en-309

semble structure of RF. Furthermore, Iλ can be used for optimal band selection using310

RFE with CV. Kwon et al. (2022a) employed RFE for hyperspectral retrievals of sus-311

pended sediment concentration under optically complex conditions. That study high-312

lighted that utilizing the optimal combination of bands through RFE is more efficient313

than using the entire set of bands in hyperspectral imagery. Therefore, we employed RF-314

RFE to select important bands for the spring and fall campaigns. Subsequently, we de-315

rived optimal band combinations from the combined dataset of both campaigns and then316

utilized them for spectral characteristic analysis in the WLD. We trained and validated317

RF using the ’RandomForestRegressor’ function from scikit-learn. We used the default318

values of hyperparameters and tuned only the most sensitive parameter (’max features’319
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in ’RandomForestRegressor’) in RF, due to its insensitivity to other hyperparameters320

(Probst et al., 2019; Kwon et al., 2022b).321

2.4.4 Model validation and error metrics322

We compared the three models introduced above using the combined dataset of both323

the Spring and Fall campaigns. We conducted the training and test for all models by ran-324

domly splitting the entire dataset into 80% for training and 20% for testing. To ensure325

unbiased validation, we performed a 5-fold CV using four error metrics: coefficient of de-326

termination (R2), root mean squared error (RMSE), mean absolute percentage error327

(MAPE), and relative root mean squared error (RRMSE). The equations for each met-328

ric are as follows:329

R2 = 1−
∑

i (yi − ŷi)
2∑

i (yi − ȳ)
2 (5)

RMSE =

√
1

n

∑
i

(yi − ŷi)2 (6)

MAPE =
1

n

∑
i

∣∣∣∣yi − ŷi
ŷi

∣∣∣∣× 100% (7)

RRMSE =
RMSE

ȳ
× 100% (8)

To evaluate the maximum detectable depth (dmax), we followed the OBRA pro-330

gressively truncated input depths (OPTID) framework proposed by Legleiter et al. (2018).331

This framework iteratively trains and validates the OBRA approach using a dataset that332

excludes water depth over a series of specified cutoff depths. By examining the regres-333

sion results of R2 for the excluded dataset, the inflection point can be interpreted as dmax.334

We replaced OBRA with PLSR and RFE-RF in OPTID, which can be referred to as PTID.335

Using the optimal model, we further assessed the accuracy of the retrieved depth336

by comparing it with cross-sectional profiles of water depth obtained from ADCP, allow-337

ing the identification of dmax. Additionally, we used the spatial distribution of depth from338

a calibrated ANUGA hydrodynamic model of WLD (Wright et al., 2022) to compare the339

spatial distribution of modeled depth with retrieved depth map and evaluate the error340

in untrained regions.341

2.5 Spectral analysis using SHAP342

The primary disadvantage of ML is that understanding the causal relationship be-343

tween input and output data is challenging owing to its black-box structure (Li, 2022).344

Interpretable ML has emerged as a powerful tool in data science to address the demand345

for understanding complex structures in ML. SHAP is one of the recent advanced ex-346

plainable AI for tree-based models (Lundberg & Lee, 2017; Lundberg et al., 2020). This347

algorithm can describe the performance of ML with variable contributions based on game348

theory (Shapley, 1953) and a local explanation technique (Ribeiro et al., 2016). To es-349

timate the contributions of variables to the model output, the SHAP value is computed350

as:351

SHAPi(f) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[f(S ∪ {i})− f(S)] (9)
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where SHAPi(f) represents the SHAP value of model f for the ith variable, N denotes352

the set of all variables, and S is a subset of variables excluding the ith variable. |S| rep-353

resents the cardinality (the total number of elements) of the subset S, and |N | is the to-354

tal number of variables. f(S∪{i}) represents the model output, including the ith vari-355

able in addition to the subset S, while f(S) is the model output accounting for only the356

variables in the subset S. The term |S|!(|N |−|S|−1)!
|N |! serves as the probability weight of357

|S|. Lastly, f(S∪{i})−f(S) is the difference between model output with and without358

the ith variable. Therefore, the SHAP value for each variable can be interpreted as the359

average marginal contribution to the model prediction across all possible models with360

varying combinations of variables. This metric enables us to interpret how the predic-361

tions change when the values of each input variable vary.362

In this study, we employed SHAP with RF to interpret spectral variability under363

the turbid and deep conditions of WLD. Our analysis includes the assessment of spec-364

tral band contributions and their relationship with water depth for both the Spring and365

Fall datasets, as well as for the combined dataset. Specifically, our analysis involves two366

key goals: 1) assessing the contributions of each spectral band for deep depth estima-367

tion under turbid conditions, focusing on maximum detectable depth, and 2) investigat-368

ing how the RF learns from the combined dataset of the two campaigns with distinct369

spectral characteristics when trained collectively.370

3 Results371

3.1 Spectral characteristics of WLD372

The reflectance spectra obtained from AVIRIS-NG during the Spring and Fall cam-373

paigns consistently exhibit high values in the visible range, from 500 to 700 nm, where374

absorption and attenuation within the water column are typically low (Figure 4). How-375

ever, the wavelength corresponding to the maximum reflectance varies. In turbid con-376

ditions (Spring), we observed a peak near the red-edge (700 nm), associated with sus-377

pended sediment. Conversely, during fall, under clear waters with low turbidity but higher378

organic content (as indicated by elevated Chl-a in Table 1) due to seasonal bioproduc-379

tivity (Harringmeyer et al., 2024), the maximum values are around the green (550 nm).380

As detailed in Table 1, we attribute this variation to the backscattering of light by sus-381

pended matters within the water column, resulting in increased reflectance under high-382

turbidity conditions. The notably higher reflectance around 700 nm suggests a more pro-383

nounced increase in reflectance due to the strong correlation with suspended sediments384

in that wavelength range (Kwon et al., 2022b).385

Figure 4. Reflectance spectra with varying total suspended solids (TSS) from AVRIS-NG

captured in (a) shallow and (b) deep regions.
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The relationships between reflectance spectra at different depths and TSS (Figure386

5) show that in conditions of low turbidity, variations in reflectance due to changes in387

water depth are mainly observed in the falling limb of the reflectance spectrum, partic-388

ularly in the near-infrared (NIR) region beyond 800 nm (Figure 5a). However, under high-389

turbidity conditions, reflectance differences are minor despite variations in water depth390

(Figure 5b). This phenomenon suggests that, in the presence of suspended matter within391

the water column, solar energy is unable to penetrate and is mostly reflected, highlight-392

ing the dominance of the water reflectance term in Equation (1). Nevertheless, the short393

blue band under 500 nm, consistent with the rising limb in Figure 5b, shows a deviation394

from the 1:1 line because of the depth difference. These reflectance alterations suggest395

that NIR and short blue bands could be effective for depth retrievals in both cases.396

Figure 5. Spectral relationships under varying water depth (H) and TSS conditions. (a) Dif-

ferent depths with low TSS during the 2021 Fall campaign. (b) Different depths with high TSS

during the 2021 Spring campaign. (c) Varying TSS levels in shallow regions. (d) Varying TSS

levels in deep regions. Arrows indicate the rising and falling limbs in the spectra in Figure 4.

Compared to the minor effect from the depth difference, the TSS difference shows397

substantial effects, shaping the hysteresis loop in Figures 5c and d. This result suggests398

that sediment acts as a significant confounding factor in water depth retrievals. The wave-399

length range from 550 to 600 nm is considered relevant for bottom reflectance under the400

water column in various studies focusing on water depth retrievals (Legleiter & Harri-401

son, 2019; Legleiter et al., 2016; Gwon et al., 2023; Kwon et al., 2023c; Niroumand-Jadidi402
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et al., 2022). However, suspended sediment can substantially disrupt reflectance in this403

range by impeding light transmittance. This observation is consistent with our hypoth-404

esis, as discussed in Section 2.1, which posits negligible bottom reflectance in turbid and405

deep conditions. Therefore, the spectral characteristics of WLD during the 2021 Spring406

and Fall campaigns are highly complex owing to high turbidity. We provide a detailed407

assessment of hyperspectral retrieval performance using this dataset in the following sec-408

tions.409

3.2 RF performance evaluation based on sliding-window pixel averag-410

ing411

Spectral images inherently contain pixel-level noise primarily due to water surface412

roughness (Zeng et al., 2017). Legleiter and Kinzel (2021) enhanced the texture of depth413

maps from RGB videos collected by helicopters and unmanned aircraft systems (UASs)414

through temporal and spatial averaging. They reported that temporal averaging showed415

superior enhancement; however, hyperspectral images are still acquired as a single-frame416

image. Additionally, UASs or airborne-based spectral images are more susceptible to noise417

due to their narrower pixel size, compared to satellite images. Therefore, here, we as-418

sessed the accuracy of RF-RFE training based on spatial averaging with sliding window419

sizes of 1x1, 3x3, and 5x5. The accuracy (R2, Figure 6) increased from 0.91 to 0.94 with420

the 3x3 sliding window pixel averaging. The standard deviation also decreased, suggest-421

ing a more stable estimation. While a window size of 5x5 further improved accuracy, it422

led to an increase in standard deviation. Consequently, we determined that a window423

size of 3x3 is the optimal choice, balancing both accuracy and stability in our RF train-424

ing.425

Figure 6. Comparison of model performance based on pixel window size. The results in-

dicate average R-squared (R2) values and their corresponding standard deviations from 5-fold

cross-validation (CV).

3.3 Comparison of regression methods426

We compared RF-RFE with three widely used depth retrieval algorithms, linear427

OBRA, exponential OBRA, and PLSR-RFE. Legleiter and Harrison (2019) reported that428

the exponential OBRA demonstrated better performance than other non-linear forms429

and has the advantage of yielding only positive depth values. Therefore, we implemented430

both the linear and exponential forms of OBRA for comparison. For training and test-431

ing, we used a combined dataset from both campaigns to evaluate performance in gen-432

eralizing optically complex datasets. We compared the 5-fold CV results and selected433

wavelength, as summarized in Table 2.434
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Table 2. R2 of 5-fold cross-validation (CV) and selected wavelengths of each model. The

PLSR results include the calibrated number of components.

Algorithm CV R2 Selected wavelength (nm)

Linear OBRA (combined learning) 0.27±0.014 762, 832

Exponential OBRA (combined learning) 0.24±0.020 762, 832

PLSR-RFE (combined learning) 0.51±0.021

481, 541, 546, 551, 556, 561, 591, 646, 681, 702,
707, 712, 727, 732, 737, 742, 747, 752, 757, 767,
792, 797, 802, 807, 812, 877, 882, 887
(number of component = 8)

PLSR-RFE (Spring) 0.55±0.016
656, 661, 752, 762, 767, 827, 837, 862, 877, 887,
897
(number of component = 9)

PLSR-RFE (Fall) 0.58±0.014
511, 531, 541, 561, 571, 591, 641, 666, 707, 732,
737, 762, 797, 807, 852
(number of component = 9)

RF-RFE (combined learning) 0.94±0.005
446, 451, 481, 486, 531, 546, 551, 556, 561, 566,
571, 591, 707, 712, 762, 767, 882, 887, 892, 897

RF-RFE (Spring) 0.92±0.003

446, 451, 456, 461, 466, 471, 481, 486, 491, 496,
501, 511, 516, 521, 526, 531, 556, 566, 571, 586,
591, 606, 636, 651, 661, 666, 676, 681, 686, 717,
722, 747, 762, 767, 782, 832, 852, 872, 882, 887,
892, 897

RF-RFE (Fall) 0.97±0.001 486, 581, 586, 591, 696, 767, 897

Both linear and exponential OBRA select the same wavelengths and exhibit a sim-435

ilar distribution of correlation between water depth and band ratio for all possible band436

pairs (see supporting information Figure S1). The selected wavelengths are included in437

the NIR region, not corresponding to wavelengths commonly used in water depth retrievals.438

Although the accuracy is higher in the linear form, both approaches result in low accu-439

racy with CV R2 values of 0.27 and 0.24. We attribute this result to the weak correla-440

tion between water depth and the optimal band ratio (X = ln(Rrs(742)/Rrs(812))),441

revealing no discernible trend in both campaigns (see supporting information Figure S2).442

Therefore, the plot of in-situ measured versus estimated depth from linear OBRA shows443

an apparent limitation in estimating depth beyond 10 m in training and testing (Fig-444

ures 7a, b).445

PLSR-RFE selects 28 spectral bands from a total of 91 bands across the entire wave-446

length range. Refer to the RFE results in Figure S3a in the supporting information. This447

model improves the CV R2 to 0.51, which is twice as high as that achieved by linear OBRA448

(Table 2). While the OBRA shows a flat slope in the comparison plot, the depth esti-449

mated by PLSR shows better agreement with the observations, with a slope closer to 1:1450

(Figures 7b, e). This enhancement results from considering a greater number of spec-451

tral bands. Specifically, this result suggests that accounting for spectral variability is cru-452

cial for training two campaign datasets with markedly different turbidity conditions. How-453

ever, the overall estimated depth is underestimated, and the MAPE remains high at 77.25%454

and 70.08% in training and testing results, respectively. The calibrated numbers of la-455

tent variables are 8 or 9, which are high values within the calibration range (Figure S3).456
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Figure 7. Comparison of models (OBRA, PLSR-RFE, and RF-RFE) for depth retrieval. (a-c)

Training dataset: 80% random split. (d-f) Testing dataset: 20% random split.

This indicates the complexity of the training dataset and leads to poor generalization457

to new data (Jensen et al., 2019a). Furthermore, this model exhibits a particular lim-458

itation under conditions of high turbidity, as demonstrated by the poorer result in the459

Spring compared to that in the fall (Table 2 and Figure S3 b and c).460

A comparison between OBRA and PLSR highlights the importance of learning from461

various spectral bands. In this context, RF substantially enhances the depth retrieval462

performance, achieving a CV R2 of 0.94 by reflecting high non-linearity and learning rel-463

evant spectral bands (Table 2). The standard deviation of CV is relatively low at 0.005464

compared to other methods. This result is consistent with the high correlation in the plot465

of in-situ measured versus estimated depth (Figures 7c and f). The MAPE values are466

6.81% and 13.2%, representing more accurate results compared to other remote sensing-467

based depth retrievals in shallow or clear waters (Legleiter & Harrison, 2019). The note-468

worthy point here is that there is high consistency for estimation of depth up to approx-469

imately 30 m in both training and testing (Figure 7c, f).470

By learning from the combined dataset, RF-RFE is the most accurate when it learns471

20 spectral bands (Table 2). Considering the RMSE results based on the number of bands472

selected by RFE, the accuracy tends to converge from around 20 bands (Figure S3b).473

These findings imply that learning from approximately 20 bands is advisable when deal-474

ing with a diverse range of depth and turbidity conditions. Additionally, results from train-475

ing RF on Spring and Fall datasets separately reveal differences in the optimal number476

of bands according to turbidity variations (Table 2). Under high turbidity conditions in477

Spring, 42 bands are selected, with a preference for both longer and shorter wavelengths—under478

500 nm and beyond 700 nm. In contrast, under low turbidity conditions in Fall, only 7479

bands are selected, and these bands are relatively evenly distributed across wavelengths.480

These findings reveal that learning a wide range of wavelengths is beneficial to estimate481

depth under turbid conditions, although the 550 - 600 nm bands are widely used due to482

a high correlation with riverbeds.483
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For deeper insights into the maximum detectable depth, the results of the PTID484

show that CV R2 values of linear OBRA and PLSR initially decrease with the cutoff depth,485

and then gradually increase until reaching convergence near 15 m (Figure 8). This ob-486

served trend aligns with the findings from OPTID results in shallow and clear rivers, such487

as the Sacramento River in northern California and the Snake River in Wyoming, USA488

(Legleiter et al., 2018; Legleiter & Harrison, 2019). The absence of an inflection point489

implies that the depth retrieval models are robust to variations in depth range and, rather,490

sensitive to the dataset size. However, it is noteworthy that the CV R2 values of OBRA491

and PLSR remain low and are not applicable even under shallow conditions due to high492

turbidity.493

Figure 8. Model performance with progressively truncated input depths.

In contrast, RF-RFE demonstrates stable and accurate performance across the cut-494

off depth sampling. The CV R2 values for training are consistently maintained above495

0.9 from 2 m to 30 m. Moreover, CV R2 values for testing gradually increase and con-496

verge, reaching stability near 8 m. This result underscores the ability of RF-RFE to be497

effectively trained on datasets with depths up to approximately 30 m.498

3.4 Depth mapping and comparison with ADCP and a hydrodynamic499

model500

We map the depth of both campaigns using RF-RFE with combined learning (Ta-501

ble 2). To estimate water depth within the wet area, we utilize the normalized difference502

water index (NDWI) to identify wet pixels, following the methodology outlined by Kwon503

et al. (2023c). Subsequently, we assess the quality of the depth map by comparing it with504

ADCP measurement and ANUGA hydrodynamic model results (Wright et al., 2022),505

particularly focusing on performance within shallow and deep regions (the retrieved depth506

map for the entire region during the Spring and Fall campaigns can be seen in Figures507

S3 and S4 in the supporting information).508

To evaluate depth mapping in detail, we retrieve the cross-sectional depth profiles509

by the RF-RFE and compare them with ADCP measurements in both shallow (H <510

5m) and deep regions (H > 15m) (Figure 9). The cross-sections exhibit irregular depth511

patterns attributed to dynamic sediment transport in the sediment partitioning region.512

Despite this irregularity, RF effectively estimates the profiles during both Spring and Fall.513
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In particular, the depth profiles retrieved from the image, filtered by a 3×3 window, re-514

produce a clear shape, even capturing the hump shape (Figure 9b) with an RRMSE un-515

der 5%. In contrast, profiles without sliding window averaging include higher noise lev-516

els, with an RRMSE twice as high. For deep cross-sections (Figures 9c and 9d), the RRMSE517

slightly increases; however, RF successfully retrieves depths of approximately 30 m (Fig-518

ure 9c), reaching the maximum depth measured by ADCP. Therefore, this result high-519

lights the applicability of RF-RFE to turbid and deep water conditions.

Figure 9. Comparison of depth measurements: remote sensing versus field measurements. (a-

b) Shallow sections (Hmax < 5m) during the 2021 Spring and Fall campaigns. (c) Deep sections

(Hmax > 10m) during the 2021 Spring and Fall campaigns. The blue and red lines represent

results with window sizes of (1×1) and (3×3), respectively.

520

The retrieved depth map (Figure 10a) of the turbid case (Spring) from RF (com-521

bined learning) (Figure 10a) exhibits similar spatial patterns to ADCP measurements522

(Figure 2b) and the ANUGA-simulated map in both shallow and deep regions (Figure523

10b). However, the difference map between both depth maps shows some disconnected524

and noisy regions with overestimation or underestimation in the hyperspectral retrieved525

map. This result could be attributed to noise in the raw image, arising from cloudiness526

or surface reflection. Additionally, certain areas may have entirely different water char-527

acteristics not adequately represented in the RF-RFE training data. These points will528

be discussed in Section 4.3.529

3.5 Spectral analysis using SHAP530

We can interpret the distinct spectral characteristics of AVIRIS-NG images cap-531

tured during the Spring and Fall campaigns through the relative band importance de-532

rived from the RF (Figure 11). During the Spring campaign, the 446 nm wavelength,533

the shortest in the spectrum, is notably important. In contrast, the Fall campaign re-534

sults highlight the 897 nm wavelength as the most crucial. While the spectral bands com-535

monly used for depth estimation in the 550 - 600 nm range show some significance un-536

der both conditions, the high importance of short (446 nm) and long (897 nm) wavelengths537

for each campaign implies their effectiveness as discriminative factors, possibly due to538

variations in turbidity between the two cases. In addition, RF can generalize spectral539
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Figure 10. Spatial comparison of depth measurements in 2021 Spring campaign: (a) AVIRIS-

NG versus (b) ANUGA. (c) Difference map.

variability from both cases within a single model by incorporating all crucial bands iden-540

tified in each instance (Figure 11b). The most critical bands for the RF, trained using541

a combined dataset, are related to high attenuation (446, 897 nm), sediment (712 nm),542

and riverbed (531 nm). The red-edge (712 nm) and green (531 nm) bands are typically543

used for suspended sediment and depth retrievals, respectively (Kwon et al., 2022a; Legleiter544

et al., 2009b), but they are less important than the high attenuation bands (446, 897 nm)545

(Pegau et al., 1997) under deep and turbid water conditions. The variation in chl-a be-546

tween the campaigns is linked to the significance of the long green (571 nm) band, which547

typically peaks at high chl-a concentrations (Pahlevan et al., 2020; Pyo et al., 2018). How-548

ever, in conditions of high turbidity and low chl-a during Spring, the 571 nm band gains549

more importance. Conversely, under low turbidity and high chl-a conditions during Fall,550

the 712 nm band becomes more prominent. This distinction results from the ability to551

filter out sediment and organic effects that hinder accurate depth measurement.552

Figure 11. Relative importance of spectral bands estimated by RF. (a) Importance from sep-

arately trained RF for each campaign. (b) Importance from RF trained on a combined dataset of

both campaigns.

The SHAP results provide a deeper interpretation of the causal relationship between553

depth and spectral bands within RF showing how the top 20 key spectral bands influ-554

ence the model output (Figure 12). Here, the SHAP values indicate the degree to which555

spectral bands impact the model output – a positive value increases the predicted value556
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(related to deep depth), while a negative value decreases it (related to shallow depth).557

Notably, the selected key bands for Spring and Fall were similar, but their influences,558

as observed in the distribution of SHAP values, exhibited different trends.559

Figure 12. SHAP summary plot from trained RF representing the impact of each spectral

band on model output. This graph ranks the top 20 most important bands by their SHAP value.

The colorbar represents the relative value of reflectance.

In the case of Spring, the short blue (446 nm) band is the most significant and de-560

creases the predicted depth. The dominance of its influence is evident through the wide561

range of SHAP values. Shorter blue wavelengths under 450 nm are highly sensitive to562

turbid factors (e.g., suspended sediment, organic matter) due to the higher absorption563

and attenuation coefficients within the water column. Conversely, the NIR band (897564

nm) increases the model output, indicating a strong relationship with deeper depths. Both565

446 nm and 897 nm are closely associated with water column absorption and attenua-566

tion, but 897 nm is more affected by water turbidity. Therefore, owing to the high tur-567

bidity in Spring, the 446 nm band played a more crucial role than the 897 nm band.568

In the Fall, the NIR band (897 nm) is the most crucial band, and it has a strong569

positive correlation with the predicted depth while showing a negative relationship with570

model output. This disparity can be attributed to the low turbidity conditions in the571

Fall. Low turbidity can strengthen the attenuation of the NIR bands, thereby increas-572

ing the transmittance of these bands. This effect is also consistent with the low Rrs value573

observed in the reflectance spectrum (Figure 4). Despite the dominance of high atten-574

uation bands (446 nm and 897 nm), other bands also demonstrate non-negligible impor-575
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tance. This result implies a high degree of spectral variability in each case. The SHAP576

results from the RF model with combined learning (Figure 12c) show that the diverse577

impacts of each spectral band are effectively reflected by the RF model, with the impor-578

tant band ranking consistent with the result of the individual campaigns. Notably, both579

446 nm and 897 nm bands emerge as the top two significant variables, further affirm-580

ing their significant role in accounting for the differences between the two cases. The NIR581

band (897 nm) is typically affected by temperature, potentially influencing its role for582

individual campaigns (Pegau et al., 1997).583

The SHAP dependence plot provides additional insight into the relationship be-584

tween crucial bands (446 nm, 897 nm, and 712 nm) and water depth. The 446 nm band585

shows a clear negative correlation with the SHAP value under high turbidity conditions586

(Figure 13a); this correlation is attributed to its high correlation with the NIR band, aris-587

ing from a shared feature of high attenuation. Although the SHAP value trends are not588

clear when turbidity is low, we observe some high positive values when reflectance val-589

ues are high (Figure 13b). These SHAP values indicate that the short blue band is as-590

sociated with both shallow and deep ranges under high turbid conditions. However, un-591

der low turbidity, its correlation is limited to specific deep regions.592

Figure 13. SHAP dependence plot to understand the contribution of high-ranked bands in

Spring, Fall, and combined datasets: (a-c) Blue band (446 nm), (d-f) NIR band (897 nm), (g-i)

Red-edge band (712 nm). The colorbar shows the corresponding most correlated band and the

red box indicates the sensitive SHAP value range.

In both Spring and Fall, the 897 nm band exhibits a positive correlation with SHAP593

values (Figures 13d and e). However, in both cases, it shows linearity only at reflectance594

values below 0.05 and irregular trends beyond that point. Moreover, under high turbid-595

ity conditions, it consistently shows positive SHAP values. Conversely, the 712 nm band,596

closely linked to sediment, demonstrates high SHAP values only when reflectance is be-597
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low 0.05 under low turbidity (Figures 13g and h). This result suggests that, in the case598

of high turbidity, the 446 nm and 897 nm bands having higher attenuation coefficients599

in the water column, are more important for deep-depth estimation than the 712 nm band600

related to sediment. This result aligns with the hypothesis of this study that water col-601

umn reflectance can be used for depth retrievals due to its relationship as exponential602

attenuation with water depth (see Section 2.1).603

Notably, in the results from the combined dataset, these distinctly different pat-604

terns overlap, indicating that the model can account for the spectral variability of both605

datasets (Figures 13c, f, and i). This result reveals that RF is capable of learning com-606

plex datasets by effectively handling them through data separation, as shown in the color607

difference in the plot, similar to a clustering approach.608

4 Discussion609

4.1 Transferability of hyperspectral retrievals for depth mapping610

Hyperspectral depth retrievals can be a strong alternative to depth surveys by of-611

fering detailed spatial information. However, several limitations need to be addressed,612

including performance under optically complex conditions, before they can be applied613

to a variety of settings.This study revealed the feasibility of hyperspectral retrievals even614

in deep and turbid conditions, one of the most challenging tasks for a remote sensing ap-615

proach. We showed that combining learning of spectral data under vastly different con-616

ditions is feasible at WLD. The Spring campaign case with high turbidity resulted in a617

CV R2 of 0.92. Interestingly, when trained with the Fall campaign case with lower tur-618

bidity, the CV R2 increased to 0.94. Despite such improvement, we also identified sev-619

eral constraints and inherent limitations in passive remote sensing using an empirical ap-620

proach. As indicated by the SHAP results, transferring separate models with substan-621

tially different turbidity conditions is challenging. Spectral analysis revealed that when622

turbidity varies by approximately fourfold, the spectral characteristics change significantly.623

Consequently, although SHAP rankings for key bands were similar between spring and624

fall, their relationship with model output (water depth) was markedly different, as de-625

picted in the dependence plot (Figure 13). This strong dependence on the learning dataset626

is an inherent disadvantage. Therefore, while transferability might exist for separately627

trained models under similar conditions, achieving global applicability within the trained628

region necessitates learning across various conditions through combined learning. The629

consistency in results between separate and combined learning indicates the potential630

for continuous improvement through learning from various datasets, as demonstrated in631

Table 2.632

To develop a model applicable to various conditions, it is necessary to collect more633

diverse data. In particular, confounding factors of water quality (e.g., suspended sedi-634

ment, CDOM, and chlorophyll) substantially affect spectral characteristics, as they di-635

rectly influence the inherent optical properties (IOPs) such as the absorption and backscat-636

tering coefficients of water (Fan et al., 2015; Woźniak & Stramski, 2004). In the cases637

shown in this study, we observed significant variations in water depth, but not in wa-638

ter quality parameters. Hence, future studies should analyze the impact of variability639

in other water quality parameters on the transferability of the depth retrieval model. The640

AVIRIS-NG images used in this study covered a large deltaic area. Acquiring frequent641

drone or airborne images requires significant effort. Therefore, for a more comprehen-642

sive analysis of spatial variability, we expect that hyperspectral or multispectral satel-643

lite imagery covering a wide area will provide deeper insights. To account for spatial vari-644

ability in water quality, spectral clustering can classify each river based on water qual-645

ity, as reported in the spectral clustering-based regression method in a confluence (Kwon646

et al., 2023b), and divide the region according to spectral similarity.647
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Additionally, we need a more comprehensive understanding of the spectral char-648

acteristics of deep and turbid waters, where depth retrievals rely solely on water column649

reflectance. The wavelength of the most important bands, 446 nm in Spring and 867 nm650

in Fall, typically demonstrate high attenuation, and these bands showed a strong cor-651

relation with a wide range of water depths (Figures 13a and e). However, the dominant652

wavelength range varied significantly among different rivers. Hence, future studies should653

include measuring IOPs within specific wavelength ranges to analyze the relationship be-654

tween attenuation and depth in deep and turbid conditions.655

4.2 Maximum detectable depth from hyperspectral remote sensing656

As depicted in Figure 9c, we found the maximum detectable depth from AVIRIS-657

NG to be approximately 30 m, even in turbid conditions—a significant finding that po-658

sitions the proposed approach as a promising method compared to other remote sens-659

ing techniques. Among the various imaging spectroscopy approaches, our results show660

an enhancement compared to the approximately 4 m of maximum depth reported in pre-661

vious research (Legleiter & Harrison, 2019). This enhancement suggests that remote sensing-662

based depth retrievals can be further improved owing to the rapid development of plat-663

forms, sensors, and algorithms. The relationship between reflectance and depth is affected664

by the depth range, as represented in Equation (1). Therefore, learning various spectral665

bands and non-linearity is crucial to account for the complexity arising from varied depths,666

which can be achieved by ML.667

Recent advancements in sensors and algorithms have significantly improved the ac-668

curacy and reliability of lidar-based bathymetry (Chen et al., 2021; Zhang et al., 2022;669

Xie et al., 2023). Chen et al. (2021) introduced a novel algorithm, the adaptive variable670

ellipse filtering bathymetric method (AVEBM), for lidar applications. Employing this671

method, they demonstrated the capabilities of the ICESat-2 equipped with the ATLAS,672

which incorporates a photon-counting technique, to enhance water depth estimation to673

approximately 17 m. Notably, this evaluation was conducted under clear water condi-674

tions. Turbidity poses significant challenges for lidar performance, especially consider-675

ing its utilization of a single wavelength, typically green. The imaging spectroscopy ap-676

proach could be more effective for deep water detection under turbid conditions because677

of the range of wavelengths included. Spectral bands across 446 to 897 nm contribute678

to the model learning performance (Figure 12c). Green bands should be among those679

sensitive to water quality parameters like chlorophyll and CDOM.680

This study used only the data collected during the 2021 Spring and Fall campaigns681

in WLD; thus, further evaluation under more diverse conditions is necessary. During these682

campaigns, TSS was the dominant factor influencing reflectance spectra shapes (Figure683

5). This result suggests that we need further evaluation of the maximum detectable depth684

according to TSS or turbidity. In addition, unavailability of imagery during cloudy and685

rainy weather is an inherent disadvantage of passive remote sensing. Therefore, the se-686

lection of sensors for coastal remote sensing should be flexible, taking into account the687

objectives of the study and the surrounding environment.688

4.3 Control factors for depth mapping quality689

When comparing the depth maps from AVIRIS-NG and ANUGA (Figure 10), we690

observed discontinuous regions in the deep river areas. The RF model demonstrated high691

accuracy not only with the training data but also with test data and cross-validation (Fig-692

ure 7 and Table 2). This result indicates that the model performs well in retrieving the693

ADCP-measured locations. However, the estimation of deep water depth can be quite694

susceptible to subtle variations in reflectance. Under deep water depth, alterations in depth695

were primarily observable in the short blue (446 nm) or NIR (897 nm) bands (Figure 5),696
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where the attenuation coefficient is high. Moreover, under high turbidity, these depth-697

related changes were minimal, implying that RF learned this subtle difference.698

The averaged reflectance spectra of the discontinuous areas (underestimated ar-699

eas) and the normal deep areas of the Spring campaign (Figure S6a) show that, how-700

ever, the reflectance difference was not substantial. The difference plot (Figure S6b) in-701

dicates that the main differences occurred within the short blue and NIR wavelengths.702

This difference is close to the contrast between the shallow (approximately 4 m) and deep703

(approximately 20 m) areas within these wavelength ranges (Figure S6b). Considering704

the subtle effects of depth difference on reflectance under turbid conditions (Figure 5b),705

this slight difference can lead to the underestimation of depth.706

Reflectance with high attenuation is highly sensitive to noise, which cannot be over-707

come by atmospheric correction (Vanhellemont, 2019). Additionally, variations in air-708

borne altitude, pitch, and roll along each flight path can influence the viewing geome-709

try between the sensor and the observed surface, thereby slightly influencing the BRDF710

effects in the acquired spectra.711

Addressing the correction of discontinuous regions in deep areas is an important712

direction for future studies. Establishing a relationship between water level and river width713

in deep regions through remote sensing products can provide valuable insights for cor-714

rection (Wu et al., 2023). This approach involves estimating depth in discontinuous re-715

gions and subsequently integrating this information with the depth map. Additionally,716

a fusion approach could involve integrating lidar-derived water level maps. This method717

would allow the correction of error-prone areas and could be used to convert spectrally718

estimated depths to water levels. The Surface Water and Ocean Topography (SWOT)719

mission is providing greatly improved spatiotemporal data on surface elevation of global720

water bodies (Liu et al., 2024). Coupling imaging spectroscopy and SWOT data can make721

bathymetry mapping more accessible worldwide and enhance the potential for high res-722

olution and repeat morphological monitoring of deltaic dynamic systems.723

5 Concluding remarks724

Retrieving water depth in turbid and deep waters is one of the most challenging725

tasks in coastal remote sensing. To explore the potential of imaging spectroscopy for depth726

mapping in such demanding conditions, we evaluated ML-based hyperspectral retrievals727

using AVIRIS-NG imagery in the WLD. Combining the RF-RFE with SHAP, this study728

investigated the spectral variability of deep and turbid waters, focusing on the influence729

of key spectral bands on depth estimation in these challenging conditions. Our result sup-730

port five key findings as follows:731

1. The study revealed intricate spectral characteristics of WLD in deep and turbid732

conditions, highlighting variations in reflectance spectra influenced by suspended733

sediment and water depth. Notably, this study highlighted that reflectance spec-734

tra showed subtle differences against depth variations under turbid conditions, while735

the TSS variations induced high variability. Nevertheless, we found the short blue736

(446 nm) and NIR (897 nm) bands to be key variables for deep water retrievals.737

2. RF-RFE successfully generalized two different campaign datasets, producing ro-738

bust depth retrieval across the WLD. This result was achieved through the ad-739

vantages of multi-band learning and non-linearity learning. The RF-RFE achieved740

a high CV R2 of 0.94±0.005 for the combined learning, outperforming other re-741

gression methods (OBRA and PLSR).742

3. The application of RF-RFE for depth mapping showed accurate depth estimation,743

even in irregular and deep cross-sections. This model revealed a significant improve-744

ment in the maximum detectable depth, reaching approximately 30 m even in tur-745

bid conditions.746
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4. A SHAP analysis suggested that various spectral bands are necessary to address747

spectral variability arising from turbidity and varied depth range. Notably, the748

short blue and NIR bands emerged as the most dominant across the entire depth749

range, implying the significance of attenuation within the water column in deep750

and turbid conditions.751

5. The effective bands were similar for each campaign regardless of turbidity, but their752

relationship with water depth was substantially different. The SHAP dependence753

plot showed that combined learning of RF-RFE enables the model to effectively754

handle spectral variability in complex datasets.755

The study also found limitations in deep-depth retrievals under turbid conditions.756

Due to the high dependency on short blue and NIR bands, subtle variations in reflectance757

values induced by weather and water surface conditions could be crucial for accurate depth758

mapping. Therefore, correcting discontinuous regions in deep areas needs further inves-759

tigation. A fusion of multi-remote sensing products could be beneficial to achieve more760

robust and accurate depth mapping.761
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Figure S1. OBRA matrices, regression equations, and selected wavelengths for (a) linear and
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Figure S2. Relationships between optimal band ratio and water depth during Spring and Fall

campaigns.

Figure S3. Results of RFE-CV for (a-c) PLSR and (d) RF: RMSE values according to the
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Figure S4. Retrieved depth map by RF-RFE during Spring campaign.
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Figure S5. Retrieved depth map by RF-RFE during Fall campaign.

Figure S6. (a) Averaged reflectance spectrum of deep and discontinuous areas. (b) Reflectance

difference between deep and shallow areas and deep and discontinuous areas.
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