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Abstract  17 

Wildfires impact the provision of ecosystem services and are increasing in intensity, 18 

frequency, and spatial area globally. The rate of vegetation recovery after fire plays a major role 19 

in the recovery of ecosystem services, but such recovery rates are poorly understood.  Here we 20 

used remotely sensed data products from the Moderate Resolution Imaging Spectroradiometer 21 

(MODIS) to quantify the resistance and resilience of leaf area index (LAI), gross primary 22 

production (GPP), and evapotranspiration (ET) to 138 wildfires across the Columbia River Basin 23 

of the Pacific Northwest in 2015. Increasing burn severity caused lower resistance and resilience 24 

for all three variables. Resistance and resilience were highest in grasslands, intermediate in 25 

woodlands, and lowest in needleleaf evergreen forests, consistent with adaptation of these 26 

vegetation types to fire. LAI had consistently lower resistance and resilience than GPP and ET, 27 

which is consistent with physical and physiological mechanisms that compensate for reduced LAI. 28 

Resilience was influenced by precipitation, vapor pressure deficit (VPD), and burn severity across 29 

all three vegetation types, however, burn severity played a more minor role in grasslands. 30 

Increasing wildfire severity will reduce the resistance and resilience and lengthen the recovery 31 

time of vegetation structure and fluxes with climate change, with significant consequences on the 32 

provision of ecosystem services and complications for model predictions.   33 

  34 
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1.  Introduction 35 

Climate change has driven a global increase in the frequency and severity of wildfires 36 

(Jones et al. 2020; Pechony et al. 2010; Schoennagel et al., 2017; Westerling et al. 2016). Wildfires 37 

cause dramatic impacts on ecosystem carbon and water cycles that can last for decades (Adams et 38 

al., 2012; Bart et al. 2020). A primary mechanism underlying these responses is the loss of 39 

ecosystem-scale leaf area i.e., leaf area index (LAI), that reduces gross primary production (GPP) 40 

and evapotranspiration (ET) through lost photosynthetic and transpiring surface area and 41 

microclimate shifts. These large-scale changes in LAI, GPP, and ET cascade down to numerous 42 

consequences including reduced carbon storage and altered streamflow (McDowell et al. 2023; 43 

Seidl et al. 2014). The consistent predictions of increasing future wildfire frequency and severity 44 

due to climate change (Rammer et al. 2021; Wimberly et al. 2014; Williams et al. 2019) make 45 

improving our predictive understanding a particularly urgent science objective. 46 

Model predictions of wildfire impacts on the carbon and water cycles are tenuous due to a 47 

lack of empirical quantification of the relationships between burn severity of wildfire and 48 

vegetation type (VT) with LAI, GPP, ET, and their rate of post-fire recovery (Poulos et al. 2021).  49 

Greater burn severity drives larger impacts and longer recovery times (e.g., Jin et al. 2012), which 50 

vary with the vegetation types (Hislop et al. 2019). VTs adapted to high fire frequencies, such as 51 

grasslands, should have more rapid recovery than those without such adaptations, such as 52 

needleleaf evergreen forests (Sun et al. 2020; Seidl and Turner 2022).  LAI, GPP, and ET could 53 

also differ in their responses to fire via decoupling of LAI control over GPP and ET.  Reductions 54 

in GPP and ET could be proportionately less than for LAI due to increases in photosynthesis and 55 

transpiration per unit leaf area in surviving plants driven by increased soil moisture and light 56 

(Whitehead 1998; Gough et al. 2013).  Reduced ET due to suppressed canopy transpiration can be 57 
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additionally compensated by increased soil evaporation (McDowell et al. 2023).  However, 58 

decoupling of GPP and ET from LAI has not been studied in relation to wildfires nor at regional 59 

scales.  60 

Resistance and resilience are two ecological concepts used to evaluate the impacts and 61 

responses of ecosystems to disturbances. Resistance is the degree of immediate impact on an 62 

ecosystem from a disturbance, and resilience is the capacity of a system to recover after the 63 

disturbance (Holling 1973; Zheng et al. 2021). Mathematically, resistance is calculated as (De Soto 64 

et al. 2020): 65 

      66 

Resistance = 	 !!"#$
!"!"##–!"#&

      (1) 67 

 68 

 Resilience = 	!
"!"#'–!"!"
!"!"##–!"#&

      (2) 69 

 70 

Where A represents the ecohydrological variables, LAI, GPP, and ET, used in this study, and the 71 

specific years are indicated in Equations (1) and (2). The use of these two conceptual models has 72 

yielded significant insights into disturbance impacts on forest composition, structure, survival, and 73 

growth (Albrich et al. 2020; De Soto et al. 2020).  74 

There have been numerous studies on the ecosystem-scale impacts and recovery of 75 

wildfires (Balshi et al. 2009; Mills et al. 2015), but those have not used the framework in De Soto 76 

et al. (2020) by simultaneously examining the responses of LAI, GPP, and ET to fire disturbances, 77 

particularly in relation to burn severity and VTs. To investigate the coupled resistance and 78 

resilience of LAI, GPP, and ET, we examined the resistance and resilience of LAI, GPP, and ET 79 

in relation to wildfire severity and VTs (grasslands, woodlands, and forests) across the Columbia 80 
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River Basin (CRB) in the Pacific Northwest, USA. We used 2015 for our disturbance year because 81 

the CRB experienced particularly widespread fire occurrences in 2015 (Halofsky et al. 2020).  Our 82 

research hypotheses were: (1) higher burn severity results in lower resistance and resilience across 83 

all VTs, (2) resistance and resilience are highest in grasslands, intermediate in woodlands, and 84 

lowest in forests, and (3) across all VTs resistance and resilience post-disturbance was highest for 85 

GPP and ET, and lowest for LAI. Because precipitation and vapor pressure deficit (VPD) influence 86 

vegetation growth in this semi-arid region, we also tested the hypothesis (4) that precipitation and 87 

VPD are more important to resilience in grassland than in other VTs. To test these hypotheses, we 88 

applied resistance and resilience algorithms (equations 1 and 2) to remotely-sensed LAI, GPP, and 89 

ET, and used the random forest feature importance method (Breiman, 2021) to investigate climate 90 

dependency.  91 

 92 

2. Methods 93 

In this section, we describe the data products and processing methods. The analyses were 94 

performed at spatial resolutions 500–1000 meters, and our research time frame is 2011–2020, 95 

which is centered around the time of maximum fire occurrence in the region (2015). We use the 96 

(1) Moderate Resolution Imaging Spectroradiometer (MODIS) land cover type (LCT; Sulla-97 

Menashe et al. 2018) to identify surface VTs; (2) burn severity product from the Monitoring Trends 98 

in Burn Severity (MTBS) program to classify the location and severity of fires (Eidenshink et al. 99 

2007); (3) the meteorological data from ECMWF Reanalysis Version 5 (ERA5) to quantify annual 100 

variation in climate (Hersbach et al. 2020); (4) the MODIS LAI (Myneni et al. 2002), GPP, and 101 

ET products (Running et al. 2004) to assess the ecosystem resistance and resilience due to fire 102 

disturbance. To interpret the essential factors controlling resilience of different VTs, the random 103 
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forest feature importance method was used to assess the importance of precipitation, VPD, and 104 

burn severity to the resilience values in 2020 represented by LAI, GPP, and ET.  105 

 106 

2.1 Characterizing surface vegetation types  107 

 In this research, we used the MODIS land cover type data set, MODIS MCD12Q1 version 108 

6.1 (Sulla-Menashe et al. 2018; Friedl et al. 2022), to identify the surface VT. The spatiotemporal 109 

resolution of this data set is 500 meters and annual (Table 1). The VT map in 2015 showed that 110 

needleleaf evergreen forest (NEF), woody savannas (WDS), and grassland (GL), and croplands 111 

are the four dominant vegetation cover types over the CRB (Figure S1). In this study, we studied 112 

the impacts of wildfire over NEF, WDS, and GL.  113 

 114 

2.2 Identifying the 2015 fire events  115 

 We identified all the 2015 fire events in the CRB so that we would have sufficient data 116 

both pre- and post-fire for calculating resistance and resilience, and because 2015 had the highest 117 

occurrence of fire events in this region during the time period of available remote sensing products. 118 

The MTBS (1984–present) maps burn extent and severity across the United States (Eidenshink et 119 

al. 2007; Picotte et al. 2020). MTBS includes all fires >= 4.05 km2 in the western United States, 120 

where burn severity is quantified as visible alteration of vegetation, dead biomass, and soil that 121 

occurs within a fire perimeter (Eidenshink et al. 2007). Changes in vegetation and biomass damage 122 

resulting from fires were assessed using the Composite Burn Index (CBI). These changes are also 123 

correlated with remotely sensed estimates such as the differenced Normalized Burn Ratio (dNBR), 124 

a metric measuring the difference between pre- and post-fire NBR images (Eidenshink et al. 2007). 125 
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The burn severity product from MTBS is widely used as a viable estimate of burnt severity within 126 

certain ecosystems in the United States (Cansler and McKenzie 2012; Picotte et al. 2020).  127 

The MTBS products include burn perimeters and burn severity, and we used the burn 128 

severity categories to identify fires and their features (e.g., burned area, burn severity) over the 129 

CRB. The MTBS data are at a 30-meter spatial resolution and upscaled to the 500-meter spatial 130 

resolution for the comparison with the MODIS data products (Table 1). Since MTBS uses different 131 

integers to represent burn severity categories, which use 1–4 to represent unburned to low, low, 132 

moderate, and high, respectively, the upscaling processes with the area-average re-mapping 133 

method generate floating numbers. Here, the numbers and meanings of burn severity values before 134 

and after the re-group are in Table S1. Based on this re-group method, the fire events and their 135 

burn severity in 2015 is shown in Figures S2a and S2c. To identify the vegetation type where each 136 

fire event occurred, we applied the MTBS fire boundary (i.e., shape) files describing the boundary 137 

of each fire event to the VT map (Figure S1). We then obtained the dominant VT of each fire event 138 

defined as the VT whose area accounts for more than 50% of burned area for that event. This 139 

analysis aimed to comprehend which VT(s) are predominantly affected by fire across the CRB 140 

(Figure S2b).  141 

 142 

2.3 Interannual climate  143 

 We quantified interannual climate throughout the study region to determine if our 144 

resistance and resilience estimates were influenced by climatic variation. Here, we used 145 

precipitation, surface air temperature, and water vapor deficit (VPD) from ERA-5 (2011–2020; 146 

Hersbach et al. 2020). The data set is originally at the 30-kilometer spatial resolution, and we used 147 

the nearest-neighbor method to downscale the data to the 500-meter spatial resolution to match the 148 
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spatial resolutions of other data sets (e.g., MODIS) of this study. The ten-year mean precipitation 149 

and surface air temperature are shown in Figure S3. We then used the MODIS LCT suggested VT 150 

and MTBS burn severity information in each 500-meter data pixel to group precipitation, surface 151 

air temperature and VPD within each fire disturbed region to their respective VT and then averaged 152 

the grouped climate variables for each VT. The specific process is the same to the MODIS LAI, 153 

GPP, and ET grouping, and more details of this method are introduced in the data description of 154 

MODIS data products of LAI, GPP, and ET.  155 

 156 

2.4 Quantifying LAI, GPP, and ET 157 

We used the MODIS LAI product at the 4-day interval and 500-meter spatial resolution 158 

(Myneni et al. 2002), and the MODIS GPP and ET products at the 8-day interval and 1000-meter 159 

spatial resolution (Running et al. 2004), which was downscaled to the 500-meter spatial resolution 160 

by using the nearest-neighbor method. To identify LAI, GPP, and ET changes among different 161 

VTs and burn severity categories, we applied the MTBS boundaries and MODIS LCT suggested 162 

VTs to the MODIS LAI, GPP, and ET products. To ensure the calculation accuracy, we evaluated 163 

the variations of these metrics by using MODIS VT pixels within the fire boundaries to group 164 

these variables based on VTs and calculated the means for the same VTs across all the fire 165 

boundaries. Specifically, the VT information in each MODIS pixel within different fire boundaries 166 

are applied to the corresponding data pixels of LAI, GPP, and ET, respectively. We then averaged 167 

LAI, GPP, ET of the same VT and with the same burn severity across all the 500-meter MODIS 168 

data pixels. As discussed above, ERA5 precipitation and temperature data are also grouped 169 

between different VTs by using this method. Thus, instead of considering the dominant VT in each 170 

fire boundary, we accurately performed the calculation, which could avoid the errors associated 171 



 9 

with the weights of each VT in different fire boundaries. All the above-mentioned calculation were 172 

performed during 2011–2020. 173 

Table 1. The data products used in this research.  174 

Data 
variables 

Spatial 
resolution 

Temporal 
resolution 

Data time 
spans 

Data 
sources 

Reference 

Precipitation  30 km Monthly 1940–ps. ERA5 Hersbach et al. (2020) 

Surface air 
temperature  

30 km Monthly 1940–ps. ERA5 Hersbach et al. (2020) 

Water vapor 
deficit  

30 km Monthly 1940–ps. ERA5 Hersbach et al. (2020) 

Burn severity 30 m Annual & event 1984–ps. MTBS Eidenshink et al. (2007)  

Vegetation 
type 

500 m Annual 2002–ps. MODIS Sulla-Menashe et al. (2018)   

LAI 500 m 4-day 2002–ps. MODIS Myneni et al. (2002)  

GPP 1000 m 8-day 2002–ps. MODIS Running et al. (2004)  

ET 1000 m  8-day 2002–ps. MODIS  Running et al. (2004)  

 175 

2.5 LAI, GPP, and ET based resistance and resilience calculations 176 

We calculated post-fire resistance and resilience for LAI, GPP, and ET (Eqs (1) and (2); 177 

De Soto et al. 2020). We did not include 2015 values of LAI, GPP, or ET in the calculations 178 

because the fires happened mid-way through the growing season (Figure S4), thus the 2015 values 179 

include both pre- and post-fire, making them inappropriate for resistance and resilience 180 

calculations. Resilience can be calculated for each year post disturbance (e.g., De Soto et al. 2020).  181 

Given that resilience could exhibit interannual variations due to climate variations, we also 182 

calculated resilience for each individual year for all the VTs with various burn severity levels.   183 

 We used LAI, GPP, and ET observations from the growing season, which we defined as 184 

days with values larger than 30% of the annual maximum. This threshold number can be tweaked 185 
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(Shi et al. 2020), and we chose to use this value to avoid the MODIS data uncertainty during snow 186 

seasons. To avoid any error associated with using only a single observation, we identified the 187 

annual peak value and then averaged that value with records from the previous and subsequent 188 

eight days to generate the annual maximum value. This means that for MODIS LAI, with 4-day 189 

temporal resolution, we averaged five contiguous records centered around the peak value.  For 190 

MODIS GPP and ET, with 8-day temporal resolution, we averaged three records, one before the 191 

peak, the peak itself, and one after the peak.  To calculate the start and end of the growing seasons, 192 

we calculated the 4-record running mean (i.e., 16 days) of LAI and 2-record running mean (i.e., 193 

16 days) of GPP and ET over the entire year. The start of each year’s growing season was 194 

determined when the running mean exceeds 30% of the annual maximum value, and the end of 195 

growing season was calculated with the running mean dropped below 30% of the annual maximum.  196 

The growing season length based on different vegetation types with varied burn severity is shown 197 

in Figure S5.  198 

 199 

2.6 Random forest feature importance  200 

To interpret the factors controlling resilience of different VTs, the random forest feature 201 

importance method (Breiman, 2021) was implemented using the scikit learn package in python. 202 

Random forest uses a large collection of decision trees to predict the target variable based on its 203 

relationship with a specified set of input features. Each tree learns from a randomly chosen subset 204 

of samples and features, while the final prediction is made by averaging predictions from all trees. 205 

Furthermore, the algorithm reports the relative importance of input features by considering the 206 

reduction in impurity achieved by each feature during tree construction.  207 
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For this analysis, the random forest was trained with a set of input features that include 208 

burn severity in 2015, and total precipitation and mean VPD between 2017 and 2020, for each grid 209 

in the burn areas. Nine separate models were trained to predict three target variables: resilience for 210 

LAI, GPP and ET in year 2020 for NEF, WDS and GL. The number of samples in NEF, WDS and 211 

GL were 11,881, 15,684 and 26,840, respectively.  212 

Random forest hyperparameters such as number of trees and number of features considered 213 

at splitting were predefined before model training. Here, number of trees was set to 100. The 214 

GridSearchCV algorithm from the scikit learn package was applied on 85% of randomly chosen 215 

samples to find the optimal number of features considered at splitting, and it was determined to be 216 

1. Model training and testing were performed by splitting the samples randomly with 85% in 217 

training and 15% in testing. The random forest model was trained 100 times by performing 100 218 

randomized splits to reduce any bias from splitting. From the 100 trained models, the distribution 219 

on train and test R2 scores were obtained and the relative importance for each feature were 220 

averaged. 221 

 222 

3. Results 223 

3.1 The meteorological conditions and burn severity in CRB  224 

For the 138 fire events in the CRB in 2015, we remove the areas that experienced fire in 225 

2011–2014 or in 2016–2020, thus our resistance and resilience calculations are not confounded by 226 

repeat fires.  August was the month with the highest fire frequency in 2015 with 91 fire events 227 

(Figure S2a). NEF experienced 42, WDS experienced 27, and grasslands experienced 67 fire 228 

events (Figures S1 and S2b). There were two fire events in croplands, which were excluded from 229 

further analyses. 230 
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Mean precipitation and surface air temperature over the Columbia River Basin were 789 ± 231 

63 (mm year-1) and 5.7 ± 0.7 (°C) during 2011–2020 (Figure S3). The spatial pattern of 232 

precipitation and surface air temperature suggest a relatively warmer and drier condition in the 233 

southern part of the basin, where the areas are mostly covered by grassland (Figure S1). The 234 

western and northeastern areas of the basin had higher precipitation, ranging from 700 to 1300 mm 235 

year-1, and lower air temperatures, ranging from -3.0 to 11.0 (°C) (i.e., from the northernmost part 236 

to the central–southern part of CRB; Figure S3b). These areas have a greater proportion of NEF 237 

and WDS (Figures S1 and S3). We further examined the climate for each of the 138 fire locations 238 

broken into the three vegetation types.  Climate conditions in 2015, the year of high fire activity, 239 

was particularly dry and warm across all vegetation types. There was no significant difference in 240 

mean annual precipitation and surface air temperature between 2011–2014 and 2016–2020 (Figure 241 

1 and Table S2).  Therefore, climate variations did not confound resistance and resilience 242 

calculations. 243 

  244 
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 245 

Figure 1. Mean annual (a) precipitation and (b) surface air temperature within the burned sites of 246 

the three different vegetation types.  NEF: needleleaf evergreen forests, WDS: woodland savannas, 247 

and GL: grasslands. The gray bars represent the pre-fire mean values from 2011 to 2014.  248 

 249 

3.2 LAI, GPP, and ET 2011–2020  250 

Wildfires reduced LAI, GPP, and ET below the pre-fire mean in all VTs at the highest burn 251 

severity (herein S; S>3; Figure 2; we present results for S below 3 in Figure S6 and Table S1). The 252 

2011–2014 growing season mean LAI values were 1.87 ± 0.10, 1.47 ± 0.04, and 1.16 ± 0.03 m2 253 

m-2 over NEF, WDS, and GL, respectively. The growing season LAI had an increasing trend from 254 

2016 to 2020 in all the VTs, with 2020 values of 1.18, 1.04, and 0.88 m2 m-2 for NEF, WDS, and 255 
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GL, respectively (Figure 2a). GPP and ET patterns were similar to those of LAI, with the highest 256 

values during 2011–2014 and the lowest values in 2016. GPP and ET in 2020 was not back up to 257 

the mean 2011–2014 values (Figures 2b and 2c).  Similar but less dramatic declines in LAI, GPP, 258 

and ET were observed in the lower burn severity classes (Table 1 and Figure S6).  259 

 260 

 261 

Figure 2. The growing season (a) LAI, (b) GPP, and (c) ET variation over the three vegetation 262 

types with burn severity >3 during 2011–2020. See Figure S6 for these results for fires with burn 263 

severities less than 3.   264 

 265 

3.3 LAI, GPP, and ET resistance and resilience to wildfire 266 
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We first present wildfire resistance and resilience for each VT (using equation (1)) across 267 

the burn severity categories and present the results as a function of time further below. Resistance 268 

to wildfire declined with increasing burn severity values for LAI, GPP, and ET, and was highest 269 

for GL, intermediate for WDS, and lowest for NEF VTs, regardless of response parameter (i.e., 270 

LAI, GPP, or ET; Figures 3a, 3c, and 3e). Resilience to wildfire, calculated as the average 271 

resilience value from 2017–2020, was lower with higher burn severity for LAI, GPP, and ET 272 

(Figures 3b, 3d, and 3f).  Like the patterns of resistance values, resilience was highest for GL, 273 

intermediate for WDS, and lowest for NEF. GL resilience has near 1 for all three variables in 274 

grasslands when burn severities were below 2.   275 

Resistance and resilience calculated at the annual scale using equation (2) shows the 276 

responses of LAI, GPP, and ET relative to each other (Figure 4; S>3 shown, S values below 3 are 277 

shown in Figures S7–9).  Within each VT, resistance and resilience were similar for GPP and ET, 278 

and were lower for LAI.  Resistance and resilience increased for all parameters with lower burn 279 

severities (Figures S7–9), and were lowest for NEF, intermediate for WDS, and highest for GL 280 

VTs. 281 

To examine the drivers of the interannual variation of resilience characterized by LAI, GPP, 282 

and ET, we used the random forest feature importance method to identify the contributions of 283 

precipitation, VPD, and burn severity to influencing ecosystem resilience. Burn severity was more 284 

important for NEF and WDS VTs than for GLs (Figure 5). For NEF, the importance scores of 285 

precipitation and VPD to LAI represented resilience are 0.3, while that of burn severity is 0.4 286 

(Figure 5a). Similarly, in WDS, the importance scores of precipitation and VPD are 0.28 and 0.29, 287 

while that of burn severity is 0.43 (Figure 5b). Precipitation and VPD had relatively similar 288 

importance scores within VTs but were higher for GLs. In GL, the scores of precipitation, VPD, 289 



 16 

and burn severity to LAI represented resilience are 0.43, 0.40, and 0.16, which show the reduced 290 

importance of burn severity to GL. There are variations of important scores for GPP and ET 291 

represented resilience, and the overall conclusion of the contributions of these three metrics to the 292 

resilience values is the same between VTs. The train and test scores of different resilience values 293 

are included in Figure S10. The median R2 scores for train and test datasets over 100 iterations 294 

ranged between 0.68–0.71 and 0.62–0.67, 0.61–0.66 and 0.54–0.61, and 0.57–0.68 and 0.57–0.64 for LAI, 295 

ET and GPP, respectively for the three VTs. As the median R2 scores for train and test datasets are close, 296 

it suggests the model is not significantly overfitting and learning the underlying patterns in the 297 

dataset. 298 

 299 
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 300 

Figure 3. LAI (a) resistance and (b) resilience, GPP (c) resistance and (d) resilience, and ET (e) 301 

resistance and (f) resilience in needleleaf evergreen forests (NEF), woody savannas (WDS), and 302 

grasslands (GL) with different burn severities (Table S1).  Resistance was calculated using 2016 303 

data.  The 2016 resistance are the same as those shown for S>3 in Figure (3), and are retained here 304 

to show the trends. The resilience calculation used the mean of 2017–2020.  305 

306 
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  307 

 308 

Figure 4.  LAI, GPP, and ET temporal trends wildfire resistance (2016) and resilience (years 309 

2017–2020) for (a) needleleaf evergreen forests, (b) woody savannas, and (c) grasslands with burn 310 

severity (S) larger than 3.  311 

 312 
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 313 

Figure 5. The feature importance of precipitation, VPD, and burn severity to resilience values in 314 

2020 for LAI (a–c, NEF, WDS, and GL, respectively), GPP (d–f), and ET (g–i).    315 

 316 

4. Discussion and Conclusions 317 

This study examined the immediate impacts and subsequent recovery of vegetation to 138 318 

wildfires with multiple burn severity levels by using remotely sensed metrics of LAI, GPP, and 319 

ET within a formal resistance and resilience framework. The random forest feature importance 320 

algorithm was used to quantify the contributions of different factors, i.e., precipitation, VPD, burn 321 

severity, to resilience. This is the first study that quantitatively assessing the post-fire resistance 322 

and resilience by simultaneously using the three MODIS products (i.e., LAI, GPP, and ET). 323 
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Overall, resistance and resilience reductions are closely related to burn severity, which matters 324 

more to the resilience of woodland VTs.  325 

The post-fire LAI, GPP, and ET comparison between VTs shows that burn severity is a 326 

primary driver of the reductions of these three variations in all three VTs (Figures 2 and S6). This 327 

expected result occurs because the starting point of vegetation recovery one year after disturbance 328 

is set by the degree of vegetation loss. Similarly, VTs with less initial aboveground biomass and 329 

simpler ecosystem structure (i.e., GL versus NEF) recovered faster (Figures 2 and S6). This is 330 

logical because VTs with lower aboveground biomass such as grasslands are adapted to more 331 

frequent fire in part through immediate resprouting from their extensive root systems (Ratajczak 332 

et al. 2014; Isbell et al. 2015).  333 

Resistance, or the degree of immediate impact of the wildfires, and resilience, or the degree 334 

of recovery post wildfire, were both lower as burn severity increased (Figure 3). This result 335 

quantitatively represents and findings in Figures 2 and S6, and justifies our first research 336 

hypothesis that burn severity results in lower resistance and resilience across all VTs.  337 

Resistance and resilience were highest in GL, lowest in NEF, and intermediate in WDS 338 

(Figures 3 and 4). This result shows that the second hypothesis is valid, and supports the previous 339 

research that grasslands are better adapted to fire disturbance than other woodland types (Ratajczak 340 

et al. 2014; Isbell et al. 2015). Using equations (1) and (2), DeSoto et al. (2020) also found that 341 

gymnosperms (e.g., needleleaf forests) can have slower recovery processes than angiosperms (e.g., 342 

grasses) after drought disturbance, which can induce lower resilience values and supports our 343 

research results. 344 

In all the resistance and resilience calculations with different MODIS products, LAI had 345 

the lowest resistance and resilience, whereas GPP and ET had similar values (Figure 4). In other 346 
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words, the result justifies the recovery capacity difference between forests and grassland, and 347 

reveals that structure (i.e., LAI) has lower resistance and resilience than ecosystem fluxes (i.e., 348 

GPP and ET). These post-fire resilience features of LAI, GPP, and ET can be attributed to the 349 

evolution of different VTs to tolerate fires, where grasslands can regrow leaf area far more rapidly 350 

than forests (Ratajczak et al. 2014; Isbell et al. 2015). The results are consistent with the findings 351 

that forests tend to increase stomatal conductance and hydraulic efficiency, promoting the return 352 

of tree-scale transpiration after fires (Nolan et al. 2014). Cooper et al. (2019) also showed the 353 

enhanced transpiration rates for forests with moderate burn severity. All these findings support the 354 

relatively quicker recovery of GPP and ET, where GPP and ET respond similarly due to their 355 

tightly coupling with stomatal conductance, regulating both photosynthesis and transpiration 356 

(Knaue et al. 2020; Stoy et al. 2019). This study demonstrates that the MODIS LAI, GPP, and ET 357 

can be sufficiently used to explain resistance and resilience to wildfires in different VTs with 358 

varied burn severity at the river basin scale.  359 

Precipitation, VPD, and burn severity had various impacts on resilience between different 360 

variables and VTs. Though the grassland showed less role of burn severity on resilience (Figure 361 

5), the evergreen and savanna VTs showed a stronger influence of burn severity on resilience in 362 

terms of LAI. Together, these results point to higher and longer lasting impacts of wildfires on 363 

VTs with higher biomass, and precipitation, VPD, and burn severity interact in regulating 364 

ecosystem resilience. The results also show that our fourth hypothesis, expecting higher 365 

importance of precipitation and VPD to resilience in grassland than in other VTs, is testable. The 366 

post-disturbance biotic factor determined slow recovery of the forest ecosystems was also 367 

identified by Shi et al. (2017), which performed numerical simulations based on the 2005 368 

Amazonian drought with the Community Land Model (CLM), revealing the limited influence of 369 
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environmental factors to the forest recovery. The random forest feature importance study shows 370 

that hydraulics are influenced almost equally by water supply (i.e., precipitation) and demand 371 

across (i.e., VPD). Advanced studies are needed to investigate the varied impacts of precipitation 372 

and VPD on resilience in different ecosystems with various types of disturbance, which will further 373 

imply ecosystem functionality shifts due to disturbance and is beyond the scope of this study.  374 

Overall, our research affirms the findings that obtained with plot-based measurements and 375 

shows a strong potential of using satellite observations to investigate ecosystem resistance and 376 

resilience to different types of disturbance at watershed or regional scales. It is shown by previous 377 

studies that spectral observations of forests’ canopy characteristics (e.g., leaf area) tend to be 378 

biased resulting from clouds and aerosol on the measurements pathway (Asner and Alencar, 2010; 379 

Samanta et al., 2012; Xu et al., 2011). Therefore, the application of this research framework to 380 

other regions with fire disturbance, especially in the tropics with density vegetation coverages, is 381 

limited by the observational capacity of spectral-based measurements. This also implies that 382 

intensified airborne measurements and Lidar measurements can be extremely useful for enhancing 383 

the fundamental understanding of ecosystem processes after disturbances. This research paves a 384 

way for enhanced understanding of eco-hydrological processes due to various types of disturbance 385 

with satellite and airborne measurements.  386 

With anticipated a hotter and drier fire season with extended duration in Pacific Northwest 387 

according to future climate projections (Wimberly et al. 2014), we expect that fire frequency and 388 

burn severity of wildfires will be increasing with the changing climate patterns. This study implies 389 

that with these changes, some ecosystems could have extremely low chances of a full recovery, 390 

which could induce the ecosystem degradation and carbon stock reduction. Thus, enhancing the 391 

capacity of Earth system models in reasonably predicting fires and properly characterizing the 392 
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disturbance of fires is essential to the research regarding the carbon cycle, ecosystem functioning, 393 

and climate change. This research also reveals that policy makers need to develop methods, such 394 

as afforestation and sustainable agriculture, to mitigate the potential ecosystem degradation and 395 

carbon emission increase as a result of future fire disturbance.   396 



 24 

Acknowledgements. 397 

This research was supported by the U.S. Department of Energy (DOE), Office of Science (SC) 398 

Biological and Environmental Research (BER) program, as part of BER's Environmental System 399 

Science (ESS) program. This contribution originates from the River Corridor Scientific Focus Area 400 

(SFA) and the Interoperable Design of Extreme-scale Application Software (IDEAS)-Watershed 401 

Project at Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle 402 

Memorial Institute under contract DE-AC05-76RL01830. This paper describes objective technical 403 

results and analysis. Any subjective views or opinions that might be expressed in the paper do not 404 

necessarily represent the views of the U.S. Department of Energy or the United States Government. 405 

This research used resources of the National Energy Research Scientific Computing Center, a DOE 406 

Office of Science User Facility supported by the Office of Science of the U.S. Department of 407 

Energy under Contract No. DE-AC02-05CH11231, using NERSC award BER-ERCAP0023098. 408 

 409 

Conflict of Interest Statement.  410 

All authors declare that they have no competing interests. 411 

 412 

Data availability Statement.  413 

The ERA5 data are at https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5, the 414 

MODIS products are at https://www.earthdata.nasa.gov/sensors/modis, and the MTBS data are at 415 

https://www.mtbs.gov/.  416 

  417 

https://www.earthdata.nasa.gov/sensors/modis
https://www.mtbs.gov/


 25 

Reference.  418 
Adams, H. D., Luce, C. H., Breshears, D. D., Allen, C. D., Weiler, M., Hale, V. C., ... & 419 

Huxman, T. E. (2012). Ecohydrological consequences of drought‐and infestation‐triggered 420 
tree die‐off: insights and hypotheses. Ecohydrology, 5(2), 145-159. 421 

Aires, L. M. I., Pio, C. A., & Pereira, J. S. (2008). Carbon dioxide exchange above a 422 
Mediterranean C3/C4 grassland during two climatologically contrasting years. Global 423 
Change Biology, 14(3), 539-555. 424 

Albrich, K., Rammer, W., Turner, M. G., Ratajczak, Z., Braziunas, K. H., Hansen, W. D., & 425 
Seidl, R. (2020). Simulating forest resilience: A review. Global Ecology and Biogeography, 426 
29(12), 2082-2096. 427 

Asner, G. P., & Alencar, A. (2010). Drought impacts on the Amazon forest: the remote sensing 428 
perspective. New Phytologist, 187(3), 569–578. 429 

Bart, R. R., Kennedy, M. C., Tague, C. L., & McKenzie, D. (2020). Integrating fire effects on 430 
vegetation carbon cycling within an ecohydrologic model. Ecological Modelling, 416, 431 
108880. 432 

Balshi, M. S., McGuire, A. D., Duffy, P., Flannigan, M., Kicklighter, D. W., & Melillo, J. 433 
(2009). Vulnerability of carbon storage in North American boreal forests to wildfires during 434 
the 21st century. Global Change Biology, 15(6), 1491-1510. 435 

Breiman, L. (2021). Random forests. Machine Learning, 45(1), 5–32. 436 
Cansler, C. A., & McKenzie, D. (2012). How robust are burn severity indices when applied in a 437 

new region? Evaluation of alternate field-based and remote-sensing methods. Remote 438 
Sensing, 4, 456–483. 439 

Cooper, C. E., Aparecido, L. M., Muir, J. P., Morgan, C. L., Heilman, J. L., & Moore, G. W. 440 
(2019). Transpiration in recovering mixed loblolly pine and oak stands following wildfire in 441 
the Lost Pines region of Texas. Ecohydrology, 12(1), e2052. 442 

DeSoto, L., Cailleret, M., Sterck, F., Jansen, S., Kramer, K., Robert, E. M. R., ... & Martínez-443 
Vilalta, J. (2020). Low growth resilience to drought is related to future mortality risk in 444 
trees. Nat Commun, 11, 545. 445 

Eidenshink, J., Schwind, B., Brewer, K., et al. (2007). A Project for Monitoring Trends in Burn 446 
Severity. Fire Ecology, 3, 3–21. 447 

Falk, D. A., van Mantgem, P. J., Keeley, J. E., Gregg, R. M., Guiterman, C. H., Tepley, A. J., ... 448 
& Marshall, L. A. (2022). Mechanisms of forest resilience. Forest Ecology and 449 
Management, 512, 120129. 450 

Friedl, M., & Sulla-Menashe, D. (2022). MODIS/Terra+ Aqua Land Cover Type Yearly L3 451 
Global 500m SIN Grid V061. NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, 452 
USA. 453 

Jin, Y., Randerson, J. T., Goetz, S. J., Beck, P. S., Loranty, M. M., & Goulden, M. L. (2012). 454 
The influence of burn severity on postfire vegetation recovery and albedo change during 455 
early succession in North American boreal forests. Journal of Geophysical Research: 456 
Biogeosciences, 117(G1). 457 

Jones, M. W., Smith, A., Betts, R., Canadell, J. G., Prentice, I. C., & Le Quéré, C. (2020). 458 
Climate change increases the risk of wildfires. Science Brief Review, 116, 117. 459 

Halofsky, J. E., Peterson, D. L., & Harvey, B. J. (2020). Changing wildfire, changing forests: the 460 
effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire 461 
Ecology, 16(1), 1-26. 462 



 26 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., ... & 463 
Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal 464 
Meteorological Society, 146(730), 1999-2049. 465 

Hislop, S., Jones, S., Soto‐Berelov, M., Skidmore, A., Haywood, A., & Nguyen, T. H. (2019). 466 
High fire disturbance in forests leads to longer recovery, but varies by forest type. Remote 467 
Sensing in Ecology and Conservation, 5(4), 376-388. 468 

Holling, C. S. (1973). Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst., 4, 469 
1–23. 470 

Hu, Z., Yu, G., Fu, Y., Sun, X., Li, Y., Shi, P., ... & Zheng, Z. (2008). Effects of vegetation 471 
control on ecosystem water use efficiency within and among four grassland ecosystems in 472 
China. Global Change Biology, 14(7), 1609-1619. 473 

Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., ... & Eisenhauer, 474 
N. (2015). Biodiversity increases the resistance of ecosystem productivity to climate 475 
extremes. Nature, 526(7574), 574-577. 476 

Knauer, J., Zaehle, S., De Kauwe, M. G., Haverd, V., Reichstein, M., & Sun, Y. (2020). 477 
Mesophyll conductance in land surface models: effects on photosynthesis and transpiration. 478 
The Plant Journal, 101(4), 858-873. 479 

Li, F., Peng, Y., Zhang, D., Yang, G., Fang, K., Wang, G., et al. (2019). Leaf area rather than 480 
photosynthetic rate determines the response of ecosystem productivity to experimental 481 
warming in an alpine steppe. Journal of Geophysical Research: Biogeosciences, 124(7), 482 
2277-2287. 483 

Li, Y., Shi, H., Zhou, L., Eamus, D., Huete, A., Li, L., et al. (2018). Disentangling climate and 484 
LAI effects on seasonal variability in water use efficiency across terrestrial ecosystems in 485 
China. Journal of Geophysical Research: Biogeosciences, 123(8), 2429-2443. 486 

McDowell, N. G., Anderson-Teixeira, K., Biederman, J. A., Breshears, D. D., Fang, Y., 487 
Fernandez-de-Una, L., et al. (2023). Ecohydrological decoupling under changing 488 
disturbances and climate. One Earth, 6(3), 251-266. 489 

Mills, D., Jones, R., Carney, K., St. Juliana, A., Ready, R., Crimmins, A., et al. (2015). 490 
Quantifying and monetizing potential climate change policy impacts on terrestrial ecosystem 491 
carbon storage and wildfires in the United States. Climatic Change, 131, 163-178. 492 

Myneni, R. B., et al. (2002). Global products of vegetation leaf area and fraction absorbed PAR 493 
from year one of MODIS data. Remote Sensing of Environment, 83(1–2), 214-231. 494 

Nolan, R. H., Mitchell, P. J., Bradstock, R. A., & Lane, P. N. (2014). Structural adjustments in 495 
resprouting trees drive differences in post-fire transpiration. Tree Physiology, 34(2), 123-496 
136. 497 

Pechony, O., & Shindell, D. T. (2010). Driving forces of global wildfires over the past 498 
millennium and the forthcoming century. Proceedings of the National Academy of Sciences 499 
of the United States of America, 107, 19167–19170. 500 

Picotte, J. J., Bhattarai, K., Howard, D., Lecker, J., Epting, J., Quayle, B., et al. (2020). Changes 501 
to the Monitoring Trends in Burn Severity program mapping production procedures and data 502 
products. Fire Ecology, 16, 1-12. 503 

Poulos, H. M., Barton, A. M., Koch, G. W., Kolb, T. E., & Thode, A. E. (2021). Wildfire 504 
severity and vegetation recovery drive post‐fire evapotranspiration in a southwestern pine‐505 
oak forest, Arizona, USA. Remote Sensing in Ecology and Conservation, 7(4), 579-591. 506 

Proença, V., Pereira, H. M., & Vicente, L. (2010). Resistance to wildfire and early regeneration 507 
in natural broadleaved forest and pine plantation. Acta Oecologica, 36(6), 626-633. 508 



 27 

Rammer, W., Braziunas, K. H., Hansen, W. D., Ratajczak, Z., Westerling, A. L., Turner, M. G., 509 
& Seidl, R. (2021). Widespread regeneration failure in forests of Greater Yellowstone under 510 
scenarios of future climate and fire. Global Change Biology, 27(18), 4339-4351. 511 

Raymond, C. L., & McKenzie, D. (2012). Carbon dynamics of forests in Washington, USA: 21st 512 
century projections based on climate‐driven changes in fire regimes. Ecological 513 
Applications, 22(5), 1589-1611. 514 

Ratajczak, Z., Nippert, J. B., Briggs, J. M., & Blair, J. M. (2014). Fire dynamics distinguish 515 
grasslands, shrublands and woodlands as alternative attractors in the Central Great Plains of 516 
North America. Journal of Ecology, 1374-1385. 517 

Rodman, K. C., Veblen, T. T., Andrus, R. A., Enright, N. J., Fontaine, J. B., Gonzalez, A. D., et 518 
al. (2021). A trait‐based approach to assessing resistance and resilience to wildfire in two 519 
iconic North American conifers. Journal of Ecology, 109(1), 313-326. 520 

Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., & Hashimoto, H. (2004). 521 
A continuous satellite-derived measure of global terrestrial primary productivity: Future 522 
science and applications. Bioscience, 56, 547–560. 523 

Samanta, A., Knyazikhin, Y., Xu, L., Dickinson, R. E., Fu, R., Costa, M. H., et al. (2012). 524 
Seasonal changes in leaf area of Amazon forests from leaf flushing and abscission. Journal 525 
of Geophysical Research: Biogeosciences, 117(G1). 526 

Schoennagel, T., Balch, J. K., Brenkert-Smith, H., Dennison, P. E., Harvey, B. J., Krawchuk, M. 527 
A., et al. (2017). Adapt to more wildfire in western North American forests as climate 528 
changes. Proceedings of the National Academy of Sciences, 114(18), 4582-4590. 529 

Seidl, R., & Turner, M. G. (2022). Post-disturbance reorganization of forest ecosystems in a 530 
changing world. Proceedings of the National Academy of Sciences, 119(28), e2202190119. 531 

Seidl, R., Schelhaas, M. J., Rammer, W., & Verkerk, P. J. (2014). Increasing forest disturbances 532 
in Europe and their impact on carbon storage. Nature Climate Change, 4(9), 806-810. 533 

Shi, M., Liu, J., Zhao, M., Yu, Y., & Saatchi, S. (2017). Mechanistic processes controlling 534 
persistent changes of forest canopy structure after 2005 Amazon drought. Journal of 535 
Geophysical Research: Biogeosciences, 122(12), 3378-3390. 536 

Shi, M., Parazoo, N. C., Jeong, S. J., Birch, L., Lawrence, P., Euskirchen, E. S., & Miller, C. E. 537 
(2020). Exposure to cold temperature affects the spring phenology of Alaskan deciduous 538 
vegetation types. Environmental Research Letters, 15(2), 025006. 539 

Stoy, P. C., El-Madany, T. S., Fisher, J. B., Gentine, P., Gerken, T., Good, S. P., et al. (2019). 540 
Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and 541 
transpiration into opportunities. Biogeosciences, 16(19), 3747-3775. 542 

Sulla-Menashe, D., & Friedl, M. A. (2018). User guide to collection 6 MODIS land cover 543 
(MCD12Q1 and MCD12C1) product. USGS: Reston, VA, USA, 1, 18. 544 

Sun, Q., Meyer, W. S., Koerber, G. R., & Marschner, P. (2020). Rapid recovery of net ecosystem 545 
production in a semi-arid woodland after a wildfire. Agricultural and Forest Meteorology, 546 
291, 108099. 547 

Westerling, A. L. (2016). Increasing western US forest wildfire activity: sensitivity to changes in 548 
the timing of spring. Philosophical Transactions of the Royal Society B: Biological 549 
Sciences, 371(1696), 20150178. 550 

Williams, A. P., Abatzoglou, J. T., Gershunov, A., Guzman-Morales, J., Bishop, D. A., Balch, J. 551 
K., & Lettenmaier, D. P. (2019). Observed impacts of anthropogenic climate change on 552 
wildfire in California. Earth's Future, 7(8), 892-910. 553 



 28 

Wimberly, M. C., & Liu, Z. (2014). Interactions of climate, fire, and management in future 554 
forests of the Pacific Northwest. Forest Ecology and Management, 327, 270-279. 555 

Xu, L., Samanta, A., Costa, M. H., Ganguly, S., Nemani, R. R., & Myneni, R. B. (2011). 556 
Widespread decline in greenness of Amazonian vegetation due to the 2010 drought. 557 
Geophysical Research Letters, 38(7). 558 

Zheng, T., Martínez-Vilalta, J., García-Valdés, R., Gazol, A., Camarero, J. J., & Mencuccini, M. 559 
(2021). Disentangling biology from mathematical necessity in twentieth-century 560 
gymnosperm resilience trends. Nature Ecology & Evolution, 5(6), 733-735. 561 


