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Abstract

The threat posed by the increasing concentration of carbon dioxide (CO2) in the atmosphere motivates a detailed and precise

estimation of CO2 emissions and absorptions over the globe. This study refines the spatial resolution of the CAMS/LSCE

inversion system, achieving a global resolution of 0.7° latitude and 1.4° longitude, or three times as many grid boxes as the

current operational setup. In a two-year inversion assimilating the midday clear-sky retrievals of the column-average dry-air

mole fraction of carbon dioxide (XCO2) from NASA’s second Orbiting Carbon Observatory (OCO-2), the elevated resolution

demonstrates an improvement in the representation of atmospheric CO2, particularly at the synoptic time scale, as validated

against independent surface measurements. Vertical profiles of the CO2 concentration differ slightly above 22 km between

resolutions compared to AirCore profiles, and highlight differences in the vertical distribution of CO2 between resolutions.

However, this disparity is not evident for XCO2, as evaluated against independent reference ground-based observations. Global

and regional estimates of natural fluxes for 2015-2016 are similar between the two resolutions, but with North America exhibiting

a higher natural sink at high-resolution for 2016. Overall, both inversions seem to yield reasonable estimates of global and

regional natural carbon fluxes. The increase in calculation time is less than the increase in the number of operations and in the

volume of input data, revealing greater efficiency of the code executed on a Graphics Processing Unit. This allows us to make

this higher resolution the new standard for the CAMS/LSCE system.
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Key Points

● We upgraded our global atmospheric inverse system to 0.7 degree latitude by 1.4 degree longitude 

with a modest computational overhead.

● The resolution increase improves CO  transport representation, benefiting coastal stations the most.₂

● Similar large-scale flux estimates were found between resolutions in 2015-2016, with some regional

variations.
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Abstract

The threat posed by the increasing concentration of carbon dioxide (CO ) in the atmosphere motivates a ₂
detailed and precise estimation of CO  emissions and absorptions over the globe. This study refines the ₂
spatial resolution of the CAMS/LSCE inversion system, achieving a global resolution of 0.7° latitude and 
1.4° longitude, or three times as many grid boxes as the current operational setup. In a two-year inversion 
assimilating the midday clear-sky retrievals of the column-average dry-air mole fraction of carbon dioxide 
(XCO ) from NASA’s second Orbiting Carbon Observatory (OCO-2), the elevated resolution demonstrates ₂
an improvement in the representation of atmospheric CO , particularly at the synoptic time scale, as ₂
validated against independent surface measurements. Vertical profiles of the CO  concentration differ ₂
slightly above 22 km between resolutions compared to AirCore profiles, and highlight differences in the 
vertical distribution of CO  between resolutions. However, this disparity is not evident for XCO , as ₂ ₂
evaluated against independent reference ground-based observations. Global and regional estimates of 
natural fluxes for 2015-2016 are similar between the two resolutions, but with North America exhibiting a 
higher natural sink at high-resolution for 2016. Overall, both inversions seem to yield reasonable estimates 
of global and regional natural carbon fluxes. The increase in calculation time is less than the increase in the 
number of operations and in the volume of input data, revealing greater efficiency of the code executed on 
a Graphics Processing Unit. This allows us to make this higher resolution the new standard for the 
CAMS/LSCE system.

Plain Language Summary

Human activities have significantly increased the amount of carbon dioxide (CO ) in the atmosphere, a ₂
major driver of climate change. Accurately quantifying CO  emissions and absorption, known as fluxes, is ₂
crucial for implementing effective mitigation strategies. Inverse models are computer programs that 
analyze large amounts of CO  observations to estimate surface fluxes that best match these observations in ₂
space and time. While satellites provide extremely precise CO  observations all around the Earth, most ₂
inverse models lack the resolution to fully utilize this data at a large scale. Our study doubled the horizontal
resolution of our inverse model, enhancing its performance and spatial precision when using data from the 
OCO-2 satellite. Thanks to Graphics Processing Units (GPU) acceleration, the computational cost remained
manageable. This improved resolution is now being implemented in the European Copernicus Atmosphere 
Monitoring Service, with ongoing efforts to further improve the resolution. This advancement promises a 
more detailed understanding of global CO  dynamics, supporting climate change mitigation efforts.₂

1 Introduction

The escalating carbon dioxide (CO ) concentration in the atmosphere, driven by anthropogenic emissions,  ₂
is a primary catalyst for climate change. Notably, the Intergovernmental Panel on Climate Change (IPCC) 
estimates a global mean surface temperature increase of approximately 1.07°C during the period 2011-2019
compared to the pre-industrial era (1850-1900) (IPCC, 2019), underscoring the urgency of addressing 
greenhouse gas emissions, particularly CO , to damp climate variations. Precise spatio-temporal ₂
estimations of these emissions are imperative for effective mitigation strategies.

While direct measurements of carbon fluxes provide essential insights for that goal, their spatial coverage 
remains limited for mapping extensive regions globally. However, contemporary direct measurements of 
CO  mole fractions are abundant in numerous regions worldwide, complemented by valuable satellite ₂
observations offering a macroscopic view of CO  distribution. Leveraging this wealth of information, ₂
inverse atmospheric transport systems within a Bayesian framework enable the inference of CO  sources ₂
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and sinks by optimizing surface fluxes based on observed CO  mole fractions and analyzed meteorological ₂
variables.

These inversions, whether conducted at a global or regional scale, grapple with inherent uncertainties, 
particularly at finer scales. Notably, the Global Carbon Budget 2023 of the Global Carbon Project 
(Friedlingstein et al., 2023) revealed significant spread across inversions, with estimates of the net 
atmosphere-to-surface sink in the northern latitudes (>30° N) from 2013 to 2022 ranging between 1.7 and 
3.3 GtC yr−1. Much of this spread is attributed to errors in the transport models (Basu et al., 2018). A 
notable limitation in the current global models employed in the Global Carbon Budget is actually their 
coarse horizontal resolution, averaging only 2.80° in latitude and 2.93° in longitude in the 2023 edition. 
The same issue was present in the v10 Model Intercomparison Project (MIP) of the second Orbiting Carbon
Observatory (OCO-2) aimed to characterize the influence of transport model and inversion methods on flux
estimates: the average resolution of all the global transport models employed in the v10 OCO-2 MIP 
intercomparison was only 3.4° latitude by 4.4° longitude (Byrne et al., 2023). Augmenting the resolution of
transport models holds promise, even at large scale (Liu et al., 2024), reducing numerical errors and thereby
fostering convergence among different models (Prather, 2008). The needs of the United Nations 
Framework Convention on Climate Change (UNFCCC), recommending the evaluation of national emission
inventories compared to atmospheric inversions (IPCC, 2006, 2019), further reinforces the necessity of this 
resolution increase (Chevallier, 2021). While this makes high-resolution targets likely in the future for most
inverse systems, it remains of crucial scientific interest to judiciously evaluate the costs and benefits 
associated with augmenting the horizontal resolution of atmospheric models, in order to optimize 
computing resources, energy use and processing times.

Indeed, resolution enhancement comes at a considerable computational cost given the intricate demands of 
global inverse models involving prolonged data assimilation windows, complex statistical inversion 
schemes, and stable atmospheric modeling under the Courant–Friedrichs–Lewy condition. The quadratic 
growth in the size of modeled 3D atmospheric fields with horizontal resolution necessitates a judicious 
balance between resolution increments and expected performance gains.

Increasing the horizontal resolution presents an opportunity for mitigating the representativeness error 
(Tolk et al., 2008). However, this effect is not universally applicable across all resolutions and does not 
follow a linear trend. Notably, while kilometer-scale resolutions have demonstrated positive impacts, 
particularly in regions with complex terrain (Hedelius et al., 2017), the same does not hold true at the scale 
of hundreds of kilometers, where an increase in horizontal resolution may not necessarily diminish this 
error (Lin et al., 2018).

Interestingly, the few inversions driven by OCO-2 satellite data in the Global Carbon Budget 2023 show a 
smaller difference between the latitudes north of 30◦ N and those further south in their estimates of the net 
atmosphere-land flux compared to inversions driven by surface observations. This could be due to 
additional information obtained when using the spatially-dense OCO-2 retrievals (Friedlingstein et al., 
2023) and such a benefit of the retrievals would be better exploited at higher model resolution.

The transport model used in the CO  inversion system of the European operational Copernicus Atmosphere ₂
Monitoring Service (CAMS) (https://atmosphere.copernicus.eu/) underwent a first horizontal resolution 
increase back in 2015, doubling the number of vertical layers from 19 to 39 (Locatelli et al., 2015), and a 
substantial upgrade of the physic in 2018 (Remaud et al., 2018). Tests at higher spatial and vertical 
resolutions (another doubling of the vertical layers to 79, and a doubling of the number of horizontal boxes 
to reach a resolution around 2 degrees over the whole globe) proved inadequate for accurately simulating 
atmospheric dynamics in regions characterized by complex topography, such as mountainous areas 
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(Remaud et al. 2018): the increased 3D resolution did not yield a significant improvement compared to 
observational data, underscoring the need for further refinement, particularly to show improvement at the 
synoptic timescale (Agustí-Panareda et al., 2019). The vertical profiles of CO  concentration were not ₂
significantly affected by changes in resolution unlike the XCO  fields, especially around emission hotspots.₂
The high computing cost associated with this resolution increase delayed its implementation in the 
production chain of the CAMS CO  inversion product until the code was ported on Graphics Processing ₂
Units (GPUs) in 2023 (Chevallier et al., 2023). The migration also opened the possibility of further 
resolution increases while maintaining a processing time, or "time to solution", compatible with operational
constraints. 

This study investigates the effect of enhancing horizontal resolution on global-scale CO2 inversion to about 
1 degree. The comparison entails evaluating the outcomes of a two-year inversion at an increased 
resolution, assimilating OCO-2 data, against a reference configuration and independent observations. The 
choice of the OCO-2 data, rather than surface or other satellite measurements, is linked to their global 
coverage, rapid availability and exceptional quality, making them a backbone of low-latency carbon cycle 
monitoring. The study examines both the influence of horizontal resolution on atmospheric CO2 transport 
and the overall impact on the final estimates of carbon fluxes. The subsequent section delineates the inverse
system and the experimental setup, followed by a presentation of results compared to independent 
observations between low and high resolutions in Section 3. Section 4 succinctly summarizes the findings 
and concludes with insights derived from this resolution increase.

2 Model and inversion setup

2.1 Inversion system

The inversion system that is used to perform global CO  and N₂ 2O atmospheric inversions for CAMS has 
been developed in the LSCE since 2004 (Chevallier et al. 2005). The same system has also been used 
outside CAMS for other tracers, such as methane (Berchet et al., 2021), carbon monoxide, or nitrogen 
oxides (Fortems-Cheiney et al., 2021).

This inverse system is based on a variational approach of the Bayesian inversion problem: assimilating 
observational data of CO  concentrations to derive an optimal state of CO  fluxes given a prior estimate of ₂ ₂
the CO  fluxes.₂

Mathematically, this consists in iteratively minimizing a cost function J which is defined as follows:

J (x )=
1
2
(x−xb

)
T

B−1
(x−xb

)+
1
2
(Hx− y)T R−1

(Hx− y ) (1)

Here, x represents the state vector of the variable being optimized, which, in this case, corresponds to 
successive global maps of the CO  fluxes throughout the inversion window and to the 3D state of CO₂ 2 at 
the start of the inversion window. xb means the vector of the prior state of x, and y represents the 
assimilated observations. The matrices R and B correspond to the error covariance matrices associated with
the uncertainties of the assimilated observations, as defined from the transport model, and of the prior 
fluxes, respectively. The linearized operator H projects the control variable x into the observation space: it 
is primarily based on the transport model. In our case, the transport model is an off-line version of the 
general circulation model (GCM) of the Laboratoire de Météorologie Dynamique (LMDZ) in its latest 
version, LMDZ6A (Remaud et al., 2018; Hourdin et al., 2020). The off-line version only solves tracer 
transport equations, driven by pre-computed air mass fluxes from a reference run of the full GCM nudged 
to the 3-hourly horizontal winds from the fifth generation ECMWF reanalysis (ERA5). The code of the off-
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line transport model corresponds to the one made public by Chevallier et al. (2023) with some memory 
optimizations in order to accommodate the larger arrays of the new resolution. The inversion system, coded
in Python and run on CPU, orchestrates the connection across monthly runs of the transport model, coded 
in Fortran and basically run on GPU, ensuring the coherence and continuity of the inversion process.

The minimization of J is done iteratively by calculating its gradient using the adjoint version of the 
transport model and a conjugate gradient algorithm (Fisher, 1998; Chevallier et al., 2005).

2.2 Inversion configuration

To assess the impact of the resolution increase on our inverse system, we conducted two global-scale CO  ₂
inversions around years 2015 and 2016, incorporating three months for spin-up in 2014 and three months 
for spin-down in 2017, at two distinct horizontal resolutions. The inversion of reference, referred to as the 
low-resolution (LR) model throughout the text, operates on a latitude-longitude grid with dimensions of 
1.27° in latitude, 2.50° in longitude, and 79 vertical layers, totaling 1,626,768 cells with each cell of size 
140 km by 278 km at the equator. The new resolution, designated as the high-resolution (HR) model 
hereafter, utilizes a latitude-longitude grid with dimensions of 0.70° in latitude, 1.41° in longitude, and 79 
vertical layers, resulting in a total of 5,177,344 cells with each cell of size 78 km by 157 km at the equator. 
The model time step of the LR is 5 minutes for horizontal advection, 10 minutes for vertical advection and 
20 minutes for subgrid processes. In order to respect the Courant–Friedrichs–Lewy condition for stability in
the HR, it has to go down to 3 minutes for horizontal advection and 6 minutes for vertical advection; for 
subgrid processes, we reduce it as well to 12 minutes. In both LR and HR configurations, the pre-computed
air mass fluxes are 3-hourly averages.

Both inversions share identical prior states for CO  fluxes, which are interpolated onto their respective ₂
grids, incorporating the following data sources:

● CO  fluxes over the ocean are based on the CMEMS-LSCE-FFN 2022 estimates (Chau et al. 2022).₂

● CO  biomass burning fluxes are derived from the GFED4.1 inventory.₂

● Monthly CO  fossil emissions are based on GCP-GridFEDv2023.1 estimates (Jones et al., 2021).₂

● Natural fluxes of CO  from the biosphere are based on a climatology of 3-hourly averaged estimates₂
from the ORCHIDEE model, version 2.2, revision 7262 (Krinner et al., 2005 ; Friedlingstein et al., 
2022).

Observations of midday clear-sky total column-averaged CO  concentrations from the OCO-2 satellite were₂
assimilated, specifically NASA’s Atmospheric CO2 Observations from Space (ACOS) bias-corrected land 
retrievals of XCO , version 11.1 (OCO-2/OCO-3 Science Team et al., 2022, O’Dell et al., 2018, , 2023). ₂
OCO-2 ocean observations were not used in this study, neither were observations over mixed land-water 
surfaces. Only data flagged as "good" were used, as 10-second averages, i.e. about 67 km along the orbit 
track, with an averaging procedure implemented at LSCE and similar to the one defined in the OCO-2 MIP 
(Crowell et al., 2019). In order to account for likely correlations between the transport model errors at the 
sub-grid scale, we de-weighed the OCO-2 binned retrievals that fall within a same LMDz grid box for a 
same orbit by inflating the assigned error variance by the number of retrievals in the box.

The retrievals initially adhered to the X2007 scale of the World Meteorological Organization (WMO). We 
converted them to the X2019 scale following Hall et al., (2021):

X2019=1.00079 ⋅X2007−0.142 ppm (2)
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When assimilating the satellite retrievals, the prior and averaging kernel of each retrieval were used in the 
model. No other data was assimilated so that flasks, in-situ and ground-based XCO  observations are fully ₂
independent.

The spatial correlations of the prior uncertainty, which drive the off-diagonal terms of B in Equation 1, 
decay exponentially with a length of 500 km over land and 1000 km over sea. The standard deviations over 
land are proportional to the climatological daily-varying heterotrophic respiration flux simulated by 
ORCHIDEE and are constant in gC∙m-2 per day over the ocean. They were tuned at each resolution so that 
over a full year, the total 1-sigma uncertainty for the prior land fluxes amounts to 2.9 GtC∙yr-1, and for the 
open ocean to a global air-sea flux 1-sigma uncertainty of 0.2 GtC∙yr-1.

Both inversions were performed over 40 iterations, on 1 CPU and 1 NVIDIA A100 GPU as in Chevallier et
al., (2023). The inversion system may be accelerated with a physical parallelization in which the years are 
run in parallel on different GPUs with a spin-up period for each (Chevallier, 2013), but this possibility has 
not been exploited here.

2.3 Methodology

We evaluated the two inversions by directly comparing their final state and estimates of CO  fluxes at the ₂
global, regional, and local scales. We also compared them to independent observations of CO  ₂
concentrations.

2.3.1 Observational data

To assess the agreement between our simulated tracer concentrations and observed data, we sampled mole 
fraction fields at the nearest cell center, model level (when relevant), and timestamp for each data point. We
utilized high-quality measurements from the CO  GLOBALVIEWplus v8.0_2022-08-27 ObsPack database ₂
(Schuldt et al., 2022, Miles et al., 2017, Miles et al., 2018, ICOS RI, et al., 2023, Lan et al., 2023) on the 
WMO CO  X2019 scale (Hall et al., 2021). For AirCore, we used Version 20230831 of the dataset from ₂
NOAA (Baier et al., 2021). We also exploited ground-based XCO  retrievals from the Total Carbon ₂
Column Observing Network (TCCON, Wunch et al., 2011) from which we selected in 2015 and 2016 
twenty Fourier transform spectrometers around the globe (Buschmann et al., 2022, C et al., 2022, 
Deutscher et al., 2023, Dubey et al., 2022, Iraci et al., 2022, Kivi et al., 2022, Maziere et al., 2022, Morino 
et al., 2022a, Morino et al., 2022b, Notholt et al., 2022, Sherlock et al., 2022, Shiomi et al., 2022, Strong et 
al, 2022, Sussmann and Rettinger, 2017, Te et al., 2022, Warneke et al., 2022, Wennberg et al., 2022a, 
Wennberg et al., 2022b, Wennberg et al., 2022c, Wunch et al., 2022).

Similar to prior studies involving inverse modeling with LMDZ and our recent investigation into CO  ₂
transport (Lloret et al., 2023), we only selected measurements that could be well modeled by a transport 
model, particularly avoiding tracer accumulation at low altitudes. For in-situ surface stations located under 
1000 m above sea level (a.s.l.), we only considered data from 12:00 to 16:00 local time, for in-situ stations 
above 1000 m a.s.l., only nighttime data from 00:00 to 4:00 local time were retained. We kept all flask 
measurements.

The observations were categorized into three groups: surface in-situ and flask measurements, AirCore flight
measurements, and remote-sensing observations from the OCO-2 mission and TCCON sites. Vertical 
profiles of CO  mole fraction were obtained using AirCore, an atmospheric sampling system that collects ₂
successive samples of ambient air (Karion et al. 2010, Baier et al., 2021). From the Obspack dataset, 112 
surface stations were selected for analysis, excluding those with fewer than 1200 measurement points over 
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the 2-year study period that passed the initial data selection criteria. The full list of Obspack and TCCON 
stations used is available as a Supplement. All samples from AirCore data were retained.

The uncertainty associated with the in situ and flask CO  mole fraction measurements used in this study is ₂
approximately 0.1 micromol per mol (or part per million, ppm), as detailed in Crotwell et al. (2020) for 
systematic errors and Hazan et al. (2016) for standard deviation. This uncertainty is considered negligible 
compared to the model uncertainty stemming from transport errors, estimated to be around 1 ppm under 
3000 m (Lauvaux et al., 2009). The altitude determination error for AirCore measurements due to storage 
diffusion can be substantial, ranging from approximately 250 m below 20 km to 1 km above that altitude 
(Wagenhäuser et al., 2021). The uncertainty of the measurements of the AirCore sample itself is under 0.1 
ppm on average. The precision of TCCON measurements varies by site but generally remains below 0.25%
(1-sigma) for individual measurements of XCO  under clear or partly cloudy skies.₂

2.3.2 Processing of the surface stations

To compare the results of our inversions with measurements from surface stations, we employed a curve-
fitting methodology to extract the annual mean, seasonal cycle, and synoptic variability of the CO  mole ₂
fraction from the time-series of measurements and the model. The function used for fitting consists of a 
second-degree polynomial and eight harmonics. The fitting function utilized in this analysis comprises a 
second-degree polynomial and eight harmonics. The polynomial characterizes the background growth rate 
in CO  concentration, although this aspect is not the focus of our study due to the limited duration of our ₂
inversions. The harmonics capture the seasonal variability of CO  concentrations, while the synoptic ₂
variability is obtained by subtracting the fitted curve from the raw measurements or model values.

To study the seasonal cycle we quantify the correlation of the phase between model and measurements as 
well as the normalized peak-to-peak amplitude of the harmonics. For the synoptic variability, we look at the
correlation coefficient between model and measurements and at the normalized standard deviation of the 
values. The normalization refers to the division of the model standard deviation  by the one of the 
measurements.

2.3.2 Processing of the column-averaged CO  and vertical profiles₂

In evaluating the vertical profiles of CO  mole fractions, we employed a binning and averaging approach to₂
organize the data from AirCore measurements and our models into 50 altitude bins between 500 m and the 
maximum altitude of 26 km. We looked at their direct values and changes in gradients.

To compare our model to independent TCCON observations on the X2019 scale, we computed the column-
averaged CO  mole fraction at each observation location and time with their respective averaging kernel ₂
and prior profile. We could then compute the difference between observations and models, and in particular
look at the mean bias, correlation and normalized standard deviation (as defined in the previous 
subsection).

2.3.3 Processing of the surface flux estimates

To study the regional distribution of the CO  fluxes, we divided the domain into the 22 Transcom3 regions ₂
of Gurney et al. (2002) and computed the CO  monthly fluxes of the two inversions in each one. ₂

We also compared the differences at a smaller scale by generating maps that averaged CO  fluxes in each ₂
cell per season, providing insights into local variations.
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3 Results and discussion

 3.1 Computing time

Both inversions were performed on 1 CPU and 1 NVIDIA A100 GPU. The inversions took 4 days and 4 
hours for the LR model and 9 days and 15 hours for the HR model. As mentioned above, the capability to 
accelerate these inversions with the physical parallelization (Chevallier, 2013) was not exploited. This 
twofold increase in overall inversion computing time is much smaller than the sixfold increase in the 
number of operations within the transport model: threefold for the number of global grid cells and an 
additional twofold for the number of time steps. It is less than the extra-computations induced by the 
ninefold increase in the dimension of the prior error covariance matrix B. It is also relatively less than what 
the threefold increase in the volume of transport model input data implies on reading time. Since the 
computer code is the same between the two resolutions, the relatively modest increase in calculation time 
reveals better efficiency of our code with increased resolution, which is not unexpected with GPUs, since 
higher resolutions allow larger loops that better keep the GPUs busy. 

 3.2 Surface stations

Figure 1. Pearson correlation coefficient (a) and average normalized peak-to-peak amplitude (b) of the 
modeled vs. measured CO  mole fraction seasonal cycle for each surface station studied for the years 2015-₂
2016. Blue circles are for the LR model and red circles are for the HR model. The stations are represented 
by their code in the ObsPack database. The average correlation coefficient for each resolution is in the 
corresponding color as a solid or dotted line in panel (a). The black dashed line in (b) corresponds to the 
ideal normalized peak-to-peak amplitude of 1. The stations are ordered on the abscissa by increasing 
correlation coefficients for the LR model. 

The mean correlation coefficient of the seasonal cycle across all stations studied is 0.90 for both resolutions
(Fig. 1a). The average normalized peak-to-peak amplitude is 1.08 for the LR and 1.07 for the HR. The 
standard deviation for the normalized peak-to-peak amplitude is 0.52 for the LR and 0.42 for the HR (Fig. 
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1b). Both resolutions therefore capture the seasonal cycle similarly well in general, and only a few stations 
show large differences between the two resolutions. The HR shows a significantly lower spread of the 
peak-to-peak amplitude, indicating an improvement in modeling the seasonal variability.

The best performing stations in terms of seasonal cycle correlation ( R > 0.1) and peak-to-peak amplitude 𝚫
( PtP > 0.3) for the HR model compared to the LR model are the following ones: DEC, PV, BU, CPT and 𝚫
SGP, CIT, BRM, OWA, WAO, LAN, HNP. The stations that perform worse with the HR model while still 
capturing the seasonal cycle well in the LR model ( R < 0.1, 𝚫 RLR>0.7 and PtP < 0.3, 𝚫 |PtPLR−1|<0.5) 
are: BIR, UTSUG, UTMSA and BAO, INX06, INX07. Their locations and characteristics are presented in 
Table 1. 

Figure 2. Same as Fig. 1 but for the Pearson correlation coefficient (a) and the normalized standard 
deviation (b) of the daily average residue between our modeled and measured CO  mole fraction at the ₂
surface stations averaged for the years 2015-2016. 

Figure 2 (a) shows that the mean synoptic variability correlation slightly improves at the higher resolution, 
going from 0.36 for the LR to 0.38 for the HR. The average normalized standard deviation is 1.33 for the 
LR model, and reduced to 1.29 for the HR model. This shows a small but significant overall improvement 
regarding the synoptic variability of surface stations when increasing the resolution of our model. The 
improvement is actually pronounced at the lower end (mean improvement of 0.03 for RLR < 0.4) while 
correlations are hardly changing at the higher end (mean improvement of 0.002 for RLR > 0.4).

The best-performing stations in terms of synoptic variability correlation ( R > 0.1) and normalized 𝚫
standard deviation ( NSD > 1.0) for the HR model compared to the LR model are the following ones: 𝚫
DEC, PV, BU, WAO, HNP, OMP, SGP and CIT, BRM. The stations that perform worse with the HR 
model while still capturing the synoptic variability well in the LR model ( R < 0.1, 𝚫 RLR>0.3 and NSD < 𝚫
1.0, |NSDLR−1|<1.0) are CRV, INU, UTMSA and BAO. Their locations and characteristics are also 
presented in Table 1.
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Most of the best performing stations at the HR are coastal or next to areas with sharp elevation changes, 
while the worst performing ones are largely urban. These stations already perform better in the HR prior 
simulation than in the LR prior simulation (not shown), because the better coastline definition is hardly 
exploited in the assimilation of CO  column retrievals.₂

Station code Type Country
Seasonal best 
performing version

Synoptic best 
performing version

BAO Urban, mountainous USA LR LR

BIR Coastal Norway LR None

BRM Mountainous Switzerland HR HR

BU Coastal, urban USA HR HR

CIT Coastal USA HR HR

CPT Coastal South Africa HR None

CRV Boreal USA None LR

DEC Coastal Spain HR HR

HNP Urban, lake Canada HR HR

INU Boreal Canada None LR

INX06 Urban USA LR None

INX07 Urban USA LR None

LAN
Coastal, 
mountainous China HR None

OMP
Coastal, 
mountainous USA None HR

OWA
Coastal, 
mountainous USA HR None

PV Coastal USA HR HR

SGP Plains USA HR HR

UTMSA Urban USA LR LR

UTSUG Urban USA LR None

WAO
Coastal, 
mountainous UK HR HR

Table 1

Notable Stations Identified by Seasonal and Synoptic Variability Performance
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3.3 Vertical profiles

Figure 3. CO  mole fraction vertical profile in ppm for the two resolutions of the model (blue for LR, red ₂
for HR) and AirCore sample measurements (yellow). The fitted lines were generated by averaging the data 
over 50 altitude bins. Error bars of the measurements correspond to the altitude determination uncertainty 
of the sample and to the uncertainty of the measurement itself.  The values of the bias, standard deviation 
and root-mean-square deviation of the binned data are presented for each resolution in their respective color
(blue for LR and red for HR).

We utilized AirCore flight data to compare the CO  mole fractions of our model with measurement data, ₂
obtaining vertical profiles extending to the low stratosphere. This analysis aimed to investigate the impact 
of increasing resolution on vertical transport. The measurements were limited in latitudes and the results 
may be different in the tropics.

As depicted in Fig. 3, both resolutions of the model exhibit good agreement with measurements up to 
around 16 km. Beyond that, up to 22 km, both resolutions differ from measurements, showing a positive 
bias. Above 22 km, the resolutions diverge from each other without either of them matching the 
measurements well. This leads to a higher general bias for the HR model compared to measurements (0.42 
ppm) but with a lower spread of the difference between model and measurements (standard deviation of 
1.09 ppm).
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Figure 4. Difference in CO  mole fraction in ppm between the HR and LR models, averaged over the two ₂
years and per longitude band. The data of the LR was interpolated on the latitudes of the HR before 
computing the difference.

When looking at the time-averaged zonal vertical profiles of CO  mole fraction, we can see that the ₂
distribution is different between the resolutions and is on the order of -0.7 to +1.7 ppm (Fig. 4). These 
variations vary both in latitude and in altitude, and the previous comparison to AirCore data only gave a 
limited view into these differences. The HR model shows a higher concentration of CO  in the upper ₂
atmosphere in general.
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3.4 TCCON observations

Figure 5. Correlation (a) and normalized standard deviation (b) of the difference between the model XCO  ₂
and remotely-sensed XCO  from TCCON stations averaged over the years 2015-2016 for each station, and ₂
then averaged across the 25 stations. Blue circles are for the LR model and red circles are for the HR 
model. The average correlation and normalized standard deviation for each resolution are in the 
corresponding color as a solid or dotted line in panels (a,b). The black dashed line in (b) corresponds to the 
ideal normalized standard deviation of 1. The stations are ordered on the abscissa by increasing latitudes. 
The y axis on panel (b) is in log scale.

When comparing XCO  between the final state of our inversion and independent observations from ₂
TCCON, we see that the mean difference between the model and observations is almost identical for both 
resolutions, at 0.06 ppm for the LR and 0.08 ppm for the HR (not shown). Figure 5 shows that the average 
correlation is 0.88 for the LR and 0.89 for the HR. The average normalized standard deviation is 0.53 for 
both resolutions. When looking at the behavior of individual stations the result is very different, with both 
the general bias and normalized standard deviation varying widely for different stations, without any 
obvious link with the station location. However, both resolutions behave similarly to each other at each 
station, with the worst performing stations being identical for both resolutions. The two urban stations of 
Hefei and Tsukuba show a notably better correlation at HR. The simulation of column-averaged CO  is in ₂
principle not as sensitive to resolution increase of the transport model as for surface CO  (Rayner and ₂
O’Brien, 2001) and this can explain the marginal difference between the resolutions with respect to 
TCCON observations.

The difference in bias and standard deviation between the two resolutions compared to already assimilated 
OCO-2 retrievals is negligible (not shown).

3.5 Regional fluxes
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Figure 6. Total annual surface emissions minus the fossil fuel emissions for LR and HR (in blue and red 
crosses respectively) in GtC for each Transcom3 region, for the year 2015 on the left of the black dotted 
line, and for the year 2016 on the right.

Figure 6 shows the annual net surface flux in GtC minus the fossil fuel emissions per Transcom3 region for
each year of our inversion and both resolutions. This information, combined with monthly estimates of CO₂
fluxes from Fig. 6 inform us about when and where surface fluxes estimated by the inversions differ 
depending on the corresponding model resolution.

A few Transcom3 regions exhibit notable differences in CO  flux dynamics, particularly with North ₂
American boreal forests suggesting substantially more sink in both years when employing the HR model. 
In contrast, South American tropical regions show less pronounced sinks and emission estimates when 
using the HR model, leading to more neutral fluxes. Furthermore, in the case of Tropical Asia, the LR 
model produced higher emission estimates, while the HR model estimated lower sinks, leading to much 
lower yearly emissions. Lastly, the inversion results show higher CO  emissions during the winter season in₂
Australia with the LR model. Figure 6 shows the time series of the monthly averaged surface flux for these 
four Transcom3 regions which differ the most significantly between the two resolutions of our model, 
highlighting the previously discussed seasonal differences.

The global natural carbon flux for the year 2015 is -3.41 GtC (LR) and -3.43 GtC (HR), and -3.65 GtC 
(LR) and -3.77 GtC (HR) for the year 2016.
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Both resolutions offer realistic global estimates of carbon fluxes that are within the range of other 
atmospheric inversion results using the older v9 OCO-2 retrievals for 2015. For 2016 the v9 retrievals give 
on average a stronger global carbon sink than our inversions (Peiro et al., 2022). 

Differences between resolutions primarily lie in the distribution of these fluxes across regions. Significant 
differences in regional carbon flux estimates, such as in the North America Boreal region, are not paralleled
by notable discrepancies in the seasonal cycle of CO  concentrations compared to independent ₂
measurements from surface stations. Regional land fluxes estimation are in line with estimations from 
atmospheric inversion results using the v9 OCO-2 retrievals for both years, but ocean fluxes tended to have
lower carbon sinks (Peiro et al., 2022).
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Figure 7. Monthly averaged surface flux minus the fossil fuel emissions for LR and HR model in GtC per 
month (blue and red respectively), for 2015 and 2016 (solid lines and dashed lines respectively)  in 
Transcom3 regions North American Boreal (a), South American Tropical (b), Tropical Asia (c), and 
Europe (d). These regions show the greatest relative difference in estimated annual flux between the two 
resolutions of our model.

3.6 Local fluxes

When looking at fluxes at the local scale, we can directly see the benefit of the high resolution with respect 
to coastal definition, in particular in areas with complex coastlines. Figure 8 shows maps of the increments 
of the surface fluxes, i.e. the correction of the prior fluxes by the posterior ones, averaged for winter and 
summer between 2015 and 2016. Some regional scale patterns discussed in section 3.5 can be immediately 
seen, such as the higher summer sink of carbon for the HR model in boreal North America. The general 
patterns of surface fluxes for the HR model are similar to the LR model but provide much more spatial 
details.

The  stations  that  perform  best  in  the  HR  model  and,  therefore  benefit  the  most  from the  increased
resolution as discussed in section 3.1 are situated either in continental North America, near large population
centers with complex orography, or near the coast (listed in Table 1 and visible in Fig. 8). This indicates
that the improvement we see is not primarily caused by fine-scale changes in the seasonal flux patterns but
more so by the improved orography and wind fields used to drive the model. 

The zoom of Figure 9 exemplifies the improvement gained by the increase in resolution around Taiwan.
The Taiwan Strait at HR is represented with some pure marine pixels in contrast to LR. Conversely, the
LAN station in the North East of the figure is in a mixed cell at LR with both land and sea surfaces, but is
clearly inland at HR. Such a behavior can be seen across the globe in particular around large islands or
straits. This benefit from the HR model does not come through a better assimilation of the OCO-2 data, but
is inherent to the resolution of the transport model itself. 
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Figure 8. Surface flux increments between the prior and posterior state of the inversion for the LR (a,b)
and HR (c,d) versions, in kg/m²/month. The fluxes are averaged over the corresponding months for the 2
years of inversion. December, January and February (a,c), June, July and August (b,c) The dots correspond
to the best-performing stations of each resolution in terms of seasonal cycle and synoptic variability, as
discussed in section 3.1 (blue for stations performing best in LR, red in HR).
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Figure 9. Total monthly surface flux including fossil fuel emissions averaged over the period 2015-2016 
for the LR (a) and HR (b) versions, in kg/m²/month, zoomed around the area near the station LAN in 
China. The lines show the edge of the cells of each model, highlighting the difference in resolution, 
particularly along the coastline.

4 Conclusion

We successfully increased the resolution of the CAMS/LSCE inversion system, tripling the number of 
global grid points and reaching a global resolution of 0.7° latitude and 1.4° longitude. This was made 
possible thanks to recent developments in the model, allowing it to run on GPUs and limiting the necessary 
higher computational cost than the previous resolution to twice without increasing the number of devices. 
While this study focused on an inversion over two years and only assimilating OCO-2 data, larger and 
longer-lasting inversions are now possible and will be part of future operational work within CAMS.

As seen in the previous sections, the increase in resolution of our inverse model leads to a small but 
significant overall improvement in the representation of atmospheric CO  compared to independent ₂
measurements from surface stations, particularly at the synoptic time scale. The stations where the benefit 
of the new resolution is seen the most were situated primarily near coasts or large cities. This gain was 
primarily due to the resolution increase of the transport model, leading to a better orography and coastal 
definition. This is promising for the quality of future surface-driven inversions run at the new resolution.

The vertical profiles of CO  concentration are different between the two resolutions when compared to ₂
AirCore measurements, particularly for altitudes above 22 km. This difference can also be seen when 
looking at zonal averages of the vertical profile of CO . This disparity between resolutions is however not ₂
evidenced when looking at XCO  globally, whether when comparing the final inversion product to already ₂
assimilated OCO-2 observations or to independent TCCON observations. 

The global and regional estimates of the natural fluxes for the years 2015 and 2016 are very similar for our 
two resolutions, with the largest difference being a higher natural sink in North America for the HR model 
during the year 2016, leading to more intake of carbon for this year. Both inversions offer valid options for 
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global and regional estimates of natural carbon fluxes and we cannot directly demonstrate the expected 
superiority of the higher resolution ones.

Further enhancement in horizontal resolution holds the potential for increased benefits in atmospheric 
transport, with a critical threshold being the attainment of full cloud resolution rather than relying on 
subgrid parameterization (Schneider et al., 2017). However, conventional latitude-longitude grids may 
encounter computing bottlenecks when scaling up in resolution, particularly due to clustering issues at the 
poles. The proposed strategy for the CAMS/LSCE inversion system to address this challenge involves 
adopting a new dynamical core operating on an icosahedral grid (Dubos et al., 2015). Ongoing 
development efforts aim to bring such a core in the CAMS/LSCE inversion system in order to reach sub-
degree resolutions.
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Appendix A: Observation datasets

Table A1 presents the datasets used from the Obspack database as well as the corresponding abbreviated 
site code for each station used in the main text.

Table A2 presents in a similar way the list of TCCON sites used in the study.

Table A1. List of datasets used from Obspack for surface stations

     

Site code Dataset

AirCoreNOAA

ABT

aircorenoaa_aircore_1_allvalid

abt_surface-insitu_6_allvalid

ALT alt_surface-flask_426_representative

27
778
779

780
781
782

783
784
785

786
787
788

789
790
791

792
793
794

795
796
797

798
799
800
801

802

803
804

805

806

807



ALT alt_surface-insitu_6_allvalid

ALT alt_surface-flask_1_representative

ALT alt_surface-flask_2_representative

ALT alt_surface-flask_4_representative

AMS ams_surface-flask_1_representative

AMS ams_surface-insitu_11_allvalid

AMT amt_tower-insitu_1_allvalid-30magl

AMT amt_tower-insitu_1_allvalid-12magl

AMT amt_surface-pfp_1_allvalid-107magl

AMT amt_tower-insitu_1_allvalid-107magl

AZV azv_tower-insitu_20_allvalid-29magl

AZV azv_tower-insitu_20_allvalid-50magl

BAO bao_tower-insitu_1_allvalid-100magl

BAO bao_tower-insitu_1_allvalid-300magl

BAO bao_surface-pfp_1_allvalid-300magl

BAO bao_tower-insitu_1_allvalid-22magl

BCK bck_surface-insitu_6_allvalid

BIR bir_surface-insitu_56_allvalid

BRA bra_surface-insitu_6_allvalid

28



BRM brm_tower-insitu_49_allvalid-12magl

BRM brm_tower-insitu_49_allvalid-72magl

BRM brm_tower-insitu_49_allvalid-45magl

BRM brm_tower-insitu_49_allvalid-212magl

BRM brm_tower-insitu_49_allvalid-132magl

BRW brw_surface-insitu_1_allvalid

BRW brw_surface-flask_4_representative

BRW brw_surface-flask_1_representative

BRW brw_surface-flask_426_representative

BRZ brz_tower-insitu_20_allvalid-20magl

BRZ brz_tower-insitu_20_allvalid-80magl

BRZ brz_tower-insitu_20_allvalid-5magl

BRZ brz_tower-insitu_20_allvalid-40magl

BSD bsd_tower-insitu_160_allvalid-108magl

BSD bsd_tower-insitu_160_allvalid-248magl

BSD bsd_tower-insitu_160_allvalid-42magl

BU bu_surface-insitu_59_allhours

CBW cbw_tower-insitu_445_allvalid-27magl

CBW cbw_tower-insitu_445_allvalid-67magl
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CBW cbw_tower-insitu_445_allvalid-127magl

CBW cbw_tower-insitu_445_allvalid-207magl

CBY cby_surface-insitu_6_allvalid

CHL chl_surface-insitu_6_allvalid

CIT cit_surface-insitu_115_allhours-200magl

COP cop_tower-insitu_59_allhours

CPS cps_surface-insitu_6_allvalid

CPT cpt_surface-flask_1_representative

CPT cpt_surface-insitu_36_marine

CRV crv_tower-insitu_1_allvalid-32magl

CRV crv_surface-pfp_1_allvalid-32magl

CRV crv_tower-insitu_1_allvalid-17magl

CRV crv_tower-insitu_1_allvalid-5magl

DEC dec_surface-insitu_431_allvalid

DEM dem_tower-insitu_20_allvalid-45magl

DEM dem_tower-insitu_20_allvalid-63magl

EEC eec_surface-insitu_431_allvalid

EGB egb_surface-insitu_6_allvalid

ENA ena_surface-insitu_64_allvalid-10magl
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ESP esp_surface-flask_2_representative

ESP esp_surface-insitu_6_allvalid

EST est_surface-insitu_6_allvalid

ETL etl_surface-insitu_6_allvalid

FSD fsd_surface-insitu_6_allvalid

GCI01 gci01_tower-insitu_60_allvalid

GCI02 gci02_tower-insitu_60_allvalid

GCI03 gci03_tower-insitu_60_allvalid

GCI04 gci04_tower-insitu_60_allvalid

GCI05 gci05_tower-insitu_60_allvalid

GIC gic_surface-insitu_431_allvalid

GIF gif_surface-insitu_11_allvalid

GOULD gould_shipboard-insitu_1_allvalid

HDP hdp_surface-insitu_3_nonlocal

HEI hei_surface-insitu_22_allvalid

HFM hfm_tower-insitu_59_allhours

HNP hnp_surface-insitu_6_allvalid

HTM htm_tower-insitu_424_allvalid-70magl

HTM htm_tower-insitu_424_allvalid-30magl

31



HTM htm_tower-insitu_424_allvalid-150magl

HUN hun_tower-insitu_35_allvalid-48magl

HUN hun_tower-insitu_35_allvalid-10magl

HUN hun_tower-insitu_35_allvalid-115magl

HUN hun_tower-insitu_35_allvalid-82magl

HUN hun_surface-flask_1_representative

INU inu_surface-insitu_6_allvalid

INX01 inx01_surface-insitu_60_allhours

INX02 inx02_surface-insitu_60_allhours

INX03 inx03_surface-insitu_60_allhours

INX04 inx04_surface-insitu_60_allhours

INX06 inx06_surface-insitu_60_allhours

INX07 inx07_surface-insitu_60_allhours

INX08 inx08_surface-insitu_60_allhours

INX09 inx09_surface-insitu_60_allhours

INX10 inx10_surface-insitu_60_allhours

INX11 inx11_surface-insitu_60_allhours

INX13 inx13_surface-insitu_60_allhours

JFJ jfj_surface-insitu_5_allvalid
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JFJ jfj_surface-insitu_49_allvalid

KAS kas_surface-insitu_53_allvalid

KCMP kcmp_tower-insitu_102_allhours-200magl

KRS krs_tower-insitu_20_allvalid-67magl

KRS krs_tower-insitu_20_allvalid-35magl

LAN lan_surface-insitu_33_allvalid

LEF lef_tower-insitu_1_allvalid-244magl

LEF lef_tower-insitu_1_allvalid-122magl

LEF lef_surface-pfp_1_allvalid-396magl

LEF lef_tower-insitu_1_allvalid-30magl

LEF lef_tower-insitu_1_allvalid-11magl

LEF lef_tower-insitu_1_allvalid-76magl

LEF lef_tower-insitu_1_allvalid-396magl

LEF lef_surface-pfp_1_allvalid-244magl

LFS lfs_surface-insitu_33_allvalid

LLB llb_surface-insitu_6_allvalid

LLB llb_surface-flask_1_representative

MBO mbo_surface-pfp_1_allvalid-11magl

MBO mbo_surface-insitu_1_allvalid-11magl
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MLO mlo_surface-flask_1_representative

MLO mlo_surface-flask_4_representative

MLO mlo_surface-flask_426_representative

MLO mlo_surface-flask_2_representative

MLO mlo_surface-insitu_1_allvalid

MNM mnm_surface-insitu_19_representative

MRC mrc_surface-pfp_1_allvalid-south

MRC mrc_tower-insitu_60_allvalid-south

MRC mrc_surface-pfp_1_allvalid-east

NOR nor_tower-insitu_424_allvalid-59magl

NOR nor_tower-insitu_424_allvalid-100magl

NOR nor_tower-insitu_424_allvalid-32magl

NOY noy_tower-insitu_20_allvalid-43magl

NOY noy_tower-insitu_20_allvalid-21magl

NWR nwr_surface-pfp_1_allvalid-3magl

NWR nwr_surface-insitu_3_nonlocal

NWR nwr_surface-flask_1_representative

OLI oli_surface-insitu_64_allvalid-10magl

OMP omp_surface-insitu_68_allhours
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ONG ong_surface-insitu_68_allhours

OPE ope_tower-insitu_11_allvalid-120magl

OSI osi_tower-insitu_68_allhours-269magl

OSI osi_tower-insitu_68_allhours-31magl

OWA owa_surface-insitu_68_allhours

PAL pal_surface-flask_1_representative

PAL pal_surface-insitu_30_nonlocal

PAL pal_surface-insitu_30_continental

PAL pal_surface-insitu_30_marine

PDM pdm_surface-flask_11_representative

PDM pdm_surface-insitu_11_allvalid

PRS prs_surface-insitu_21_allvalid

PUY puy_surface-insitu_11_allvalid

PV pv_surface-insitu_115_allhours-200magl

RGL rgl_tower-insitu_160_allvalid-45magl

RGL rgl_tower-insitu_160_allvalid-90magl

RYO ryo_surface-insitu_19_representative

SCT sct_tower-insitu_1_allvalid-61magl

SCT sct_surface-pfp_1_allvalid-305magl
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SCT sct_tower-insitu_1_allvalid-305magl

SCT sct_tower-insitu_1_allvalid-31magl

SGP sgp_surface-insitu_64_allvalid-60magl

SGP sgp_surface-flask_1_representative

SMO smo_surface-flask_426_representative

SMO smo_surface-flask_1_representative

SMO smo_surface-insitu_1_allvalid

SMO smo_surface-flask_4_representative

SMR smr_tower-insitu_421_allvalid-67magl

SMR smr_tower-insitu_421_allvalid-17magl

SMR smr_tower-insitu_421_allvalid-125magl

SNP snp_surface-insitu_1_allvalid-10magl

SNP snp_surface-insitu_1_allvalid-5magl

SNP snp_surface-insitu_1_allvalid-17magl

SPL spl_surface-insitu_3_nonlocal

SPO spo_surface-flask_4_representative

SPO spo_surface-flask_2_representative

SPO spo_surface-insitu_1_allvalid

SPO spo_surface-flask_426_representative
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SPO spo_surface-flask_1_representative

SSC ssc_surface-insitu_431_allvalid

SSL ssl_surface-insitu_107_allvalid

SYO syo_surface-insitu_8_allvalid

SYO syo_surface-flask_1_representative

TAC tac_tower-insitu_160_allvalid-185magl

TAC tac_surface-flask_1_representative

TAC tac_tower-insitu_160_allvalid-54magl

TAC tac_tower-insitu_160_allvalid-100magl

TIK tik_surface-insitu_30_allvalid

TIK tik_surface-flask_1_representative

TPD tpd_surface-insitu_6_allvalid

TRN trn_tower-insitu_11_allvalid-180magl

UTDBK utdbk_tower-insitu_432_allvalid

UTMSA utmsa_tower-insitu_432_allvalid

UTRPK utrpk_tower-insitu_432_allvalid

UTSUG utsug_tower-insitu_432_allvalid

UTUOU utuou_tower-insitu_432_allvalid

VAC vac_surface-insitu_431_allvalid
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VGN vgn_tower-insitu_20_allvalid-42magl

VGN vgn_tower-insitu_20_allvalid-85magl

WAO wao_surface-insitu_13_allvalid

WBI wbi_tower-insitu_1_allvalid-31magl

WBI wbi_tower-insitu_1_allvalid-99magl

WBI wbi_tower-insitu_1_allvalid-379magl

WBI wbi_surface-pfp_1_allvalid-379magl

WGC wgc_tower-insitu_1_allvalid-483magl

WGC wgc_surface-pfp_1_allvalid-91magl

WGC wgc_tower-insitu_1_allvalid-91magl

WGC wgc_tower-insitu_1_allvalid-30magl

WGC wgc_surface-pfp_1_allvalid-483magl

WKT wkt_tower-insitu_1_allvalid-244magl

WKT wkt_tower-insitu_1_allvalid-62magl

WKT wkt_tower-insitu_1_allvalid-457magl

WKT wkt_tower-insitu_1_allvalid-30magl

WKT wkt_tower-insitu_1_allvalid-122magl

WKT wkt_surface-pfp_1_allvalid-122magl

WKT wkt_tower-insitu_1_allvalid-9magl
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WKT wkt_surface-pfp_1_allvalid-457magl

YON yon_surface-insitu_19_representative

ZEP zep_surface-insitu_56_allvalid

ZEP zep_surface-flask_1_representative

Table A2. List of TCCON sites used and their locations

TCCON code Location

br Bremen, Germany

ci Pasadena, California, USA

db Darwin, Australia

df Edwards, USA

et East Trout Lake, Canada

eu Eureka, Canada

gm Garmisch, Germany

hf Hefei, China

js Saga, Japan

oc Lamont, Oklahoma, USA

ll Lauder, New Zealand

ma Manaus, Brazil

ny Ny-Alesund, Svalbard, Norway
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or Orleans, France

pa Park Falls, Wisconsin, USA

pr Paris, France

ra Reunion Island, France

rj Rikubetsu, Hokkaido, Japan

so Sodankyla, Finland

tk Tsukuba, Ibaraki, Japan
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