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Abstract

This study evaluates a lightning parameterization that utilizes only large-scale environmental variables (i.e., convective available

potential energy (CAPE), column moisture, and lifting condensation level (LCL)) for present-day (2017-19) and end-of-century

(2098-2100) RCP8.5 climate scenarios in the Community Atmosphere Model version 5 (CAM5). Using a single equation, the

present-day prediction can produce a reasonable land/ocean ratio in lightning occurrence. The end-of-century prediction shows

relative increases of about 50% over higher-latitude land, but much more variable increases and decreases across mid-latitude

ocean and the tropics such that the overall global lightning occurrence is expected to slightly decrease. Lightning occurrence

over land predicted from present-day CAM5 is less than that using MERRA-2 reanalysis because of differences in the basic-state

variables used as predictors. In addition, the choice of dilute or undilute CAPE will impact future lightning predictions over

land, but the environment-only parameterization results are more consistent than a CAPE x precipitation parameterization.
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Key Points:6

• A single-equation based only on environmental variables provides reasonable land7

and ocean lightning occurrence predictions in CAM5.8

• Lightning occurrence is projected to increase at higher latitudes by the end of cen-9

tury, but the long-term trend varies across the tropics.10

• Basic state biases and the type of CAPE used can impact current and future pre-11

dictions of lightning patterns and magnitudes.12
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Abstract13

This study evaluates a lightning parameterization that utilizes only large-scale en-14

vironmental variables (i.e., convective available potential energy (CAPE), column mois-15

ture, and lifting condensation level (LCL)) for present-day (2017-19) and end-of-century16

(2098-2100) RCP8.5 climate scenarios in the Community Atmosphere Model version 517

(CAM5). Using a single equation, the present-day prediction can produce a reasonable18

land/ocean ratio in lightning occurrence. The end-of-century prediction shows relative19

increases of about 50% over higher-latitude land, but much more variable increases and20

decreases across mid-latitude ocean and the tropics such that the overall global light-21

ning occurrence is expected to slightly decrease. Lightning occurrence over land predicted22

from present-day CAM5 is less than that using MERRA-2 reanalysis because of differ-23

ences in the basic-state variables used as predictors. In addition, the choice of dilute or24

undilute CAPE will impact future lightning predictions over land, but the environment-25

only parameterization results are more consistent than a CAPE×precipitation param-26

eterization.27

Plain Language Summary28

Lightning parameterizations currently being used in climate model studies use out-29

put from other physical parameterizations (i.e., cloud ice, precipitation, etc.). These vari-30

ables have large uncertainties that propagate into the lightning prediction and can vary31

strongly amongst models, thus requiring scaling factors to produce realistic and consis-32

tent lightning predictions. In addition, almost all existing parameterizations require sep-33

arate land and ocean equations to produce reasonable global lightning patterns, and many34

still produce unrealistic ratios with too much oceanic lightning. We show here that we35

can produce a reasonable global lightning occurrence distribution in a climate model us-36

ing only three large-scale environmental variables derived from temperature and humid-37

ity profiles and a single equation applicable to both land and ocean components. While38

these variables can still have uncertainties and biases amongst models, they are less than39

the cloud and precipitation outputs, thus providing a more stable framework for assess-40

ing lightning changes. Our end-of-century projection under a high-emissions scenario shows41

relatively large increases in lightning occurrence over land at mid- and high-latitudes in42

the Northern Hemisphere, but a varying pattern of increases and decreases across the43

tropics such that the global mean lightning occurrence is expected to slightly decrease44

by the end of the century.45

1 Introduction46

Understanding lightning and its relationship with the large-scale environment is47

important in simulating lightning in global climate models (GCMs) in order to predict48

how lightning will vary with climate change, and how upper-tropospheric chemistry and49

wildfires associated with lightning will be impacted (e.g., Krause et al., 2014; Whaley50

et al., 2024). The large-scale environment plays a key role in storm dynamics, and there-51

fore lightning development. Most previous studies have investigated lightning’s relation-52

ship with cloud features and precipitation, but few have isolated the role of the large-53

scale environment for the prediction of lightning.54

One of the earliest parameterizations predicted lightning flash rates using only con-55

vective cloud-top height (Price & Rind, 1992, hereafter PR92) and has been used as the56

basis of many other parameterizations (Boccippio, 2002; Luhar et al., 2021; Michalon57

et al., 1999; Zhang et al., 2021). In a warming climate, parameterizations that use PR9258

typically predict a global increase in lightning (Clark et al., 2017; Finney et al., 2018;59

Krause et al., 2014; Price & Rind, 1994). However, PR92 uses separate land and ocean60

equations to predict lightning and requires a scaling of these equations to the observed61
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global mean lightning. In addition, convective cloud-top height, especially when output62

as a grid-scale value from a coarse-resolution GCM, is a highly-derived variable and re-63

mains an indirect measure of convective intensity and lightning.64

Different cloud and rain variables have since been utilized in lightning parameter-65

izations from GCM output such as convective mass flux (Allen & Pickering, 2002; Grewe66

et al., 2001; Magi, 2015), upward cloud ice flux (Deierling et al., 2008; Finney et al., 2014;67

Romps, 2019), convective precipitation (Allen & Pickering, 2002; Magi, 2015; Meijer et68

al., 2001), cloud droplet concentration (Michalon et al., 1999), graupel mixing ratio and69

updraft velocities (McCaul et al., 2009; Williams, 2005; Zipser & Lutz, 1994), cold cloud70

depth (Yoshida et al., 2009), and cloud base height (Lopez, 2016). Most of these param-71

eterizations produce general increases in lightning flash rates for warming climates (Clark72

et al., 2017; Finney et al., 2016, 2020), except when using ice-based parameterizations73

(Finney et al., 2018; Romps, 2019). However, these frameworks still require separate land74

and ocean equations and often need to be scaled to the current global mean lightning75

to provide a realistic prediction. In addition, Charn and Parishani (2021) found that the76

ice-based lightning parameterizations may be sensitive to the microphysics scheme used,77

not necessarily to the variables used to predict lightning, which adds motivation to avoid78

highly uncertain storm-scale variables as inputs for lightning parameterizations in GCMs.79

The inclusion of large-scale environmental variables in predicting lightning in GCMs80

has become more prevalent in recent years (Romps et al., 2014; Stolz et al., 2015, 2017;81

Wang et al., 2018; Etten-Bohm et al., 2021) and could help reduce the large uncertainty82

that is carried when using cloud and convection variables as predictors. Utilizing large-83

scale variables like convective available potential energy (CAPE) can be beneficial be-84

cause of how closely it relates to a storm’s thermodynamics. Romps et al. (2014) (here-85

after R14) used CAPE and precipitation (CAPE×P) over the continental United States86

(CONUS) to predict lightning flash rate. Evaluating the parameterization in multiple87

GCMs, R14 found that CAPE increased over CONUS between the current climate and88

late 21st century in all the models, therefore also increasing the lightning flash rate. It89

is worthwhile noting that future projection of precipitation sometimes increased and some-90

times decreased depending on the GCM and did not constrain the lightning prediction91

nearly as much as CAPE.92

Although the R14 parameterization performed well over CONUS, it did not trans-93

late well on a global scale because it could not distinguish between land and ocean (Romps94

et al., 2018). Cheng et al. (2021) had better success using a different equation over ocean,95

but a similar issue as discussed previously occurs with an arbitrary separation of land96

and ocean equations to predict lightning. Stolz et al. (2015, 2017) were better able to97

differentiate land and ocean lightning environments by using a combination of cloud and98

environmental parameters in a multiple linear regression model, but still did not com-99

pletely capture the spatial pattern of global lightning, overpredicting over the ocean and100

underpredicting over land (Stolz et al., 2021).101

Etten-Bohm et al. (2021) (hereafter EB21) presented a lightning parameterization102

based solely on large-scale environmental variables, with the goal of limiting the issues103

and uncertainty in other parameterizations mentioned previously. EB21 evaluated a num-104

ber of covariate sets from reanalysis output and each prediction represented the spatial105

pattern of lightning occurrence well, including a distinction between land and ocean us-106

ing just one equation. They found that the use of three environmental variables (CAPE,107

lifting condensation level [LCL], and column saturation fraction [r]) and their interac-108

tions provided the best basis for a GCM parameterization in terms of performance and109

simplicity.110

The main goals of this study are to implement and evaluate this EB21 environment-111

only lightning parameterization in the high-resolution (25 km) Community Atmosphere112

Model version 5 (CAM5), project end-of-century global lightning occurrence changes,113
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and determine the environmental factors most important to the changes. Additionally,114

we will assess how the EB21 parameterization performs compared to the CAPE×P pa-115

rameterization over land, including sensitivity tests using different CAPE calculations116

(i.e., dilute and undilute) since there aren’t standard definitions of CAPE in GCMs.117

2 Data and Methods118

EB21 utilized a logistic regression trained on Tropical Rainfall Measuring Mission119

(TRMM) Lightning Imaging Sensor (LIS) observations (Kummerow et al., 1998) and Modern-120

Era Retrospective Analysis for Research and Application Version 2 (MERRA-2) reanal-121

ysis data (Gelaro et al., 2017) to predict lightning occurrence based on 3-hourly, 0.5◦ in-122

put. EB21 tested three predictor sets increasing in complexity from model a to c. Only123

model b (with predictors CAPE, LCL, r, and their interactions) will be evaluated in this124

study since it provided the best balance between simplicity and performance amongst125

the three models. The parameterization outputs the predicted probability of lightning126

occurrence at each grid point from zero (0% chance) to one (100% chance).127

The GCM environmental predictors for this study were obtained from a 0.25◦ res-128

olution, free-running version of CAM5 (Meehl et al., 2019; Neale et al., 2012). Three-129

hourly temperature, LCL, and specific humidity fields were interpolated to a 0.5◦ grid130

to match the LIS and MERRA-2 datasets. CAPE and r were then computed from the131

temperature and specific humidity profiles, and all variables were standardized to have132

a mean of zero and a standard deviation of 1. The CAM5 predictors for present day (2017-133

19) were input into the EB21 parameterization, which was further applied to the end-134

of-century (2098-2100) simulation under the Representative Concentration Pathway (RCP)135

8.5 scenario to assess the relative impact of a warming climate on lightning production.136

Note that since CAM5 is free running, the years chosen may not specifically correspond137

to those years, but using three years should still provide a reasonable mean representa-138

tion of the present-day and future climates.139

CAPE can be obtained directly from CAM5 output, but CAM5 uses a dilute-plume140

model where entrainment of environmental air is incorporated (Neale et al., 2008). Us-141

ing the CAPE×P parameterization, Charn and Parishani (2021) found that lightning142

predictions varied depending on how CAPE was calculated, with undilute CAPE pro-143

jecting a ∼ 7%/K increase in lightning and dilute CAPE only projecting a ∼ 1%/K in-144

crease. The authors noted that neither case is completely correct, and flash rates pre-145

dicted using CAPE×P are likely somewhere between the two cases. Only undilute CAPE146

will be used in Sections 3.1 and 3.2, with a caveat that greater decreases could be pro-147

jected as a result. Sensitivity tests using dilute CAPE will be presented in Section 3.3.148

3 Results149

3.1 CAM5 Lightning Projection150

CAM5 fields were input into the logistic regression from EB21 to compute a pre-151

dicted mean lightning occurrence and compared to the International Space Station (ISS)152

LIS (Blakeslee et al., 2020, Figure 1a) for present day (2017-19). Although the lightning153

parameterization was trained with TRMM LIS observations, the ISS expands on the lat-154

itudinal extent of TRMM (from 35◦ to 54◦) and allows for greater comparison with CAM5’s155

global output. Following EB21, elevation over 1500 meters is removed because of the in-156

accurate predictions from the logistic regression, likely due to the LCL term. Whaley157

et al. (2024) found improvements by disregarding the LCL term over high elevation in158

version 5.1 of the Canadian Earth System Model (CanESM). Figure 1b is similar to Fig-159

ure 9c in EB21 except for using years 2017-19 and all latitudes. The overall magnitudes160

increase in Figure 1b as a result of the standardization of the predictors to have a mean161
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of zero and a standard deviation of 1. The fields change when extending to higher lat-162

itudes, resulting in different standardized variables, and therefore predictions.163

The MERRA-2 lightning predictions in Figure 1b match the LIS observations well164

(as expected since the parameterization was trained using MERRA-2 data), albeit with165

some overprediction over the ocean. For example, the land/ocean lightning occurrence166

ratio observed by ISS LIS is 5.1, while the MERRA-2 ratio for the same latitude range167

is 2.2. However, these ratios are much closer to one another than the land/ocean flash168

rate ratios reported by Charn and Parishani (2021) between observations and five other169

lightning parameterizations, some of which had land/ocean lightning ratios less than 1.170

(b)

(c) (d)

(a)

% % % % % % % % % % % % % % % % % %

% % % % % % % % % % % % % % % % % %%%

Figure 1. Present-day (2017-2019) lightning occurrence (in %) from (a) ISS LIS observations
and (b) MERRA-2 and (c) CAM5 predictions using the EB21 parameterization. (d) CAM5 light-
ning occurrence difference between end-of-century (2098-2100) and present-day.

When applied to CAM5 environmental variables, the EB21 lightning parameter-171

ization produces a large underprediction over land (Figure 1c). However, expected re-172

gional variations still exist, including more lightning over the Amazon and central Africa173

compared to other land regions and greater overall lightning occurrence over land com-174

pared to ocean with a land/ocean ratio of 1.5. This result is promising considering that175

the parameterization does not have separate equations for land and ocean and does not176

scale the prediction to match the global mean lightning observations, which most pre-177

vious lightning parameterizations have done (e.g., Clark et al., 2017). An environment-178

only lightning parameterization would also be expected to be more consistent between179

different GCMs, since cloud and precipitation variables, highly parameterized in GCM180

themselves, can vary much more widely compared to environmental variables (e.g., Charn181

& Parishani, 2021; Romps et al., 2014). However, discrepancies between the basic-state182

input parameters must exist between MERRA-2 and CAM5 to account for the differ-183

ence in the lightning predictions in Figures 1b and c, which will be addressed in Section184

3.2.185

The EB21 parameterization was further applied to output from a CAM5 end-of-186

century high-emissions climate run. Figure 1d indicates varied future changes in light-187
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ning occurrence over both land and ocean with increases (decreases) shown in red (blue).188

While many land regions indicate increasing lightning occurrence, including most higher189

latitude land in the Northern Hemisphere, the southeastern US, western Amazon, cen-190

tral Africa, and eastern Australia, other land regions show decreases, such as the cen-191

tral US, northeastern Amazon, Sahel, Indian subcontinent, and western Australia. The192

ocean shows large absolute decreases over regions that tend to have more lightning in193

present-day CAM5, like the South Pacific convergence zone, Caribbean Sea, Atlantic ITCZ,194

and Indian Ocean. Lightning is projected to increase over the ocean near the edges of195

these higher lightning occurrence regions. Despite many regions of increases, including196

higher-latitude land regions that show a relative increase of ∼50%, the global mean light-197

ning occurrence is predicted to decrease by about 5%. These results are generally con-198

sistent with end-of-century predictions using the EB21 parameterization on output from199

CanESM5.1 (Whaley et al., 2024).200

Figure 1d contrasts with many previous studies that have shown more widespread201

increases (Clark et al., 2017; Finney et al., 2016; Romps et al., 2014; Schumann & Huntrieser,202

2007; Williams, 2005) or decreases (Jacobson & Streets, 2009) in global tropical light-203

ning flash rates in a warming climate. However, lightning parameterizations are not only204

sensitive to the parameters used (Finney et al., 2018; Romps, 2019), but also the method-205

ologies used to train the parameterization and the models in which they are implemented.206

For example, Finney et al. (2020) used a high-resolution, convection-permitting model207

and the McCaul et al. (2009) ice-based lightning parameterization to investigate light-208

ning day changes (similar to lightning occurrence) regionally and found a similar, albeit209

opposite, varied pattern to the one presented in Figure 1d over Africa.210

3.2 Basic-state Variable Analysis211

To evaluate environmental factors driving differences between the MERRA-2 and212

CAM5 present-day lightning predictions and changes in the projected mean lightning213

occurrence between present-day and end-of-century climate scenarios in CAM5, the three214

predictors (LCL, r, and undilute CAPE) are investigated separately. Figure 2 (left col-215

umn) shows histograms of each variable over land (green) and ocean (blue) from MERRA-216

2 (solid) and CAM5 (dashed). While the MERRA-2 and CAM5 environmental variable217

distributions show general similarities, there are some notable differences that help ex-218

plain the discrepancies between their lightning predictions in Figure 1. For example, while219

LCLs maximize around 900 hPa in both datasets (Figure 2a), offsets occur as LCLs get220

higher. For MERRA-2, land has relatively more LCLs between 850 and 650 hPa com-221

pared to ocean, while the opposite is true for CAM5 where the ocean has higher LCLs222

than land. Higher LCLs (more convective environment) would increase lightning occur-223

rence (as shown in EB21), providing one reason why lightning occurrence is underpre-224

dicted over land and overpredicted over ocean in CAM5.225
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(b) (c)

(e) (f)

(h) (i)

(a)

(d)

(g)

Figure 2. Histograms of land and ocean environmental variables for MERRA-2 and CAM5
for (a) LCL, (d) r, and (g) undilute CAPE for present day. Absolute differences between CAM5
end-of-century and present-day climates for (b) LCL, (e) r, and (h) CAPE and standardized in-
teractions (c) LCL and r, (f) CAPE and r, and (i) CAPE and LCL.

In addition, Figure 2d shows that CAM5 r is shifted left (indicating a drier envi-226

ronment) compared to MERRA-2 over both land and ocean at r values where lightning227

is most likely to occur (i.e., r > 0.7, EB21). This shift also helps explain why large light-228

ning underpredictions happen over land in CAM5, while the drier ocean environments229

likely offset the higher LCLs making the CAM5 ocean lightning prediction more simi-230

lar to MERRA-2.231

The CAPE distribution comparisons are more nuanced. Figure 2g indicates that232

MERRA-2 has a higher occurrence of moderate CAPE (up to 1800 J kg−1) compared233

to CAM5, but that CAM5 produces more CAPE values > 1800 J kg−1. EB21 showed234

that essentially any positive CAPE would enhance lightning occurrence so it is unclear235

how these distribution differences would contribute to MERRA-2 and CAM5 lightning236

prediction differences.237

To evaluate the spatial variability of the environmental variables and their poten-238

tial contribution to end-of-century lightning changes, the middle column of Figure 2 shows239

the absolute change between the future and present-day for each of the individual pre-240

dictors from CAM5. Red represents changes that would be expected to enhance light-241

ning occurrence, and blue is the opposite. Note that we standardize individual predic-242

tors around their mean values before they are input into the logistic regression such that243

the standardized inputs (not shown) will shift to be more negative (blue) for r and CAPE244

because their mean individual change at the end of the century is greater than zero, while245

the mean LCL change is around zero.246

Figure 2b shows that LCL decreases up to 60 hPa almost everywhere over land (i.e.,247

attains higher heights) by 2100, except for a handful of regions like Saudi Arabia and248
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the Indian subcontinent where LCLs increase by 15-30 hPa (i.e., become lower in height).249

The opposite is true almost everywhere over the ocean, where LCL values are projected250

to increase and thus lower in height by the end of the century, although the magnitude251

of change is much smaller than over land. The LCL changes in Figure 2b only partially252

align with the lightning changes in Figure 1d (i.e., the LCL pattern suggests large light-253

ning increases over land and smaller decreases over ocean globally) so other variables and254

their interactions remain at play.255

Future r shows large increases in CAM5 pole-ward of 45◦N and 45◦S and more var-256

ied changes over land and ocean in the tropics and subtropics (Figure 2e). Changes in257

r often offset the influence of LCL on end-of-century lightning occurrence. For example,258

decreases in lightning over the eastern Amazon, West Africa, Siberia, and western Aus-259

tralia are more consistent with the r pattern. However, changes in lightning over the west-260

ern Amazon, Congo, Indian subcontinent, and China remain more consistent with the261

LCL pattern. Alaska is one of the few land regions where the sign change is consistent262

between LCL, r, and lightning occurrence. Over ocean, r appears to play an important263

role in the lightning decreases over the Southeast Pacific, Caribbean, tropical North At-264

lantic, and near-equatorial Indian Ocean.265

Lastly, CAPE shows end-of-century absolute increases almost everywhere, espe-266

cially across the rainy regions of the tropical oceans with most areas increasing 500 to267

1250 J kg−1 (Figure 2h). These increases are consistent with Romps (2016) who found268

that CAPE should increase in a warming climate following the Clausius-Clapeyron re-269

lation, and J. Chen et al. (2020) who showed similar CAPE differences globally between270

1980-99 and 2081-2100. There are only a few areas in which notable decreases in CAPE271

occur: the Southeast Pacific, central Amazon, and Atlantic Ocean along 20°N. While the272

largest absolute CAPE changes are projected to occur over the ocean, the oceanic pat-273

tern is generally not consistent with the end-of-century lightning changes in Figure 1d,274

whereas the relatively smaller CAPE changes over land appear to be more relevant, es-275

pecially over the Southeast US, South America, central Africa, and eastern Australia.276

The difference in standardized interactions between future and present day are plot-277

ted in the right column of Figure 2. Note that the interaction terms account for 19% of278

the relative importance in the logistic regression, while the individual predictors account279

for the other 81% (EB21). Also, all columns are multiplied by -1 since all interactions280

have negative coefficients and we still want to represent conditions likely to lead to in-281

creases in lightning in red, and decreases in blue. The LCL×r interaction results in light-282

ning decreasing almost everywhere over land, offsetting the large LCL height increases.283

However, most places over oceanic locations would result in a net increase in lightning284

from this interaction. CAPE×r shows a more variable global signature, while the CAPE×LCL285

interaction appears to best align with the future lightning changes in CAM5, which is286

consistent with EB21 as the CAPE×LCL term is the most important of the three in-287

teractions.288

Figure 2 shows that CAPE, LCL, and r all play an important role in predicting light-289

ning in present and future climate scenarios, but large regional variability exists. For ex-290

ample, r and CAPE are the most relevant variables over South America (i.e., their end-291

of-century predictions are most similar to the overall prediction in Figure 1), while LCL292

is the only variable that predicts an increase in lightning over Australia (albeit overly293

intense such that the negative predictions from the other variables appear to mute this294

overprediction). The interactions improve the predictive potential of the logistic regres-295

sion, including helping mitigate some of the overprediction over the ocean that plagues296

other lightning parameterizations.297
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3.3 Dilute vs Undilute CAPE298

While LCL and r are either direct outputs or found by a straightforward calcula-299

tion from GCM environmental variables, CAPE has numerous formulations. Undilute300

CAPE is about an order of magnitude larger than dilute CAPE, so we consider them301

spanning the range of possible CAPE values. Recall that dilute CAPE is output by CAM5,302

while undilute CAPE must be calculated but is closer to the CAPE used in previous pa-303

rameterization studies, including EB21 and R14. We use total precipitation in the fol-304

lowing CAPE×P calculations, but note that two of the four precipitation data sets in305

Romps et al. (2018) were convective-only. However, the use of convective precipitation306

doesn’t qualitatively change our results.307

Figure 3 shows the change in end-of-century lightning occurrence for the EB21 pa-308

rameterization and flash rate for CAPE×P using undilute and dilute CAPE. Similar to309

Charn and Parishani (2021), we scaled each present-day prediction to match the mean310

land ISS LIS lightning observations to more fairly compare future changes. The EB21311

and R14 parameterizations produce very similar patterns of lightning increases and de-312

creases using undilute CAPE (Figures 3a and c). EB21 produces larger increases in light-313

ning occurrence when using dilute CAPE (Figure 3b), but the pattern of negative and314

positive changes still strongly resembles the undilute CAPE result in Figure 3a.315

The largest difference occurs when dilute CAPE is used in R14 (Figure 3d). Al-316

most all land regions show end-of-century decreases in flash rate, especially in the trop-317

ics. Charn and Parishani (2021) also showed larger decreases in flash rate using dilute318

CAPE in various formulations of CAPE×P in a +4 K sea-surface temperature (SST)319

simulation of a superparameterized version of CAM, although the decreases were not as320

dramatic as seen here. The sign of change between the EB21 undilute and dilute CAPE321

results (Figures 3a and b) is more consistent because the predictors are normalized about322

their mean before being used in the parameterization. The inclusion and interactions with323

the other environmental inputs also limits large changes due to only one variable.324
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(c) (d)

(b)(a)

Figure 3. Predictions after present-day scaling to ISS LIS land values of CAM5 end-of-
century land-only lightning occurrence (in %) using the EB21 parameterization with (a) undilute
and (b) dilute CAPE and flash rate (in J kg−1 mm hr−1) using the R14 CAPE×P parameteriza-
tion with (c) undilute and (d) dilute CAPE.

4 Conclusions325

The EB21 lightning parameterization, which utilizes LCL, CAPE, r, and their in-326

teractions, was implemented in CAM5 for present-day (2017-19) and end-of-century (2098-327

2100) RCP8.5 climate scenarios. Compared to observations from ISS LIS, the CAM5 present-328

day prediction generally captures the global lightning occurrence pattern but underpre-329

dicts lightning over land and overpredicts over the ocean. This is a perennial problem330

with almost all GCM lightning parameterizations (e.g., Charn & Parishani, 2021; Clark331

et al., 2017), but the EB21 parameterization produces a better land/ocean lightning ra-332

tio than most other schemes when applied to CAM5 fields and does so with a single equa-333

tion not separated by land and ocean. The land/ocean ratio improves even further when334

the EB21 parameterization is applied to MERRA2 fields, which can be explained by dif-335

ferences in the individual basic-state predictors. For example, LCLs are higher over land336

in MERRA-2 compared to CAM5, while the opposite is true over ocean, causing rela-337

tively higher lightning occurrence over land for MERRA-2 and over ocean for CAM5.338

In addition, land and ocean environments are drier in CAM5 for moist environments com-339

pared to MERRA-2, causing even further underpredictions of lightning occurrence over340

land for CAM5, although the drier ocean environments offset the overly high oceanic LCLs341

to some extent in the EB21 logistic regression formulation.342

The end-of-century lightning projection from CAM5 shows variable increases and343

decreases over both land and ocean, although higher latitude land regions show across-344

the-board increases in frequency, which has implications for increased wildfires in loca-345

tions that typically don’t experience much lightning (Y. Chen et al., 2021; Whaley et346

al., 2024). The large regional variability in positive and negative lightning changes, es-347

pecially in the tropics, is of significance as many previous studies (e.g., Finney et al., 2018)348

have found either widespread increases or decreases for tropical lightning activity in a349

warming climate. The resulting global mean lightning occurrence is projected to slightly350
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decrease by the end of the century, which is consistent with the lower end of the range351

of flash rate changes found in Clark et al. (2017) based on results from eight lightning352

parameterizations using CAM5 output. When the EB21 parameterization is run with353

dilute CAPE instead of undilute CAPE, it provides a more consistent future lightning354

prediction than a CAPE×P parameterization. The EB21 parameterization is simple and355

stable to moderate variations in input parameters, providing an attractive alternative356

to lightning parameterizations that rely on variables output from convective, cloud, and357

microphysics schemes.358
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