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Abstract

Nitrogen dioxide (NO2) is emitted during high temperature combustion from anthropogenic and natural sources. Human

exposure to high NO2 concentrations causes cardiovascular and respiratory illnesses. The EPA operates ground monitors across

the U.S. which take hourly measurements of NO2 concentrations, providing precise measurements for assessing human pollution

exposure but with sparse spatial distribution. Satellite-based instruments capture NO2 amounts through the atmospheric

column with global coverage at regular spatial resolution, but do not directly measure surface NO2. This study compares

regression methods using satellite NO2 data from the TROPospheric Ozone Monitoring Instrument (TROPOMI) to estimate

annual surface NO2 concentrations in varying geographic and land use settings across the continental U.S. We then apply

the best-performing regression models to estimate surface NO2 at 0.01o by 0.01o resolution, and we term this estimate as

quasi-NO2 (qNO2). qNO2 agrees best with measurements at suburban sites (cross-validation (CV) R2 = 0.72) and away from

major roads (CV R2 = 0.75). Among U.S. regions, qNO2 agrees best with measurements in the Midwest (CV R2 = 0.89) and

agrees least in the Southwest (CV R2 = 0.65). To account for the non-Gaussian distribution of TROPOMI NO2, we apply

data transforms, with the Anscombe transform yielding highest agreement across the continental U.S. (CV R2 = 0.78). The

interpretability, minimal computational cost, and health relevance of qNO2 facilitates use of satellite data in a wide range of

air quality applications.
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Abstract 25 

Nitrogen dioxide (NO2) is emitted during high temperature combustion from anthropogenic and 26 

natural sources. Human exposure to high NO2 concentrations causes cardiovascular and 27 

respiratory illnesses. The EPA operates ground monitors across the U.S. which take hourly 28 

measurements of NO2 concentrations, providing precise measurements for assessing human 29 

pollution exposure but with sparse spatial distribution. Satellite-based instruments capture NO2 30 

amounts through the atmospheric column with global coverage at regular spatial resolution, but 31 

do not directly measure surface NO2. This study compares regression methods using satellite 32 

NO2 data from the TROPospheric Ozone Monitoring Instrument (TROPOMI) to estimate annual 33 

surface NO2 concentrations in varying geographic and land use settings across the continental 34 

U.S. We then apply the best-performing regression models to estimate surface NO2 at 0.01
o
 by 35 

0.01
o
 resolution, and we term this estimate as quasi-NO2 (qNO2). qNO2 agrees best with 36 

measurements at suburban sites (cross-validation (CV) R
2
 = 0.72) and away from major roads 37 

(CV R
2
 = 0.75). Among U.S. regions, qNO2 agrees best with measurements in the Midwest (CV 38 

R
2
 = 0.89) and agrees least in the Southwest (CV R

2
 = 0.65). To account for the non-Gaussian 39 

distribution of TROPOMI NO2, we apply data transforms, with the Anscombe transform yielding 40 

highest agreement across the continental U.S. (CV R
2
 = 0.77). The interpretability, minimal 41 

computational cost, and health relevance of qNO2 facilitates use of satellite data in a wide range 42 

of air quality applications. 43 

Plain Language Summary 44 

Nitrogen dioxide (NO2) is an air pollutant which causes cardiovascular and respiratory illnesses 45 

and reacts in the atmosphere to form other harmful pollutants. This necessitates accurate and 46 

reliable quantification of NO2 concentrations in the air. Ground monitors directly observe NO2 47 

concentrations near the Earth's surface. However, monitors do not have sufficient spatial 48 

coverage to quantify NO2 at large scales. Satellite-based instruments capture NO2 amounts 49 

across the Earth at increasingly high spatial resolution. However, satellite instruments cannot 50 

directly observe surface NO2 concentrations. In this study, we compare regression methods for 51 

estimating surface NO2 over the continental U.S. using satellite data and auxiliary land-use 52 

variables. We find that NO2 estimated using multivariate regression models with transforms 53 

applied to inputs result in the highest agreement with surface NO2 among the regression methods 54 
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we investigated. We then use the regression models to quantify surface NO2 concentration across 55 

the U.S. at 0.01
o
 by 0.01

o
 spatial resolution. Our work leverages the precision of ground 56 

observations and the high resolution of satellite data to accurately quantify surface NO2. The 57 

interpretable, generalizable, and easily applicable methods used in our study will facilitate the 58 

use of satellite data for air quality and human health assessments.
 

59 

1 Introduction 60 

1.1 Background 61 

Nitrogen dioxide (NO2) is an air pollutant with harmful impacts on human health. Exposure to 62 

high concentrations of NO2 is closely associated with hospital admissions and mortality for a 63 

range of respiratory and cardiovascular diseases (Mills et al., 2015). NO2 pollution accounts for a 64 

significant portion of asthma cases among children worldwide (Anenberg et al., 2022; 65 

Chowdhury et al., 2021). Given these health effects, NO2 is regulated by the United States 66 

Environmental Protection Agency (EPA) under the National Ambient Air Quality Standards 67 

(NAAQS), which requires the annual mean concentration of NO2 to remain below 53 parts per 68 

billion (ppb) in inhabited areas. 69 

In addition to directly harming human health, NO2 acts as a reactant in the troposphere to form 70 

other harmful air pollutants. In the presence of volatile organic compounds (VOCs) and sunlight, 71 

NO2 reacts to form tropospheric ozone (O3) which in turn damages human health, increases 72 

mortality, and harms ecosystems (Ashmore, 2005; Jerrett et al., 2009; Sillman, 1999). NO2 also 73 

contributes to the formation of particulate nitrate (NO3
-
), a component of fine particulate matter 74 

(PM2.5) which causes cardiovascular, respiratory, and birth-related illnesses and impairments 75 

(Behera & Sharma, 2012; Feng et al., 2016). 76 

NO2 is emitted from both anthropogenic and natural sources, mainly through high temperature 77 

combustion from biomass burning and fossil fuels (M. Lee et al., 1997). Thus, NO2 serves as a 78 

tracer for air pollution from traffic, industrial sites, and other point sources. NO2 is therefore 79 

important for estimating emissions of greenhouse gases that are co-emitted during combustion, 80 

such as CO2 (Goldberg et al., 2019; Konovalov et al., 2016; Levy et al., 2014). Anthropogenic 81 

activity is the dominant source of NO2 in industrialized North America, Europe, and Asia (van 82 
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der A et al., 2008). Natural sources of NO2 include soils and lightning (Olivier et al., 1998). 83 

Because NO2 has a relatively short lifetime of several hours, it remains concentrated near its 84 

source, resulting in distinct spatial gradients in concentration that are strongly correlated to 85 

emissions (L. N. Lamsal et al., 2011; Pommier, 2023). Thus, reliable quantification of NO2 86 

concentration is critical for characterizing emissions from human activity and for measuring 87 

human air pollutant exposure in urban, roadside, and industrial areas with high NO2 88 

concentrations. 89 

The EPA maintains a national network of ground-based monitors that provide ambient air 90 

pollution data known as the Air Quality System (AQS).
1
 Although AQS monitors provide hourly 91 

measurements of NO2 concentrations, their sparse and irregular spatial distribution renders them 92 

insufficient for capturing the spatiotemporal variability of NO2 at regional and national scales. 93 

Ground monitors have limited usefulness for comprehensive assessments of human exposure to 94 

air pollution (Guay et al., 2011). 95 

 96 

Satellite data products provide global coverage of column NO2 on a high-resolution spatial grid, 97 

but have daily frequency as opposed to hourly ground measurements. Satellite data offer the 98 

potential to bridge the spatial gaps in ground-based monitor data for capturing surface NO2 99 

concentrations (Holloway et al., 2021). However, satellites do not directly measure NO2 at the 100 

surface and instead detect NO2 amounts through the atmospheric column with greater sensitivity 101 

to mid-tropospheric background NO2 (Dang et al., 2023). Since NO2 sources are concentrated at 102 

the surface, NO2 vertical column densities (VCD) measured by satellites have varying strengths 103 

of correlation with surface NO2 depending on spatiotemporal scale, season, region, and the 104 

characteristics of the surface and satellite data (van der A et al., 2008; Bechle et al., 2013; 105 

Goldberg et al., 2021; Griffin et al., 2019, 2021; Ialongo et al., 2020; Judd et al., 2020; L. N. 106 

Lamsal et al., 2008; Lamsal et al., 2015; H. J. Lee et al., 2023; Penn & Holloway, 2020; 107 

Pommier, 2023; Yu & Li, 2022). 108 

The highest resolution global satellite NO2 data currently available comes from the 109 

TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite, 110 

launched by the European Space Agency (ESA) in October 2017 (van Geffen et al., 2020; 111 

                                                           
1https://www.epa.gov/system/files/documents/2022-08/aqs_user_guide.pdf 

https://www.epa.gov/system/files/documents/2022-08/aqs_user_guide.pdf
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Veefkind et al., 2012). TROPOMI follows a lineage of remote sensing spectrometers including 112 

the Global Ozone Monitoring Experiment (GOME), the Scanning Image Spectrometer for 113 

Atmospheric Chartography (SCIAMACHY), and the Ozone Monitoring Instrument (OMI). 114 

TROPOMI provides column NO2 data at a peak resolution of 3.5 km by 5.5 km at nadir, a 115 

significant improvement over the 13.0 km by 24.0 km peak resolution of the OMI NO2 data 116 

product (Veefkind et al., 2012). The smaller pixel size of TROPOMI enables an unprecedented 117 

scale of observation, such as distinguishing signals from individual sources at the scale of 118 

individual cities (Ialongo et al., 2020). By capturing the spatial heterogeneities in NO2 at a finer 119 

scale, TROPOMI provides opportunities for significant improvements in satellite-based 120 

quantification of surface NO2. 121 

1.2 Literature Review 122 

To best leverage the global coverage and high spatial resolution of satellite NO2 data, it is critical 123 

to investigate the agreement between column NO2 amounts and surface NO2 concentrations 124 

across varying spatiotemporal scales. As detailed below, prior studies have utilized chemical 125 

transport models, statistical methods, and machine learning to investigate satellite column NO2 to 126 

estimate surface NO2 at daily to annual time scales and site-specific to global spatial scales. 127 

Vertical profiles of mixing ratios from chemical transport models (CTM) have been used to 128 

derive surface NO2 concentrations from satellite data. Commonly used CTMs include the global 129 

three-dimensional Goddard Earth Observing System-Chemistry (GEOS-Chem) model and the 130 

regional-scale Community Multi-Scale Air Quality (CMAQ) model and Comprehensive Air 131 

Quality Model with extensions (CAMx) (Bechle et al., 2013; Gu et al., 2017; Lamsal et al., 132 

2015). Cooper et al. (2020) applied GEOS-Chem vertical profiles to both OMI and TROPOMI 133 

column NO2 to correct for inaccuracies in vertical mixing assumptions in satellite products. Their 134 

work showed that TROPOMI-derived surface NO2 had lower variance and greater ability to 135 

capture emissions sources at high resolution than OMI-derived surface NO2. Gu et al. (2017) 136 

compared ground monitor NO2 in China with both unadjusted OMI NO2 and OMI surface NO2 137 

derived using CMAQ NO2 profiles. Using the CMAQ-adjusted OMI NO2, they found 0.03 138 

greater correlation coefficients (R) for January 2014 and 0.05 greater R-values for July 2014. 139 

However, the use of chemical transport models in near-real-time requires meteorological 140 
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reanalysis data and emissions inventories, significant computational resources, and additional re-141 

gridding steps to accommodate for the lower spatial resolution of models. In this study, we use 142 

TROPOMI column NO2 without CTM-based adjustments, to provide surface NO2 estimates with 143 

minimal computational burden. 144 

Machine learning methods are well-suited for estimation and prediction problems with complex 145 

input datasets, as is the case for air quality estimation and forecasting. Several recent studies 146 

implement machine learning methods using TROPOMI column NO2 as well as meteorological 147 

and land use data inputs to estimate surface NO2 concentrations (Chi et al., 2021; Grzybowski et 148 

al., 2023; Li et al., 2022; Qin et al., 2020). Ghahremanloo et al. (2021) trained convolutional 149 

neural networks to predict surface NO2 concentrations over Texas using TROPOMI column 150 

NO2, vegetation, land-use, and meteorological data as inputs. Their machine learning method 151 

improved (R = 0.91) had stronger agreement with surface NO2 than multiple linear regression (R 152 

= 0.77). Kim et al. (2021) used tree-based ensemble machine learning methods with TROPOMI 153 

NO2, land-use, meteorological, and topographic variables to predict hourly surface NO2 over 154 

Switzerland and northern Italy. Their model achieved R
2
 of 0.54 for monitors held-out from 155 

model training and R
2
 of 0.84 for all monitors. Chan et al. (2021) estimated surface NO2 156 

concentrations over Germany for 2018 through 2020 at weekly to seasonal time-scales using 157 

artificial neural networks and TROPOMI NO2 reprojected to 0.5 by 0.5 km resolution, resulting 158 

in R
2
 of 0.64. These studies demonstrate that machine learning models can accurately estimate 159 

surface NO2 from large, multi-dimensional input data sets. However, the usability of machine 160 

learning models is limited by their significant computational demands and their inherent lack of 161 

interpretability. Here, we investigate the ability of regression models with column NO2 input to 162 

estimate surface NO2. Regression models have minimal computational demands and are 163 

straightforward to interpret, enabling a broad range of applications. 164 

Previous regression-based studies have shown strong agreement between surface measurements 165 

and TROPOMI column NO2. Griffin et al. (2019) compared TROPOMI NO2 and surface 166 

measurements in the Canadian Oil Sands and found an R
2
 of 0.67, demonstrating the improved 167 

capability of TROPOMI in capturing fine-scale surface NO2 variations compared to OMI. Yu 168 

and Li (Yu & Li, 2022) explored the agreement of TROPOMI NO2 with surface monitors in 169 

China’s Xinjiang Province, finding a province-wide R
2
 of 0.78. Their work also explored 170 
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meteorological and economic factors, using annual GDP of industry as a proxy for industrial 171 

activity. Goldberg et al. (2021) investigated the weekly and diurnal variability of TROPOMI 172 

NO2 as well as the impact of temperature. Their study found an R
2
 of 0.66 between annual-173 

average EPA surface NO2 and TROPOMI column NO2 across the continental U.S. 174 

Land use regression (LUR) studies incorporate land use and road data to estimate surface NO2. 175 

Early literature conducted seasonal to annual-scale measurement campaigns of surface NO2 to 176 

generate data for LUR. These studies improved on spatial interpolation methods while achieving 177 

particularly strong performance in urban areas with fine-scale gradients in NO2 concentrations 178 

(Beelen et al., 2013; Henderson et al., 2007; Hoek et al., 2008). Novotny et al. included OMI-179 

derived surface NO2 as input to LUR models, resulting in a median R
2
 of 0.76 on the hold-out set 180 

of monitors over the continental U.S. (Beelen et al., 2013; Henderson et al., 2007; Hoek et al., 181 

2008; Novotny et al., 2011). Lee et al. (2023)used multivariate regression, land use data, and 182 

TROPOMI column NO2 to estimate NO2 across 89 monitor sites in California, attaining an R
2
 of 183 

0.76. Further, Lee et al. estimated surface NO2 on a 500 meter-resolution grid across California. 184 

Spatial statistical methods including kriging, geographically and temporally weighted regression 185 

(GTWR), and fuzzy models have been used to estimate ground-level NO2 concentrations 186 

(Yeganeh et al., 2018, p. 201). Kriging applied to NO2 ground monitors provides adequate 187 

performance in areas with clustered monitors, and incorporating satellite NO2 data improves 188 

prediction at locations far from monitors (Young et al., 2016, p. 201). GTWR improved on 189 

ordinary least squares (OLS) regression for predicting ground-level NO2, with a cross-validation 190 

R
2
 of 0.60 for GTWR compared to 0.44 for OLS at a daily scale over central and eastern China 191 

(Qin et al., 2017). These statistical models provide accurate predictions of surface NO2 but 192 

require the inclusion of chemical transport model profiles, meteorological data, and other 193 

information which are not readily available in a real-time prediction context. 194 

Here, we investigate TROPOMI NO2 to capture spatial heterogeneities in the distribution of 195 

ambient NO2 at the surface across the continental U.S. We compare regression methods for 196 

estimating surface NO2 concentrations in varied land use settings (urban/suburban/rural and 197 

highway proximity) and geographies (seven distinct U.S. regions). We then apply the regression 198 

models to provide a reliable metric of surface NO2 across CONUS. This metric provides an 199 
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easily interpretable, high-resolution estimate of surface NO2 with minimal data and 200 

computational requirements. Recognizing the limitations of an annual average metric, we term 201 

this quantity “quasi-NO2” (qNO2 for short). We assess the performance of this metric on 202 

regional and national scales, investigate spatial patterns and potential causes of biases, and 203 

evaluate the applicability of qNO2 across different use cases. We anticipate qNO2, with its high 204 

spatial resolution and ease-of-use, will facilitate air quality and health impact assessments. 205 

2 Methods 206 

2.1 Surface Monitor Data 207 

Hourly NO2 measurements over the U.S. were obtained from the EPA Air Quality Service 208 

(AQS) for 2019 (US EPA, 2013). AQS monitors use a chemiluminescence method which 209 

measures the amount of NO that is converted from NO2 by a molybdenum oxide converter 210 

(Fontijn et al., 1970). Other oxidized nitrogen compounds such as nitric acid (HNO3) and 211 

peroxyacetyl nitrate (PAN) are also converted to NO by these converters, causing an 212 

overestimation of NO2 when there are high concentrations of HNO3 or PAN (Steinbacher et al., 213 

2007). Interference is observed to be highest during afternoon hours for urban areas and in the 214 

summer season for rural areas (Dunlea et al., 2007; Steinbacher et al., 2007). This positive 215 

monitor bias is often corrected when used in comparison with satellite data (Cooper et al., 2020; 216 

Lamsal et al., 2015). Following the reasoning previously described in Penn and Holloway, and 217 

given the annual scale of our analysis, we do not apply a bias correction factor to the monitor 218 

data (Penn & Holloway, 2020). EPA NO2 is used without bias corrections for many health 219 

impacts studies and regulatory purposes, such as determining attainment of the NAAQS across 220 

the nation. To remain consistent with the US air quality management community, we use the 221 

monitor data without bias correction. 222 

EPA NO2 data were filtered to only include monitors for which at least 75% of 2019 hourly 223 

measurements were considered "valid" by EPA quality control checks. Then, for each of the 224 

remaining 402 monitors, all valid 2019 hourly measurements were averaged to obtain the final 225 

"ground-truth" dataset. Our filtering method aligns with the criterion implemented in prior 226 

annual average NO2 studies (Novotny et al., 2011; Penn & Holloway, 2020). 227 
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We use two monitor classifications provided by the EPA as input variables for regression 228 

modeling: “location setting”, which consists of urban (n=152), suburban (n=146), and rural 229 

(n=104) classes, and "road proximity", which has non-near-road (n=333) and near-road (n=69) 230 

classes. We use the term "location setting" rather than "land use" because our classification 231 

scheme is more general than traditional land use datasets. Near-road monitors are located near 232 

highways in metropolitan areas. 57% of these monitors are within 20 meters of a highway and 233 

89% are within 30 meters (Watkins, 2016). Our dataset includes 49 near-road monitors in urban 234 

areas, 20 near-road monitors in suburban areas, and no near-road monitors in rural areas. 235 

 236 

 237 

Figure 1: 2019 annual average TROPOMI NO2 gridded at 0.01
o
 by 0.01

o
 resolution across the 238 

continental United States. 239 

2.2 Satellite Data 240 

We use 2019 annual average TROPOMI column NO2 as an input variable for regression models. 241 

TROPOMI measures the slant column density (SCD) using a differential optical absorption 242 

spectroscopy (DOAS) technique, separating the column into stratospheric and tropospheric 243 

components. Air mass factors (AMFs) are then used to convert the SCDs into vertical column 244 
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densities (VCDs) (van Geffen et al., 2020). Current AMFs are subject to uncertainty and may be 245 

a partial cause of low bias in column NO2 observations in urban areas (Judd et al., 2020). The 246 

highest resolution of TROPOMI is 3.5 km by 5.5 km at nadir (resolution increased from 3.5 km 247 

by 7.0 km on August 6
th

, 2019). TROPOMI has an approximate overpass time of 1:30PM local 248 

time (Veefkind et al., 2012). We averaged surface measurements for 1-2PM, to match the 249 

TROPOMI overpass time, and for the full 24-hours, and found similar correlation between 250 

TROPOMI and surface NO2 for both time ranges. We use 24-hour mean NO2 monitor 251 

measurements in our work, consistent with the method of  Lee et al. (2023). We use the method 252 

used in Goldberg et al. (2021) to re-grid TROPOMI NO2 to a 0.01
o
 by 0.01

o
 grid (approximately 253 

1 km by 1 km. Figure 1 shows the re-gridded TROPOMI NO2 data used in our work. 254 

2.3 Road and Location Setting Data 255 

To characterize surface NO2 concentration across the full domain, we applied our regression 256 

models for each TROPOMI NO2 CONUS grid cell. To apply the regression models, we 257 

classified each grid cell by road proximity and location setting, as defined in Section 2.1. 258 

We use road data from the U.S. Census Bureau TIGER/Line Primary Roads dataset.
2
 All EPA 259 

NO2 monitors classified as "near-road" are within the same TROPOMI grid cell as a Census 260 

Bureau "primary road." Thus, to create the near-road dataset for the full 0.01
o
 by 0.01

o
 CONUS 261 

grid, TROPOMI NO2 grid cells overlapping with any segment of a TIGER/Line "primary road" 262 

were classified as "near-road." All remaining grid cells were classified as "non-near-road." We 263 

used ArcGIS Pro 3.0 to re-grid the TIGER/Line data onto the TROPOMI NO2 grid. Figure S1 264 

shows primary roads on the 0.01
o
 by 0.01

o
 CONUS grid along with near-road EPA monitors. 265 

We determined the location setting classification of each TROPOMI grid cell based on the 266 

National Center for Education Statistics (NCES) Education Demographic and Geographic 267 

Estimates (EDGE) locale classification
3
. The NCES dataset provides boundaries for four 268 

categories of locales across the U.S.: City, Suburban, Town, and Rural. We used ArcGIS Pro 3.0 269 

to determine the locale class with the most area covered in each TROPOMI grid cell. To align 270 

                                                           
2Data available at https://www2.census.gov/geo/tiger/TIGER2021/PRIMARYROADS/. 

3Accessible at https://nces.ed.gov/programs/edge/Geographic/LocaleBoundaries. 

https://www2.census.gov/geo/tiger/TIGER2021/PRIMARYROADS/
https://www.cdc.gov/nchs/data_access/urban_rural.htm
https://www.cdc.gov/nchs/data_access/urban_rural.htm
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NCES and EPA classifications when applying our regression models across the full CONUS 271 

grid, we classified NCES "City" grid cells as EPA "Urban," NCES "Suburban" as EPA 272 

"Suburban," and NCES "Rural" and "Town" as EPA "Rural." Figure S2 shows the location 273 

setting classifications for each grid cell. Supplemental Text S1 details the agreement between 274 

NCES and EPA location setting classifications. 275 

 276 

2.4 Regression Methods 277 

We fit simple (SLR) and multivariate linear regression (MLR) models to evaluate the 278 

relationship between surface monitor NO2 and TROPOMI column NO2, with the output of SLR 279 

termed qNO2 SLR and the output of MLR termed qNO2 MLR. Through this analysis, we aim to 280 

1) understand under which conditions NO2 satellite data best represents surface NO2 281 

concentrations and 2) compare the performance of different satellite NO2-based regression 282 

methods for estimating surface NO2.The TROPOMI NO2 measurements have a Poisson-like 283 

distribution (Figure S4). Thus, to satisfy the normality and constant variance assumptions of 284 

linear regression, we fit additional regression models with the log transform and Anscombe 285 

transform applied to TROPOMI NO2 inputs. Equation 1 gives the Anscombe transform for 286 

positive real number 𝒙. 287 

𝒂(𝒙) =  𝟐√𝒙 +  
𝟑

𝟖
 #(𝟏)  

The distribution for the log and Anscombe transformed-TROPOMI NO2 has greater symmetry 288 

than the non-transformed distribution (Figure S4). The Anscombe transform ensures transformed 289 

values remain positive, whereas log-transformed values may be negative and thus result in 290 

negative regression outputs (Anscombe, 1948). The outputs of MLR with log transform of 291 

TROPOMI NO2 are termed qNO2 logMLR, and the outputs of MLR with Anscombe transform 292 

of TROPOMI NO2 are termed qNO2 anscMLR. 293 

While the resolution of TROPOMI NO2 is much finer than previous NO2 satellite data products, 294 

we still expect the kilometer-scale data to be insufficient to capture emissions near individual 295 

major roads, which can have sharp decay gradients over hundreds of meters (Kimbrough et al., 296 

2017). Thus, we separately conduct simple linear regression on near-road and not-near road 297 
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monitors. To further compare TROPOMI NO2 performance over different location settings, we 298 

also conduct simple linear regressions on each location setting class: urban, suburban, and rural. 299 

 300 

We fit multivariate regression models with three input variables: TROPOMI column NO2 301 

concentration (no transform, log transform, Anscombe transform), road proximity, and location 302 

setting. Road proximity is a binary variable representing EPA monitor "near-road" and "non-303 

near-road" classification. Location setting is a categorical variable with three levels 304 

corresponding to EPA monitor classification: urban, suburban, and rural. Multivariate regression 305 

provides a single interpretable model for calculating qNO2 across the U.S., facilitating 306 

interpretation and application by stakeholders. 307 

 308 

2.5 Evaluation Methods 309 

We evaluate regression model performance using four metrics: coefficient of determination (R
2
), 310 

root mean squared error (RMSE), mean fractional error (MFE), and mean fractional bias (MFB). 311 

𝑹𝑴𝑺𝑬 =  √
∑ (𝒒𝑵𝑶𝟐[𝒊]  − 𝑬𝑷𝑨 𝑵𝑶𝟐[𝒊])𝟐𝑵

𝒊=𝟏

𝑵
 #(𝟐)  

𝑴𝑭𝑩 =  
𝟏

𝑵
(

∑ (𝒒𝑵𝑶𝟐[𝒊] − 𝑬𝑷𝑨 𝑵𝑶𝟐[𝒊])𝑵
𝒊=𝟏

∑
(𝒒𝑵𝑶𝟐[𝒊] + 𝑬𝑷𝑨 𝑵𝑶𝟐[𝒊])

𝟐
𝑵
𝒊=𝟏

) #(𝟑)  

𝑴𝑭𝑬 =  
𝟏

𝑵
(

∑ |𝒒𝑵𝑶𝟐[𝒊] − 𝑬𝑷𝑨 𝑵𝑶𝟐[𝒊]|𝑵
𝒊=𝟏

∑
(𝒒𝑵𝑶𝟐[𝒊] + 𝑬𝑷𝑨 𝑵𝑶𝟐[𝒊])

𝟐
𝑵
𝒊=𝟏

) #(𝟒)  

R
2
 is the proportion of variance in the output that is captured by the model. RMSE is a metric of 312 

absolute error with the same units as the model output (ppb), calculated using Equation 1. MFB 313 

is a unitless metric of relative bias. For instance, MFB = 0.67 indicates that the model output is 314 

an overestimate of observed values by a factor of 2. MFB = 0.4 indicates that the model output is 315 

an overestimate by a factor of 1.5. MFE is a unitless metric of relative error. MFB and MFE are 316 

used to measure the relative performance of qNO2, enabling comparison between models fit on 317 

different classes and regions. 318 
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The multivariate regression models were evaluated for seven distinct regions of the continental 319 

U.S.: Northeast, Southeast, Midwest, Rockies, Southwest, Northwest, and Southern California. 320 

These regions were selected due to their distinct topographical and meteorological conditions, 321 

and to ensure a similar number of EPA monitors (n=51 ~ 63) in each region. Figure S5 shows 322 

region divisions and monitor locations. 323 

We implement random and spatial cross-validation methods to assess the generalization ability 324 

of the multivariate regression models. Generalizability is an important factor for the utilization of 325 

qNO2 as a near-real-time metric for surface NO2 in spatial and temporal domains beyond those 326 

evaluated in this work. We conduct random cross-validation using k-fold and Monte Carlo. We 327 

also use each of the seven regions as cross-validation "folds" to conduct spatial cross-validation. 328 

Cross-validation experiments are described in greater detail in Supplemental Text S2. 329 

After model training and evaluation, we compute qNO2 MLR, logMLR, and anscMLR for the 330 

full CONUS TROPOMI NO2 grid and discuss the spatial variation of qNO2 values and qNO2 331 

performance metrics across road proximity and location setting classes as well as U.S. regions. 332 

Additional analyses are presented for three metropolitan areas with some of the highest 333 

TROPOMI NO2 levels in the United States: Los Angeles, Dallas-Fort Worth, and New York 334 

City. 335 
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Figure 2: Simple and multiple linear regression results for TROPOMI NO2 with no transform, 338 

log transform, and Anscombe transform. a) Simple regression models trained separately on near-339 

road (black line-of-best-fit) and non-near-road (gray line-of-best-fit) EPA NO2 monitors. Dashed 340 

lines indicate mean near-road and non-near-road TROPOMI and EPA NO2 values. b) Simple 341 

regression models trained separately on urban (pink line-of-best-fit), suburban (blue line-of-best-342 

fit), and rural (green line-of-best-fit) EPA NO2 monitors. Dashed lines indicate mean urban, 343 

rural, and suburban TROPOMI and EPA NO2 values. c) qNO2 MLR trained on all monitors. y = 344 

x line in red. d) Simple regression models with log transform of TROPOMI NO2 input trained 345 

separately on near-road and non-near-road EPA NO2 monitors. e) Simple regression models with 346 

log transform of TROPOMI NO2 input trained separately on urban, suburban, and rural EPA 347 

NO2 monitors. f) qNO2 logMLR trained on all monitors. y = x line in red. g) Simple regression 348 

models with Anscombe transform of TROPOMI NO2 input trained separately on near-road and 349 

non-near-road EPA NO2 monitors. h) Simple regression models with Anscombe transform of 350 

TROPOMI NO2 input trained separately on urban, suburban, and rural EPA NO2 monitors. i) 351 

qNO2 anscMLR trained on all monitors. y = x line in red. 352 

3 Results and Discussion 353 

3.1 Regression Results 354 

We present SLR and MLR results for surface NO2 estimation, their relative performance across 355 

U.S. regions, and the impact of transforms applied to TROPOMI NO2. Figure 2 shows the 356 

relationship between TROPOMI NO2 and EPA NO2, separated by road proximity and location 357 

setting classes. SLR with TROPOMI NO2 as the sole input resulted in an R
2
 of 0.55 when 358 

evaluated over all monitors. We fit separate SLR models for near-road and non-near-road 359 

monitors (Figure 2a). SLR with TROPOMI NO2 captures the majority of variance in surface 360 

NO2 concentrations at non-near-road monitors (R
2
 = 0.66) but does not fully capture near-road 361 

variation (R
2
 = 0.41). Surface monitors better detect NO2 near major roads compared to 362 

TROPOMI NO2 because the kilometer-scale resolution of TROPOMI cannot fully capture fine-363 

scale NO2 concentration gradients. However, while SLR at near-road sites has higher absolute 364 

error than non-near-road sites, fractional error and bias is lower at near-road sites than non-near-365 

road sites. Thus, SLR with TROPOMI NO2 can be useful as a nearly unbiased estimate in data-366 

sparse settings near major roads. To account for the difference in performance between near-road 367 

and non-near-road sites, we include road proximity as a binary variable in the MLR models, 368 

aligning with several prior studies which include road proximity information in satellite NO2-369 

based statistical models to estimate surface NO2 (Grzybowski et al., 2023; Henderson et al., 370 



manuscript submitted to Journal of Geophysical Research: Atmospheres 

 16 

2007; Kim et al., 2021; H. J. Lee et al., 2023; Novotny et al., 2011; Yeganeh et al., 2018; Young 371 

et al., 2016). We display performance metrics for SLR and MLR models in Table S1. 372 

In addition to classification by proximity to major roads, we separated monitor sites by their 373 

location setting (urban, suburban, rural) and fit SLR models to each class. We found TROPOMI 374 

NO2 best captures surface concentrations at suburban sites (R
2
 = 0.60, RMSE = 2.77 ppb), 375 

captures around half of concentration variance at rural sites (R
2
 = 0.53, RMSE = 1.80 ppb), and 376 

has the poorest performance at urban sites (R
2
 = 0.33, RMSE = 3.95 ppb) (Figure 2b). Column 377 

NO2 does not fully capture surface NO2 concentration peaks in urban areas but has stronger 378 

performance in suburban and rural areas, which have lower and more uniform NO2 379 

concentrations. However, urban and suburban sites have lower relative error and bias than rural 380 

sites. SLR with TROPOMI NO2 is useful as a low bias estimate of urban and suburban surface 381 

NO2. In rural areas, SLR-based estimates have moderate positive bias. To account for the 382 

differing performance of column NO2 in capturing surface concentrations across location 383 

settings, our MLR models include location setting as a categorical variable.  384 

We then fit a multiple linear regression (MLR) model with TROPOMI NO2, road proximity, and 385 

location setting variables as inputs and surface NO2 concentration estimates as the output. MLR 386 

on all monitor sites results in an R
2
 of 0.76, greater than the full-domain SLR R

2
 of 0.55. Thus, 387 

incorporating road proximity and location setting information aids in surface NO2 estimation. 388 

MLR also has lower absolute (RMSE = 2.58 ppb) and fractional error (MFE = 0.29) than SLR 389 

(RMSE = 3.59 ppb, MFE = 0.40) and results in a lower positive bias (MFB = 0.09) than SLR 390 

(0.15). Thus, in locations with readily available data on major roads and basic land use 391 

classifications, we recommend the use of the MLR model for surface NO2 estimation. Table S2 392 

shows coefficients for the SLR models of each site classification and for the MLR model. 393 

Supplemental Text S3 includes additional analysis of regression coefficients. As noted in Section 394 

2.4, we term the surface NO2 estimates of the MLR model as qNO2 MLR. 395 

2019 annual average TROPOMI NO2 amounts over CONUS have a log-normal distribution 396 

(Figure S4). To better satisfy the assumption of normality in regression and to improve 397 

regression performance, we applied a log-transform and Anscombe transform to TROPOMI NO2 398 

and compared performance with the corresponding no-transform models. For SLR, both log 399 
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(Figure 2d) and Anscombe (Figure 2g) transformed-TROPOMI NO2 have greater R
2
 than no-400 

transform SLR when fit on all sites. For MLR, both transforms resulted in marginal 401 

improvements in performance (Figures 2f,i). Performance metrics and regression coefficients for 402 

log-transform models are presented in Tables S3 and S4, respectively. Performance metrics and 403 

regression coefficients for Anscombe-transform models are presented in Tables S5 and S6, 404 

respectively. Following the naming convention defined in Section 2.4, we term the output of the 405 

MLR with log transform as qNO2 logMLR and the output of MLR with Anscombe transform 406 

qNO2 as anscMLR. 407 

We specify the model configuration with the best surface NO2 estimation performance for each 408 

site classification. For rural sites, SLR with no transform has the highest R
2
 and lowest RMSE, 409 

but SLR with log-transform has the lowest rural fractional bias. SLR with log transform has the 410 

highest R
2
, lowest RMSE, and lowest fractional bias for near-road sites. For urban sites, MLR 411 

with log transform has the highest R
2
. The difference in performance between MLR and SLR is 412 

greatest at urban sites, which indicates the value of road proximity information for estimating 413 

urban surface NO2. For non-near-road and suburban sites, MLR with Anscombe transform has 414 

the best performance. MLR with Anscombe transform has the best performance over all 415 

monitors, with an overall R
2
 of 0.78. 416 



manuscript submitted to Journal of Geophysical Research: Atmospheres 

 18 

 417 

 418 

Figure 3: a) 2019 qNO2 gridded across the continental United States, computed using multiple 419 

linear regression (qNO2 MLR). b) 2019 qNO2 gridded across the continental United States, 420 

computed using multiple linear regression with log transform of the TROPOMI NO2 input 421 

(qNO2 logMLR). c) The difference between qNO2 logMLR and qNO2 MLR. Red indicates 422 

areas where qNO2 logMLR is greater than qNO2 MLR, and blue indicates areas where qNO2 423 

logMLR is less than qNO2 MLR. d) 2019 qNO2 gridded across the continental United States, 424 

computed using multiple linear regression with Anscombe transform of TROPOMI NO2 input 425 

(qNO2 anscMLR). e) The difference between qNO2 anscMLR and qNO2 MLR. Red indicates 426 

areas where qNO2 logMLR is greater than qNO2 MLR, and blue indicates areas where qNO2 427 

logMLR is less than qNO2 MLR. 428 
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3.2 qNO2 Computation 429 

To analyze spatial patterns of surface NO2 estimates, we computed qNO2 MLR for all 430 

TROPOMI 0.01
o
 by 0.01

o
 grid cells over CONUS, displayed in Figure 3a. qNO2 MLR is highest 431 

in major cities and along major highways across the U.S. The Great Lakes and much of the 432 

eastern half of the U.S. have high overall qNO2 MLR concentrations, while the Mountain West 433 

and Northern New England have lower overall concentrations. Western North Dakota and the 434 

Permian Basin in western Texas have elevated qNO2 MLR levels compared to the surrounding 435 

rural areas, coinciding with the high oil industry activity in both regions.  436 

We also computed qNO2 logMLR (Figure 3b) and anscMLR (Figure 3d) at 0.01
o
 by 0.01

o
 437 

resolution across CONUS. Figure 3c displays the difference between qNO2 logMLR and qNO2 438 

MLR for each grid cell. qNO2 logMLR is greater than qNO2 MLR across the eastern half of the 439 

United States, particularly around the Great Lakes, Texas, and the Mid-Atlantic. qNO2 logMLR 440 

is also greater than qNO2 MLR in the California Central Valley and in areas around Seattle, 441 

Portland, Salt Lake City, Phoenix, and Denver, as well as the Bakken oil fields in North Dakota 442 

and Permian Basin in Texas. qNO2 logMLR and qNO2 MLR are close in value in most urban 443 

areas and throughout most of the rural western U.S. qNO2 logMLR and MLR have the greatest 444 

difference in the Los Angeles and New York City areas, where qNO2 logMLR concentrations 445 

are more than 4 ppb lower than qNO2 MLR. Figure 3e shows the difference between qNO2 446 

anscMLR and qNO2 MLR for each grid cell. qNO2 anscMLR follows a similar spatial pattern of 447 

differences to qNO2 MLR as qNO2 logMLR, but with a lower magnitude of difference. Overall, 448 

qNO2 logMLR and anscMLR have greater spatial spread of NO2 from urban areas and greater 449 

background concentrations in the eastern U.S. as well as lower maximum concentrations 450 

compared to qNO2 MLR. 451 

  452 
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Figure 4: a) Fractional bias between EPA NO2 and qNO2 MLR at EPA monitor locations 454 

(n=402) across the continental United States. Red indicates monitor locations where qNO2 is 455 

relatively high compared to the measured NO2 concentration. Blue indicates monitor locations 456 

where qNO2 is relatively low compared to the measured NO2 concentration. b) Fractional bias 457 

between EPA NO2 and qNO2 logMLR at EPA monitor locations. c) Fractional bias between 458 

EPA NO2 and qNO2 anscMLR at EPA monitor locations. 459 

3.3 Regional Evaluation  460 

We evaluated qNO2 in seven U.S. regions to investigate the variability of satellite-surface 461 

agreement between large spatial domains with similar topographic and meteorological 462 

conditions. qNO2 MLR best aligns with surface NO2 in the Midwest states (R
2
 = 0.88). 463 

Northeast, Southeast, Rockies, and Southern California regions have comparable qNO2 MLR 464 

performance with R
2
 values ranging from 0.72 to 0.76. The Southwest (R

2
 = 0.65) and Northwest 465 

(R
2
 = 0.66) regions have the lowest qNO2 MLR performance (Table S7). The strong 466 

performance in the Midwest and relatively weak performance in the Western U.S. suggests that 467 

elevation gradient may be an additional variable that could be included to further improve MLR 468 

performance.  469 

All regions have positive mean fractional bias except the Northwest, which has an MFB of -0.06 470 

indicating that qNO2 is a slight underestimate of surface NO2. Rockies region has the greatest 471 

MFE (0.46) and MFB (0.15). This may be due to the larger proportion of rural sites in the 472 

Rockies region with very low NO2 concentrations, which inflates relative error metrics. For rural 473 

and remote areas with low background NO2 concentrations, absolute error metrics are more 474 

relevant for assessing model performance.  475 

qNO2 logMLR exhibits similar regional variability as qNO2 MLR. R
2
 in the Northeast, 476 

Midwest, Northwest, and Southern California is slightly higher compared to qNO2 MLR, while 477 

R
2
 in the Southeast is slightly lower (Table S8). qNO2 anscMLR has slightly higher R

2
 than 478 

qNO2 MLR and logMLR in all regions (Table S9). 479 

qNO2 performance varies within regions as well as between regions. Figure 4 displays the 480 

fractional bias of qNO2 at each EPA monitor. qNO2 MLR (Figure 4a) overestimates surface 481 

NO2 relative to the measured value along the California coast, Wyoming, Montana, the Dakotas, 482 

and Texas. qNO2 MLR underestimates surface NO2 in the California Central Valley and the 483 
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Southwest. Sites in the Midwest and Southeast have low overall bias. qNO2 anscMLR (Figure 484 

4c) and qNO2 MLR have similar spatial variation in fractional bias across EPA monitor sites, but 485 

qNO2 anscMLR has lower fractional bias in Wyoming and Montana. qNO2 logMLR (Figure 4b) 486 

also has similar spatial fractional bias variation as MLR and anscMLR but has a much greater 487 

degree of bias in Wyoming and Montana. 488 

3.4 Urban Case Studies 489 

Figure 5 shows qNO2 MLR, logMLR, and anscMLR over three large U.S. metropolitan areas: 490 

Los Angeles, CA; Dallas-Fort Worth, TX; and New York City, NY-NJ-CT-PA. qNO2 MLR in 491 

Los Angeles (Figure 5a,d,g) is greater than 20 ppb in the city center. qNO2 MLR decreases 492 

sharply between the metropolitan area and the surrounding rural areas. qNO2 logMLR has a 493 

lower maximum level in the city center and a more gradual decrease towards the surrounding 494 

rural areas than qNO2 MLR. The urban-rural concentration gradient for qNO2 anscMLR is 495 

steeper than qNO2 logMLR but less steep than qNO2 MLR. All qNO2 models indicate 496 

concentrations greater than 18 ppb along the major highways extending south and east from 497 

central LA. Among the qNO2 models, qNO2 MLR (RMSE = 3.65 ppb) and anscMLR (3.52 ppb) 498 

have the lowest error in Los Angeles, while logMLR (RMSE = 7.78 ppb) has the highest error.  499 

Dallas-Fort Worth (Figure 5b,e,h) has lower overall qNO2 than Los Angeles, with maximum 500 

qNO2 of 16 to 18 ppb along major highways. The qNO2 models estimate similar concentration 501 

levels in the metropolitan area, but logMLR and anscMLR have a broader radius of high 502 

concentrations than qNO2 MLR. In Dallas, qNO2 has high accuracy, with logMLR having the 503 

lowest error (RMSE = 1.56 ppb). 504 

New York City (Figure 5c,f,i) has comparable peak qNO2 levels to Los Angeles, as the urban 505 

core and adjacent highways have qNO2 concentrations greater than 20 ppb. As in Los Angeles 506 

and Dallas-Fort Worth, qNO2 logMLR and anscMLR over New York City have smoother 507 

gradients toward the edges of the metropolitan area than qNO2 MLR. The spatial patterns of 508 

qNO2 anscMLR are a combination of the sharp gradients and high peak concentrations of qNO2 509 

MLR and the smoother gradients of qNO2 logMLR. Among the qNO2 models, anscMLR results 510 

in the lowest error (RMSE = 3.49 ppb) while logMLR has the highest error (RMSE = 7.04 ppb).  511 
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 512 

Figure 5: qNO2 MLR, qNO2 logMLR, and qNO2 anscMLR over three selected large U.S. 513 

metropolitan areas. a) qNO2 MLR over Los Angeles, CA. b) qNO2 MLR over Dallas-Fort 514 

Worth, TX. c) qNO2 MLR over New York-Newark-Jersey City, NY-NJ-CT-PA. d) qNO2 515 

logMLR over LA. e) qNO2 logMLR over Dallas. f) qNO2 logMLR over NYC. g) qNO2 516 

anscMLR over LA. h) qNO2 anscMLR over Dallas. i) qNO2 anscMLR over NYC. 517 
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3.5 Cross-Validation 518 

We implemented k-fold and Monte Carlo cross-validation (CV) to investigate the 519 

generalizability of qNO2 on data sets held out from model fitting. Table S10 displays k-fold CV 520 

results and Table  S11 displays Monte Carlo CV results.  521 

Both CV methods indicate that qNO2 anscMLR performs well on unseen data. k-fold CV 522 

resulted in similar mean holdout set performance for k = 5 and k =10 with R
2
 of 0.74. However, 523 

using k = 20 resulted in a mean holdout set performance of R
2
 = 0.71. Smaller holdout sets are 524 

more likely to be unrepresentative of the population distribution, thus resulting in poor 525 

evaluation performance. Monte Carlo CV using holdout set sizes of 25% and 50% indicated 526 

strong evaluation performance on the holdout data, with anscMLR R
2
 of 0.77. When evaluated 527 

over a sufficiently large set of unseen data points, qNO2 anscMLR exhibits strong generalization 528 

ability. Further, the difference between holdout set and training set performance is small, 529 

indicating that the anscMLR model is not overfit to the training data. This finding supports the 530 

use of qNO2 anscMLR as a reliable metric for future surface NO2 estimation beyond the domain 531 

of our analysis. 532 

We also conduct cross-validation using the seven CONUS regions by leaving one region out for 533 

evaluation and fitting anscMLR models on the remaining six regions. As with non-cross-534 

validated regional evaluation detailed in Section 3.2, qNO2 anscMLR generalizes well to 535 

Midwest monitors with an R
2
 of 0.89 and has the lowest generalization performance for 536 

Southwest (R
2
 = 0.65), Pacific Northwest (R

2
 = 0.66), and Northeast sites (R

2
 = 0.69) (Table 537 

S12). The similar results between cross-validated and non-cross-validated region-wise evaluation 538 

indicate that qNO2 is generalizable to new geographic contexts. 539 

4 Conclusions 540 

We fit regression models with TROPOMI NO2, location setting, and road proximity inputs to 541 

estimate 2019 annual average surface NO2 concentrations at 0.01
o
 by 0.01

o
 resolution across the 542 

continental U.S. Among the regression models studied, qNO2 anscMLR has the strongest overall 543 

performance. qNO2 anscMLR is the best estimate for surface NO2 at non-near-road sites 544 

(anscMLR R
2
 = 0.76) and suburban sites (anscMLR R

2
 = 0.74). We also investigate qNO2 545 
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spatial patterns over large U.S. urban areas, compare qNO2 performance across U.S. regions, 546 

and assess the generalizability of qNO2. We find that qNO2 performs best in the Midwest, with 547 

cross-validated anscMLR R
2
 of 0.89. 548 

Using easily accessible data and interpretable methods, we demonstrate comparable or improved 549 

performance over prior regression-based studies which use satellite NO2 to estimate surface NO2. 550 

Novotny et al. (2011) used GEOS-Chem to derive surface NO2 concentrations from OMI, which 551 

was then used as regression input along with land use to estimate surface NO2 at 30-meter 552 

resolution. Their work resulted in an R
2
 of 0.77 and an MAE of 2.40 ppb evaluated at EPA NO2 553 

monitors across CONUS. The slightly stronger performance of qNO2 anscMLR using a three-554 

variable regression model without GEOS-Chem-based column NO2 adjustments highlights the 555 

improved ability of the higher resolution TROPOMI to capture surface NO2 compared to prior 556 

satellite products. Goldberg et al. (2021) found an R
2
 of 0.66 between TROPOMI NO2 and EPA 557 

NO2 at non-near-road sites. Using the same 0.01
o
 by 0.01

o
 TROPOMI dataset, we apply the 558 

Anscombe transform to TROPOMI NO2 which results in 0.06 greater R
2
 at non-near-road sites. 559 

Lee et al. (2023) used multivariate regression to analyze TROPOMI NO2 agreement with 2018-560 

2019 annual-average surface NO2 over California at 0.5 by 0.5 km resolution. Their final 561 

regression models included land use and road proximity inputs. Meteorological inputs were 562 

initially considered but were removed because they did not contribute to model performance. 563 

Their work achieved an R
2
 of 0.76 and RMSE of 2.51 ppb. These metrics are comparable to 564 

qNO2 anscMLR metrics computed using the same cross-validation method as Lee et al., for all 565 

CONUS monitor sites (CV R
2
 = 0.75 and RMSE = 2.64 ppb). We further find that qNO2 566 

anscMLR has cross-validation R
2
 of 0.76 and RMSE of 2.63 ppb in California, in close 567 

agreement with the Lee et al. results while using simpler input variables. 568 

The regression models in this work can be applied to estimate surface NO2 in any region with 569 

adequate road and location setting data, thus enabling NO2 exposure assessments in areas with 570 

sparse or no monitor coverage. Additionally, since both road density and location setting are 571 

relatively static over time, surface NO2 concentrations of additional years in the TROPOMI 572 

record can be estimated quickly. In addition to characterizing surface NO2, our analysis of 573 

satellite-surface agreement across spatial scales, contexts, and model configurations informs the 574 

application of satellite NO2 products in different domains.  575 
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The annual-average scale of our analysis is suitable for characterizing long-term spatial trends of 576 

surface NO2 but is less applicable for studies of short-range pollution events and trends. For 577 

example, this methodology is less applicable for inferring NO2 from biomass burning events 578 

because of their short-term time scale (less than one week) and tendency to be obscured from 579 

satellite measurements since they produce high-density smoke which is often indistinguishable 580 

from clouds (Griffin et al., 2021). 581 

The spatial distribution of EPA monitors presents a potential source of bias for qNO2. In the 582 

eastern half of the U.S., clusters of monitors are evenly distributed, mainly near urban areas. In 583 

the western U.S., monitors are concentrated in rural Wyoming, western North Dakota, and 584 

throughout California but are sparse in Washington and Oregon. Thus, monitor measurements 585 

may not be fully representative of NO2 spatial patterns over the U.S., impacting the 586 

generalizability of qNO2 to less-represented location settings and regions. Spatial models which 587 

account for error correlations between monitors in proximity may help to account for the 588 

inconsistent distribution of surface monitors. 589 

We anticipate that the results presented here will inform analysis of data from TEMPO 590 

(Tropospheric Emissions: Monitoring of Pollution), a new NASA geostationary satellite 591 

instrument launched in April 2023 which captures hourly column NO2 during all daylight hours 592 

at 2.1 km by 4.4 km resolution over the entire continental United States (Zoogman et al., 2017). 593 

The greater spatial and temporal resolution from TEMPO will expand the scope of air quality 594 

analyses. For example, the methods in this work can be extended to compare hourly TEMPO 595 

observations with hourly ground monitor measurements of NO2. Further, greater spatial 596 

resolution will enable investigation of satellite-surface agreement over finer-scale emissions 597 

sources such as industrial sites in addition to major roads. 598 

 599 

 600 

  601 
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