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Abstract

We explore the links between elevation variability of the Antarctic Ice Sheet (AIS) and large-scale climate modes. Using multiple

linear regression, we quantify the cumulative effects of El Nino Southern Oscillation (ENSO) and the Southern Annular Mode

(SAM) on gridded AIS elevations. Cumulative ENSO and SAM explain a median of 29% of the partial variance and up to 85%

in some coastal areas. After spatial smoothing, these signals have high spatial correlation with those from GRACE gravimetry

(r˜=0.65 each). Much of the signal is removed by a model of firn densification but inter-model differences exist especially for

ENSO. At the lower parts of the Thwaites and Pine Island glaciers, near their grounding line, we find the Amundsen Sea Low

(ASL) explains ˜90% of the observed elevation variability. There, firn effects explain only a small fraction of the variability,

suggesting significant height changes have a climatological ice-dynamic response.
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Key Points: 12 

• Cumulative effects of large-scale climate modes dominate detrended altimeter time series13 
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• These decadal signals have the same spatial pattern in altimeter ice height and GRACE15 
mass time series.16 

• These decadal signals are largely due to surface mass balance, but ice dynamic changes17 
may play a role in the Amundsen Sea Embayment18 
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Abstract 19 

We explore the links between elevation variability of the Antarctic Ice Sheet (AIS) and large-20 
scale climate modes. Using multiple linear regression, we quantify the cumulative effects of El 21 
Nino Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) on gridded AIS 22 
elevations. Cumulative ENSO and SAM explain a median of 29% of the partial variance and up 23 
to 85% in some coastal areas. After spatial smoothing, these signals have high spatial correlation 24 
with those from GRACE gravimetry (r~=0.65 each). Much of the signal is removed by a model 25 
of firn densification but inter-model differences exist especially for ENSO. At the lower parts of 26 
the Thwaites and Pine Island glaciers, near their grounding line, we find the Amundsen Sea Low 27 
(ASL) explains ~90% of the observed elevation variability. There, firn effects explain only a 28 
small fraction of the variability, suggesting significant height changes have a climatological ice-29 
dynamic response.  30 

 31 

Plain Language Summary 32 

This study investigates how variations in the height of the Antarctic Ice Sheet (AIS) are 33 
connected to large-scale climate patterns. We used a statistical method to measure the effects of 34 
two climate phenomena: El Nino Southern Oscillation (ENSO) and the Southern Annular Mode 35 
(SAM). We found that the cumulative effects of these phenomena account for about 29% of the 36 
variations in AIS height on average, and up to 85% in some coastal areas. These patterns match 37 
well with independent data from the GRACE satellites over the same period. Applying a model 38 
that considers the compacting of snow into ice (firn densification) removes much of this signal, 39 
suggesting much, but not all, of the signals are related to snowfall variations. At the fronts of the 40 
rapidly changing Thwaites and Pine Island glaciers, the dominant climate phenomenon is the 41 
Amundsen Sea Low (ASL), which varies in strength and location. Here, the cumulative effects 42 
of the ASL changes explain about 90% of the variations in height of these glaciers, with only a 43 
small part explained by firn effects. We suggest the unexplained variability is at least partly due 44 
to changes in ice flow. 45 

 46 

1 Introduction 47 

Observations of the changing volume of the Antarctic Ice Sheet play a major role in 48 
understanding ice-sheet change (e.g., Otosaka et al., 2023; Shepherd et al., 2012) from the 49 
whole-of-ice-sheet down to individual glaciers (e.g., Smith et al., 2020; Wingham et al., 2009). 50 
The now three-decade record of continuous ice volume change captures the variability and 51 
longer-term change of both surface mass balance (SMB), and related firn processes, and 52 
elevation effects of changing ice dynamics. These changes are, respectively, related to 53 
atmospheric and oceanic processes (Horwath et al., 2012; Smith et al., 2020). Several studies 54 
have examined the relationship between ice height changes and modes of climate variability, in 55 
particular linking them to both El Niño - Southern Oscillation (ENSO) and the Antarctic 56 
Circumpolar Wave (Kaitheri et al., 2021; Mémin et al., 2015; Mémin et al., 2014).  57 

Strangely, less studied in this context is the role of the dominant mode of climate variability in 58 
the Southern Hemisphere, the Southern Annular Mode (SAM). Despite SAM driving variability 59 
and trends in SMB across a wide range of timescales (Diener et al., 2021; Medley & Thomas, 60 
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2019; van den Broeke & van Lipzig, 2017), SAM has yet to be linked to observations of ice 61 
sheet elevation change, with one related study reporting no correlation to estimates of ice shelf 62 
elevation change (Paolo et al., 2018). By contrast, the cumulative sum of SAM (Diener et al., 63 
2021; Kim et al., 2020) has recently been shown to be linearly related to the dominant signal in 64 
detrended surface mass time series derived from satellite gravimetry (King et al., 2023), with 65 
large-scale spatially-coherent signal across coastal regions at decadal timescales.  66 

The ~300 km spatial resolution of satellite gravimetry, combined with uncertainties in models of 67 
SMB (Mottram et al., 2021), meant that King et al. (2023) were not able to separate the relative 68 
contributions of SMB and ice dynamical change forced respectively by the atmosphere and 69 
ocean (Hansen et al., 2021; Kim et al., 2020; Palóczy et al., 2018; Spence et al., 2017; Thomas et 70 
al., 2017; Verfaillie et al., 2022).  In particular, ice dynamical change will have a distinct spatial 71 
pattern compared to SMB that is not detectable by GRACE but could be possible with altimetry 72 
(Smith et al., 2020). Detecting (or otherwise) a response of the grounded ice sheet to large-scale 73 
climate variability via the oceans and ice shelves would provide important insights into ice-sheet 74 
sensitivity to climate change. 75 

In this paper we analyze a recent gridded compilation of satellite altimeter data and compare 76 
these time series to cumulative climate indices. We compare the derived signals to those from 77 
space gravimetry and then, taking advantage of the high-resolution altimeter data, explore the 78 
signal over key ice streams: Thwaites, Pine Island, Totten, and Denman. 79 

 80 

2 Datasets and Analysis 81 

2.1 Altimeter dataset 82 

We make use of a gridded altimeter product (Nilsson et al., 2023) at 1920 m horizontal 83 
resolution and covering the period from Apr 1985 to Dec 2020 (Nilsson et al., 2022). We 84 
spatially down-sample this to 5 km horizontal resolution. To facilitate comparison with space 85 
gravimetry data we only make use of data from 2002 to the end of the record. The dataset 86 
contains monthly ice-sheet elevation-change data derived from a range of radar and laser 87 
altimeter missions; over the study period these are ERS-2, Envisat and CryoSat-2 and ICESat 88 
and ICESat-2. The approach to accounting for differences in reflection surfaces and other 89 
systematic effects is described by Nilsson et al. (2022). To reduce spatial noise we apply a 90 
Gaussian smoother with widths specified below, with width defined at the half height of the 91 
function, consistent with the definition commonly used in GRACE data smoothing (Wahr et al., 92 
1998). 93 

2.2 Space gravimetry dataset 94 

We use the COST-G RL01 Level-3 50 km gridded GRACE and GRACE-FO V0002 dataset 95 
obtained from http://gravis.gfz-potsdam.de/antarctica (Sasgen et al., 2020). We make use of data 96 
from Mar 2002 to Dec 2020, with the end point chosen to match the end of the altimetry dataset. 97 
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The data are spaced approximately monthly and with a data gap of ~12 months between GRACE 98 
and GRACE-FO from mid-2017 to mid-2018.  99 

We note that while this product is gridded at 50 km, the intrinsic GRACE resolution is 200-100 
300 km. Post-processing steps include replacement of low-degree GRACE coefficients and 101 
insertion of degree-1 terms using standard approaches (Dahle & Murböck, 2020; Sasgen et al., 102 
2020). 103 

Since we are interested in decadal variability and trends, we also lightly smooth the altimetry and 104 
GRACE data with a Gaussian filter with width 7 months (Wahr et al., 1998).  105 

2.3 Climate indices 106 

We compare the altimeter and GRACE data primarily with SAM and ENSO indices, with 107 
additional comparison to Amundsen Sea Low (ASL) indices in the Amundsen Sea region. For 108 
the ASL indices, we make use of both the absolute center pressure (ASLP) and longitude (ASLλ) 109 
within the ASL Index version 3.20210820-era5 based on monthly ERA5 reanalysis data 110 
(Hosking et al., 2016). For SAM, we make use of the Marshall station index (Marshall, 2003). 111 
For ENSO, we make use of the Nino3.4 index based on the HadISST1 dataset (Rayner, 2003) 112 
and use a 6-month lag (King et al., 2023; Paolo et al., 2018). We normalized each index with the 113 
mean and standard deviation computed over 1971-1999 inclusive, then cumulatively summed 114 
them, limited them to the data period, and then renormalized to produce SAMΣ, ENSOΣ, ASLPΣ, 115 
and ASLλΣ. 116 

The raw indices and their cumulative sums are shown in Fig S1. Correlations above 0.7 are 117 
evident between ASLPΣ and SAMΣ and between ASLλΣ and ENSOΣ (Fig S1, S2). This is due to 118 
the ASL being affected by larger-scale modes of climate variability, with SAM in particular 119 
modulating its absolute pressure and ENSO modulating the longitude of its center (Clem et al., 120 
2017; Hosking et al., 2016; Turner et al., 2013). 121 

2.4 Multi-variate Empirical Orthogonal Functions 122 

For a data-driven analysis we make use of Multi-variate Empirical Orthogonal Functions 123 
(MEOF) (Wang, 1992). MEOFs are an extension of conventional Empirical Orthogonal 124 
Functions but allow the dominant modes across multiple variables to be identified rather than 125 
treating each variable separately. We use MEOF to analyze the elevation and mass change 126 
gridded datasets after individual normalization. We first smooth the altimetry dataset with a 127 
50 km-wide Gaussian smoother and sub-sample the altimeter dataset to match the 50 km 128 
horizontal resolution of GRACE. Given the limited sampling of altimetry in the northern 129 
Antarctic Peninsula we truncate that region from both datasets prior to computing MEOFs. 130 

2.5 Regression 131 

Using ordinary least squares, we solved the coefficients (a, b, c, d, and e) of the functional model 132 
describing time-evolving elevation (h) with time (t): 133 

ℎ(𝑡𝑡𝑖𝑖) = 𝑎𝑎 + 𝑏𝑏(𝑡𝑡𝑖𝑖 − 𝑡𝑡0) + ∑ (𝑐𝑐𝑘𝑘𝑠𝑠 sin(2𝜋𝜋𝑓𝑓𝑘𝑘𝑡𝑡𝑖𝑖) + 𝑐𝑐𝑘𝑘𝑐𝑐 cos(2𝜋𝜋𝑓𝑓𝑘𝑘𝑡𝑡𝑖𝑖)) + 𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆Σ + 𝑒𝑒𝐸𝐸𝐸𝐸𝑆𝑆𝐸𝐸Σ2
𝑘𝑘=1   (1) 134 
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Where fk = [1, 2] cycles per year. We adopted 𝑡𝑡0 as the mid point of the altimeter series.  135 

2.6 Data uncertainty 136 

For regression parameter uncertainties, we recognize the existence of temporal correlations in the 137 
altimeter time series (Ferguson et al., 2004), in part due to SMB variation (King & Watson, 138 
2020), and take these into account. Following King et al. (2023), we compared trend 139 
uncertainties from a linear regression using a Generalized Gauss Markov noise model to those 140 
generated using a white noise only (temporally uncorrelated) noise model using HECTOR v2.0 141 
software (Bos et al., 2013). For regressions that included the SAM and ENSO terms, the white 142 
noise only model produced uncertainties a factor of 3 too small, taken as the median of the ratio 143 
of trend uncertainties, or factor 40 too small when not including the SAM and ENSO terms. We 144 
applied these scale factors to the uncertainties from the regression. For the GRACE uncertainties 145 
we used the scale factors of King et al. (2023). 146 

3 Results 147 

3.1 Ice-sheet scale analysis 148 
Our data-driven MEOF analysis shows that ice elevation and mass time series are both 149 
dominated by decadal-scale variability (Fig. S3c, f). Together, the two leading modes explain 150 
65% of the non-linear variance of the combined and smoothed time series. Their corresponding 151 
principal components (PCs) correlate with detrended SAMΣ (r=0.73) and 6-month lagged ENSOΣ 152 
(r=0.89). The ASLPΣ and ASLλΣ terms are not of direct relevance at the ice-sheet scale given the 153 
limited geographical footprint of influence of the ASL, but also have high correlations with the 154 
data. 155 
 156 
GRACE and altimetry MEOFs have a high spatial correlation (Fig. S3a-b, d-e; r=0.87 for 157 
MEOF1 and r=0.75 for MEOF2) suggesting they are sensing the same signal and are both 158 
dominated by coastal changes. The potential in the high-resolution altimetry record is 159 
particularly evident in MEOF1 where the spatially-diffuse signal in GRACE (Fig. S3a) is shown 160 
to be concentrated over small regions that coincide with the major ice streams of the Amundsen 161 
Sea Embayment and the coastline of the Bellingshausen Sea and Marie Byrd Land (Fig. S3b). 162 
We note that while MEOF3 (Fig. S4) is partly affected by striping in the GRACE field, 163 
characteristic of GRACE systematic error, coherent signal is evident between GRACE and 164 
altimetry along the coastlines of the Bellingshausen Sea, Marie Byrd Land and Wilkes Land, 165 
suggesting the signal is robust in those regions, although the variance explained (5%) is much 166 
smaller than MEOFs 1 and 2. A similar signal to PC3, with periodicities of ~4-7 years, has also 167 
been identified in analysis of GRACE data (King et al., 2023; Mémin et al., 2015). Beyond 168 
MEOF3, the modes explain little variance (<4%) and are dominated by noise, at least for 169 
GRACE (Fig. S4d). 170 
 171 
To quantify the SAM and ENSO contribution to ice sheet elevation change we regress the 172 
altimetry time series against SAMΣ and ENSOΣ and the other parameters in Eq. 1. Here we use 173 
the gridded data after applying a 10 km Gaussian spatial filter. The 5 km gridded altimeter 174 
regression analysis shown in Fig. 1a,b reveals large-scale spatially coherent signal relating to 175 
SAM and ENSO around the coasts of Antarctica. Together, these two terms often explain more 176 
than 40% of the partial variance of the timeseries around the coast and into the interior, with the 177 
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partial variance controlling for the other regression terms. The median partial-variance explained 178 
across the ice sheet is 29% (Fig. 1c). The SAMΣ coefficient is strongest in the Amundsen Sea 179 
Embayment where it centers on the Pine Island, Thwaites, Smith, and Pope Glaciers (Fig. S5a). 180 
The negative elevation signal in this region is linked to periods where positive SAM dominates 181 
negative SAM (positive SAMΣ). Other strong signal exists along the coastal zone of the 182 
Bellingshausen Sea, Marie Byrd Land, and parts of coastal East Antarctica. A more diffuse 183 
signal is evident in the interior of West Antarctica and parts of East Antarctica (Fig. S6a). The 184 
ENSOΣ coefficient has particularly high positive values, indicating elevation increase associated 185 
with sustained El Niño, along the coast of the Bellingshausen Sea and well upstream into Pine 186 
Island Glacier (Fig. S5b) 187 
 188 
Applying a 200 km Gaussian smoother to the altimeter data and rerunning the regression (Fig. 189 
1d-e) produces coefficients with large-scale spatial coherence and larger partial variances 190 
explained, often exceeding 60% in key coastal regions but extending well into the interior of the 191 
ice sheet (Fig. 1f). Comparing them to results of a regression with GRACE data (Fig. 1g-h) 192 
(King et al., 2023) shows high agreement in the signs and spatial distribution of the signal. We 193 
note that there are insufficient altimeter data in the Northern Antarctic Peninsula to analyze the 194 
signal in this region. Computing spatial correlations between the smoothed altimetry regression 195 
and the GRACE regression gives r=0.65 for SAMΣ and r=0.68 for ENSOΣ.  196 
 197 

We next examine the role of SMB variability on the estimated coefficients from the altimetry 198 
regression. To do this we subtract the IMAU Firn Densification Model (IMAU FDM) v1.2A 199 
(Veldhuijsen et al., 2023) from the altimetry time series and repeat the regression. The results are 200 
shown in Figure 2. Comparing Fig. 2a with Fig. 1a shows that IMAU FDM effectively removes 201 
all the SAM-related signal in East Antarctic Ice Sheet (EAIS) but much of the SAM signal 202 
remains in West Antarctic Ice Sheet (WAIS). Much of the coastal EAIS ENSO-related signal is 203 
removed by IMAU FDM but with small over-correction evident for much of the ice sheet, 204 
including signal reversing sign in George V Land and WAIS. Repeating the regression but 205 
instead using the GSFC FDM v1.2.1 (Medley et al., 2022) shows that there is significant 206 
sensitivity to the choice of FDM (Fig. 2d-f), with GSFC FDM apparently over-correcting ENSO-207 
related signal in the Totten Glacier region but in much better agreement with the altimetry in 208 
WAIS. Given the decadal timescales of the signals, these inter-model differences are likely to 209 
have contributions from both the FDMs themselves and their underlying SMB models (Medley 210 
et al., 2022). 211 

 212 

The combination of coefficients estimated from each of GRACE and altimetry allows the density 213 
of these terms to be estimated. Given the GRACE resolution half-width is about 100km, we 214 
computed densities and their at locations 100 km upstream of the grounding lines of the 215 
Thwaites, Pine Island, Totten, and Denman glacier. These computed densities are sensitive to the 216 
radius of the Gaussian smoother applied to the altimetry data, and we adopted a 200 km 217 
smoother to approximate the GRACE resolution. ENSO-related results are highly uncertain in 218 
the Denman and Totten glacier regions due to limited signal, but the other densities (SAM and 219 
ENSO related) suggest the observed changes have a density between snow and ice, clustering 220 
around 600 kg/m3 (Fig. S6). While the estimates are uncertain, they suggest that some of the 221 
signal could originate in ice dynamics rather than SMB.  222 
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 223 

 224 

Figure 1. Results of regression analysis of gridded data. Shown are the SAMΣ and ENSOΣ 225 
coefficients and variances explained for the altimetry (top row), altimetry after 200 km Gaussian 226 
smoothing (middle row), and GRACE (bottom row). The partial variances explained by SAMΣ 227 
and lagged ENSOΣ are in the right column. 228 
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 229 

 230 

 231 

Figure 2. Results of regression analysis of FDM-corrected gridded altimeter data. Regression 232 
coefficients are shown (left and central columns) and the partial variances explained by SAMΣ 233 
and lagged ENSOΣ (right column).  Shown are the coefficients and variances explained for the 234 
altimetry time series after subtracting of the IMAU FDM (top row) and GSFC FDM (bottom 235 
row). 236 

 237 

Next, we explore the origins of these signals further on a glacier-by-glacier basis. 238 

 239 

3.2 Regional scale analysis 240 

3.2.1 Thwaites and Pine Island glaciers 241 

The partial variance explained by the SAMΣ and ENSOΣ terms (before subtracting an FDM) is 242 
above 60% for much of the Amundsen Sea Embayment (ASE; Fig. 1c, f; S5c,f). Regardless of 243 
the FDM model adopted, much SAMΣ signal remains in the ASE broadly and ENSOΣ signal is 244 
evident in the Pine Island Glacier region (Fig. 2). Closer examination of these regions in Fig. S5 245 
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(top row) indicates that the ASE signals are concentrated along low-elevation and fast flowing 246 
regions that correspond to Pine Island, Thwaites, and nearby glaciers. This is further evidenced 247 
through cross-sections near to the front of these glaciers (Fig. S7) along the yellow lines in Fig 248 
S5. It is notable that the phase of the SAM-related signal is switched in the fast-flowing region of 249 
Pine Island Glacier.  250 

Coefficient magnitudes generally decay upstream of the grounding line (Fig. S8). Subtracting the 251 
IMAU FDM before performing the regression results in coefficients along the centerline and 252 
cross profiles that are shifted nearly uniformly but are not significantly altered in their spatial 253 
pattern (dashed lines Fig. S7-S8). Together these results suggest there may be an ice dynamic 254 
component within the SAMΣ and ENSOΣ coefficients in addition to residual SMB/FDM signal.  255 

Along the coastal margin of the ASE the climatology is more directly controlled by the ASL than 256 
SAM and ENSO which modulate its depth and location (Clem et al., 2017; Turner et al., 2013). 257 
To explore this further we repeated the regression replacing SAMΣ and ENSOΣ in Equation 1 258 
with ASLPΣ and ASLλΣ. While the magnitude of the estimated coefficients differs between 259 
SAMΣ/-ASLPΣ and ENSOΣ/-ASLλΣ the broader spatial pattern will be nearly identical due to the 260 
high correlations of these coefficient pairs over the data period (Fig. S1-S2) and so we just 261 
explore in detail the impact of estimating the ASL coefficients at one point location per glacier, 262 
at a centerline location about 20 km upstream of their respective grounding lines (Fig. S5 yellow 263 
crosses; Table S1). 264 

The detrended data are shown in Fig. 3 (top row) where they reveal non-linear variability of 265 
several meters over the data period (blue plusses). Time series of estimated ASL coefficients 266 
sum to closely reproduce the data (black line). These two terms explain 84% (Thwaites) and 90% 267 
(Pine Island) of the partial variance of the altimeter time series. Interestingly, the phase of the 268 
ASLPΣ term is opposite between Thwaites and Pine Island, while the ASLλΣ term is in phase.  269 

Neither of the FDM models can explain the elevation variability at Thwaites or Pine Island 270 
glaciers (Fig. S9, brown lines). This could be because the SMB models are unable to reproduce 271 
the precipitation in this region, especially in ~2007 at Thwaites Glacier, but this would require a 272 
highly localized signal as this event does not occur at Pine Island Glacier. The misfit could be 273 
caused by errors in background altimeter models, however we note we obtain nearly identical 274 
results using the alternative dataset of Schröder et al. (2019). The most likely source of the 275 
unexplained height signal is ice flow dynamics responding to large-scale climate variability.  276 
 277 
The dynamic effect of ice flow and its influence on ice sheet mass and surface elevation at a 278 
given point can be estimated from satellite-derived glacier velocities and the principle of mass 279 
conservation (Supplementary Text S1). Based on year-on-year changes in ice velocity since 280 
2003, it is reasonable to expect several meters of dynamic elevation change in the lower parts of 281 
Pine Island and Thwaites due to a combination of advection and strain thinning (Fig. S10).  282 

 283 
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 284 

Figure 3. Detrended elevation time series at glacier point locations. Time series are shown for 285 
sites ~20 km upstream of the grounding line and along the centerline of flow (Fig. S5 yellow 286 
crosses; Table S1). Shown are the altimeter time series after 10 km Gaussian smoothing and 287 
subtracting the estimated trend and harmonics (blue plusses), and the two components of the 288 
model (colored lines) and their sum (black line) for each glacier. For Thwaites and Pine Island 289 
glaciers (top row), ASL coefficients are shown, while for Totten and Denman glaciers (bottom 290 
row) SAM and ENSO terms are shown. The partial variances explained by the sum of the two 291 
coefficients are listed in each panel. Grey shading is the 1-sigma uncertainty of the model. Error 292 
bars represent the 2-sigma uncertainties of the data. 293 

 294 
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3.2.2 Totten and Denman glaciers 295 

The SAM and ENSO coefficients in the region of Totten and Denman glaciers have smaller 296 
magnitude and are much more diffuse than in the ASE (Fig. S5d-e). Nonetheless, these terms 297 
explain significant amounts of the partial variance (Fig. S5f) in this region. There is almost no 298 
non-linear signal to explain near the front of the Denman Glacier (Fig. 3), with the largest SAM 299 
or ENSO signal in the Denman region is west of Denman. Nonetheless, SAM contributes about 300 
30% of the partial variance at Denman. If the underlying surface lowering trend of Denman is 301 
affected by climate variability it is not obviously associated with SAM and ENSO over this 302 
period.  303 

Despite the modest signal near Totten there is still evidence that significant SAM and ENSO 304 
signals exist in the fast-flowing region of Totten Glacier (Fig. 3), at least in the 20-30 km above 305 
the grounding zone (Fig. S7c, Fig. S8). Unlike the ASE glaciers, there is insufficient ice velocity 306 
time series for Totten Glacier to explore the cumulative impacts of time-varying ice dynamics on 307 
ice elevation. As noted above, the FDM-corrected results are model-dependent in this region and 308 
so the origin(s) of the Totten Glacier non-linear elevation change signal is unclear but may 309 
contain a component due to ice dynamic changes. 310 

4 Discussion 311 

Our analysis reveals the spatial fingerprints of SAM and ENSO on AIS elevation over 2002-312 
2021, patterns which are confirmed by analysis of GRACE mass change data over the same 313 
period. These patterns may not be stationary with time. Indeed, circulation patterns associated 314 
with SAM are known to vary over decades (Marshall et al., 2013; Silvestri & Vera, 2009), with 315 
effects including variable precipitation in the Antarctic Peninsula (Goodwin et al., 2016). Within 316 
this context it is therefore not unexpected that our pattern of SAM variability is different to the 317 
SMB-only SAM reconstruction of Medley and Thomas (2019) for the second half of the 20th 318 
century for instance. Differences with SMB-only reconstructions would also result if ice-319 
dynamic effects on ice elevation and mass were non-negligible as hinted at by our data. 320 
 321 
There are only a few previous studies exploring the relationship between ice dynamics, 322 
expressed as changes in ice mass, thickness, or elevation, and modes of climate variability, most 323 
notably in the Amundsen Sea Embayment region (Christie et al., 2023). In particular, Dutrieux et 324 
al. (2014) found reduced PIG ice shelf melt during a strong 2012 La Niña. Consistent with this, 325 
Paolo et al. (2018) found PIG ice shelf melting increased during El Niño, reducing ice shelf 326 
thickness, but that the ice shelf elevation increased overall due to increased accumulation. Our 327 
finding that PIG increases in elevation upstream of its grounding line when El Niño is sustained 328 
(or sustained westward ASL position), while the glacier is also dynamically thinning (Fig. S10), 329 
is consistent with this overall picture.  330 
 331 
The SAM/ASLP-related signal upstream of PIG, Thwaites, and other ASE glaciers is the largest 332 
unexplained signal in Antarctica. The spatial pattern, with largest signal at lowest elevations, 333 
could be explained by both ice dynamics or unmodeled SMB or firn densification. Limited 334 
idealized study of the impacts of SAM on ASE basal melt is consistent with our observation of 335 
reduced upstream elevation with positive SAM but with melt response times that are decades 336 
longer than our analysis explores (Verfaillie et al., 2022), perhaps ruling out SAM but leaving 337 
the possibility of the localized ASLP as an source of immediate changes in buttressing. 338 
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 339 

We note that while the SAMΣ and ASLPΣ signals are correlated and our analysis cannot separate 340 
their different effects, they have different long-term implications for the ice sheet. As discussed 341 
by King et al. (2023), SAMΣ has a trend due to the positive phase of SAM that has emerged since 342 
the 1940s. ASLPΣ does not have a strong long-term trend, and so the extent to which the changes 343 
in coastal West Antarctica are related to the ASL rather than SAM will reduce the inferred 344 
contribution of SAM to ice-mass loss over recent decades (King et al., 2023). 345 

 346 
Finally, our findings offer a simple way to remove decadal-scale variability from altimetry time 347 
series. This reduces correlated noise in the time series and will alter both the derived trends and, 348 
perhaps most significantly, the uncertainties of derived trends and other parameters if correlated 349 
noise is considered in the regression as it should (Ferguson et al., 2004; King & Watson, 2020; 350 
Williams et al., 2014; Wouters et al., 2013).  351 

 352 

5 Conclusions 353 

We analyzed gridded Antarctic ice elevation time series and show that much of the time series 354 
variance can be explained through a simple linear model based on the cumulative indices of the 355 
Southern Annular Mode and El Nino Southern Oscillation. The spatial pattern of this signal, 356 
once spatially smoothed, is in close agreement with the spatial pattern evident in GRACE data 357 
suggesting that observed ice elevation variability is robust and climatological. The Amundsen 358 
Sea Low is more directly relevant to the Amundsen Sea Embayment and we show that variations 359 
in its pressure and longitude explain ~90% of the variance over Pine Island and Thwaites 360 
glaciers.  361 

Subtracting the effects of modeled firn densification removes much, but not all, signal, with 362 
inter-model differences evident. Residual climatological signal is particularly large at the fronts 363 
of fast-flowing glaciers in the Amundsen Sea Embayment. We suggest that ice dynamic effects 364 
may be contributing to this signal. Computing changes in elevation due to observed variation in 365 
horizontal velocity suggests the velocities are potential of the right magnitude to explain it. 366 
Further work is required to quantify the magnitude and response-times of upstream ice to 367 
changes in climatological variability in ice shelf melt. 368 
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Abstract 19 

We explore the links between elevation variability of the Antarctic Ice Sheet (AIS) and large-20 
scale climate modes. Using multiple linear regression, we quantify the cumulative effects of El 21 
Nino Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) on gridded AIS 22 
elevations. Cumulative ENSO and SAM explain a median of 29% of the partial variance and up 23 
to 85% in some coastal areas. After spatial smoothing, these signals have high spatial correlation 24 
with those from GRACE gravimetry (r~=0.65 each). Much of the signal is removed by a model 25 
of firn densification but inter-model differences exist especially for ENSO. At the lower parts of 26 
the Thwaites and Pine Island glaciers, near their grounding line, we find the Amundsen Sea Low 27 
(ASL) explains ~90% of the observed elevation variability. There, firn effects explain only a 28 
small fraction of the variability, suggesting significant height changes have a climatological ice-29 
dynamic response.  30 

 31 

Plain Language Summary 32 

This study investigates how variations in the height of the Antarctic Ice Sheet (AIS) are 33 
connected to large-scale climate patterns. We used a statistical method to measure the effects of 34 
two climate phenomena: El Nino Southern Oscillation (ENSO) and the Southern Annular Mode 35 
(SAM). We found that the cumulative effects of these phenomena account for about 29% of the 36 
variations in AIS height on average, and up to 85% in some coastal areas. These patterns match 37 
well with independent data from the GRACE satellites over the same period. Applying a model 38 
that considers the compacting of snow into ice (firn densification) removes much of this signal, 39 
suggesting much, but not all, of the signals are related to snowfall variations. At the fronts of the 40 
rapidly changing Thwaites and Pine Island glaciers, the dominant climate phenomenon is the 41 
Amundsen Sea Low (ASL), which varies in strength and location. Here, the cumulative effects 42 
of the ASL changes explain about 90% of the variations in height of these glaciers, with only a 43 
small part explained by firn effects. We suggest the unexplained variability is at least partly due 44 
to changes in ice flow. 45 

 46 

1 Introduction 47 

Observations of the changing volume of the Antarctic Ice Sheet play a major role in 48 
understanding ice-sheet change (e.g., Otosaka et al., 2023; Shepherd et al., 2012) from the 49 
whole-of-ice-sheet down to individual glaciers (e.g., Smith et al., 2020; Wingham et al., 2009). 50 
The now three-decade record of continuous ice volume change captures the variability and 51 
longer-term change of both surface mass balance (SMB), and related firn processes, and 52 
elevation effects of changing ice dynamics. These changes are, respectively, related to 53 
atmospheric and oceanic processes (Horwath et al., 2012; Smith et al., 2020). Several studies 54 
have examined the relationship between ice height changes and modes of climate variability, in 55 
particular linking them to both El Niño - Southern Oscillation (ENSO) and the Antarctic 56 
Circumpolar Wave (Kaitheri et al., 2021; Mémin et al., 2015; Mémin et al., 2014).  57 

Strangely, less studied in this context is the role of the dominant mode of climate variability in 58 
the Southern Hemisphere, the Southern Annular Mode (SAM). Despite SAM driving variability 59 
and trends in SMB across a wide range of timescales (Diener et al., 2021; Medley & Thomas, 60 
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2019; van den Broeke & van Lipzig, 2017), SAM has yet to be linked to observations of ice 61 
sheet elevation change, with one related study reporting no correlation to estimates of ice shelf 62 
elevation change (Paolo et al., 2018). By contrast, the cumulative sum of SAM (Diener et al., 63 
2021; Kim et al., 2020) has recently been shown to be linearly related to the dominant signal in 64 
detrended surface mass time series derived from satellite gravimetry (King et al., 2023), with 65 
large-scale spatially-coherent signal across coastal regions at decadal timescales.  66 

The ~300 km spatial resolution of satellite gravimetry, combined with uncertainties in models of 67 
SMB (Mottram et al., 2021), meant that King et al. (2023) were not able to separate the relative 68 
contributions of SMB and ice dynamical change forced respectively by the atmosphere and 69 
ocean (Hansen et al., 2021; Kim et al., 2020; Palóczy et al., 2018; Spence et al., 2017; Thomas et 70 
al., 2017; Verfaillie et al., 2022).  In particular, ice dynamical change will have a distinct spatial 71 
pattern compared to SMB that is not detectable by GRACE but could be possible with altimetry 72 
(Smith et al., 2020). Detecting (or otherwise) a response of the grounded ice sheet to large-scale 73 
climate variability via the oceans and ice shelves would provide important insights into ice-sheet 74 
sensitivity to climate change. 75 

In this paper we analyze a recent gridded compilation of satellite altimeter data and compare 76 
these time series to cumulative climate indices. We compare the derived signals to those from 77 
space gravimetry and then, taking advantage of the high-resolution altimeter data, explore the 78 
signal over key ice streams: Thwaites, Pine Island, Totten, and Denman. 79 

 80 

2 Datasets and Analysis 81 

2.1 Altimeter dataset 82 

We make use of a gridded altimeter product (Nilsson et al., 2023) at 1920 m horizontal 83 
resolution and covering the period from Apr 1985 to Dec 2020 (Nilsson et al., 2022). We 84 
spatially down-sample this to 5 km horizontal resolution. To facilitate comparison with space 85 
gravimetry data we only make use of data from 2002 to the end of the record. The dataset 86 
contains monthly ice-sheet elevation-change data derived from a range of radar and laser 87 
altimeter missions; over the study period these are ERS-2, Envisat and CryoSat-2 and ICESat 88 
and ICESat-2. The approach to accounting for differences in reflection surfaces and other 89 
systematic effects is described by Nilsson et al. (2022). To reduce spatial noise we apply a 90 
Gaussian smoother with widths specified below, with width defined at the half height of the 91 
function, consistent with the definition commonly used in GRACE data smoothing (Wahr et al., 92 
1998). 93 

2.2 Space gravimetry dataset 94 

We use the COST-G RL01 Level-3 50 km gridded GRACE and GRACE-FO V0002 dataset 95 
obtained from http://gravis.gfz-potsdam.de/antarctica (Sasgen et al., 2020). We make use of data 96 
from Mar 2002 to Dec 2020, with the end point chosen to match the end of the altimetry dataset. 97 



Confidential manuscript submitted to Geophysical Research Letters 

4 
 

The data are spaced approximately monthly and with a data gap of ~12 months between GRACE 98 
and GRACE-FO from mid-2017 to mid-2018.  99 

We note that while this product is gridded at 50 km, the intrinsic GRACE resolution is 200-100 
300 km. Post-processing steps include replacement of low-degree GRACE coefficients and 101 
insertion of degree-1 terms using standard approaches (Dahle & Murböck, 2020; Sasgen et al., 102 
2020). 103 

Since we are interested in decadal variability and trends, we also lightly smooth the altimetry and 104 
GRACE data with a Gaussian filter with width 7 months (Wahr et al., 1998).  105 

2.3 Climate indices 106 

We compare the altimeter and GRACE data primarily with SAM and ENSO indices, with 107 
additional comparison to Amundsen Sea Low (ASL) indices in the Amundsen Sea region. For 108 
the ASL indices, we make use of both the absolute center pressure (ASLP) and longitude (ASLλ) 109 
within the ASL Index version 3.20210820-era5 based on monthly ERA5 reanalysis data 110 
(Hosking et al., 2016). For SAM, we make use of the Marshall station index (Marshall, 2003). 111 
For ENSO, we make use of the Nino3.4 index based on the HadISST1 dataset (Rayner, 2003) 112 
and use a 6-month lag (King et al., 2023; Paolo et al., 2018). We normalized each index with the 113 
mean and standard deviation computed over 1971-1999 inclusive, then cumulatively summed 114 
them, limited them to the data period, and then renormalized to produce SAMΣ, ENSOΣ, ASLPΣ, 115 
and ASLλΣ. 116 

The raw indices and their cumulative sums are shown in Fig S1. Correlations above 0.7 are 117 
evident between ASLPΣ and SAMΣ and between ASLλΣ and ENSOΣ (Fig S1, S2). This is due to 118 
the ASL being affected by larger-scale modes of climate variability, with SAM in particular 119 
modulating its absolute pressure and ENSO modulating the longitude of its center (Clem et al., 120 
2017; Hosking et al., 2016; Turner et al., 2013). 121 

2.4 Multi-variate Empirical Orthogonal Functions 122 

For a data-driven analysis we make use of Multi-variate Empirical Orthogonal Functions 123 
(MEOF) (Wang, 1992). MEOFs are an extension of conventional Empirical Orthogonal 124 
Functions but allow the dominant modes across multiple variables to be identified rather than 125 
treating each variable separately. We use MEOF to analyze the elevation and mass change 126 
gridded datasets after individual normalization. We first smooth the altimetry dataset with a 127 
50 km-wide Gaussian smoother and sub-sample the altimeter dataset to match the 50 km 128 
horizontal resolution of GRACE. Given the limited sampling of altimetry in the northern 129 
Antarctic Peninsula we truncate that region from both datasets prior to computing MEOFs. 130 

2.5 Regression 131 

Using ordinary least squares, we solved the coefficients (a, b, c, d, and e) of the functional model 132 
describing time-evolving elevation (h) with time (t): 133 

ℎ(𝑡𝑡𝑖𝑖) = 𝑎𝑎 + 𝑏𝑏(𝑡𝑡𝑖𝑖 − 𝑡𝑡0) + ∑ (𝑐𝑐𝑘𝑘𝑠𝑠 sin(2𝜋𝜋𝑓𝑓𝑘𝑘𝑡𝑡𝑖𝑖) + 𝑐𝑐𝑘𝑘𝑐𝑐 cos(2𝜋𝜋𝑓𝑓𝑘𝑘𝑡𝑡𝑖𝑖)) + 𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆Σ + 𝑒𝑒𝐸𝐸𝐸𝐸𝑆𝑆𝐸𝐸Σ2
𝑘𝑘=1   (1) 134 
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Where fk = [1, 2] cycles per year. We adopted 𝑡𝑡0 as the mid point of the altimeter series.  135 

2.6 Data uncertainty 136 

For regression parameter uncertainties, we recognize the existence of temporal correlations in the 137 
altimeter time series (Ferguson et al., 2004), in part due to SMB variation (King & Watson, 138 
2020), and take these into account. Following King et al. (2023), we compared trend 139 
uncertainties from a linear regression using a Generalized Gauss Markov noise model to those 140 
generated using a white noise only (temporally uncorrelated) noise model using HECTOR v2.0 141 
software (Bos et al., 2013). For regressions that included the SAM and ENSO terms, the white 142 
noise only model produced uncertainties a factor of 3 too small, taken as the median of the ratio 143 
of trend uncertainties, or factor 40 too small when not including the SAM and ENSO terms. We 144 
applied these scale factors to the uncertainties from the regression. For the GRACE uncertainties 145 
we used the scale factors of King et al. (2023). 146 

3 Results 147 

3.1 Ice-sheet scale analysis 148 
Our data-driven MEOF analysis shows that ice elevation and mass time series are both 149 
dominated by decadal-scale variability (Fig. S3c, f). Together, the two leading modes explain 150 
65% of the non-linear variance of the combined and smoothed time series. Their corresponding 151 
principal components (PCs) correlate with detrended SAMΣ (r=0.73) and 6-month lagged ENSOΣ 152 
(r=0.89). The ASLPΣ and ASLλΣ terms are not of direct relevance at the ice-sheet scale given the 153 
limited geographical footprint of influence of the ASL, but also have high correlations with the 154 
data. 155 
 156 
GRACE and altimetry MEOFs have a high spatial correlation (Fig. S3a-b, d-e; r=0.87 for 157 
MEOF1 and r=0.75 for MEOF2) suggesting they are sensing the same signal and are both 158 
dominated by coastal changes. The potential in the high-resolution altimetry record is 159 
particularly evident in MEOF1 where the spatially-diffuse signal in GRACE (Fig. S3a) is shown 160 
to be concentrated over small regions that coincide with the major ice streams of the Amundsen 161 
Sea Embayment and the coastline of the Bellingshausen Sea and Marie Byrd Land (Fig. S3b). 162 
We note that while MEOF3 (Fig. S4) is partly affected by striping in the GRACE field, 163 
characteristic of GRACE systematic error, coherent signal is evident between GRACE and 164 
altimetry along the coastlines of the Bellingshausen Sea, Marie Byrd Land and Wilkes Land, 165 
suggesting the signal is robust in those regions, although the variance explained (5%) is much 166 
smaller than MEOFs 1 and 2. A similar signal to PC3, with periodicities of ~4-7 years, has also 167 
been identified in analysis of GRACE data (King et al., 2023; Mémin et al., 2015). Beyond 168 
MEOF3, the modes explain little variance (<4%) and are dominated by noise, at least for 169 
GRACE (Fig. S4d). 170 
 171 
To quantify the SAM and ENSO contribution to ice sheet elevation change we regress the 172 
altimetry time series against SAMΣ and ENSOΣ and the other parameters in Eq. 1. Here we use 173 
the gridded data after applying a 10 km Gaussian spatial filter. The 5 km gridded altimeter 174 
regression analysis shown in Fig. 1a,b reveals large-scale spatially coherent signal relating to 175 
SAM and ENSO around the coasts of Antarctica. Together, these two terms often explain more 176 
than 40% of the partial variance of the timeseries around the coast and into the interior, with the 177 
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partial variance controlling for the other regression terms. The median partial-variance explained 178 
across the ice sheet is 29% (Fig. 1c). The SAMΣ coefficient is strongest in the Amundsen Sea 179 
Embayment where it centers on the Pine Island, Thwaites, Smith, and Pope Glaciers (Fig. S5a). 180 
The negative elevation signal in this region is linked to periods where positive SAM dominates 181 
negative SAM (positive SAMΣ). Other strong signal exists along the coastal zone of the 182 
Bellingshausen Sea, Marie Byrd Land, and parts of coastal East Antarctica. A more diffuse 183 
signal is evident in the interior of West Antarctica and parts of East Antarctica (Fig. S6a). The 184 
ENSOΣ coefficient has particularly high positive values, indicating elevation increase associated 185 
with sustained El Niño, along the coast of the Bellingshausen Sea and well upstream into Pine 186 
Island Glacier (Fig. S5b) 187 
 188 
Applying a 200 km Gaussian smoother to the altimeter data and rerunning the regression (Fig. 189 
1d-e) produces coefficients with large-scale spatial coherence and larger partial variances 190 
explained, often exceeding 60% in key coastal regions but extending well into the interior of the 191 
ice sheet (Fig. 1f). Comparing them to results of a regression with GRACE data (Fig. 1g-h) 192 
(King et al., 2023) shows high agreement in the signs and spatial distribution of the signal. We 193 
note that there are insufficient altimeter data in the Northern Antarctic Peninsula to analyze the 194 
signal in this region. Computing spatial correlations between the smoothed altimetry regression 195 
and the GRACE regression gives r=0.65 for SAMΣ and r=0.68 for ENSOΣ.  196 
 197 

We next examine the role of SMB variability on the estimated coefficients from the altimetry 198 
regression. To do this we subtract the IMAU Firn Densification Model (IMAU FDM) v1.2A 199 
(Veldhuijsen et al., 2023) from the altimetry time series and repeat the regression. The results are 200 
shown in Figure 2. Comparing Fig. 2a with Fig. 1a shows that IMAU FDM effectively removes 201 
all the SAM-related signal in East Antarctic Ice Sheet (EAIS) but much of the SAM signal 202 
remains in West Antarctic Ice Sheet (WAIS). Much of the coastal EAIS ENSO-related signal is 203 
removed by IMAU FDM but with small over-correction evident for much of the ice sheet, 204 
including signal reversing sign in George V Land and WAIS. Repeating the regression but 205 
instead using the GSFC FDM v1.2.1 (Medley et al., 2022) shows that there is significant 206 
sensitivity to the choice of FDM (Fig. 2d-f), with GSFC FDM apparently over-correcting ENSO-207 
related signal in the Totten Glacier region but in much better agreement with the altimetry in 208 
WAIS. Given the decadal timescales of the signals, these inter-model differences are likely to 209 
have contributions from both the FDMs themselves and their underlying SMB models (Medley 210 
et al., 2022). 211 

 212 

The combination of coefficients estimated from each of GRACE and altimetry allows the density 213 
of these terms to be estimated. Given the GRACE resolution half-width is about 100km, we 214 
computed densities and their at locations 100 km upstream of the grounding lines of the 215 
Thwaites, Pine Island, Totten, and Denman glacier. These computed densities are sensitive to the 216 
radius of the Gaussian smoother applied to the altimetry data, and we adopted a 200 km 217 
smoother to approximate the GRACE resolution. ENSO-related results are highly uncertain in 218 
the Denman and Totten glacier regions due to limited signal, but the other densities (SAM and 219 
ENSO related) suggest the observed changes have a density between snow and ice, clustering 220 
around 600 kg/m3 (Fig. S6). While the estimates are uncertain, they suggest that some of the 221 
signal could originate in ice dynamics rather than SMB.  222 
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 223 

 224 

Figure 1. Results of regression analysis of gridded data. Shown are the SAMΣ and ENSOΣ 225 
coefficients and variances explained for the altimetry (top row), altimetry after 200 km Gaussian 226 
smoothing (middle row), and GRACE (bottom row). The partial variances explained by SAMΣ 227 
and lagged ENSOΣ are in the right column. 228 
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 229 

 230 

 231 

Figure 2. Results of regression analysis of FDM-corrected gridded altimeter data. Regression 232 
coefficients are shown (left and central columns) and the partial variances explained by SAMΣ 233 
and lagged ENSOΣ (right column).  Shown are the coefficients and variances explained for the 234 
altimetry time series after subtracting of the IMAU FDM (top row) and GSFC FDM (bottom 235 
row). 236 

 237 

Next, we explore the origins of these signals further on a glacier-by-glacier basis. 238 

 239 

3.2 Regional scale analysis 240 

3.2.1 Thwaites and Pine Island glaciers 241 

The partial variance explained by the SAMΣ and ENSOΣ terms (before subtracting an FDM) is 242 
above 60% for much of the Amundsen Sea Embayment (ASE; Fig. 1c, f; S5c,f). Regardless of 243 
the FDM model adopted, much SAMΣ signal remains in the ASE broadly and ENSOΣ signal is 244 
evident in the Pine Island Glacier region (Fig. 2). Closer examination of these regions in Fig. S5 245 
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(top row) indicates that the ASE signals are concentrated along low-elevation and fast flowing 246 
regions that correspond to Pine Island, Thwaites, and nearby glaciers. This is further evidenced 247 
through cross-sections near to the front of these glaciers (Fig. S7) along the yellow lines in Fig 248 
S5. It is notable that the phase of the SAM-related signal is switched in the fast-flowing region of 249 
Pine Island Glacier.  250 

Coefficient magnitudes generally decay upstream of the grounding line (Fig. S8). Subtracting the 251 
IMAU FDM before performing the regression results in coefficients along the centerline and 252 
cross profiles that are shifted nearly uniformly but are not significantly altered in their spatial 253 
pattern (dashed lines Fig. S7-S8). Together these results suggest there may be an ice dynamic 254 
component within the SAMΣ and ENSOΣ coefficients in addition to residual SMB/FDM signal.  255 

Along the coastal margin of the ASE the climatology is more directly controlled by the ASL than 256 
SAM and ENSO which modulate its depth and location (Clem et al., 2017; Turner et al., 2013). 257 
To explore this further we repeated the regression replacing SAMΣ and ENSOΣ in Equation 1 258 
with ASLPΣ and ASLλΣ. While the magnitude of the estimated coefficients differs between 259 
SAMΣ/-ASLPΣ and ENSOΣ/-ASLλΣ the broader spatial pattern will be nearly identical due to the 260 
high correlations of these coefficient pairs over the data period (Fig. S1-S2) and so we just 261 
explore in detail the impact of estimating the ASL coefficients at one point location per glacier, 262 
at a centerline location about 20 km upstream of their respective grounding lines (Fig. S5 yellow 263 
crosses; Table S1). 264 

The detrended data are shown in Fig. 3 (top row) where they reveal non-linear variability of 265 
several meters over the data period (blue plusses). Time series of estimated ASL coefficients 266 
sum to closely reproduce the data (black line). These two terms explain 84% (Thwaites) and 90% 267 
(Pine Island) of the partial variance of the altimeter time series. Interestingly, the phase of the 268 
ASLPΣ term is opposite between Thwaites and Pine Island, while the ASLλΣ term is in phase.  269 

Neither of the FDM models can explain the elevation variability at Thwaites or Pine Island 270 
glaciers (Fig. S9, brown lines). This could be because the SMB models are unable to reproduce 271 
the precipitation in this region, especially in ~2007 at Thwaites Glacier, but this would require a 272 
highly localized signal as this event does not occur at Pine Island Glacier. The misfit could be 273 
caused by errors in background altimeter models, however we note we obtain nearly identical 274 
results using the alternative dataset of Schröder et al. (2019). The most likely source of the 275 
unexplained height signal is ice flow dynamics responding to large-scale climate variability.  276 
 277 
The dynamic effect of ice flow and its influence on ice sheet mass and surface elevation at a 278 
given point can be estimated from satellite-derived glacier velocities and the principle of mass 279 
conservation (Supplementary Text S1). Based on year-on-year changes in ice velocity since 280 
2003, it is reasonable to expect several meters of dynamic elevation change in the lower parts of 281 
Pine Island and Thwaites due to a combination of advection and strain thinning (Fig. S10).  282 

 283 
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 284 

Figure 3. Detrended elevation time series at glacier point locations. Time series are shown for 285 
sites ~20 km upstream of the grounding line and along the centerline of flow (Fig. S5 yellow 286 
crosses; Table S1). Shown are the altimeter time series after 10 km Gaussian smoothing and 287 
subtracting the estimated trend and harmonics (blue plusses), and the two components of the 288 
model (colored lines) and their sum (black line) for each glacier. For Thwaites and Pine Island 289 
glaciers (top row), ASL coefficients are shown, while for Totten and Denman glaciers (bottom 290 
row) SAM and ENSO terms are shown. The partial variances explained by the sum of the two 291 
coefficients are listed in each panel. Grey shading is the 1-sigma uncertainty of the model. Error 292 
bars represent the 2-sigma uncertainties of the data. 293 

 294 
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3.2.2 Totten and Denman glaciers 295 

The SAM and ENSO coefficients in the region of Totten and Denman glaciers have smaller 296 
magnitude and are much more diffuse than in the ASE (Fig. S5d-e). Nonetheless, these terms 297 
explain significant amounts of the partial variance (Fig. S5f) in this region. There is almost no 298 
non-linear signal to explain near the front of the Denman Glacier (Fig. 3), with the largest SAM 299 
or ENSO signal in the Denman region is west of Denman. Nonetheless, SAM contributes about 300 
30% of the partial variance at Denman. If the underlying surface lowering trend of Denman is 301 
affected by climate variability it is not obviously associated with SAM and ENSO over this 302 
period.  303 

Despite the modest signal near Totten there is still evidence that significant SAM and ENSO 304 
signals exist in the fast-flowing region of Totten Glacier (Fig. 3), at least in the 20-30 km above 305 
the grounding zone (Fig. S7c, Fig. S8). Unlike the ASE glaciers, there is insufficient ice velocity 306 
time series for Totten Glacier to explore the cumulative impacts of time-varying ice dynamics on 307 
ice elevation. As noted above, the FDM-corrected results are model-dependent in this region and 308 
so the origin(s) of the Totten Glacier non-linear elevation change signal is unclear but may 309 
contain a component due to ice dynamic changes. 310 

4 Discussion 311 

Our analysis reveals the spatial fingerprints of SAM and ENSO on AIS elevation over 2002-312 
2021, patterns which are confirmed by analysis of GRACE mass change data over the same 313 
period. These patterns may not be stationary with time. Indeed, circulation patterns associated 314 
with SAM are known to vary over decades (Marshall et al., 2013; Silvestri & Vera, 2009), with 315 
effects including variable precipitation in the Antarctic Peninsula (Goodwin et al., 2016). Within 316 
this context it is therefore not unexpected that our pattern of SAM variability is different to the 317 
SMB-only SAM reconstruction of Medley and Thomas (2019) for the second half of the 20th 318 
century for instance. Differences with SMB-only reconstructions would also result if ice-319 
dynamic effects on ice elevation and mass were non-negligible as hinted at by our data. 320 
 321 
There are only a few previous studies exploring the relationship between ice dynamics, 322 
expressed as changes in ice mass, thickness, or elevation, and modes of climate variability, most 323 
notably in the Amundsen Sea Embayment region (Christie et al., 2023). In particular, Dutrieux et 324 
al. (2014) found reduced PIG ice shelf melt during a strong 2012 La Niña. Consistent with this, 325 
Paolo et al. (2018) found PIG ice shelf melting increased during El Niño, reducing ice shelf 326 
thickness, but that the ice shelf elevation increased overall due to increased accumulation. Our 327 
finding that PIG increases in elevation upstream of its grounding line when El Niño is sustained 328 
(or sustained westward ASL position), while the glacier is also dynamically thinning (Fig. S10), 329 
is consistent with this overall picture.  330 
 331 
The SAM/ASLP-related signal upstream of PIG, Thwaites, and other ASE glaciers is the largest 332 
unexplained signal in Antarctica. The spatial pattern, with largest signal at lowest elevations, 333 
could be explained by both ice dynamics or unmodeled SMB or firn densification. Limited 334 
idealized study of the impacts of SAM on ASE basal melt is consistent with our observation of 335 
reduced upstream elevation with positive SAM but with melt response times that are decades 336 
longer than our analysis explores (Verfaillie et al., 2022), perhaps ruling out SAM but leaving 337 
the possibility of the localized ASLP as an source of immediate changes in buttressing. 338 
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 339 

We note that while the SAMΣ and ASLPΣ signals are correlated and our analysis cannot separate 340 
their different effects, they have different long-term implications for the ice sheet. As discussed 341 
by King et al. (2023), SAMΣ has a trend due to the positive phase of SAM that has emerged since 342 
the 1940s. ASLPΣ does not have a strong long-term trend, and so the extent to which the changes 343 
in coastal West Antarctica are related to the ASL rather than SAM will reduce the inferred 344 
contribution of SAM to ice-mass loss over recent decades (King et al., 2023). 345 

 346 
Finally, our findings offer a simple way to remove decadal-scale variability from altimetry time 347 
series. This reduces correlated noise in the time series and will alter both the derived trends and, 348 
perhaps most significantly, the uncertainties of derived trends and other parameters if correlated 349 
noise is considered in the regression as it should (Ferguson et al., 2004; King & Watson, 2020; 350 
Williams et al., 2014; Wouters et al., 2013).  351 

 352 

5 Conclusions 353 

We analyzed gridded Antarctic ice elevation time series and show that much of the time series 354 
variance can be explained through a simple linear model based on the cumulative indices of the 355 
Southern Annular Mode and El Nino Southern Oscillation. The spatial pattern of this signal, 356 
once spatially smoothed, is in close agreement with the spatial pattern evident in GRACE data 357 
suggesting that observed ice elevation variability is robust and climatological. The Amundsen 358 
Sea Low is more directly relevant to the Amundsen Sea Embayment and we show that variations 359 
in its pressure and longitude explain ~90% of the variance over Pine Island and Thwaites 360 
glaciers.  361 

Subtracting the effects of modeled firn densification removes much, but not all, signal, with 362 
inter-model differences evident. Residual climatological signal is particularly large at the fronts 363 
of fast-flowing glaciers in the Amundsen Sea Embayment. We suggest that ice dynamic effects 364 
may be contributing to this signal. Computing changes in elevation due to observed variation in 365 
horizontal velocity suggests the velocities are potential of the right magnitude to explain it. 366 
Further work is required to quantify the magnitude and response-times of upstream ice to 367 
changes in climatological variability in ice shelf melt. 368 
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Text S1 541 
 542 

To make a first-order estimate of plausible velocity-driven changes on surface elevation on Pine 543 
Island and Thwaites Glacier, we used annual Measures v2 ice velocities (Rignot et al., 2017) to 544 
derive year-on-year velocity changes at the glacier point positions where we extracted time series 545 
of surface elevation changes (shown in Fig. 3). The annual velocity changes were extracted in 546 
polar stereographic coordinates (x, y) and averaged over a 25 × 25 km box centred around each 547 
of the two geographical locations. The corresponding changes in surface height were estimated 548 
from the conservation of mass:  549 

𝜕𝜕ℎ
𝜕𝜕𝑡𝑡

= �̇�𝑎 + �̇�𝑏 + �̅�𝑣 ∙ ∇H + H ∙ 𝜀𝜀�̇�𝑧 550 

where �̇�𝑎 is the surface accumulation from snowfall, �̇�𝑏 is the basal accumulation when water at 551 
the bed freezes on (negative for melting), �̅�𝑣 is the velocity vector, ∇ is the gradient operator, 𝐻𝐻 is 552 
ice thickness and 𝜀𝜀�̇�𝑧 is the vertical stain rate averaged for the ice column. We used the third and 553 
fourth term on the RHS to derive estimates of the elevation change stemming specifically from 554 
the change in velocity, ignoring the accumulation terms �̇�𝑎 and �̇�𝑏. If the velocity change is 𝛿𝛿�̅�𝑣, the 555 
change in height is −𝛿𝛿�̅�𝑣 ∙ ∇H + H ∙ 𝛿𝛿𝜀𝜀�̇�𝑧, where the first term denotes elevation gain from 556 
advection of thicker ice (or the opposite) and the second term is elevation loss due to dynamic 557 
thinning when the ice velocity increases (or the opposite). The change in velocity, 𝛿𝛿�̅�𝑣 =558 
�∆𝑣𝑣𝑥𝑥,∆𝑣𝑣𝑦𝑦� was the annual difference from one year to the next. The advection term was 559 
calculated as ∆𝑣𝑣𝑥𝑥 𝑑𝑑ℎ 𝑑𝑑𝑑𝑑 +⁄  ∆𝑣𝑣𝑦𝑦 𝑑𝑑ℎ 𝑑𝑑𝑑𝑑⁄ , while strain thinning was calculated as 560 
H(−∆(𝑑𝑑𝑣𝑣𝑥𝑥 𝑑𝑑𝑑𝑑) − ∆(𝑑𝑑𝑣𝑣𝑦𝑦 𝑑𝑑𝑑𝑑))⁄⁄  with the assumption that ice is incompressible (𝛿𝛿𝜀𝜀�̇�𝑧 = −𝛿𝛿𝜀𝜀�̇�𝑥 −561 
𝛿𝛿𝜀𝜀�̇�𝑦) and vertical strain in the ice column is uniform. Fig. S10 shows the estimated elevation 562 
change in terms of advection and strain and their total.  563 
 564 
  565 
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 566 
Supplementary Figures 567 
 568 
 569 

 570 
Fig S1. Cumulatively summed and detrended climate indices. The panels show the normalized 571 

climate indices (a), their cumulative sum renormalized (b), after further detrending and 572 
renormalization (c). ENSO and ASLλ terms are shown offset by 4 units for clarity. 573 

 574 
  575 
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 576 

 577 
 578 
Fig S2. Correlation coefficients of summed and detrended climate indices.  579 
  580 
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 581 
 582 

 583 
Fig S3. The leading two modes of the detrended altimeter and GRACE data based on MVEOF. 584 

The EOFs are shown after scaling to reverse the effects of normalization. GRACE modes 585 
(a, d) are shown in units of meters of water equivalent (w.e.), and altimeter modes (b, e) 586 
shown in units of meters of ice elevation.  Overlain on PC1 is the detrended SAMΣ 587 
and -ASLPΣ indices and overlain on PC2 is the lagged ENSOΣ and -ASLλΣ. The 588 
variances explained by each mode are indicated in the legends of panels c and f. 589 
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 590 
 591 
Fig S4. Modes 3 and 4 of the MVEOF. Note the changes in color scale from Fig S3. 592 
 593 
 594 
 595 
 596 
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 597 
 598 
Fig S5. Detail of Figure 1 in the Amundsen Sea Embayment (top) and Denman-Totten glacier 599 

(bottom) regions. Thick black lines show the grounding line and thin black lines the ice 600 
shelf limits (Haran et al., 2014, updated 2019). Pink lines define the 100 m/yr speed 601 
contour (Rignot et al., 2017). Yellow lines mark the locations of ice stream profiles and 602 
yellow cross marks the location of the ice stream time series. 603 

 604 
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 606 
 607 

 608 
 609 
Fig S6. Density of SAMΣ and ENSOΣ variability from the ratio of GRACE and smoothed-610 

altimetry coefficients. Error bars reflect 1-sigma uncertainties. ENSOΣ values are not 611 
shown for Denman and Totten as they are too uncertain. 612 
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 614 
 615 

 616 
 617 
Fig S7. Cross-section profiles of SAMΣ (a) and ENSOΣ (b) coefficients as a function of distance 618 

across Thwaites (a), Pine Island (b), Totten (c) and Denman (d) glaciers. Coefficients are 619 
shown as estimated before (colored solid line) and after (colored dashed line) subtraction 620 
of the IMAU FDM. The ice elevation extracted from the REMA v2.0 1 km mosaic 621 
(Howat, 2022) is shown as a black line (central axes). Colored shading indicates the 622 
1-sigma confidence limits. The vertical grey box indicates the 100 m/yr limits of ice flow 623 
based on Measures v2. The locations of the profiles are shown in Figure S5 as yellow 624 
lines. 625 

 626 
 627 
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 628 
 629 
Fig S8. Centre-line profiles of SAMΣ (a) and ENSOΣ (b) coefficients as a function of distance 630 

upstream of the grounding line of major ice streams. Coefficients are shown before (solid 631 
line) and after (dashed line) subtraction of the IMAU FDM. Shading indicates the 632 
1-sigma confidence limits. The locations of the profiles are shown in Figure S5 as yellow 633 
lines. 634 

 635 
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 636 
Figure S9. As for Figure 3 but showing only the Thwaites and Pine Island time series. Panels 637 
show (left axes) the detrended data and their 2-sigma uncertainties (blue plusses and error bars), 638 
outputs of two models of firn densification (FDM; brown lines), the best fitting models based on 639 
ASL (black solid line with 2-sigma uncertainty in gray shading) and SAM+ENSO (black dashed 640 
lines) terms.  641 
 642 
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 643 
Figure S10. Dynamic elevation change anomalies (positive for gain) estimated from annual 644 
changes in satellite derived velocities for Pine Island Glacier (top) and Thwaites Glacier 645 
(bottom). These elevation change anomalies are calculated from the advective thickness change 646 
(blue circles) and strain (magenta triangle) tied to the observed change in velocity from one year 647 
to the next. The total elevation change (black squares) is the sum. Estimates are based on gridded 648 
surface velocities (vx, vy) in a 25 x 25 km box centered around glacier points used to show 649 
observed elevation changes in Figure 3 of main text. Other sources of elevation change are 650 
ignored. See Text S1 for details.   651 
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 652 
Table S1 653 
 654 
Table S1. Location in Antarctic Polar Stereographic coordinates (EPSG:3031) of sites in Fig. 3 655 

and Fig S9 and discussed in the main text. 656 
Glacier X(m) Y(m) 
Thwaites -1511702 -463473 
Pine Island -1583860 -232513 
Totten 2274795 -988293 
Denman 2496950 -423352 

 657 
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