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Corresponding author: David G. Litwin, david.litwin@gfz-potsdam.de

–1–



manuscript submitted to Water Resources Research

Abstract14

Topography is a key control on runoff generation, as topographic slope affects hydraulic15

gradients and curvature affects water flow paths. Simultaneously, runoff generation shapes16

topography through erosion, affecting landscape morphology over long timescales. Pre-17

vious modeling efforts suggest that subsurface hydrological properties, relative to climate,18

are key mediators of this relationship. Specifically, when subsurface transmissivity and19

water storage capacity are low, (1) saturated areas and storm runoff should be larger and20

more variable, and (2) hillslopes shorter and with less relief, assuming other geomorphic21

factors are held constant. However, it remains uncertain whether subsurface properties22

can exert such strong controls on emergent properties in real landscapes. We compared23

emergent hydrological function and topography in two watersheds with very similar cli-24

matic and geologic history, but very different subsurface properties due to contrasting25

bedrock lithology. We found that hillslopes were systematically shorter and saturated26

areas more dynamic at the lower transmissivity site. To test whether these features could27

be the result of coevolution between topography, hydrological function, and subsurface28

properties, we estimated all parameters of a coupled groundwater-landscape evolution29

model for each site. Limitations were revealed in the model’s ability to reproduce aspects30

of morphology and hydrologic behavior, however, model results suggested differences in31

drainage density and variably saturated area between the sites could be explained by dif-32

ferences in subsurface properties, and not by differences in geomorphic process rates alone.33

This work demonstrates one way subsurface hydrology can profoundly affect landscape34

evolution.35

Plain Language Summary36

In many humid landscapes, runoff is generated by water that flows through the shal-37

low subsurface from ridges to valleys, eventually emerging and draining to rivers. When38

subsurface capacity to move water is greater, more water can be transported downslope39

before surface runoff begins. Surface water may cause erosion, which shapes topography40

over millions of years. We previously developed a computer model based on these prin-41

ciples and showed that subsurface capacity to store and transmit water affects both runoff42

generation and topographic evolution. Lower capacity results in more extensive surface43

runoff and shorter hillslopes, when all other factors are held constant. Here we tested44

this by comparing two watersheds that differ primarily in their bedrock composition, which45

affects subsurface water storage and transmissivity. We found that the low transmissiv-46

ity site experienced more widespread surface runoff in response to precipitation, and had47

shorter hillslopes, supporting our predictions. We set up computer models for both sites,48

which suggested that subsurface differences are necessary to explain observed differences49

in runoff and topography. Finally, we discuss some key limitations of the model that could50

be improved upon in future attempts to understand how hydrology affects the long-term51

evolution of Earth’s surface.52

1 Introduction53

1.1 Background54

It has long been understood that there is a close, two-way connection between runoff55

and the topographic form of landscapes. Topography influences surface and subsurface56

water flow paths and supplies the elevation component of hydraulic head, while erosion57

by water shapes landscapes over long timescales. Horton (1945) suggested that there is58

something valuable to learn about how places work hydrologically by considering this59

coupling. In particular, such coevolution may be useful for understanding and predict-60

ing catchment hydrological function (Troch et al., 2015).61
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Unfortunately, the vastly different timescales of runoff and evolution of channel net-62

works via erosion has made it challenging to study the coevolution of hydrological and63

geomorphic states and fluxes. Hydrologists studying runoff generation usually assume64

that landscape form is fixed, while geomorphologists studying landscape evolution usu-65

ally assume hydrology can be reduced to a few parameters that capture how hydrocli-66

mate affects the efficiency of bedrock erosion and sediment transport.67

However, recent advances in modeling and the availability of high performance com-68

puters have made it possible to couple hydrologic and geomorphic models, and exam-69

ine the evolution of hydrologic and geomorphic states together. Litwin et al. (2022) used70

a shallow aquifer model to generate saturation excess runoff from steady recharge, and71

used the runoff to drive fluvial incision in a streampower-plus-diffusion landscape evo-72

lution model, called DupuitLEM. Litwin et al. (2024) extended DupuitLEM to exam-73

ine the emergence of variable source area hydrology by adding stochastic precipitation74

and a simple representation of the vadose zone, thus capturing more realistic hydrologic75

dynamics.76

According to that model subsurface thickness and permeability are important con-77

trols on runoff, and consequently, the degree of drainage dissection and length of hill-78

slopes (Figure 1). Subsurface structure in DupuitLEM is represented by a single layer79

of constant thickness, but a cascading vadose zone model allows it to resolve vertical vari-80

ations in water content resulting from root water uptake, and the non-linear threshold-81

like spatial variations in the relationship between rainfall infiltration and groundwater82

recharge. The water table position responds to recharge from the vadose zone, and lat-83

eral flow calculated using Dupuit-like assumptions. A large subsurface thickness and per-84

meability therefore endows a model landscape with not only the ability to rapidly drain85

saturated storage, but also the ability to absorb storm event rainfall in the vadose zone,86

especially when the evapotranspiration rate was also high relative to rainfall. The model87

showed that these characteristics resulted in less saturation excess overland flow com-88

pared to landscapes with poor subsurface drainage, as saturated areas were smaller and89

less responsive to storm events. Less surface runoff means less water-driven erosion, which90

means that at geomorphic steady state (when uplift balances erosion) diffusive hillslope91

erosion processes must be larger to compensate. The result is a landscape with higher92

relief and less drainage dissection (e.g., Perron et al., 2008).93

While these model results indicate that the subsurface is a key link between topog-94

raphy and runoff generation, it is unclear whether these relationships can be observed95

in real landscapes. While field studies have shown that subsurface properties and topog-96

raphy have effects on hydrologic function (e.g., Prancevic & Kirchner, 2019; Jencso &97

McGlynn, 2011), relationships between subsurface properties and topography remain elu-98

sive (Luo et al., 2016; Sangireddy et al., 2016). Furthermore, it has proven challenging99

to show that such a relationship is the result of coevolution with hydrology (Yoshida &100

Troch, 2016). This lack of clear relationships is to be expected because hydrology, con-101

ditioned by climate, is only one connection between the subsurface and topography. Other102

controls include lithology and tectonic setting, which affect the styles and efficiencies of103

weathering, sediment particle size, and sediment transport; and vegetation, which alters104

subsurface properties and sediment transport efficiency through root growth, and hydro-105

logic partitioning through evapotranspiration (Brantley et al., 2017; Collins & Bras, 2010).106

In this paper we will look for evidence to support the hypothesis that subsurface107

thickness and permeability are important controls on surface topography (particularly108

relief and drainage density). We will apply the model of Litwin et al. (2024) to two lo-109

cations where confounding differences are minimized, and there is a contrast in both the110

degree of topographic dissection and the subsurface properties. We aim to avoid calibra-111

tion, relying instead in field observations, literature values, and topographic analysis to112

parameterize the model.113
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If the model is able to reproduce the distinct hydrologic and geomorphic proper-114

ties of each site, this will lend strong credence to the arguments drawn from the model115

about how they are coupled, and the importance of subsurface properties in modulat-116

ing that coupling. However, parameter uncertainty makes is very possible that the model117

will not reproduce the observed geomorphic length scales and hydrologic behaviour pre-118

cisely. It is also possible that the process mechanisms we have chosen to encode in the119

model are not actually the processes most important at these sites (we will discuss this120

possibility later). If the model does not match the observations, or does so for the wrong121

reasons, it can still allows us to examine how sensitive model predictions are to subsur-122

face properties given the realistic reference parameters the two sites provide. If the dif-123

ference in model predictions between the sites align in magnitude and direction with ob-124

servations from these sites this will provide (weaker, but defensible) support for the the-125

sis.126

1.2 Approach127

We selected two sites where contrasting lithology results in a strong contrast in sub-128

surface properties, but climatic and tectonic histories are similar because of their prox-129

imity. Our first site, Druids Run, is underlain by serpentine bedrock that forms thin rocky130

soil, while the second site, Baisman Run, is underlain by schist that weathers to form131

deep, permeable soil and saprolite. We will assume that the present hydrological func-132

tion is adjusted to the watershed geomorphology, and that the terrain approximates a133

geomorphic steady-state, as suggested by (Pavich, 1989).134

Given these differences in subsurface properties, insights gained from the analysis135

in Litwin et al. (2024) lead us to hypothesize that:136

1. Saturated areas and storm runoff are larger and more variable in time at Druids137

Run than Baisman Run, and138

2. Hillslopes are shorter and have less relief at Druids Run than Baisman Run.139

Here we examine these hypotheses in three steps. First, we characterize the hydrolog-140

ical function and morphology of the two sites and evaluate whether they support these141

hypotheses. Second, we ask whether these differences could be accounted for by coevo-142

lution between runoff generation and erosion as conceptualised in our model. To do this143

we fully parameterize the landscape evolution model used in Litwin et al. (2024) with-144

out calibration and compare its predictions to the site properties. Third, we test whether145

subsurface hydrological differences are indeed the most important factors (or whether146

differences in other geomorphic properties can account for the different site morpholo-147

gies) by performing a simple sensitivity analysis in which we swap the geomorphic pro-148

cess variables between the two sites while retaining the hydrologic and subsurface prop-149

erties. The results reveal the relative importance of variations in subsurface hydrology150

relative to geomorphic process rates in explaining differences in emergent morphology151

and hydrologic function at these sites.152

2 Materials and Methods153

2.1 Site descriptions154

Our study sites are located in the Piedmont physiographic province, north of Bal-155

timore, Maryland. The climate is humid, with a mean annual precipitation of approx-156

imately 1150 mm and mean annual potential evapotranspiration of approximately 750157

mm. There is no pronounced seasonality in precipitation, less than 5% of which falls as158

snow. Baisman Run is a 381 ha watershed in Oregon Ridge Park, defined by an outlet159

at (39.4795 N, 76.6779 W). Druids Run is a 107 ha watershed located in Soldiers Delight160

Natural Environment Area, and is defined by an outlet at (39.4171 N, 76.8523 W). The161
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High Transmissivity and
Water Storage Capacity

Sharp slope break
at channel heads

Large vadose zone 
reduces frequency of 

recharge to depth

Longer hillslopes, as more recharge is needed produce 
surface saturation & fluvial erosion

Shorter hillslopes, as less recharge needed to 
produce surface saturation & fluvial erosion

Temporal variations in fluvial 
erosion shape wider transitional 
region around channel head

Less variation in area of 
surface saturation produces a 
sharp transition from diffusive 
to fluvial erosion

Water table 
fluctuation range

Recharge

Fluvial
Sediment

Flux

Diffusive Hillslope 
Sediment Flux

Gradual transition
at channel heads

Low Transmissivity and
Water Storage Capacity

Thin vadose zone 
results in frequent 

recharge & lateral flow

Figure 1. Conceptual figures showing a contrast in morphology and water table from ridge
to channel head predicted by DupuitLEM. Gravity driven hillslope sediment flux moves material
downslope proportional to the topographic gradient (brown dashed arrows). Water-driven fluvial
erosion occurs where there is surface water, generated by precipitation on saturated areas and
exfiltration (blue dashed arrows). When transmissivity and water storage capacity (drainable
porosity integrated with depth) relative to storm event size are large, the subsurface can support
long water flow paths before exfiltration, and the position where the water table intersects the
surface is relatively static with time. When transmissivity and storage capacity are lower, hill-
slopes are shorter and the water table is more sensitive to time-varying recharge, such that the
zone of surface water discharge and erosion varies in the vicinity of the channel head.

watersheds are 16 km apart, and are at approximately the same elevation (52 m and 56162

m above sea level respectively). Both watersheds drain to the Chesapeake Bay; Baisman163

Run drains via the Gunpowder River and Druids Run via the Patapsco River. Baisman164

Run has been monitored extensively as part of the Baltimore Ecosystem Study, and more165

recently as part of several projects aimed at improving understanding of deeply weath-166

ered critical zones (Putnam, 2018; Cosans, 2022). Druids Run has no prior description167
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or study. It is unnamed in the National Hydrography Dataset, so we unofficially named168

it in honor of a local group of druids that meet in the watershed.169

Baisman Run Druids Run

Watershed Boundary
Channels
Saturation Surveys

Figure 2. Hillshades of Baisman Run and Druids Run with the watershed boundary and
channel network delineated with the DrEICH algorithm. Areas where we conducted saturation
surveys (see Figure 5) are shown in dashed black boxes. The two sites are to scale, revealing the
difference in their size and drainage dissection.

Baisman Run is underlain by the Loch Raven Schist (Crowley et al., 1975), a Cambrian-170

Devonian mica schist that has weathered to form deep, moderately permeable soil and171

saprolite. Drilling and geophysical measurements show that at the ridge, the depth to172

the saprolite-bedrock transition is ≈ 15 m and weathered bedrock extends several tens173

of meters further (Cosans, 2022). The depth to the saprolite-bedrock transition is much174

shallower in valley bottoms, ≈ 0−2 m, as there are some bedrock outcrops appearing175

in channels (Cosans, 2022). The USDA maps the primary soils in the watershed as well-176

drained, loam to silt-loam textured with depth to water table and confining layer greater177

than 200 cm. Valley bottoms soils are poorly drained, with hydric-classified soils com-178

posing ≈ 3% of the watershed (Staff & Natural Resources Conservation Service, United179

States Department of Agriculture., 2023). Agriculture was historically present in the east-180

ern headwaters, where there is now suburban development, and a homestead and tree181

farm were historically present in the Pond Branch sub-watershed (Cleaves et al., 1970).182

The remainder of the watershed has been relatively undisturbed since the 1950s and to-183

day supports a mature deciduous forest.184

Druids Run is primarily underlain by the Soldiers Delight Ultramafite (Guice et185

al., 2021). Soils are primarily classified as chrome silt loam, and are generally thin with186

a strong permeability contrast at the base of the A horizon (at an average depth of 46187

cm). Ridgetop soil is rocky and can be as thin as 5 cm, and exposed bedrock is common188

near channel heads. In valley bottoms, alluvium and organic material accumulate to thick-189

nesses around 1 m. Hydric-classified soils are found in some valley bottoms and compose190

≈ 1% of the watershed (Staff & Natural Resources Conservation Service, United States191

Department of Agriculture., 2023). The Soldiers Delight Ultramafite is host to a “ser-192

pentine barrens” ecosystem, which consists primarily of grasses and shrubs with some193

areas supporting hardwood and conifer trees. The Soldiers Delight area was mined for194

chromite in the 19th and 20th century. Several small pits are present near ridge crests195
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in Druids Run, and placer mining may have occurred in the valley bottoms, but the ef-196

fects of this appear to be minimal in this watershed. Some structures and two small ponds197

are present in the upper portion of Druids Run, but most of the watershed is free from198

development.199

2.2 Hydrological data200

We combined existing hydrological data with new measurements of precipitation,201

streamflow, and saturated areas. Instantaneous precipitation rates were measured from202

June 2022 to February 2023 at a weather station located in an open field approximately203

0.8 km north of Baisman Run. An identical unit was installed in an open area in Druids204

Run, which recorded instantaneous precipitation from April 2022 to February 2023. The205

stream gage at Baisman Run is operated and maintained by the U.S. Geological Survey206

(Gage 01583580). We established a new stream gage at Druids Run for this project.207

The Druids Run stream gage is located at an existing concrete culvert crossing the208

stream channel. In April 2022 we installed a PVC housing on the concrete structure ap-209

proximately 2 m from the culvert inlet. We measured water stage with a Solinist Lev-210

elogger pressure transducer within that housing, and corrected for atmospheric pressure211

with a Solinst Barologger. The pressure transducer operated until the device failed in212

October 2022. Periodic discharge measurements were made to construct a rating curve.213

Low flows were measured with salt dilution gaging recorded with a HOBO conductiv-214

ity logger, and high flows were measured using an OTT MF Pro electromagnetic cur-215

rent profiler. A power law model fit the stage-discharge data well, as shown in Figure216

S1.217

While we do not have site-specific discharge uncertainty estimates, prior studies218

suggest reasonable and similar values. The U.S. Geological Survey reports gage discharge219

error is typically 3-6%, and rarely up to 20% (Sauer & Meyer, 1992). Schmadel et al.220

(2010) conducted an in-depth uncertainty analysis of discharge estimated from a dilu-221

tion gaging procedure very similar to ours and found approximately 8% error.222

We surveyed limited areas of both watersheds manually for saturation conditions223

between April 2022 and March 2023. At Baisman Run, the surveys were conducted in224

the headwaters of the Pond Branch sub-watershed. At Druids Run, they were conducted225

in a headwater catchment near the eastern watershed boundary. We measured satura-226

tion at points along predefined transects, and returned to the approximate (but not ex-227

act) positions for each survey. We selected transects to balance capturing a range of hill-228

slopes, zero- and first-order channels, while covering a small enough area to avoiding sig-229

nificant changes in saturation over the course of a measurement campaign. Saturation230

was measured by walking the transects, and pushing a rebar rod approximately 2 cm into231

the ground and moving the rod up and down in the shallow hole. Points along these tran-232

sects were recorded as not saturated if no squishing sound was heard (N), soil-saturated233

if a squishing sound was heard (Ys), ponded (Yp), or flowing (Yf) if water was observed234

on the surface. Three close locations were measured at each point on the transect, and235

the highest category in this hierarchy was recorded as the value (e.g., if two points did236

not squish, but one did, the recorded class would still be Ys). This procedure was repeated237

under different discharge and moisture conditions.238

2.3 Hydrological analysis239

Valuable information about contributing areas can be extracted from rainfall and240

runoff timeseries. The event runoff ratio, defined as the ratio of the total event runoff241

to event precipitation, can approximate the proportion of the watershed contributing storm242

runoff (e.g., O’Loughlin, 1986). To calculate event runoff, we first separated the discharge243

timeseries into baseflow and quickflow using the graphical approach described by Hewlett244
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and Hibbert (1967). Because hydrograph separation only delineates by timescale of re-245

sponse (fast versus slow), the resulting event runoff does not necessarily derive from a246

particular runoff pathway, such as runoff from saturated areas. Still, the event runoff ra-247

tio can provide an indication of the relative watershed connectivity that drives rapid runoff248

response to rainfall.249

Using the method of Hewlett and Hibbert (1967), baseflow is equal to discharge250

and quickflow is zero until discharge increases at a rate faster than 0.000546 m3 s−1 km−2
251

h−1. Baseflow continues to increase at this rate until discharge declines and is equal to252

baseflow. Storm events are periods where quickflow is greater than zero and the rise is253

associated with precipitation. Corresponding precipitation events start t0 hours before254

event quickflow begins, and end t1 hours before discharge returns to baseflow, where t0255

and t1 are fixed values for each site. By examining precipitation and discharge timeseries,256

we found that t0 = 2 hours and t1 = 1 hour were appropriate for Druids Run, and257

t0 = 6 hours and t1 = 2 hours were appropriate for Baisman Run. We excluded runoff258

events shorter than 6 hours because these generally had small discharge responses rel-259

ative to noise in the timeseries.260

While the runoff ratio provides a signature of contributing area, the saturation dataset
provides a direct means to assess the variability of saturated areas. The saturation sur-
veys yielded categorical data that vary with topographic position and catchment discharge.
To develop quantitative insights from the dataset, we first created a binary classification
of whether points were not saturated (N) or saturated (Ys, Yp, Yf). We then used lo-
gistic regression to generalize our discrete measurements to predictions of how satura-
tion probability p varies in space, assuming similarity with topographic (wetness) index
TI = A

v0|∇z| (Beven & Kirkby, 1979), and in time assuming similarity with baseflow
discharge Qb:

log

(
p

1− p

)
= α0 + α1 log

(
A

v0|∇z|

)
+ α2 log

(
Qb

Atot

)
(1)

where A(x, y) is the area upslope of a contour width v0, |∇z(x, y)| is the topographic slope,261

and Atot is the total watershed area. The model parameters are α0, α1, and α2.262

To calculate topographic index, we first resampled the DEM to 5 m resolution to263

smooth over roughness in the high resolution DEM and to reflect the uncertainty in the264

positioning data of our saturation surveys. The resampling approach is also consistent265

with our measurement scheme, in which we labeled locations based upon the highest sat-266

uration class observed in a small vicinity. We calculated upslope area using the D∞ al-267

gorithm, and slope using the same 10 m footprint used to calculate hilltop curvature. While268

our regression model calls for the use of baseflow discharge, we used the total discharge,269

as all of our samples were taken during baseflow or recession periods. This was also nec-270

essary because the timeseries of discharge at Druids Run did not overlap all the satu-271

ration surveys. For consistency, we used instantaneous discharge measurements from im-272

mediately before the surveys began. At Druids Run, we made these measurements us-273

ing dilution gaging; at Baisman Run, we used instantaneous discharge from the USGS274

gage.275

2.4 Hillslope length and relief276

We conducted geomorphic analyses using a lidar-derived digital elevation model277

with 0.76 m resolution, which was collected in 2015 and is publicly available from Bal-278

timore County. We conducted all topographic analyses using LSDTopoTools (S. Mudd279

et al., 2022). To determine hillslope length and relief, we began by identifying the chan-280

nel networks at both sites using the DrEICH algorithm (Clubb et al., 2014). DrEICH281

uses χ-analysis (Perron & Royden, 2013) to locate channel heads at the transition point282

from linear channel segments to nonlinear hillslope segments in χ-elevation space. χ-analysis283

is discussed in more detail in Section 2.7.2. We adjusted the DrEICH model parameters284
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such that the predicted channel network matched observed channel network in the sub-285

watersheds where we measured saturation. The channel network in these areas was ob-286

served visually in the field as the extent of fluvial incision with clear connection to larger287

channel baselevel. We then used the channel network to identify hilltops, which are de-288

fined as edges shared by watersheds with the same Strahler stream order (Hurst et al.,289

2012). Finally, we calculated hillslope length as the steepest descent distance from each290

hilltop point to the nearest channel point, and hillslope relief as the hilltop elevation above291

the nearest channel point (Grieve et al., 2016).292

2.5 Landscape evolution model293

We use the landscape evolution model described by Litwin et al. (2024) to under-294

stand the sensitivity of topography and runoff generation to subsurface properties and295

geomorphic process rates for cases similar to those we observe at these sites. As this is296

a reduced complexity model intended for long-term evolution, and is initialized with small297

random elevation perturbations, we do not expect the model to reproduce the arrange-298

ment of streams and ridges at our sites. Rather we will measure key metrics of the land-299

scape, including hillslope length and local relief, and compare these to the site.300

The model accounts for topographic evolution due to baselevel change, water-driven301

erosion using the streampower erosion equation, and hillslope sediment transport using302

a nonlinear hillslope diffusion equation. We decided to use a linear diffusion formulation,303

as the hillslopes at Baisman Run and Druids Run generally remain convex until they reach304

valley bottoms, and the topography shows no evidence of shallow landsliding or other305

mass movements. The subsurface maintains constant and spatially uniform properties306

through evolution, implicitly assuming that the production of permeable material keeps307

pace with surface erosion. The overland flow that drives fluvial erosion is generated by308

exfiltration and precipitation on saturated areas where the shallow aquifer reaches the309

land surface. The shallow aquifer model uses the Dupuit-Forcheimer assumptions to cal-310

culate flow over a sloping impermeable base. The aquifer receives recharge from the va-311

dose zone, which is represented using a single 1-dimensional profile in which discrete depth312

increments fill and drain by the plant-available water capacity in the increment. The pro-313

file dynamics are described by Schenk (2008). Evapotranspiration draws water from the314

shallowest available depth increment, and infiltration displaces water from the surface315

further into the profile. From this single profile, recharge is calculated at each aquifer316

node by mapping the amount of water that infiltrates into the profile below the water317

table depth. This one-directional coupling is computationally efficient but means that318

the saturated zone cannot affect vadose water storage (such as through capillary rise)319

or supply water for evapotranspiration. The climate is treated as a simple (Poissonian)320

random jump process, following Eagleson (1978), with exponentially distributed storm321

depth, duration, and interstorm interval, and constant evapotranspiration at the clima-322

tological mean rate during the interstorm periods.323

We ran the model under the same initial and boundary conditions used in Litwin324

et al. (2024). The domain is square. One side boundary is fixed to baselevel, while the325

remaining three side boundaries are zero-flux. We began with a flat initial surface at base-326

level, add small random perturbations, and simulate 50 Ma of evolution until a dynamic327

equilibrium between erosion and uplift is reached. While this timescale is long relative328

to periodic changes in climate and baselevel in the Eastern Piedmont (e.g., Cleaves, 1989),329

we know that both sites have experienced the same forcings through their evolution, such330

that a single climate and baselevel change rate should still provide insights into their evo-331

lution.332
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2.6 Hydrological parameters333

2.6.1 Transmissivity, hydraulic conductivity, and permeable thickness334

The maximum transmissivity (hereafter just transmissivity) is defined as the depth-335

integrated saturated hydraulic conductivity. It appears in our model as the product of336

the effective saturated hydraulic conductivity ks and permeable thickness b. We devel-337

oped a novel method to use the saturation survey data to estimate a catchment-averaged338

transmissivity, building on an existing approach. We then divided that value into esti-339

mates of ks and b.340

Our method of estimating transmissivity is similar to that described by O’Loughlin
(1986), as it is built on a steady state hillslope water balance and the assumption that
places with the same topographic wetness index TI saturate at the same time (Beven
& Kirkby, 1979). The approach begins by considering recharge that is supplied at a rate
r(x, y) to the saturated zone. At hydrologic steady state, the total water outflow along
a topographic contour segment with length v0 is equal to the integral of recharge over
the area upslope of the contour Ac. In this way, convergent slopes will saturate before
planar and divergent ones. The maximum amount of recharge that can be moved through
the subsurface before saturation occurs depends on the transmissivity T and the local
hydraulic gradient, which is assumed to be equal to the topographic gradient ∇z. As a
result, the criterion for saturation at the contour segment is:∫

Ac

r(x, y)dA ≥ T |∇z|v0. (2)

At saturation, any additional recharge will become overland flow. Because in general the
recharge is not known, O’Loughlin (1986) equated the total watershed recharge with the
watershed baseflow Qb: ∫

Atot

r(x, y)dA = Qb, (3)

where Atot is the watershed area. From this expression, we derived an average recharge
rate r̄ = Qb/Atot. Dividing Equation 2 by the average recharge rate equation and re-
arranging the terms, we derived an expression for the discharge-normalized transmissiv-
ity:

1

|∇z|v0

∫
Ac

(r
r̄

)
dA ≥ T

Qb/Atot
. (4)

By further assuming that the integrand in the above expression is approximately unity,
we obtain an expression that relates the topographic index to transmissivity and base-
flow discharge:

A

|∇z|v0
≥ T

Qb/Atot
. (5)

where A/v0 is the upslope area per contour width, calculated at every point in the land-
scape using the digital elevation model. We will call the topographic index at bound-
ary between saturated and unsaturated ground TI∗, which is a function of discharge Qb.
At that value the inequality in the expression above becomes equality. Using a log trans-
form, we derived an expression for the log of transmissivity:

log(T ) = log (TI∗) + log

(
Qb

Atot

)
. (6)

To find T using this expression and our saturation surveys, consider a logistic regression
model with the form:

ρ(p) = log

(
p

1− p

)
= β0 + β1 log

(
A

v0|∇z|
Qb

Atot

)
(7)

where β0 and β1 are parameters of the regression model. This logistic regression model
is very similar to that in Equation 1, but has one fewer parameter, and consequently en-
forces that the odds of saturation are log-linearly dependent on the product of Qb and
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TI. At the critical value of topographic index TI∗, we will call the odds of saturation
ρ∗:

ρ∗ = β0 + β1 log

(
TI∗

Qb

Atot

)
. (8)

Finally, we rearranged Equation 8 to match the form of Equation 6, and solved for the
transmissivity:

T = e(ρ
∗−β0)/β1 . (9)

The main difference between this approach and that described by O’Loughlin (1986) is341

that their approach equates the ratio of quickflow to precipitation with the proportion342

of the watershed that is saturated, while we have direct estimates of how saturation varies343

with baseflow and topographic index. This should make our approach more robust, though344

it is still limited to the steady-state hydrological theory from which it was derived. Fi-345

nally, we partitioned transmissivity between permeable thickness b and an effective sat-346

urated hydraulic conductivity ks based on permeable thickness values taken from the USDA347

Soil Survey (Staff & Natural Resources Conservation Service, United States Department348

of Agriculture., 2023) and insights gained from prior subsurface investigations of Bais-349

man Run.350

2.6.2 Drainable porosity and plant available water content351

Drainable porosity ne relates the depth of water stored or released when there is352

a change in water table elevation. Estimates usually require either hydraulic well tests353

or laboratory analyses. In the absence of hydraulic test data or permission to take soil354

samples from Druids Run, we assumed that the drainable porosity was the same at both355

sites. Plant available water content (na) is the amount of water available for plant use356

per unit volume of soil. The values were estimated based on the USDA Soil Survey data357

for the dominant soil types at the two sites.358

2.6.3 Climatological parameters359

We fit three independent exponential distributions for storm depth ds, duration tr,
and interstorm duration tb by calculating the mean values of these quantities from a pre-
cipitation dataset previously collected from 2014-2018 at the weather station at Bais-
man Run (Cosans, 2022). Because the two sites are very close together, this one time-
series was used to calculate storm statistics at both sites. The distributions are:

f(ds) =
1

⟨ds⟩
exp

(
− ds

⟨ds⟩

)
(10)

f(tr) =
1

⟨tr⟩
exp

(
− tr

⟨tr⟩

)
(11)

f(tb) =
1

⟨tb⟩
exp

(
− tb

⟨tb⟩

)
(12)

(13)

where the angled braces indicate the temporal mean of the quantity. Potential evapo-360

transpiration (ET) was estimated based on the average annual value in Baltimore be-361

tween 1981 and 2010, as reported by the Northeast Regional Climate Center at Cornell362

University. In our model, ET only occurs during interstorm periods, so the interstorm363

potential ET rate pet was estimated by rescaling the average potential ET rate with the364

interstorm time fraction. Our climatological approach is simplistic, neglecting covariance365

of storm depth, duration, and interstorm duration, seasonality, paleoclimatic variabil-366

ity, and so on. However, we do not expect any large differences in the climate between367

the two sites, so even a simple approach should allow us to make comparisons of how land-368

scapes with different geomorphic and subsurface hydrologic properties respond to climatic369

conditions similar to those observed at our sites.370
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2.7 Estimating geomorphic parameters371

The topographic parameters of our model are the uplift or baselevel change rate372

U , hillslope diffusivity D, streampower incision coefficient K, characteristic contour width373

v0, and the streampower exponents m and n, as discussed below. The Piedmont is thought374

to reasonably approximate geomorphic steady state (Pavich, 1989; Bazilevskaya et al.,375

2013), so we set the rate of baselevel fall equal to the average cosmogenic 10Be erosion376

rate from nearby Piedmont sites. The remaining parameters were identified using topo-377

graphic analysis. The methods presented below are largely consistent with methods used378

by others in the literature, except for the streampower parameters. There we present a379

modification of a previously-proposed method, adapted to account for the effect of hy-380

drologic variability.381

2.7.1 Hillslope diffusivity382

Hillslope diffusivity can be derived from the rate of baselevel change U and hill-
top curvature CHT (Roering et al., 2007; Hurst et al., 2012):

D = − U

CHT
. (14)

In hillslope evolution contexts, it is typical to account for the ratio of the bulk densities383

of regolith (on which the diffusion process occurs) and parent material (on which base-384

level change occurs) (Roering et al., 2007). Because we are working with an integrated385

channel and hillslope model, and we do not have good estimates for the bulk density of386

fluvially-eroded material, we will neglect the bulk density terms. In this context, D is387

an effective diffusivity that will match the simulated hilltop curvature with that from388

our topographic measurements. We calculated the hilltop curvature by taking the sec-389

ond derivative of a polynomial surface fit to a 10 m footprint around each hilltop point.390

Hilltop points are the same as those used for the hillslope length analysis. The footprint391

size was selected by calculating the hilltop curvature for footprints of varying sizes and392

selecting the size at which there is a break in the standard deviation of curvature, fol-393

lowing the procedure described by Hurst et al. (2012).394

2.7.2 Streampower parameters395

We estimated the streampower law parameters using an integral approach called
χ-analysis (Perron & Royden, 2013). While the parameters can be derived from slope-
area analysis, slope estimates often have significant noise that can result in poor param-
eter estimates (Perron & Royden, 2013). The integral approach is more stable, as it only
requires the elevation and the upslope area to calculate the model parameters. The typ-
ical χ-analysis needed slight modification to accommodate our landscape evolution model.
Litwin et al. (2022) derived the fluvial incision term of the landscape evolution model
with assumptions that yielded linear dependence on the dimensionless discharge Q∗, a
slope exponent n = 1, and area exponent m = 1/2. We derived a more general form
by assuming that the exponent that determines the channel width from area and the ex-
ponent that determines erosion rate from shear stress were free parameters:

Ef = KQ∗n (v0a)
m |∇z|n (15)

where Ef is the fluvial incision rate, K is the erodibility, v0 is the characteristic contour
width, a is the area per contour width, and ∇z is the elevation gradient. For simplic-
ity, we will use the variable Q∗ to refer to the temporally-averaged dimensionless discharge
which is called ⟨Q∗⟩ in Litwin et al. (2024). Because χ-analysis is usually only applied
to river channels, it is typical to neglect the hillslope diffusion term, and write the so-
lution at equilibrium between uplift and fluvial incision along a channel distance coor-
dinate x:

U = KQ∗n (v0a)
m

∣∣∣∣∂z∂x
∣∣∣∣n . (16)
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We then solved for |∂z/∂x|, and substituted area for area per contour width times the
characteristic contour width A = v0a:∣∣∣∣∂z∂x

∣∣∣∣ = (
U

KQ∗n

)1/n

A−m/n. (17)

Next we normalized upslope area to a reference drainage area A0, and integrated the equa-
tion above with respect to x:

z(x) = z(xb) +

∫ x

xb

(
U

KQ∗nAm
0

)1/n (
A0

A(x)

)m/n

dx (18)

where z(xb) is the elevation at a specified baselevel location xb. In general, Q∗ varies with
position, so we cannot remove it from the integral. However, in our model Q∗ generally
approaches a constant value as you move downstream equal to one minus the actual evap-
otranspiration relative to precipitation 1−⟨AET ⟩/⟨P ⟩, which is approximately the mean
runoff ratio ⟨Q⟩/⟨P ⟩. We will call this value Q∗

max. Then we can write:

z(x) = z(xb) +

(
U

KQ∗n
maxA

m
0

)1/n

χ, (19)

where

χ =

∫ x

xb

(
A(x)

A0

)m/n

dx. (20)

These equations show that the elevation of a stream channel in dynamic equilibrium should
be linear with respect to χ if U , K, and Q∗

max are uniform, and that the slope of that
relationship should be:

ksn =

(
U

KQ∗n
maxA

m
0

)1/n

, (21)

which is often called the normalized channel steepness index. Note that this is related396

to but distinct from our use of “steepness” in Litwin et al. (2022).397

We calculated the slopes of channel segments in χ-elevation space for the channel
networks we extracted previously. Because the reference drainage area A0 is introduced
for dimensional purposes only, we can set it equal to unity, and solve for the streampower
incision coefficient K:

K =
U

(ksnQ∗
max)

n . (22)

3 Results398

3.1 Hydrologic and geomorphic observations399

3.1.1 Discharge, baseflow, and runoff ratio400

Figure 3 shows the timeseries of discharge and precipitation for both sites. Base-401

flow (in dark blue) at Baisman Run declined from early summer continuing until Octo-402

ber, when a small persistent increase is combined with episodic increases in response to403

large storms. Unfortunately the discharge timeseries available to us at Druids Run is too404

short to look at annual trends, though there does appear to be a significant baseflow de-405

cline from spring into summer, leading to low flows by late June. We did not observe no-406

flow conditions at the gage location, but we do know that flows were often close to or407

below the pressure transducer detection limit during the summer.408

The storm runoff ratio is substantially more variable at Druids Run than Baisman409

Run. We identified 21 storm events at Druids Run and 43 storm events at Baisman Run,410

and found that the total event precipitation explained most of the variation in total event411

quickflow Qf,event (Figure 4). Events are colored by the antecedent baseflow, which shows412
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Figure 3. Timeseries of discharge Q (black), baseflow Qb (dark blue), and precipitation P

(light blue) at Druids Run (A) and Baisman Run (B). Storm events that we identified based
upon the baseflow separation and precipitation begin with green dots and end with red dots,
which are placed at the corresponding times on both the precipitation and discharge timeseries.
Note that the timeseries for Baisman Run and Druids Run are not aligned in time.

that some of the variation in event runoff that cannot be explained by event precipita-413

tion may be explained by antecedent conditions. To quantify the sensitivity of event runoff414

to event precipitation, we fit the curve Qf,event = a2P
a1
event, where the log-space slope415

corresponds to the fitted exponent a1. The exponent and standard error are 3.17±0.40416

and 1.89±0.13 at Druid Run and Baisman Run, respectively. An exponent a1 = 1 would417

indicate that the storm runoff is a constant proportion of the event precipitation. When418

the event runoff ratio is interpreted as the effective proportion of the watershed contribut-419

ing runoff (O’Loughlin, 1986), an exponent closer to one indicates that the contribut-420

ing area does not vary with storm size. This interpretation suggests that contributing421

areas vary with precipitation at both sites, but they are more variable at Druids Run422

than Baisman Run. This interpretation also suggests that as storm events approach 100423

mm, nearly all of Druids Run contributes storm runoff (4A). These events are fairly fre-424

quent; the annual maximum recurrence interval of 100 mm of precipitation in 24 hours425

is approximately two years at our sites (NOAA, 2024).426

3.1.2 Saturated areas427

At Druids Run, observed saturation was highly variable in time and correlated with428

discharge. We measured saturation five times along nine transects, seven of which run429

along first order drainages or the interfluves between them, and two of which run par-430
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Figure 4. Event runoff characteristics for Druids Run (A) and Baisman Run (B). Event totals
are calculated by summing the 15-minute precipitation and quickflow timeseries over the event
durations. The points are colored by the initial baseflow Qb. The dotted line is a 1:1 line, which
represents the case where event runoff is equal to event precipitation. The blue line is a power
law regression with the form Qf,event = a2P

a1
event, and the shaded area is the 95% confidence

interval on the regression. The range on the coefficient a1 is given as the standard error.

allel to the valley bottom (Figure 5A–E). The surveys conducted under the two high-431

est flow conditions (C, E) had the greatest number of saturated points. Saturation was432

often discontinuous with distance downstream in first order channels. Upslope areas some-433

times saturated and flowed first, while downslope reaches remained dry, as flow passed434

through the subsurface. First order channels tend to have exposed bedrock or thin al-435

luvial cover near their headwaters, while closer to the valley bottom they become sub-436

merged in alluvium that has sufficient capacity to move the water from upslope through437

the subsurface. Bedrock fractures may also play a role in redistributing surface flow to438

subsurface pathways.439

In contrast, saturated areas were more persistent at Baisman Run. We measured440

saturation four times along six transects, four of which run perpendicular to the valley441

bottom, and two run parallel to it (Figure 5F–I). Regardless of discharge, we found that442

saturation was confined to locations at or below the distinct break in slope where the443

hillslopes meet the valley bottom. Within the valley bottom, saturation was not present444

everywhere, as the stream channel is incised into the valley bottom alluvium in some places.445

Flow emerges at distinct springs and seeps at the break in slope (Putnam, 2018). The446

springs are further evidence that subsurface pathways support baseflow, while the rel-447

atively persistent nature of saturated areas support our observation that event quick-448

flow is less sensitive to event precipitation at Baisman Run than it is at Druids Run.449

We used the logistic model (Equation 1) to predict the odds of saturation for the450

range of topographic index values in each watershed and the range of discharge values451

at which saturation surveys were conducted (Figure 6). The parameters of the fitted model452

are shown in Table 1. In Figure 6, the topographic index value at which the black dashed453

line intersects the odds ratio curves is the critical value of TI where saturation becomes454

more likely than not for a given value of discharge. We plotted this together with the455

probability density of watershed topographic index (orange) to show how the critical TI456

relates to the distribution of TI for the watershed.457
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Figure 5. Observations of saturation made on transects at Druids Run (A–E) and Baisman
Run (F–I). The latter plots have been rotated 90 degrees such that north is in the direction of
the positive x-axis. In both figures, flow in the valley bottom is from right to left. The classifica-
tion and sampling approaches are described in Section 2.2.
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α0 α1 α2

Druids Run 4.609 ± 0.637 0.174 ± 0.040 1.000 ± 0.097
Baisman Run -7.559 ± 4.299 0.703 ± 0.103 0.070 ± 0.590
Table 1. Estimated parameter values of the logistic regression models for saturation (Equation
1), where α0 is the intercept, α1 is the coefficient on topographic index, and α2 is the coefficient
on the area-normalized discharge. Parameter ranges are given as standard errors.

The regression model for Druids Run in Figure 6A shows that the predicted odds458

of saturation varies substantially with discharge. When discharge is small, the critical459

TI value confines likely saturation to a very small portion of the total watershed area,460

while for large discharge the critical value of TI is low enough that most of the water-461

shed is likely to be saturated. This supports the high variability of saturation in space462

and time that we inferred from the pointwise measurements.463

The logistic regression model predicts very different behavior for Baisman Run (Fig-464

ure 6B). First, we notice that the saturation odds curve does not vary with discharge,465

such that all curves overlap. This is reflected in the regression parameter alpha2 on dis-466

charge (Table 1), which is much smaller and more uncertain for Baisman Run than Druids467

Run. As a result, the critical value of topographic index is nearly constant with time.468

Second, we notice that the curves are narrower and steeper than those estimated for Druids469

Run, such that the odds of saturation increases more abruptly around the critical value470

of TI. This is reflected in the regression parameter α1 on topographic index, which is471

much larger at Baisman Run than Druids Run. This supports our observation that sat-472

uration emerges abruptly at the transition from hillslopes to valley bottoms.473

The logistic regression models also allowed us to generalize the saturation predic-474

tions to the entire watersheds. We predicted saturation through time for the discharge475

timeseries in Figure 3 and for all raster points based upon their topographic index. We476

then classified whether each point was “wet” (exceeded criteria for saturation greater than477

95% of the time), “dry” (exceeded criteria for saturation less than 5% of the time), or478

variably saturated if it met neither of those criteria.479

Figure 7 shows a dramatic difference in the hydrological function of the two sites480

based on the logistic regression model predictions. The predicted channel network at Druids481

Run was ephemeral until close to the watershed outlet. Variable saturation is widespread482

in zero-order basins and onto some hilltops, but as Figure 6A shows, saturation at these483

locations with low topographic index only occurs at the high discharge values, which are484

associated with storm events. Some of the hillslopes we sampled that appear as “dry”485

may in fact saturate occasionally, but less than 5% of the time. In contrast, the regres-486

sion model predicted that Baisman Run had a continually wet stream channel over the487

course of our observation period, and did not experience saturation on the hillslopes.488

Analysis of rainfall-runoff and saturation data reveal the dramatic difference be-489

tween hydrological function of the two sites. When the permeable subsurface is thin, as490

at Druids Run, much of the landscape saturates and desaturates relatively easily in re-491

sponse to precipitation, and the effective proportion of the watershed contributing runoff492

varies substantially. In contrast, when the permeable subsurface is thick, as at Baisman493

Run, the same precipitation causes modest or no change in saturated areas, though new494

subsurface flow paths may still be activated with increasing storm size, such that the ef-495

fective contributing area increases with increasing wetness.496

The dynamics of saturated areas with discharge can be considered an extension of497

work on flowing channel length dynamics (e.g., Prancevic & Kirchner, 2019). Our results498
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Figure 6. Regression results for Druids Run (A) and Baisman Run (B). The regression model
has the form given in Equation 1. The modeled probability of saturation is given in terms of
topographic index and discharge, where discharge varies logarithmically across the range of sat-
uration survey discharge values. There is a dashed line at the 50% probability mark, and where
this intersects each one of the probability curves, there is a dotted line dropped to the x-axis.
This indicates the critical value of topographic index at which saturation is more likely than not
to occur given that value of discharge. On the opposing axis is the probability density of topo-
graphic index, estimated with a kernel density approach. The lighter shaded region indicates the
range of TI values sampled in our surveys, which indicates good topographic index coverage of
our samples.
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also show that the dynamics of saturation depend on a balance of upslope water sup-499

ply and downslope transport capacity, which can be related to subsurface properties and500

topography.501

500 m

dry

variable

wet

250 m

dry

variable

wet

Baisman RunDruids Run
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Figure 7. Classified saturated areas for Druids Run (A) and Baisman Run (B), based on the
logistic regression model in Equation 1 and shown in Figure 6, and the runoff timeseries shown
in Figure 3. The modeled probability necessary for saturation was set at 50%. A location was
classified as “wet” if it exceeded criteria for saturation greater than 95% of the time, “dry” if it
exceeded criteria for saturation less than 5% of the time, or variably saturated if it was in be-
tween.

3.1.3 Hillslope length and relief502

Both hillslope length and relief are greater at Baisman Run than Druids Run. The503

channel networks and hilltop points from which hillslope length and relief were defined504

are shown in Figure 2. Totals of 5.3×104 and 7.0×104 hilltop points with unique length505

and relief were identified at Druids Run and Baisman Run, respectively. The median hill-506

slope length is 88.3 m at Druids Run and 177.3 m at Baisman Run, while median relief507

was 2.9 m at Druids Run and 6.7 m at Baisman Run. In trying several other channel508

network extraction methods, we found that the hillslope length distributions varied but509

that hillslopes were still generally shorter at Druids Run than Baisman Run. Figure 8A510

shows that there is no overlap in the interquartile range (IQR) of hillslope length or re-511

lief for the two sites. The strength and sign of this difference supports our hypothesis512

that the site with a thick permeable subsurface will have greater hillslope length and re-513

lief than that with a thin permeable subsurface.514

3.2 Landscape evolution parameterization515

While both the hydrological and geomorphic differences between Druids Run and516

Baisman Run support our hypotheses, we have not yet established that the subsurface517

is the link between the emergent hydrological function and morphology. To do so, we es-518

timated the parameters for DupuitLEM, and ran the model under conditions that ap-519

proximate those found at our sites. Using the approaches described in Sections 2.6 and520

2.7, we estimated all the parameters needed to run the model without calibration. Pa-521

rameters are estimated independently from one another, though we assume that both522

sites have experienced the same uplift rate U .523
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Figure 8. Violin plots of hillslope length and relief for Druids Run (A) and Baisman Run (B).
Hillslope length is the length along a flow path from a hilltop point to the nearest channel point
along a flowpath. Hillslope relief is the drop in elevation over that distance. Violin plots show
the median, minimum, and maximum (horizontal lines) values and the interquartile range (wider
vertical bar).

3.2.1 Hydrologic parameters524

We first estimated the transmissivity using Equation 9. We estimated the param-525

eters β0 and β1 by fitting Equation 7 using topographic index, discharge, and saturation526

survey data. With the fitted model, we determined the optimal threshold probability p∗527

at which saturation was likely to occur. While we could have chosen 50% as we did in528

the regression model for saturated area, we found that this performed poorly on the sim-529

pler two-parameter formulation used to calculate transmissivity. The selected value of530

p∗ should balance correctly classifying points as saturated (high true positive ratio (TPR))531

and minimizing the number of points that are misclassified as saturated (low false pos-532

itive ratio (FPR)). Plotting TPR against FPR gives the receiver operating character-533

istic curve, from which we selected the optimal threshold probability by maximizing the534

difference TPR-FPR. The results of this process are shown in Figure 9. Using the op-535

timal p∗, we estimated the transmissivity from Equation 9 10,000 times using Monte Carlo536

simulations to determine the uncertainty due to the variance and covariance of the lo-537

gistic regression parameters. The median and quartiles of transmissivity are reported in538

Table 2. This approach predicts that the transmissivity at Baisman Run is nearly 3.5539

times higher than at Druids Run. There is no overlap between the IQRs of the estimated540

transmissivities, which suggests a robust difference between the two sites. The uncer-541

tainty we have quantified reflects that of the regression parameters, but does not include542

the optimal threshold predicted by maximizing TPR-FPR. The ambiguity in the peak543

value (Figure 9D) suggests that transmissivity and its uncertainty may be larger than544

we have predicted. There is also uncertainty related to methodological choices (raster545

resolution, flow routing method, threshold selection method), but experimentation sug-546

gested that the median transmissivity is always larger at Baisman Run than Druids Run547

when the same methodology is applied to both sites.548
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Figure 9. Results of the TPR-FPR analysis. (A–B) The receiver operating characteristic
curve for Druids Run and Baisman Run, respectively, colored by the threshold value p∗ used to
obtain each combination of quantities. (C–D) The difference TPR-FPR, which we seek to maxi-
mize, plotted against the transmissivity value associated with each threshold p∗. We selected the
transmissivity associated with the largest value of TPR-FPR.

Transmissivity (m2/d) Regression Parameters

Med LQ UQ β0 β1 ρ∗ p∗

Druids Run 1.12 0.88 1.40 -0.691 0.268 -0.660 0.341
Baisman Run 3.89 3.24 4.64 -3.012 0.693 -2.072 0.112
Table 2. Median (Med), lower and upper quartiles (LQ, UQ) of transmissivity estimated from
the logistic regression model, and the associated regression model parameters. The bar over a
variable indicates the mean value.

To estimate the effective hydraulic conductivity from transmissivity, we first esti-549

mated the permeable thickness. At Druids Run, data from the USDA Soil Survey sug-550

gested a strong permeability contrast at the base of the A horizon, so we used the char-551

acteristic A horizon thickness as our permeable thickness (Staff & Natural Resources Con-552

servation Service, United States Department of Agriculture., 2023). At Baisman Run,553

there is no strong permeability contrast within the soil profile, so we used the entire soil554

profile thickness, weighted for the different soil types found in the watershed (2.03 m).555

We added 2 m to this value to approximate the average saprolite thickness between ridges556

and valleys in Baisman Run (Cosans, 2022). Our model is generally less sensitive to thick-557

ness than to maximum transmissivity, so we do not expect the results to be highly sen-558

sitive to the possible range of this value (Litwin et al., 2022, 2024). We divided trans-559

missivity by the permeable thickness, and found that the effective hydraulic conductiv-560

ity is in fact larger at Druids Run (2.84 × 10−5 and 1.12 × 10−5 for Druids Run and561
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Baisman Run, respectively), suggesting the difference in thickness accommodates the dif-562

ference in transmissivity. The values are shown in Table 3.563

We estimated drainable porosity and plant-available water content from literature564

values. We assumed drainable porosity was constant and equal to 0.25 at both sites, which565

is typical for materials with medium sand to medium gravel texture (Johnson, 1967). While566

drainable porosity is an important variable for regulating the degree to which the wa-567

ter table rises and falls in response to recharge, it has a relatively narrow range of pos-568

sible values in comparison to other parameters, so a possible difference between the sites569

should not have a strong effect on our results. We estimated plant-available water con-570

tent as 0.19 and 0.14 for Druids Run and Baisman Run respectively using characteris-571

tic values for our sites from the USDA Soil Survey.572

Lastly, climatological variables were estimated using the approaches described in573

the methods section with weather station data and literature values. The relevant val-574

ues are shown in Table 3.575

Name Symbol Units Druids Run Baisman Run

Hydraulic conductivity ks m/s 2.84e−5 1.12e−5
Permeable thickness b m 0.46 4.03
Plant-available water content na - 0.19 0.14
Drainable porosity ne - 0.25 0.25
Mean storm duration ⟨tr⟩ s 1.02e4 1.02e4
Mean interstorm duration ⟨tb⟩ s 1.11e5 1.11e5
Mean storm depth ⟨ds⟩ m 4.50e−3 4.50e−3
Interstorm potential ET rate pet m/s 2.58e−8 2.58e−8

Table 3. All hydrological parameters needed to run DupuitLEM. The values for ne, ⟨tr⟩, ⟨tb⟩,
⟨ds⟩, and pet are identical at the two sites.

3.2.2 Geomorphic parameters576

The uplift or baselevel change rate U is an important model parameter and is needed577

to obtain estimates of both the hillslope diffusivity D and the streampower incision co-578

efficient K. Portenga et al. (2019) estimated the mean denudation rate of the Piedmont579

in the nearby Potomac River basin as 11.4 m/Myr (IQR 7.6 – 15.0) assuming an aver-580

age rock density of 2700 kg/m3. We equated the denudation rate with uplift rate U , as-581

suming geomorphic steady state. To quantify the uncertainty in U , and its contribution582

to the uncertainty in D and K, we estimated a probability distribution for U based on583

the box plot in Figure 4 of Portenga et al. (2019). The data did not appear particularly584

skewed, so we modeled denudation with a normal distribution, which we truncated to585

permit only positive values.586

We estimated the diffusivity based on hilltop curvature, as presented in Equation587

14. All the parameter values needed are shown in Table 4, and the distributions of the588

log of hilltop curvature are shown in Figure 10A. Hilltop curvature is quite similar at both589

sites. This is surprising because different processes likely contribute to diffusive trans-590

port at Druids Run versus Baisman Run. For example, freeze-thaw effects may be more591

important in the exposed, rocky soils at Druids Run, while treethrow may be more im-592

portant in the forest-covered soils at Baisman Run. We estimated the diffusivity and its593

uncertainty by Monte Carlo simulation, sampling the distribution of U 10,000 times, and594

selecting 10,000 values from the hilltop curvature dataset independently with replace-595

ment. The distributions of diffusivity from the Monte Carlo simulation are shown in Fig-596
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ure 10B. The median diffusivity is 8.6e−3 m2/yr (IQR 4.4e−3 – 1.7e−2) at Druids Run,597

and 9.3e−3 m2/yr (IQR 4.3e−3 – 1.9e−2) at Baisman Run.598

CHT (m−1) U (m/yr)
Med LQ UQ Med LQ UQ

Druids Run −1.272e−3 −2.084e−3 −7.053e−4 1.193e−5 7.561e−6 1.495e−5
Baisman Run −1.125e−3 −2.123e−3 −6.571e−4 1.193e−5 7.561e−6 1.495e−5

Table 4. Hilltop curvature CHT and uplift U for Baisman Run and Druids Run. Negative
curvature indicates convexity. Uplift values are the same for both sites.
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Figure 10. Violin plots of the log of hilltop curvature and log of hillslope diffusivity for
Druids Run (A) and Baisman Run (B). Violin plots show the median, minimum, and maximum
(horizontal lines) values and the interquartile range (wider vertical bar). Both distributions are
similar, though Druids Run has slightly higher curvature, and therefore slightly lower diffusivity.

We calculated the streampower incision coefficient K using Equation 22 by esti-599

mating n, ksn, and Q∗
max. We first conducted a χ-analysis of the channel networks of600

both sites to determine the streampower exponent n and then the appropriate steepness601

index ksn. Lastly, we estimated the maximum dimensionless discharge Q∗
max based on602

available hydrologic data.603

To calculate the optimal coordinate χ, we need to estimate the concavity index m/n604

(see Equation 20) for which the channel network collapses to a single line in χ-elevation605

space (Perron & Royden, 2013). We tried a range of values for the concavity index and606

determined that m/n = 1/2 produced a satisfactory collinearity of channels for both607

of the sites. Independently estimating the exponents m and n is challenging (Harel et608

al., 2016), so we chose the combination m = 1/2 and n = 1 for consistency with our609

prior modeling studies.610

We determined ksn from the slope of the relationship between χ and elevation for611

individual channel segments using the method described by S. M. Mudd et al. (2014).612

We estimated K using the segments that are above the 40th percentile of channel net-613

work drainage area, which are colored by ksn in Figure 11A–B. We selected this drainage614
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area cutoff to isolate channel segments where Q∗ is less likely to vary with distance down-615

stream. We found that channel segments with smaller upslope areas were often less lin-616

ear in χ-elevation space, which may indicate a change in Q∗ with area. Figure 11C shows617

the distribution of ksn values that meet these criteria. We found that ksn was nearly twice618

as high at Druids Run, with a median of 2.774 (IQR 2.163 – 3.284), as Baisman Run,619

with a median of 5.23 (IQR 4.747 – 7.017).620

ksn (m) Exponents (-) Runoff (-)
Median LQ UQ m n Q∗

max

Druids Run 2.774 2.163 3.284 0.5 1 0.3
Baisman Run 5.230 4.747 7.017 0.5 1 0.3
Table 5. Channel steepness index ksn, streampower exponents, and maximum runoff rate
Q∗

max for Baisman Run and Druids Run.

We estimated the maximum dimensionless discharge Q∗
max at Baisman Run as the621

long-term average runoff ratio ⟨Q⟩/⟨P ⟩ = 0.3 (Cosans, 2022). From our short timeseries622

at Druids Run, we calculated a runoff ratio of 0.57. Because ksn depends on the prod-623

uct of K and Q∗
max (Equation 21) in our model, these data suggest that the factor of624

two difference in ksn between our sites could be due to the difference in the hydrology,625

expressed in Q∗
max, rather than a difference in material and geomorphic properties, ex-626

pressed in K. While that would support our hypothesis, we will conservatively set Q∗
max =627

0.3 for Druids Run as a first estimate, matching Baisman Run.628

With all components of Equation 22 estimated, we used the same Monte Carlo pro-629

cedure to calculate K and its uncertainty. Figure 11D shows that K is substantially higher630

at Druids Run than at Baisman Run when Q∗
max is set equal. The median at Druids Run631

is 1.34e−5 yr−1 (IQR 8.24e−6 – 1.98e−5), while at Baisman Run it is 6.49e−6 yr−1 (IQR632

3.83e−6 – 9.66e−6). The full table of geomorphic parameters are shown in Table 6.633

Name Symbol Units Druids Run Baisman Run

Uplift rate U m/yr 1.143e−5 1.143e−5
Hillslope diffusivity D m2/yr 8.611e−3 9.285e−3
Streampower incision coefficient K 1/yr 1.334e−5 6.546e−6
Contour length v0 m 30 30

Table 6. Geomorphic parameters needed to run DupuitLEM. We used the median value from
the estimated parameter distributions for U , D, and K. The values for U and the characteristic
contour length v0 are identical at the two sites.

The difference in streampower incision coefficient between the two sites potentially634

confounds our interpretation of subsurface hydrologic controls on emergent hillslope length635

and hydrological function, assuming the difference is due to a contrast in material prop-636

erties rather than hydrology. Our estimated subsurface hydrological variables support637

our perceptual model of how the sites should be different if they have coevolved with their638

hydrology; lower transmissivity at Druids Run should lead to more surface runoff and639

channel incision, and greater extent of variably saturated areas than the high transmis-640

sivity conditions at Baisman Run. However, a higher streampower incision coefficient641

may indicate that runoff is more effective at detaching and transporting sediment out642

of the watershed at Druids Run, which could also lead to closer spacing of channels and643

shorter hillslopes (Perron et al., 2008).644

–24–



manuscript submitted to Water Resources Research

Druids Run Baisman Run

0.2

0.4

0.6

0.8

1.0

1.2

lo
g 1

0(
k s

n)
 (-

)

Steepness index

Druids Run Baisman Run

9

8

7

6

5

4

3

lo
g 1

0(
K)

 (1
/y

r)

Incision coefficient

0 2 4 6
 (m)

47.5

50.0

52.5

55.0

57.5

60.0

62.5

El
ev

at
io

n 
(m

)

Druids Run

0 2 4
 (m)

30

35

40

45

50

55

El
ev

at
io

n 
(m

)

Baisman Run

2

3

4

5

6

lo
g 1

0(
 k

sn
)

4

6

8

10

12

14

16

18

lo
g 1

0(
 k

sn
)

A B

C D

Figure 11. χ-elevation plots for Druids Run (A) and Baisman Run (B) for a concavity index
m/n = 0.5. Channel segments are colored by their steepness index ksn where the upslope area
is greater than the 40th watershed area percentile, and are otherwise gray. (C) the distributions
of ksn for the segments colored in (A) and (B), showing generally higher channel steepness at
Baisman Run than Druids Run. (D) distributions of the streampower incision coefficient K from
Monte Carlo simulations. ksn scales inversely with the erodibility, such that the streampower
incision coefficient is lower at Baisman Run than Druids Run.
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To test whether subsurface hydrology is necessary and sufficient for explaining the645

difference in variable source areas and hillslope length at the two sites, we ran four sim-646

ulations, shown in Figure 12: two that represent our best estimates of hydrological and647

geomorphic parameters as described above (DR-DR, BR-BR), and two where we swapped648

the geomorphic parameters (DR-BR, BR-DR). Our best estimate cases helped discrim-649

inate how well DupuitLEM can capture landscape geomorphic and hydrologic dynam-650

ics at our sites. By comparing the best estimate simulations with simulations that have651

the same hydrological parameters but swapped geomorphic parameters, we determined652

whether geomorphic process rates alone explained the differences in morphology when653

the landscape coevolves with hydrology. Due to uncertainties in initial conditions and654

landscape history, we do not expect the simulation results to look exactly like Druids Run655

or Baisman Run. Instead, we compared them on the basis of aggregate properties in-656

cluding the hillslope length and relief, and saturation behavior. Beyond the direct site657

comparison, this approach also allows for exploration of topographic sensitivity to sub-658

surface properties in a realistic region of the DupuitLEM parameter space.659

Baisman Run (BR)Druids Run (DR)

BR-DRDR-DRDR

BR-BRDR-BRBR

Hydrologic Variables
(ks , b, na)

Geomorphic
Variables (K, D)

Figure 12. Four boxes indicating the four simulations we conducted. Colored boxes indicate
the correctly matched hydrologic and geomorphic parameters, while white boxes indicate the ones
in which the geomorphic variables are swapped. The listed hydrological and geomorphic variables
are those that are varied, while all others are kept the same.

Lastly, we considered what happens when the differences in observed channel steep-660

ness were due to differences in runoff ratio (Q∗
max) rather than material properties (K).661

In our model formulation, determining the right value of Q∗
max should be an iterative662

process, in which the value of Q∗
max is estimated in order to determine erodibility, the663

model is run forward, the discharge and precipitation from the simulated landscape are664

used to recalculate Q∗
max, and then the streampower incision coefficient is adjusted ac-665

cordingly. This would be repeated until the estimated Q∗
max value matches the value pro-666

duced by the simulation. If there is a mismatch, the channel steepness of the modeled667

topography will be offset from that measured at the site. While we did not do a com-668

plete iterative solution, we did adjust Q∗
max and K according to the results of our first669

simulation.670

3.3 Landscape evolution results671

The landscape evolution model results showed subsurface hydrology has a signif-672

icant effect on the morphology of emergent landscapes, and revealed the complexity of673

interactions between hydrologic and geomorphic processes. However, the model was un-674

able to faithfully reproduce the hillslope length, relief, and (for Druids run particularly)675

important details of the hydrologic behavior.676

We first simulated topography for the four cases presented in Figure 12, and an-677

alyzed the hillslope properties and persistence of saturated areas using the same crite-678
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ria as we used for the field sites. The only necessary difference was that we identified chan-679

nel heads using a threshold on topographic curvature (∇2z > 0.001), because the DrE-680

ICH algorithm performed poorly on our model simulations, which are much lower res-681

olution than the lidar-derived DEMs. Because the transmissivity is the primary differ-682

ence in hydrological variables, we call the cases with hydrology like Druids Run (DR-683

DR and DR-BR) the low transmissivity cases, and cases with hydrology like Baisman684

Run (BR-BR and BR-DR) the high transmissivity cases.685

The most striking pattern in the hillshades shown in Figure 13A is that the low686

transmissivity cases were substantially more dissected than the high transmissivity cases.687

DR-DR and DR-BR, the two cases with hydrological parameters estimated for Druids688

Run, have extensive fluvial dissection that extends onto hillslopes, which appears more689

extensive than we observed at Druids Run. However, the broad undissected hillslopes690

in BR-BR and BR-DR are similar to what we observed at Baisman Run. Despite some691

visual similarities, Figure 13B–C shows that BR-BR and BR-DR cases tended to over-692

predict hillslope length and relief. Also, contrary to our expectations, in the low trans-693

missivity cases where the geomorphic properties have been swapped (DR-DR versus DR-694

BR), the difference in hillslope length and relief appeared to be comparable to the dif-695

ference between Baisman Run and Druids Run (for a better view of length and relief at696

the field sites, see Figure 8). However, the presence of fluvial dissection broadly across697

these modeled topographies makes direct comparison with our field sites more difficult.698

In the high transmissivity cases, channels are clearly defined from hillslopes, but we have699

a smaller sample from which to derive metrics. Hillslope length and relief appear to be700

less sensitive to the difference in geomorphic variables than in the low transmissivity cases.701

Swapping geomorphic parameters had a relatively minor effect on hydrological func-702

tion. Figure 14A shows that simulations with swapped geomorphic parameters but the703

same hydrologic parameters have very similar saturated area patterns, whereas there is704

a substantial difference between simulations that have different hydrologic parameters.705

The low transmissivity cases have large variably saturated areas that extend onto hill-706

tops, as at Druids Run, though there are no hilltops that are classified as dry in the low707

transmissivity cases. They also show more persistent saturation in valley bottoms and708

zero-order basins than observed in Druids Run (Figure 14A–B). The saturated areas mod-709

eled in the high transmissivity cases look very similar to those observed at Baisman Run,710

where there is persistent saturation in valley bottoms and dry hilltops. Some channel711

heads near the domain boundary of BR-BR even show wider seep-like channel heads, which712

may be analogous to the saturated headwaters and springs seen at Baisman Run. The713

fractional saturated areas are similar to those observed at the sites as well (Figure 14B).714

Next we examined the emergent runoff ratio and adjusted the fluvial parameters715

to account for the difference between the runoff ratio and the initial estimate of Q∗
max.716

The emergent runoff ratio for the high transmissivity cases were 0.33 and 0.32 for BR-717

BR and BR-DR respectively, which were very close to our initial estimate of 0.3, which718

was the observed runoff ratio at Baisman Run. The difference in geomorphic parame-719

ters had little effect on emergent runoff ratio in these cases. In the low transmissivity720

cases, the runoff ratio was significantly higher than our initial estimate of 0.3. We found721

runoff ratios of 0.86 and 0.81 for DR-DR and DR-BR respectively. These values are again722

not highly sensitive to the difference in geomorphic parameters, but both are substan-723

tially higher than our initial estimate, and higher than our field estimate of 0.57 for Druid724

Run. However, this is consistent with our observation that DR-DR and DR-BR have much725

more extensive saturated areas than Druids Run. These higher runoff ratios suggest that726

we should increase estimated Q∗
max, and therefore decrease the estimated K at Druids727

Run. If we increase Q∗
max to 0.6, the corresponding K values is 6.68e−6 yr−1, which is728

within 3% of the K value we estimated for Baisman Run. The geomorphic results of this729

increase are shown in Figure 15. The hydrologic effect of this increase is minimal, as shown730

in Figure S2.731
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Figure 13. (A) Hillshades of model results in the same configuration as shown in Figure 12.
Dissection is substantially higher in cases with Druids Run hydrological variables than Baisman
Run hydrological variables. (B, C) Log-scaled violin plots of hillslope length and relief, comparing
the field data (labelled “Druids Run” and “Baisman Run”) to the four modeled cases. Horizontal
lines represent the maximum and minim values, while the vertical bar represents the interquartile
range.
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Figure 14. (A) Map view of saturated area classes for model results in the same configuration
as shown in Figure 12 and Figure 13A. Saturated area behavior is not highly sensitive to swap-
ping geomorphic variables, while it is sensitive to swapping hydrological variables. (B) Fractional
area that is classified as wet, variable, and saturated based on field data (labelled “Druids Run”
and “Baisman Run”) and the four modeled cases. Cases that have the hydrological variables asso-
ciated with Baisman Run appear similar to the field characteristics of Baisman Run. Cases that
have the hydrological variables associated with Druids Run show more persistent saturation than
the field characteristics of Druids Run.
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Adjusting the streampower incision coefficient for differences in Q∗
max nearly elim-732

inates the difference in emergent morphology and hydrology between cases with swapped733

geomorphic parameters. The hydrological function of the landscapes is very similar when734

geomorphic parameters are swapped, which is expected given that there was little dif-735

ference in hydrological function between the original cases with swapped geomorphic pa-736

rameters. The emergent runoff ratio for DR-DR is now 0.78, which is slightly lower than737

we calculated previously. The modeled topography looks very similar when geomorphic738

parameters are swapped, and distributions of hillslope length and relief are nearly iden-739

tical (Figure 15). At least within the context of our model, this suggests that differences740

in geomorphic parameters are not sufficient to explain the differences between the sites.741

The results suggest that the difference in morphology between Druids Run and Baisman742

Run is strongly affected by the difference in their subsurface hydrology, as (1) the dif-743

ference in transmissivity changes the extent of saturated areas and surface water on the744

landscape, which changes the proportion of the landscape that experiences fluvial ero-745

sion, and (2) higher runoff ratios increase the efficiency of water-driven sediment trans-746

port in areas where there is saturation, which further incises the landscape.747

Our results also showed that there is more work to do to understand the controls748

on the geomorphic evolution of our sites. For instance, adjusting Q∗
max did not bring us749

closer to the true hillslope length and relief. Figure 16 shows how the true cases DR-DR750

and BR-BR compare to the hillslope length and relief of Druids Run and Baisman Run,751

respectively. The number in parentheses following the model label is the estimated value752

of Q∗
max. The values of hillslope length and relief from simulation DR-DR (0.6) were far-753

ther from the true values at Druids Run than those from simulation DR-DR (0.3). At754

the same time, we know that the channel steepness ksn from the simulation DR-DR (0.3)755

will not match ksn of Druids Run, because we overestimated the streampower incision756

coefficient K relative to the emergent value of Q∗
max. More work is needed to understand757

both the possible difference in other parameters (e.g., the denudation rate) and limita-758

tions of model structure for capturing our sites, but it is clear that the difference in the759

hydrology of the sites is an important component of their geomorphic evolution.760

4 Discussion761

4.1 The expression of subsurface hydrology in landscape evolution762

Previous work on the role of transmissivity in topographic evolution (Luijendijk,763

2022; Litwin et al., 2022, 2024) is a logical extension of the hydrological study of runoff764

generation, as sediment transport is an important consequence of runoff generation. It765

has only recently received attention, in part because considering the long-term effects766

of this coevolution is computationally intensive, and in part because it relies on subsur-767

face properties that are hard to estimate. Available models also lack critical aspects of768

channel head formation, which would themselves require more thorough treatment of the769

conversion of rock to regolith (see Section 4.2.2). As a result, landscape evolution mod-770

elers typically select the minimally-complex model needed to explain their observations.771

As a result, they have often excluded subsurface hydrology, despite the widespread im-772

portance of subsurface flow for runoff generation (Wu et al., 2021). We have shown here773

that subsurface hydrology may be indispensable for understanding the evolution of some774

landscapes. The importance of subsurface runoff generation for a particular application775

of a landscape evolution model is dependent on the geologic and climatic setting, but776

also on the scale of interest. Studies focusing on watershed scales of 1-10s of kilometers777

may find that capturing subsurface flow is essential, while these details may be less im-778

portant in the evolution of entire orogens, where the length of subsurface flow paths rel-779

evant to runoff generation is shorter than the scales of geomorphic interest.780

We showed strong sensitivity of topography to subsurface hydrology for reasonable781

combinations of parameters, but also showed that there were limitations to how realis-782
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Figure 15. (A) Hillshades of model results in the same configuration as shown in Figure 12,
only Q∗

max = 0.6 was used to determine the streampower incision coefficient for cases with Druids
Run geomorphic variables. Visual comparison of results suggests that the difference in hydrology
between the two sites is the primary control on emergent morphology. (B, C) Violin plots of hill-
slope length and relief, comparing the field data (labelled “Druids Run” and “Baisman Run”) to
the four modeled cases. There is little difference between simulations with swapped geomorphic
variables (comparing down columns), while there is still substantial sensitivity to swapped hydro-
logical variables (compare across rows). All four modeled cases still have length and relief greater
than those observed in the field.
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tically DupuitLEM can capture our sites. We were able to make both of these assess-783

ments in part because we had hydrologic as well as geomorphic observations. While many784

studies have sought to test the sensitivity of landscape morphology to climate (e.g., Fer-785

rier et al., 2013; Adams et al., 2020; Zavala et al., 2020), hydrological field data can re-786

veal functional differences between sites due to subsurface properties that would be in-787

distinguishable based on climate alone. Measurements of the location and magnitude of788

runoff and erosion are likely the most relevant variables for such assessments. Discharge789

records are widely available and can provide some indication on runoff generation mech-790

anisms (McMillan, 2020). The addition of sediment concentration timeseries can enrich791

discharge timeseries to provide a stronger link between runoff generation and erosion (Tolorza792

et al., 2014). When possible, observations of runoff on foot, or remotely with cameras793

or satellite platforms (Godsey & Kirchner, 2014; Antonelli et al., 2020; Dralle et al., 2023;794

Harrison et al., 2020) can provide valuable comparisons to basin-integrated timeseries.795

Geomorphic proxies may also be useful. Rossi et al. (2020) found that bedrock exposure,796

as a proxy for low subsurface storage and infiltration capacity, explained variation in ex-797

treme runoff events better than variation in precipitation across an elevation gradient798

in the Colorado Front Range. Combinations of discharge, topographic analysis, and cos-799

mogenic erosion rates have also allowed new examinations of channel head forming mech-800

anisms that could be useful for informing future modelling (Harrison et al., 2020).801

4.2 Parameter estimation and limits of DupuitLEM802

While our results provide evidence for a critical link between subsurface hydrol-803

ogy and landscape evolution, there are clear discrepancies between the characteristics804

of Baisman Run and Druids Run that we observed and those we were able to model with805

DupuitLEM. Some of these discrepancies could be due to our choice of model param-806

eters, while others appear to be structural limitations of DupuitLEM.807
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4.2.1 Parameter uncertainty808

Our results here and in prior studies (Litwin et al., 2022, 2024) demonstrate that809

emergent topography and hydrology are highly sensitive to transmissivity, so the accu-810

racy of the transmissivity estimate is likely a factor in model-data discrepancies. Our811

novel approach to estimate transmissivity relied on topographic index as a measure of812

hydrological similarity (O’Loughlin, 1986; Beven & Kirkby, 1979). However, our results813

showed that topographic index and discharge, when combined in Equation 7, were only814

modestly good predictors of saturated area (Figure 9). Furthermore, topographic index815

is a resolution-dependent quantity (Zhang & Montgomery, 1994), which means that the816

resulting transmissivity that we calculate also depends on DEM resolution. While ac-817

counting for this effect is unlikely to change the relative magnitudes of transmissivity be-818

tween the sites, it may change the estimated values. This was a problem with calibrated819

transmissivities in TOPMODEL as well (Beven, 1997), so some of the strategies that have820

been devised to reduce the scale dependence in that context (e.g., Saulnier et al., 1997)821

may be useful for improving our transmissivity estimates as well.822

Our model results also showed that hillslope length and relief were too large in the823

simulated landscapes regardless of transmissivity. This could suggest that the relative824

magnitude of hillslope diffusivity to the fluvial erosion efficiency is too large (Perron et825

al., 2008; Theodoratos et al., 2018). Our modelled cases are generally able to reproduce826

observed hilltop curvature (Figure S3A), which suggests that the diffusivity is not the827

primary issue. Modelled channel steepness, however, is systematically larger than the828

channels from which the parameters were defined (Figure S3B). One likely issue that could829

explain this discrepancy arises from using K estimates from 1D channel profiles in a 2D830

model. Hillslopes in the 2D model contribute material to valleys that rivers must remove.831

This decreases their erosional efficiency compared to what is expected when estimating832

K from a 1D profile in which the river only needs to erode at a rate U (Equation 16).833

This topic requires further exploration than can be accommodated here, and will be cov-834

ered in future work.835

4.2.2 Process uncertainty836

While there are limitations to our ability to estimate transmissivity and other pro-837

cess rates, we know that some key hydrological and geomorphic processes and features838

are missing from our model. These may be the cause of the model’s inability to accu-839

rately reproduce the length and relief at each site. DupuitLEM was designed to be a min-840

imally complex representation of coupled hydrology and landscape evolution in humid841

upland environments, and thus necessarily left many processes out that are relevant to842

the particular sites we have discussed here.843

A key hydrological limitation of our model is in the routing of surface water. It is844

challenging to balance flow convergence and divergence in a single efficient algorithm (Pelletier,845

2010). We use the D8 flow algorithm (O’Callaghan & Mark, 1984), which directs all flow846

at a point to a single downslope node. This may be a key limitation for comparison with847

Druids Run, where we observed saturation and runoff on divergent hillslopes. Our sim-848

plifications in our vadose zone model also prevent evaporation or transpiration of wa-849

ter from the saturated zone. Including it would decrease the proportion of the water-850

shed that stays saturated during interstorm periods and decrease antecedent wetness when851

storms arrive.852

Our subsurface model was also limited to be spatially uniform and homogeneous.853

We know this is not the case. In Baisman Run, deeply weathered zones under hillslopes854

delay the arrival of hillslope water to streams and support baseflow, while a relatively855

shallow subsurface in valley bottoms may increase the likelihood of overland flow in the856

channels (Cosans, 2022; St. Clair et al., 2015). This pattern could increase flow persis-857

tence and drainage dissection relative to a uniform subsurface. In contrast, very thin soils858
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on hillslopes at Druids Run allow saturation and overland flow to occur frequently, while859

a more permeable valley bottom may increase the subsurface conveyance in valleys rel-860

ative to the amount of water that remains after storms. Depending on how the ripar-861

ian area is connected to the stream, it may also store more water that can be slowly re-862

leased during interstorm periods. These patterns could increase or decrease saturated863

areas and drainage dissection, depending on the extent of the riparian aquifer and its864

stream connection.865

In addition to shaping subsurface structure, weathering can also result in signif-866

icant chemical denudation. DupuitLEM, like many geomorphic models, only treats phys-867

ical erosion. Cleaves et al. (1974) studied the denudation of Pond Branch (a subwater-868

shed of Baisman Run) and a small watershed on the on the Soldiers Delight Ultramafite869

that is south of our site. On the basis of a geochemical mass balance, they estimated that870

chemical weathering was responsible for approximately 90% of denudation in Soldiers871

Delight at present, while it was responsible for approximately 50% of denudation at Pond872

Branch. This could suggest a significant difference in interpretation of morphologic dif-873

ferences. We discuss this further in A.874

There are also limitations to the style of erosion considered by the model. In en-875

vironments with humid climates and crystalline bedrock, seepage erosion at springs may876

play an important role in channel network evolution, given that shear stress at channel877

heads may not generally be high enough to incise bedrock alone (Dunne, 1990, 1980).878

This could help explain why the drainage density in our model parameterized for Bais-879

man Run is higher than that in the real watershed. A more thorough treatment of this880

process would also require more consideration for weathering, which must ultimately sup-881

ply material that can be transported at the low discharge rates found at channel heads.882

Despite lacking this complexity, our model is still able to simulate some spring-like fea-883

tures that are characteristic of Baisman Run. This suggests a degree of flexibility of the884

streampower law, when coupled with the right discharge function.885

5 Conclusions886

The analysis of the two study sites and modeling with DupuitLEM presented here887

support the idea that subsurface transmissivity is a major control on not only the hy-888

drologic function of humid, soil-mantled landscapes, but also on their morphology. We889

framed this paper with two hypotheses about how the morphology and hydrological func-890

tion of two landscapes should be different, informed by understanding (gleaned from pre-891

vious modeling studies) of how the subsurface could affect the coevolution of runoff and892

topography. From field data, we found that both the hydrological function and morphol-893

ogy aligned with our predictions; Druids Run, which has a thin permeable subsurface,894

had more extensive variably saturated areas, more variable effective area contributing895

runoff, and shorter hillslopes than Baisman Run, which has a deep permeable subsur-896

face. A novel use of topography, saturation and discharge observations further showed897

that the transmissivity was substantially higher at Baisman Run than Druids Run.898

We parameterized a coupled groundwater landscape evolution model for each site899

using field observations, topographic analysis, and literature values, and ran the model900

to geomorphic steady state. We were able to simulate the broad dry hillslopes and per-901

sistently saturated valley bottoms at Baisman Run, but substantially overpredicted sat-902

uration at Druids Run. The model correctly predicted that hillslope length and relief903

would be substantially larger in the high-transmissivity site (Baisman Run), but was un-904

able to reproduce the actual hillslope length and relief: at both sites it predicted longer905

and higher hillslopes. These differences may be due to issues related to uncertainty and906

biases in parameter estimation, and to inadequate representation of the actual geomor-907

phic processes operating at each site. However, the difference in geomorphic process rates908

was not sufficient to explain the between-site difference in hillslope length or hydrolog-909
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ical function, suggesting that the morphologic differences between the sites could rea-910

sonably attributed to subsurface transmissivity.911

Appendices912

A Geomorphic contrasts based on chemical denudation913

Some recent work begins to provide a framework for understanding morphologic914

effects of chemical denudation. Ben-Asher et al. (2019) introduced a modification of the915

hillslope mass balance that includes chemical denudation in the form of a chemical de-916

pletion fraction (CDF). They showed that curvature should be reduced as the ratio of917

chemical to total denudation increases, assuming a constant hillslope diffusivity. Marcon918

(2019) applied this principle to several hillslopes on contrasting lithologies across the Pied-919

mont, including sites on schist and serpentine bedrock. They found decreasing hilltop920

curvature with increasing CDF, where serpentine sites had the highest CDF and low-921

est hilltop curvatures. At our sites we found virtually no difference in hilltop curvature922

between lithologies. If the total denudation rate at both sites is indeed very similar, but923

chemical denudation is dramatically different, we are left with the conclusion that the924

identical curvature is a coincidence that arises from higher hillslope diffusivity D at Druids925

Run than Baisman Run. Further research, including updated denudation estimates spe-926

cific to our sites, would be needed to draw further conclusions on chemical denudation927

rates and geomorphic consequences at our sites.928

6 Open Research929

All original data, model output, and scripts needed to process data and generate930

figures are archived on Zenodo (Litwin & Harman, 2024). The Python package DupuitLEM931

v1.1 (Litwin et al., 2023) contains the models and scripts used to generate and post-process932

the model output. Landlab v2.0 (Barnhart et al., 2020) is a core dependency of DupuitLEM.933
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