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Abstract

Reanalysis products, or gridded datasets more broadly, are often used in place of surface observations. While they have been

shown to capture long-term statistics on global or regional levels, it is still unclear how well they perform at the tails of

the distribution, especially on daily timescales. Four widely used datasets, ERA5, ERA5-Land, MERRA-2, and PRISM, were

assessed for their ability to capture extreme heat, extreme cold, and heavy precipitation events over the contiguous US (CONUS).

While biases are evident in each dataset, particularly across the western US for temperature and along the Gulf Coast for heavy

precipitation, all datasets do reasonably well in capturing extreme events and trends. Extreme heat is better represented than

extreme cold or heavy precipitation. While no dataset emerges as a clear best for extreme heat, PRISM generally performs

best for extreme cold and the bias-adjusted MERRA-2 dataset generally performs best for heavy precipitation days.
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Abstract 13 

Reanalysis products, or gridded datasets more broadly, are often used in place of surface 14 

observations. While they have been shown to capture long-term statistics on global or regional 15 

levels, it is still unclear how well they perform at the tails of the distribution, especially on daily 16 

timescales. Four widely used datasets, ERA5, ERA5-Land, MERRA-2, and PRISM, were 17 

assessed for their ability to capture extreme heat, extreme cold, and heavy precipitation events 18 

over the contiguous US (CONUS). While biases are evident in each dataset, particularly across 19 

the western US for temperature and along the Gulf Coast for heavy precipitation, all datasets do 20 

reasonably well in capturing extreme events and trends. Extreme heat is better represented than 21 

extreme cold or heavy precipitation. While no dataset emerges as a clear best for extreme heat, 22 

PRISM generally performs best for extreme cold and the bias-adjusted MERRA-2 dataset 23 

generally performs best for heavy precipitation days. 24 

Plain Language Summary 25 

Ground-based observations are the most accurate records we have of current and past surface 26 

weather, but surface observations lack spatial and temporal completeness. To address this 27 

problem, gridded datasets were developed, however, these datasets are not observations and 28 

should thus be interpreted differently. This research finds that while these gridded datasets 29 

generally do well in capturing extreme events, some datasets may be a better option depending 30 

on the hazard of interest. For instance, PRISM data is generally a closer match to surface 31 

observations during extreme cold days than the other datasets while the bias-adjusted MERRA-2 32 

precipitation data performs best for heavy precipitation days. Regardless of the dataset, locations 33 

with challenging terrain, like the Mountain West and Gulf Coast, tend to have higher 34 

discrepancies between the gridded dataset and the surface observations.  With more companies 35 

conducting physical risk assessments, knowing which datasets are available and how well they 36 

represent extremes in the area of interest is critical. These results can help determine which 37 

dataset would be best to use if assessing extreme temperature or heavy precipitation events and 38 

trends in these events.  39 

1 Introduction 40 

Reanalysis and gridded datasets are used in numerous applications including detection 41 

and attribution studies, climate model validation, power system planning, renewable energy 42 
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analysis, agricultural modeling, and more. As of Jan 2024, the NCEP-NCAR dataset, the first 43 

reanalysis dataset created by NOAA, had been citated more than 34,000 times (Kalnay et al., 44 

1996; Parker, 2016). Despite their prolific usage, reanalysis datasets are not actual observations 45 

and the process by which gridded datasets are created makes errors inherent. However, gridded 46 

datasets are not meant to replace surface observations, rather they are meant to fill spatial and 47 

temporal gaps between observations. So, while differences between surface observations and 48 

gridded data can be misinterpreted as errors, they are simply different and should be interpreted 49 

as so. Nonetheless, it is an important exercise to quantify these differences so that end-users of 50 

gridded data products can better understand appropriate applications as well as the uncertainties 51 

that may arise from the use of gridded datasets.  52 

Uncertainty in gridded datasets can arise from several sources including, quality of the 53 

observational data, the density or structure of the observational network, and the interpolation or 54 

assimilation method chosen (Dunn et al., 2014; Ge et al., 2023; Yin et al., 2015). Structural 55 

uncertainty (data selection and analysis method) has been found to have the greatest effect on 56 

extremes in gridded datasets (Dunn et al., 2014; Hofstra et al., 2010). Efforts to evaluate gridded 57 

datasets use techniques and metrics such as cross-validation, ensemble uncertainty estimates, 58 

probability distribution functions, and spatial correlation (Gross et al., 2018; Parker, 2016; 59 

Pitman & Perkins, 2009; Thorne & Vose, 2010). However, most studies focus on the skill at 60 

capturing the means, not the extremes, and focus on annual, seasonal, or monthly scales as 61 

opposed to daily or sub-daily time scales (Pitman & Perkins, 2009).  62 

Past assessments of gridded dataset skill in capturing extremes have found that looking 63 

only at global spatial scales or annual to monthly timescales can obscure major differences 64 

between datasets (Ge et al., 2023; Gross et al., 2018; Pitman & Perkins, 2009). While most 65 

gridded datasets are consistent for mean temperatures, other moments like variance and 66 

skewness are not robust across datasets (Gross et al., 2018). These studies have also found that 67 

that method of calculation (interpolation or assimilation method, observational network used, 68 

observational record length, order of operation, etc.), especially the underlying observational 69 

network, has the largest effect on results, while changes to specific parameters have little effect 70 

(Dunn et al., 2014; Ge et al., 2023; Yin et al., 2015). Most studies concluded that it is best to use 71 

different datasets for different research questions (such as trend analysis, instantaneous field 72 

estimates, regional studies, particular variables of interest), and, where the network is sparce or 73 
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datasets inconsistent, it is recommended that a range be determined rather than averaging the 74 

reanalyses (Coughlan de Perez et al., 2023; Dunn et al., 2014; Dunn et al., 2020; Ge et al., 2023; 75 

Lader et al., 2016; Pitman & Perkins, 2009; Thorne & Vose, 2010; Yin et al., 2015). 76 

There is little peer-reviewed guidance for those using gridded datasets on how to evaluate 77 

the available datasets and which datasets may be best for specific regions or for specific climate 78 

hazards. With more companies conducting physical risk assessments, knowing which datasets 79 

are available and how well they represent extremes in the area of interest is critical. In this paper, 80 

we assess the ability of 4 gridded datasets, ERA5, ERA5-Land, MERRA-2, and PRISM, to 81 

capture the magnitude and timing of extreme heat, extreme cold, and heavy precipitation over the 82 

contiguous United States (CONUS). The magnitude of the differences are compared across 83 

datasets for each surface station to show dataset bias by location and hazard. This kind of 84 

analysis provides insight on the differences between gridded datasets and surface observations 85 

when it comes to representing extreme weather events at the local level. These results can help 86 

determine which dataset may be best to use if assessing extreme temperature or heavy 87 

precipitation events. 88 

2 Methods 89 

2.1 Weather Data 90 

Observational weather station data were retrieved using the meteostat Python library 91 

(https://dev.meteostat.net/python/), which accesses publicly available surface station data from 92 

the National Oceanic and Atmospheric Administration. Only US stations with a temporal 93 

coverage of at least 80% from 1981 to 2021 were included. This resulted in 317 stations across 94 

the contiguous US (CONUS) for temperature and 267 stations for precipitation.  95 

The gridded datasets chosen for this study include ERA5 (Hersbach et al., 2020), ERA5-96 

Land (Muñoz-Sabater et al., 2021), PRISM (Daly et al., 2008), and MERRA-2 (Gelaro et al., 97 

2017). ERA5 was developed by the ECMWF Copernicus Climate Change Service as the 98 

successor to ERA-Interim. ERA5 has the longest temporal coverage of the datasets, with hourly 99 

data extending back to 1940 and a spatial resolution of 31 km. ERA5-Land is a 9 km land-only 100 

model of ERA5, forced with the ERA5 atmospheric output. MERRA-2 is the second iteration of 101 

MERRA global reanalysis dataset. Unlike the other datasets, MERRA-2 includes bias-adjusted 102 

precipitation data, but has the lowest resolution of the selected datasets at approximately 50 km. 103 

https://dev.meteostat.net/python/
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PRISM is an interpolated gridded dataset calculated with a climate-elevation regression based on 104 

location, elevation, topography, orography, proximity to coasts, the vertical atmospheric layer, 105 

and includes 10,000 spatially quality-controlled temperature surface stations and 13,000 106 

precipitation stations (Daly et al., 2008). It has the highest resolution of our selected datasets (4 107 

km) and is the only dataset based on statistical interpolation of surface station observations. 108 

Conversely, reanalysis data is created by assimilating various types of observational data into 109 

numerical weather models (Kalnay et al., 1996). In other words, reanalysis data relies on 110 

physical principals to create spatially and temporally continuous datasets, whereas interpolated 111 

data relies on statistical methods.  112 

The grid points from the gridded datasets overlapping the surface stations were used to 113 

compare events. Land-only datasets (PRISM and ERA5-Land) did not always overlap certain 114 

coastal stations. Thus, the neighboring grid cells were assessed for the best match to the surface 115 

station. Island and buoy locations were removed from the station list.  116 

2.2 Metrics 117 

In this study, extreme heat days (EHDs) and extreme cold days (ECDs) are defined as 118 

temperatures above the 95
th

 percentile of summer (June-August, JJA) temperatures or below the 119 

5
th

 percentile of winter (December-February, DJF) temperatures. Hot and cold days (HD and 120 

CD) are defined as days above or below the 80
th

 and 20
th

 summer and winter percentiles 121 

respectively. Heavy precipitation days (HPD) are defined as days that exceed the wet day (>1 122 

mm) 95
th

 percentile, and precipitation days (PD) are defined at wet days exceeding the 80
th

 123 

percentile. Percentiles are based on the climate normal period, 1991-2020. 124 

Mean absolute error (MAE) is used as the primary metric to quantify the ability of each 125 

gridded product to capture the magnitude of the extreme event at the surface stations. The MAE 126 

is calculated between the station observations and gridded data based on the days in which the 127 

station observation exceeds the 5
th

 or 95
th

 percentile (just 95
th

 for precipitation). For 128 

precipitation, we also include mean absolute percentage error (MAPE) to account and scale for 129 

the large range of daily precipitation values across the CONUS. 130 

To assess the timing with which the gridded datasets can accurately represent extreme 131 

days, we calculate a match percentage. We define the match percentage of EHDs, ECDs, and 132 

HPDs as the number of days when both observations and the gridded datasets exceed the 133 

respective temperature or precipitation percentiles. To allow for near misses and locations with 134 
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small annual temperature variation, we extend our percentile threshold from the 95
th

 and 5
th

 to 135 

the 80
th

 and 20
th 

and allow values within 0.5°C of the percentile threshold. We also use the 80
th

 136 

percentile as the threshold for precipitation.  137 

Lastly, we assess the ability of the gridded datasets to capture trends in extremes by 138 

calculating the Theil-Sen slope estimation for the magnitude of all EHDs and ECDs and the 139 

frequency of HPDs. The frequency of HPDs is defined as number of days each year that exceed 140 

the climate normal 95
th

 percentile. We utilize frequency rather than magnitude to account for the 141 

fact that precipitation is generally a small-scale process that is not well resolved in gridded 142 

datasets and does not capture magnitude as well as temperature.  143 



manuscript submitted to Geophysical Research Letters 

 

3 Results 144 

3.1 Extreme Temperature 145 

Gridded datasets are generally better at reproducing the magnitude of extreme heat days (EHDs) 146 

than extreme cold days (ECDs; Figure 1). Apart from coastlines (Gulf Coast and Great Lakes), 147 

stations in the eastern half of the US tend to have lower MAEs for EHDs while stations in the 148 

western US tend to have higher MAEs for both EHDs and ECDs across all datasets. For ECDs, 149 

ERA5 and ERA5-Land generally have lower MAEs in the Midwest and Mid-Atlantic region, 150 

while MERRA-2 generally has lower MAEs in the southeast. While all four datasets reproduce 151 

the magnitude of EHDs comparably, PRISM is generally much better at reproducing the 152 

magnitude of ECDs at surface station locations across CONUS. This is likely, at least in part, 153 

due to PRISM having the highest spatial resolution of four datasets. PRISM is also the only non-154 

reanalysis dataset, thus the statistical methods by which the gridded data is created may anchor 155 
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156 
Figure 1. Mean absolute error of extreme heat days (>95th percentile) (left 4 panels) and extreme cold days (<5th 157 

percentile) (right 4 panels)  158 
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the data more closely to the surface observations and allow for a better match. These results 159 

averaged for all surface stations across the CONUS are shown in Figure S1. 160 

While the MAE for ECDs was generally higher than EHDs across the gridded datasets, 161 

the timing, or match percentage of cold days (CDs) tends to be better captured than hot days 162 

(HDs; Figure S2). MERRA-2 reproduces the timing of HDs across the central US better than the 163 

other datasets but is generally comparable to or worse than other datasets in the western US. 164 

Outside of the central US where the MERRA-2 performs best, HDs are reproduced comparably 165 

across datasets. While all datasets reproduce CDs across the Midwest and Northeast well, 166 

PRISM generally reproduces CDs across the CONUS better than the other 3 datasets. The lowest 167 

match percentages for HDs tend to be in the western US and near the coast in Florida, the Gulf 168 

Coast, New England, and the Great Lakes. For CDs, the lowest match percentages tend to be in 169 

the western US and along the Gulf and Florida coastlines. It should be noted that bias in the 170 

gridded datasets may contribute to high match percentages. Figure S3 shows the direction of the 171 

errors and Figure S4 shows how often the gridded datasets produce false alarms (days exceeding 172 

the percentile threshold and the surface station by 1.5°C). PRISM and MERRA-2 tend to have 173 

more false alarms than ERA5 or ERA5-Land for HDs and CDs. In other words, high match 174 

percentages in PRISM and MERRA-2 may, in-part, be due to the datasets routinely 175 

overestimating the magnitude of HDs and CDs.   176 

In contrast to Sheridan et al. (2020), which focused on apparent temperature in gridded 177 

datasets, we find the largest differences in temperature-only calculations for ECDs. The inclusion 178 

of humidity and 10-m wind speeds in the apparent temperature calculation may contribute to the 179 

differences in the findings. Other studies have also found larger discrepancies in the cold 180 

extremes (Gross et al., 2018; Pitman & Perkins, 2009; You et al., 2013). Like Gross et al. (2018), 181 

this research suggests additional studies are needed to determine why cold extremes generally 182 

exhibit larger differences from surface observations.  183 

While the trends in EHDs and ECDs are similar to the trends observed at surface stations, 184 

there are notable differences. Trends in ECDs are found to be generally overestimated (positive) 185 

while trends in EHDs show more regional variation (Figure 2). Moreover, differences in the  186 
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 187 
Figure 2. Difference in extreme heat day magnitude trends (left 4 panels) and extreme cold day magnitude trends 188 

(right 4 panels) between gridded datasets and surface observations.  189 



manuscript submitted to Geophysical Research Letters 

 

ECD trends tend to be larger than for EHDs. For EHDs, the gridded datasets tend to 190 

underestimate the trends for eastern and midwestern US, while overestimating trends in the 191 

south-central and western US. All datasets reproduce trends comparably and have similar 192 

regional biases.  193 

3.2 Extreme Precipitation 194 

Figure 3 shows the MAE and MAPE for heavy precipitation days (HPDs). In contrast to 195 

EHDs and ECDs, the Mountain West region of the US consistently has the lowest errors in HPD 196 

magnitude, while the Gulf Coast and Southeast have the highest. This is likely due to the eastern 197 

US having higher precipitation than the western US. The MERRA-2 bias-adjusted product is 198 

better at reproducing HPDs and has a smaller MAE and MAPE compared to the other gridded 199 

datasets. To better account for the regionality of precipitation, MAPE is used. This effectively 200 

eliminates the spatial pattern observed in the MAE. Unlike EHDs and ECDs, PRISM tends to 201 

have the highest MAE and MAPE for HPDs across the CONUS. The statistical method PRISM 202 

uses to interpolate precipitation may contribute to larger differences in HPDs compared to 203 

stations. While bias-adjustment is shown to provide some benefit when representing HPDs with 204 

gridded data in MERRA-2, it should be considered whether this improvement holds for locations 205 

with no surface observations. 206 

It would stand to reason that gridded datasets capture large-scale precipitation events 207 

better than small-scale, convective events, and, therefore, may do better representing heavy 208 

precipitation events in seasons where convective precipitation accounts for fewer of the heavy 209 

precipitation events. To help disentangle possible reasons for the large differences in HPDs, we 210 

separate summer (JJA) and winter (DJF) precipitation as a proxy for convective vs synoptic 211 

driven HPDs. For both MAE and match percentage, the differences were smallest for winter 212 

HPDs (defined as days exceeding the 1991-2020 DJF 95
th

 percentile), suggesting convective 213 

precipitation is likely more challenging to represent in gridded datasets than large-scale, synoptic 214 

events (Figures S6 and S7).  215 

Results for the PD match percentage skill are shown in Figure S6. Compared to HDs and 216 

CDs, the timing of PDs is not well captured by any gridded dataset. Match percentages are 217 

generally below 70% across CONUS in all four gridded datasets with PRISM match percentages 218 

generally below 40%.  MERRA-2, ERA5 and ERA5-Land have higher match percentages along 219 

the West Coast and the lowest match percentages along the Gulf Coast. The spatial distribution  220 
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 221 
Figure 3. Mean absolute error (left 4 panels) and mean absolute percentage error (right 4 panels) of heavy 222 

precipitation days (>95th percentile) between gridded datasets and stations  223 
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of precipitation match percentage skill is much more uniform that those for extreme 224 

temperatures. As with extreme temperatures, false alarm rates are calculated for HPDs. ERA5, 225 

ERA5-Land, and PRISM have false alarm rates above 50% across much of the CONUS while 226 

MERRA-2 false alarm rates below 30% across most of the CONUS. Again, bias-adjustment 227 

proves to enhance the ability of gridded data to reproduce HPD timing relative to non-bias-228 

adjusted datasets.   229 

Observed trends in HPD frequency are shown in Figure 4. For much of the CONUS, 230 

trends in the magnitude of HPDs is nearly identical to surface observation trends. Larger 231 

differences are generally observed across the eastern half of the US. More specifically, 232 

differences in trends are largest around the Great Lakes in ERA5, ERA5-Land, and MERRA-2, 233 

whereas PRISM has larger differences across much of the eastern US. PRISM also tends to have 234 

a consistent positive bias in HPD trends relative to surface station trends. ERA5 and ERA5-Land 235 

have similar differences and spatial patterns in trends compared to MERRA-2, but MERRA-2 236 

tends to overestimate trends (positive bias) compared to ERA5 and ERA5-Land which tends to 237 

underestimate trends in HPDs.  238 

 239 
Figure 4. Difference in decadal extreme precipitation (>95th percentile) frequency trends (gridded dataset minus 240 

station observation).  241 
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4 Conclusion 242 

Surface observations are the most accurate records we have of historical weather, but the 243 

spatial gaps, missing data, and inconsistent lengths of record create challenges in using the data. 244 

Gridded datasets were created to solve these problems, but they are inherently different from 245 

point observations. Most notably, gridded datasets are meant to represent a much larger area than 246 

point observations. In other words, a 55 km grid cell is tasked with representing a much larger 247 

and potentially more diverse area than a single measurement from a surface station. Thus, when 248 

gridded datasets differ from surface stations, these differences should not be viewed as errors. 249 

Conversely, surface observations are a key input into gridded datasets and these observations 250 

will intrinsically weight the value of the grid cell. For this reason, gridded data is often a very 251 

close match to surface station observations. 252 

The results of this study suggest that while all four gridded datasets do reasonably well in 253 

reproducing extreme events, some datasets are better able to reproduce extremes in certain 254 

regions and for specific hazards. All four datasets reproduce the magnitude and timing (match 255 

percentage) of extreme heat days (EHDs) comparably, but PRISM most closely reproduces the 256 

magnitude and timing of extreme cold days (ECDs). While PRISM tends to represent ECDs 257 

better than EHDs, ERA5, ERA5-Land, and MERRA-2 all reproduce EHDs better than ECDs. 258 

For heavy precipitation days (HPDs), all four datasets have the larger MAEs from surface 259 

stations in wetter locations, like the Southeast, but the MAPE effectively eliminates the regional 260 

differences. Unlike extreme temperatures, PRISM is generally the least capable of reproducing 261 

HPDs across the CONUS. PRISM’s larger differences may be attributed to the statistical 262 

interpolation being used as opposed to a physical approach (numerical weather prediction 263 

model). The bias-adjusted precipitation variable from MERRA-2, though the coarsest spatial 264 

resolution of all datasets, reproduces the magnitude of HPDs best. This suggests bias-adjustment 265 

can overcome at least some of the limitations with representing precipitation in coarse datasets.  266 

Using gridded datasets for climate trends is generally not recommended, though there is 267 

little empirical evidence for this. This research shows that while the trends in EHDs are different, 268 

they are generally very close to the observed trends from stations. The trends in ECDs, however, 269 

have larger differences and a consistent positive bias. That is, the trends in the gridded datasets 270 

tend to show more warming than was otherwise observed at the surface station, thus one should 271 

use caution when estimating trends in extreme cold from gridded data. In general, all four 272 



manuscript submitted to Geophysical Research Letters 

 

datasets are comparable with respect to differences in EHD and ECD magnitude trends. For 273 

heavy precipitation, PRISM and MERRA-2 have a general positive bias and ERA5 and ERA5-274 

Land, though generally a closer match to the station trend, have a general negative bias. In other 275 

words, ERA5 and ERA5-Land tend to overestimate the increase in HPDs while MERRA-2 and 276 

PRISM tend to show smaller increase or even decrease in HPDs.  277 

All four gridded datasets tend to reproduce extreme temperature events in the eastern US 278 

better than the western US. Complex terrain and microclimate in the western US create 279 

challenging dynamics that are difficult to capture in coarse gridded datasets. For heavy 280 

precipitation, locations with more frequent heavy precipitation events and larger annual 281 

precipitation totals, such as the southeastern US, tend to have larger differences between surface 282 

observations and gridded datasets. While reanalysis products have been shown to represent 283 

averages well (Gross et al., 2018; Pitman & Perkins, 2009), these results suggest that caution 284 

should be used when using gridded datasets for extreme events. For a more robust analysis of 285 

extremes, it would be best to quantify the range of uncertainty across multiple gridded datasets as 286 

well as nearby surface observations.  287 

Future work will add additional gridded datasets, such as the recently released 288 

CONUS404 data, which is a downscaled ERA5 dataset aimed at hydrological applications 289 

(Rasmussen et al., 2023).  290 

Open Research 291 

The data used in this study can be found online for download at the following locations. ERA5 292 

and ERA5-Land daily surface temperature and precipitation data are available from the European 293 

Center for Medium-Range Weather Forecasts (ECMWF) via the Copernicus Climate Change 294 

Service (at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels and 295 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form). PRISM air 296 

temperature and precipitation data are available from the PRISM Climate Group at Oregon State 297 

(at https://prism.oregonstate.edu/downloads/). MERRA-2 data is made available on the National 298 

Aeronautics and Space Administration (NASA) Goddard Earth Sciences Data and Information 299 

Services Center (GES DISC). The code developed for this study can be made available upon 300 

request. 301 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
https://prism.oregonstate.edu/downloads/
https://disc.gsfc.nasa.gov/datasets/M2T1NXSLV_5.12.4/summary?keywords=temperature
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