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Abstract

Purpose: Brain tumors, whether primary or secondary, have limited information about proteomic changes
despite advances in the understanding of the driver gene mutations and heterogeneity within tumor cells.
The purpose of this study is to distinguish primary and secondary brain tumors based on proteomics.

Experimental Design: We assembled the most common primary tumors as follows: gliomas from WHO
grade II to IV with or without/DH! mutations; and BrMs with a wide range, including lung cancer (L.C),
breast cancer (B.C), ovarian cancer (O.C), and colorectal cancer (C.C). A total of 29 tissue samples were
analyzed by label free quantitative mass spectrometry-based proteomics.

Results: In total, 8,370 protein groups were identified, and approximately 4,000 quantified protein groups
were adopted for further analysis. Proteomic analysis of metastatic tumors reveals conserved features across
multiple cancers. While proteomic heterogeneities were found for discriminating low- and high-grade of
gliomas, as well as IDH1 mutant and wild-type gliomas. And distinct pathway-level differences among these
two types of brain malignancies were revealed. The characteristic pathways of BrMs focused on proliferation
and immunomodulation after colonizing the brain, whereas invasion processes were notably activated in
gliomas.

Conclusions and Clinical Relevance:We elucidated an extensive proteomic landscape of BrMs and
gliomas, providing information for the development of potential therapeutic and diagnostic strategies for
type-specific brain tumors.
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1 INTRODUCTION

The brain, as the major organ of the central nervous system (CNS), controls and processes most of the body’s
activities. Therefore, the most malignant brain tumors, namely, glioblastomas (GBMs) and brain metastases
(BrMs), from extracranial primary tumors (such as lung, breast, melanoma, and colorectal cancers) are
among the deadliest cancers with poor prognosis and short survival [1]. At present, an effective treatment
option for patients with malignant brain tumors has long presented a challenge for oncologists.

Gliomas are one of the most prevalent tumors in the CNS with disproportionate mortality and morbidity
among subtypes. The most commonly occurring types of gliomas are astrocytoma (WHO grade I - IV),
oligodendroglioma (WHO grade II - IIT), and GBM [2, 3]. Glioma alterations, such as isocitrate dehydroge-
nase (IDH ) 1 and 2 mutations as well as 1p/19qcodeletion, generally occur in low grade gliomas (IT or III)
and provide superior prognostication compared to IDH wild-type tumors [4, 5]. Despite routine therapies,
such as surgical resection, radiation, and chemotherapy, the outcomes of patients remain poor. The median
survival rates of glioma patients are stubbornly low, varying from years (WHO grade II) to months (WHO
grade IV) [6].

BrMs are 10 times more common than primary brain tumors with 10-30% incidence in adults, and they have
an even lower survival rate that is typically measured in months [7, 8]. Fewer than 10% of all BrMs are found
before the primary cancer is diagnosed. The determination of whether extracranial tumors develop BrMs
relies mainly on cranial imaging [magnetic resonance imaging (MRI) or computed tomography (CT)], which
has a severe time lag from diagnosis to treatment, causing the optimal therapeutic timeframe to be missed [9,
10]. In addition, although these two representative primary and secondary brain tumors exhibit markedly
different modes of antigen presentation and tumor microenvironment [11], there is no effective molecular
marker to assist in distinguishing these two types of brain tumors. The pathological diagnosis is confirmed



by immunohistochemistry from tumor tissue obtained after surgery or a biopsy, which delays intervention
and precise treatment selection. Consequently, accurate preoperative discrimination of BrM and glioma is
critical for individualized therapeutic decision-making.

Markers found in the blood and tissue samples have been utilized for the diagnosis of the primary disease
and to guide treatment. Recent studies applying immunohistochemistry, genome-wide transcriptomics, and
single-cell transcriptomics to investigate BrMs and gliomas have had a profound impact on cancer biology
[12-16]. Klemm et al. constructed a high-dimensional, multi-omics characterization of the brain tumor
microenvironment, allowing elucidation of the disease- and cell type-specific expression patterns of gliomas
and BrMs [17]. However, there are still challenges that hinder the transition of these findings into new
effective therapies. Potential explanations for the disconnect between genomics-based studies and clinical
trials include the lack of protein information and the poor correlation between protein and mRNA expression
(0.54) [18, 19]. As the main carrier and executor of life activities, protein shows a more direct connection
with the occurrence and development of diseases. Despite some transcriptomic studies, the precise proteomic
composition of these two distinct human brain malignancies, especially BrMs, remains unclear. Thus, an
integrated and in-depth proteomic analysis is required for the comprehensive understanding of these brain
cancers.

Mass spectrometry (MS)-based proteomics is an integral part of cancer research, shedding light on the
functional profile of the cancer cell. The present study demonstrated for the first time a systematic proteomic
analysis of two typical malignant brain tumors, namely BrMs and gliomas. We generated and analyzed a
comprehensive catalog of the disease type-specific protein expression patterns as a resource for the research
community, and we also investigated their interrelationships.

2 MATERIAL AND METHODS
2.1 Chemicals and reagents

Acetonitrile (ACN, MS grade), trifluoroacetic acid (TFA, MS grade), formic acid (FA, MS grade), PierceTM
BCA Protein Assay Kit and HeLa Protein Digest Standard were purchased from Thermo Scientific (St. Louis,
MO, USA). Culture media such as Dulbecco’s Modified Eagle’s Medium (DMEM), penicillin/streptomycin
(P/S), fetal bovine serum (FBS) and trypsin-EDTA were from Gibco Life Technologies (New York, USA).
The iST kit for proteomic sample preparation was purchased from PreOmics GmbH (Planegg, Germany).
Deionized water used in the experiments was prepared by the Milli-Q50SP system (Millipore, Milford, MA).

2.2. Patients and sample collection

The present study was conducted in accordance with the guidelines of the Declaration of Helsinki with the
approval of the Research Ethics Committee from Ruijin Hospital, Shanghai Jiaotong University School of
Medicine (1.0/2019-10-1). Written informed consent was obtained from all patients or their legal represen-
tatives prior to their participation in the study.

A total of 29 samples from gliomas and BrMs patients were obtained from the Ruijin Hospital, Shanghai
Jiao Tong University School of Medicine between October 2020 and September 2021. Details of clinical
information on the subjects were shown in Figure 2A and Table S1. Tumor tissues were collected after
surgery, and were washed three times with PBS. After that, tissues were immediately transferred to liquid
nitrogen and collected into 2 mL cryogenic storage vials (Corning, New York, USA), and stored at -80 °C
for later use.

2.3. Cell culture and collection

The human cervical cancer cell line, HeLa (ATCC, USA), was cultured at 37 °C and 5% COy in DMEM
with 10% FBS and 1% penicillin/streptomycin. The culture medium was refreshed every 2 - 3 days. Cells
were harvested at >80% confluency following treatment with 0.25% trypsin-EDTA solution to obtain a cell
suspension. Cells were dispersed in growth medium, and the cell density was measured by an automated cell
counter (Cellometer AutoT4, Nexcelom, USA). The defined number of cells was washed three times with



ice-cold PBS and centrifuged at 1000 rpm for 10 min at 4 °C. Cells were then placed into 1.5-mL protein
LoBind tubes (5 X 10° cells per tube) and stored at -80 degC for future analysis.

2.4. Sample preparation based on iST kit

Glioma and BrM tissues from patients as well as HeLa cells were prepared according to the iST kit manufac-
turer’s instructions [20]. Briefly, tissue samples were cut and weighed, and 1 mg of each tissue sample was
placed into a clean 1.5-mL protein LoBind tube followed by the addition of 100 uL of LYSE and incubation
at 95 °C for 30 min with shaking (1000 rpm). HeLa cells for the experimental control were treated simulta-
neously. The sample was sheared using a sonicator (10 cycles; 30 sec ON/OFF), and protein concentration
was determined using the Pierce™ BCA Protein Assay Kit. An equal amount of protein (100 ug) for each
sample was used for digestion. Then, 210 uL of RESUSPEND was added to DIGEST followed by shaking at
room temperature for 10 min at 500 rpm. Then, 50 uL of DIGEST was added to the sample and heated using
a pre-heated heating block at 37 °C for 3 h at 500 rpm. After digestion, 100 uL of STOP was added to the
sample followed by shaking at room temperature for 10 min at 500 rpm. The sample was then centrifuged
at 14,000 rpm for 1 min, and the sample was then serially washed with 200 pL of WASH 0, WASH 1, and
WASH 2 for desalting. Then, 100 uL. of ELUTE was added twice to elute peptides, and the peptides were
lyophilized to dryness and stored at -20 °C or redissolved in 0.1% FA for nano-LC-MS/MS analysis.

2.5. Nano-LC-MS/MS analysis

Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis was performed on a timsTOF
mass spectrometer with PASEF (Bruker Daltonics, Bremen, Germany) coupled to a Nano Elute liquid
chromatograph (Bruker Daltonics, Bremen, Germany) with a 75 ym x 25 cm-long column (1.6 pm id, Dr.
Maisch GmbH, Germany). Peptide separation was performed at a flow rate of 200 nL/min with mobile
phases A (0.1% FA in water) and B (0.1% FA in ACN) in the following 90 min gradient: 0 - 70 min, 2% -
22% B; 70 - 80 min, 22 - 37% B; 80 - 82 min, 37% - 80% B; and 82 - 90 min, 80% B.

Peptides were acquired in the data-dependent acquisition mode (DDA). The following parameters were used:
mass range, 100 to 1700 m/z; 1/KO0 start at 0.7 V[?]s/cm? and end at 1.3 V[?]s/cm?; capillary voltage, 1500
V; dry gas, 3 L/min; and dry temp, 180 °C. The PASEF settings were as follows: 4 MS/MS scans (total cycle
time 0.53 sec); charge range, 0 — 5; active exclusion, 0.4 min; scheduling target intensity, 20000; intensity
threshold, 2500; and CID collision energy started at 27 eV and ended at 45 eV.

2.6. Database search

All raw data were analyzed by Peaks online (X build 1.7.2022-03-24_170623). The following parameters were
used: MS 1 tolerance, 10 ppm; MS2 tolerance, 0.02 Da; and searched database, UniProt-human database
(20,375 entries) for the tumor tissue as well as HeLa samples. A false discovery rate (FDR) lower than 1%
was used as the cutoff value for the peptide, protein, and propensity score matching (PSM) identification
based on the target decoy strategy. Carbamidomethylation of cysteine was considered a fixed modification,
and protein N-terminal acetylation, oxidation of methionine, and deamidation of asparagine and glutamine
were considered as variable modifications.

2.7. Data analysis

LFQ data were normalized by total ion current (TIC) and filtered for 50% valid intensity values across all
samples. Missing values were replaced by 1/5 of the minimum positive value of each variable by Metabo-
Analyst 5.0 [21]. Quantified proteins with fold change > 2 or < 0.5 and P value < 0.05 were considered as
DEPs. In the figures, experimental data are shown as standard error of mean.

Metascape [22] was utilized for functional enrichment and protein-protein interaction networks analysis.
P values for the functional enrichments were calculated by a hypergeometric test and corrected by the
Benjamini-Hochberg FDR method. Cytoscape [23] software was used for reorganizing and visualizing the
interaction networks. The proportional Venn diagrams and the Sankey diagram were analyzed using a Bio-
informatics online tool. The artwork was created with BioRender.com. MetaboAnalyst 5.0 [21] was used for



the statistical analysis and biomarker discovery of DEPs, including unsupervised clustering, PCA, Pearson
correlation analysis, and machine learning.

For machine learning, ROC curves were generated using MetaboAnalyst 5.0. Multivariate ROC curves were
generated by Monte Carlo cross-validation (MCCV) using balanced sub-sampling. In each MCCV, two-thirds
of the samples were used to evaluate the feature importance. The top 2, 3, 5, 10 ... 100 (max) important
features were then used to build classification models, which were validated using one-third of the remaining
samples. The procedure was repeated multiple times to calculate the performance and confidence interval
of each model. PLS-DA was used as the classification method, and the PLS-DA built-in was selected as the
feature-ranking method with two latent variables. Feature selection was based on the ROC curve results,
and the top 5, 10, 15, 25, 50, and 100 proteins were used for predictive accuracy assessment.

3 RESULTS
3.1 Overall proteomic analysis of brain tumors

In an attempt to analyze the proteome of primary and secondary tumors, we assembled the most common
primary tumors as follows (Figure 1): gliomas from WHO grade II to IV with or without IDH1 mutations;
and BrMs with a wide range, including lung cancer (L.C), breast cancer (B.C), ovarian cancer (O.C), and
colorectal cancer (C.C). Figure 2A and B, as well as Table S1 provide additional details for the assembled
cohort and MRI for diagnosis.
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FIGURE 1 Schematic diagram of the workflow. Proteomic samples were prepared and analyzed by mass
spectrometry. The protein profiles of the two types of brain tumors were discussed separately, followed by
comparative analysis to find potential biomarkers that could distinguish between the two tumors of different
origin.



During the MS acquisition, four commercial HeLa digests (200 ng each) were uniformly inserted for moni-
toring MS for instrumental quality control (QC), which showed a constant stability across the entire process
of sample analysis (Figure 2C, Figure S1A and B). In addition, three HeLa samples (H) were treated in
parallel with tumor tissues from sample preparation to data analysis. Two types of tumors were analyzed
alternately at random, and the HeLa sample was inserted every 10 samples for quality control, resulting in
an average of approximately 5200 identified proteins and 4499 co-quantified proteins in HeLa cells ( Figure
S1C and D). Furthermore, a similar distribution of peptide intensities, low coefficient of variation (CV), and
high correlation (0.99) of LFQ proteins were observed in the three HeLa samples (Figure 2D, Figure S1E-G).
Overall, we performed robust proteomic analysis for two types of brain tumors using rigorous experiment
controls. As a result, 27 of the 29 cohort samples successfully passed the quality control filters with more
than 50% overlap of identified proteins in each sample. In total, 8,370 protein groups and 116,526 peptides
were identified across all samples, and averages of 4,200 proteins and 33,000 peptides were recovered per
sample (Figure 2E). In addition, the missed cleavage rate was as low as 10% on average ( Figure S1H),
indicating a well-controlled sample preparation.
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FIGURE 2 System-wide analysis of clinical samples. AHeatmap describing samples collected from 29
patients, including gliomas from WHO grade II to IV with or without IDH1 mutations as well as BrMs from
lung cancer (L.C), breast cancer (B.C), ovarian cancer (O.C), and colorectal cancer (CC). In addition, 27
samples were utilized for later analysis with more than 50% overlap of identified proteins in each sample.
B Contrast-enhanced magnetic resonance imaging (MRI) of BrMs and gliomas. Patients with BrMs from
L.C, O.C and B.C as well as gliomas of WHO grade III with IDHI mutation (III-Mut), IV with IDHI
mutation (IV-Mut), and gliosarcoma (IV-GSM) are shown.C Number of quantified proteins segregated by
binned average protein intensities in four commercial Hel.a digests for mass spectrometry quality control
(QC). D Distribution of peptide intensities in parallel HeLa (H) treatments (n = 3) for experimental quality
control.E Number of protein group, peptide and propensity score matching (PSM) identifications for BrMs
(n = 14) and gliomas (n = 13). Values above columns indicate average numbers of identification. Error bars
indicate standard error of mean based on biological replicates.

3.2 Cell proliferation and immune response are conserved features for BrMs

The following four essential hallmarks of metastatic cells during invasion and brain metastasis have been
previously proposed: (a) motility and invasion; (b) modulation of the microenvironment; (c¢) plasticity; and
(d) colonization [24]. L.C, B.C, and C.C are the most common types of cancer that metastasize to the
brain. Here, we performed unsupervised clustering and searched for robust clustering of distinct features of
the proteome correlated with all BrMs to increase our understanding of the general mechanisms of BrMs.



Hierarchical clustering identified 3 clusters across all samples, resulting in 79 proteins in cluster 1, 192
proteins in cluster 2, and 125 proteins in cluster 3 (Figure 3A and Table S2). Functional analysis of the
three clusters revealed marked enrichment in cell proliferation for colonization and immune response to
modulate the microenvironment (Figure 3B, Figure S2A and B). Importantly, the transcriptomic results of
BrMs validate these functions [16].
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Specifically, protein groups in cluster 1 were relevant to cell development, such as regulation of cytoskele-
ton organization, regulation of protein-containing complex assembly, and supramolecular fiber organization.
Cluster 2 was characterized by ribosome biogenesis for cell proliferation and immune response to the mi-
croenvironment. Ribosomal proteins (RPs) of the 60S (e.g., RPL3, RPL5, and RPL14) and 40S (e.g., RPS6,
RPS8, and RPS16) were enriched in clusters 2 and 3 (Figure 3C and D). Cell proliferation-related pro-
teins for pre-mRNA processing (e.g., HNRNPA1, HNRNPK, and HNRNPL), core spliceosome (e.g., SRSF1,
SF3B3, and SFPQ), and proteasome complex (e.g., PSMC3, PSMA4, and PSMB1) were present in cluster
2. Moreover, a unit of proteins (ILF2, ILF3, ISG15, and XRCC6) involved in the modulation of the tumor
microenvironment by the inflammatory was identified. Further, cluster 3 encompassed energy metabolism
and RNA translation for tumorigenesis.

FIGURE 3 Distinct features of BrM proteome profile. A Unsupervised clustering of the top 1000 protein
features out of 3843 label free quantification (LFQ) proteins based on their interquartile range (IQR) in 14
samples of BrMs. Pearson correlation was used for distance measurement. BGene set enrichment analysis
(GSEA) of proteins in the three clusters. The top 20 annotations of GO-BP, Reactome, WikiPathways, and
KEGG pathways are shown (Benjamini-Hochberg FDR method, adjusted P < 0.01).C Protein enrichment
networks in cluster 2 based on the top three functional enriched terms (R-HSA-8953854, R-HSA-2262752, and
R-HSA-8953897) (Benjamini-Hochberg FDR method, adjusted P < 0.01). D Protein enrichment networks
in cluster 3 based on the top three functional enriched terms (R-HSA-72766, GO:0006412, and GO:0043043)
(Benjamini-Hochberg FDR method, adjusted P < 0.01).

3.3 Glioma subtypes correlate with respective protein patterns

Although the heterogeneity of gliomas has been described in terms of histochemistry and prognosis [2, 4],



the understanding of low- and high-grade gliomas remains rudimentary to date, and there is no effective
diagnostic method based on proteins [25, 26]. In response to the poor diagnostic outcomes in different sub-
types of gliomas, we next focused on resolving protein pattern differences among gliomas. Firstly, integrated
proteomic analysis of different grades of glioma showed independent and well-separated clusters. Low-grade
gliomas (WHO grade IT and III) exhibited a close correlation and differed from grade IV gliomas (Figure 4A).
Complementarily, gliosarcoma (GSM), a rare form of grade IV gliomas (2%) that has both sarcomatous and
malignant glial components [17], was found as a relatively separate entity in principal component analysis
(PCA) and even had a closer relationship with grade III glioma when using Pearson correlation (Figure S3A
and B). However, in GBMs, no separate clustering betweenI/DHI mutation (IV-Mut) and wild type (IV-WT)
was observed.

To compare the proteome differences between low- and high-grade gliomas, we grouped WHO grades II and
IIT tumors into a single consolidated low-grade group (II/I1I-Mut) and compared it to GBMs with IDH!
mutation (IV-Mut). In total, 36 proteins were aberrantly expressed in IV-Mut versus II/III-Mut (P< 0.05),
of which 25 proteins were upregulated and 11 proteins were downregulated (Figure 4B and Figure S3B and
C). Of note, the downregulated proteins in IV-Mut were associated with poor survival, whereas upregulated
proteins were associated with the immune response.

IDH1/2mutant GBMs are distinct from wild-type GBMs with respect to molecular and clinical features, in-
cluding prognosis [27, 28]. We next elucidated the proteomic differences between IV-Mut and IV-WT GBMs,
which accounted for 66 upregulated proteins and 10 downregulated proteins (Figure S3E). To further inves-
tigate these differentially expressed proteins (DEPs), gene set enrichment analysis (GSEA) was performed
(Figure 4C). Tumor invasion-related processes (e.g., Rho GTPase cycle, cellular amino acid metabolic process,
membrane trafficking, and ferroptosis) were predominately upregulated in IV-Mut. Intriguingly, ferroptosis,
a newly discovered form of cell death, is not only correlated with cell migration but also represents a better
prognosis in IV-Mut versus IV-WT [29, 30].
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FIGURE 4 Unsupervised clustering of protein patterns distinguishes distinct grades of
gliomas. AMultigroup heatmap with dendrogram of 4068 LFQ proteins across 13 glioma samples.
Ward’s method was performed for clustering, and Pearson correlation was used for distance measurement.
B Representation of the total intensity of selected proteins (SYNE1, GLDC, SDPR, CD14, FCGBP, and
MEK1) of WHO grade IV (IV-Mut, n = 4) and II/TIT (II/TII-Mut, n = 3)IDHI mutant gliomas measured
by LC-MS/MS (two-tailed Student’s t-test, P < 0.05). Error bars indicate standard error of mean based on
biological replicates. C Sankey plot showing the GSEA results of differentially expressed proteins (DEPs)
in GBMs with IDH! mutation (IV-Mut, n = 4) and IDHI wild type (IV-WT, n = 4). The annotations
of GO-BP, Reactome, WikiPathways, and KEGG pathways are shown (Benjamini-Hochberg FDR method,
adjusted P < 0.01).

3.4 Comparative proteomics for primary and secondary brain tumors

Gliomas and BrMs are the most predominant primary and secondary brain tumors in the human brain
with a common trait of various malignancies. We next investigated the proteomic heterogeneity of these
two types of brain tumors. These two typical brain tumors are composed of unique cell types, anatomical
structures, metabolic constraints, and immune environment [17] , which may explain the tendency of some
extracranial cancers to migrate toward the brain and provide new insights into the blood-brain barrier (BBB)
changes during tumor metastasis. For comparative proteomic analysis, malignant brain tumors from primary
(gliomas, n = 13) and secondary (BrMs, n = 14) brain tumors were utilized.

In total, 352 proteins were statistically different between the cohorts (P < 0.01), of which 93 proteins were
upregulated and 259 proteins were downregulated in BrMs versus gliomas (Figure 5A, Figure S4A and Table



S3). The 352 DEPs effectively distinguished two types of tumors in unsupervised clustering and PCA based
on component 1 (96.1%) and component 2 (1.8%) (Figure 5B and Figure S4B).

We next performed functional enrichment analysis for the upregulated and downregulated proteins, respec-
tively (Figure 5C, Figure S4C and D). To some extent, the general cellular and molecular pathways were
similar in both types of malignant brain tumors. However, proteins in some distinct pathways were upregu-
lated in BrMs, such as Golgi vesicle transport, formation of the cornified envelope, and secretion (Figure 5C
and Figure S4C). Specific processes involved in gliomas were correlated with cell migration, including regu-
lation of actin cytoskeleton, modulation of chemical synaptic transmission, neuron projection development
and so on. Taken together, the proteome-based results clearly illustrated that BrM colonization in the brain
depends on tumorigenesis and multiple interactions of metastatic cancer cells with the brain microenviron-
ment, whereas gliomas, as one of the representative primary tumors in the brain, maintain a high tendency
to invade. These findings prompted further exploration of candidate biomarkers for distinguishing primary
and secondary brain tumors.
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R-HSA-194315: Signaling by Rho GTPases
G0:0051493: regulation of cytoskeleton organization
G0:0043086: negative regulation of catalytic activity
GO:0010035: response to inorganic substance
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Down Up

FIGURE 5 Proteomic differences between primary and metastatic brain tumors.A Comparison of BrMs (n
= 14) to gliomas (n = 13) identified 352 DEPs (two-tailed Student’s ¢ -test, P< 0.01 and fold change > 2 or
< 0.5).B Principal component analysis (PCA) of BrM (n = 14) and glioma (n = 13) samples based on 352
DEPs. The 95% confidence regions are shown. C GSEA identified downregulated and upregulated proteins
in the two groups. The top 20 annotations of GO-BP, Reactome, WikiPathways, and KEGG pathways are
shown (Benjamini-Hochberg FDR method, adjusted P < 0.01).
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3.5 Diagnosticclassification model for gliomas and BrMs

To illustrate the capacity of proteomic profiling as a powerful prognostic tool for discriminating glioma and
BrM tumors, we attempted the diagnostic classification model. To construct a more precise model, malignant
brain tumors from primary (WHO grade IV gliomas, glioma (IV), n = 10) and secondary (metastases from
L.C, BrM (L.C), n = 10) tumors were adopted for further analysis, which resulted in 265 DEPs (Figure S5A
and B). The DEPs in BrM (L.C) versus glioma (IV) and BrM versus glioma showed high overlap (Figure
S5C). In line with the above GSEA results, the most notable pathways of the 265 DEPs were enriched in
cell movement (Figure S5D). Of these, 37 proteins accounted for 5.23% of the proteins in the Rho GTPase
signaling pathway (R-HSA-194315 and R-HSA-9716542), and 32 proteins comprised up to 8.02% of the
proteins in the regulation of the actin filament-based process (GO: 0032970). These results were consistent
with the migratory and invasive characteristics of malignant cells.

We next used multivariate receiver operating characteristic (ROC) curve analysis based on partial least
squares discriminant analysis (PLS-DA). The above 265 differentially expressed variables were analyzed to
obtain the optimal and most economical biomarker combination. Five variables (KRT8, KRT19, KRT?7,
TACSTD2, and CDH1) reached the most economical and optimal area under the curve (AUC) of 0.973 (95%
confidence interval [CI] = 0.803-1) (Figure 6A). To evaluate the reliability of the machine-learning strategy,
confusion matrices were generated, and the results demonstrated that different samples were correctly clas-
sified with 90% accuracy (Figure 6B and C). Notably, these five proteins were significantly upregulated in
the BrM (L.C) samples compared to the glioma (IV) samples (Figure 6D).
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FIGURE 6 Determination of biomarker combinations for distinguishing primary and secondary tumors. A
Receiver operating characteristic (ROC) curves for all biomarker combination models for discriminating BrMs
(L.C) from gliomas (IV) based on Monte-Carlo cross-validation (MCCV). Partial least squares discriminant
analysis (PLS-DA) was used as the classification method, and PLS-DA built-in was selected as the feature-
ranking method with two set latent variables.B Predictive accuracies with different features (top 5, 10,
15, 25, 50, and 100 proteins) based on the ROC curves (A). CPredicted class probabilities (average of the
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cross-validation) for each sample using a 5-biomarker combination model. Due to balanced subsampling, the
classification boundary is at the center (x = 0.5, dotted line). D Protein intensities of five markers (KRTS,
KRT19, KRT7, TACSTD2, and CDH1) in both groups. Box plots represent the median and IQR, and the
whiskers represent the 1-99 percentile (two-tailed Student’s t-test, * P < 0.05, ** P< 0.01, *** P < 0.001,
and **** P< 0.0001).

4 DISCUSSION

BrMs and gliomas, representing two distinct types of brain malignancies, are mostly fatal tumors and are
accompanied by poor prognosis. In addition, clinical and biological variability is thought to exist within
each type and each grade of tumor, suggesting that the identification of molecular factors that contribute to
this variation is invaluable for the development of targeted therapies.

To reveal the common denominators of brain colonization by widely different types of BrMs, we summed
up three clusters with distinct protein patterns by unsupervised clustering. Proteins related to tumor
proliferation and immune response were recognized as commonalities for metastatic cells to colonize the
brain. Among them, the L1 cell adhesion molecule (LICAM) interaction process was enriched by Reactome
pathways in both cluster 1 and 2, but the enrichment was more significant in cluster 1 (Figure 3B). LICAM
is a member of the immunoglobulin-like cell-adhesion molecule family, which has been reported to promote
motility and invasion in many tumor vasculatures, including BrMs [31, 32]. Additionally, collagen proteins
(e.g., COL18A1, COL4A1, and COL6A1) in extracellular matrix (ECM), which have been recognized as
diagnostic tumor markers, were also in cluster 1 ( Figure S2C and D). The accumulation of collagens can
establish tumorigenesis and metastasis [33-35]. Moreover, the VEGFA-VEGFR2 signaling pathway was
present in all clusters, especially in cluster 2. Vascular endothelial growth factor (VEGF)-related pathways
stimulate angiogenesis for tumor colonization, and they have been observed in many tumors, including BrMs
[15, 36, 37]. In cluster 3, a series of eukaryotic initiation factors (eIFs) that cooperate with ribosomes for
mRNA translation was identified (Figure 3D). Because mis-regulated mRNA expression is a common feature
of tumor growth, elFs are aberrantly expressed in many human cancers and serve as potential drug targets
in cancer therapy [38]. In addition, subunits of chaperonin-containing tailless complex polypeptide 1 (CCT
or TRiC) in cluster 3 play a key role in mediating protein folding and cytoskeleton assembly, which may
influence tumor division, migration, and invasion [39].

Among gliomas, when comparing IV-Mut subgroups to II/III-Mut subgroups, nesprin-1 (SYNEL, 4.18 times
lower in IV-Mut vs. II/III-Mut) has previously been identified as a frequently high-mutated gene in GBM
patients and associated with poor survival [40-42]. Similarly, low glycine decarboxylase (GLDC, 13.48 times
lower in IV-Mut vs. II/III-Mut) expression in IV-Mut increases the toxic production of aminoacetone and
methylglyoxal, resulting in short survival [43, 44]. Another downregulated protein in IV-Mut, namely, serum
deprivation response protein (SDPR or CAVIN2, 10.22 times lower in IV-Mut vs. II/III-Mut), has also been
reported to be correlated with poor survival in patients [45]. Conversely, CD14 (4.25 times higher in IV-Mut
vs. II/III-Mut) is widely expressed in gliomas, as detected by immunohistochemistry, and the number of
CD14™ cells increases as gliomas progress [46, 47]. TFc fragment of IgG binding protein (FCGBP, 68.19 times
higher in IV-Mut vs. II/III-Mut) has been demonstrated to participate in tumor immunity and is expressed
in different grades of gliomas, especially in high-grade gliomas [48]. Similarly, the expression of mitogen-
activated protein kinase (MEK1 or MAP2K1, 2.18 times higher in IV-Mut vs. II/III-Mut) is positively
correlated with the grade of glioma as MEKI activates downstream RAS/MAPK signaling pathway for
tumor proliferation and invasion, thereby supporting the current use of MEK inhibitors for glioma therapy
[49, 50]. In addition, there were several significantly changed proteins (e.g., PPIF, PRSS1, PTRHDI1, and
PDLIMZ2; Figure S3D) that have not been reported in glioma research but are regarded as drug targets for
other diseases. For instance, PDZ and LIM domain protein 2 (PDLIM2) regulates transcriptional factors in
multiple cancers, such as B.C, L.C, and kidney cancer [51] and it has been explored as a therapeutic target
for cancer treatment. Thus, PDLIM2 may be used as a novel diagnostic marker to differentiate high-grade
gliomas from low-grade formations, and it may even a drug target for gliomas. In addition, comparison
of the DEPs in the low-grade versus high-grade group (IV-Mut vs. II/III-Mut) and in the IDH! mutant
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versus wild-type group (IV-Mut vs. IV-WT) resulted in a low overlap between the two cohorts (cure S3F).
Therefore, these results suggested that the proteomics results are reliable and applicable for discriminating
different types of gliomas.

The present study utilized BrMs and gliomas to comprehensively analyze primary and secondary brain
tumors. Proteomic analysis revealed distinct pathway-level differences between the two types of brain ma-
lignancies, in which BrMs focused on tumor development and gliomas progressed to invasiveness. Notably,
microenvironment analysis has shown that BrM samples have a more pronounced accumulation of lympho-
cytes and neutrophils compared to gliomas, whereas gliomas are dominated by microglia [17]. Furthermore,
the proteomic differences of BrM (L.C) and glioma (IV) were utilized for precise disease classification. By
attempting machine learning, five proteins (KRT8, KRT19, KRT7, TACSTD2, and CDH1) were furtherly
selected to classify these two tumors with an accuracy of 90%. In particular, three of these proteins, namely,
KRTS8, KRT19, and KRT7, belong to the keratin family. Keratins, including KRT7, KRT8, and KRT19, are
extensively used acs diagnostic tumor markers as malignancies largely maintain the specific keratin patterns
associated with their respective cells of origin [52]. Tumor-associated calcium signal transducer 2 (TACSTD2
or TROP2) is a transmembrane glycoprotein that is highly expressed in various cancer types [53]. In the
present study, TACSTD2 was overexpressed in BrM (L.C) compared to glioma (IV), suggesting that it may
be a candidate marker to differentiate the two cancer types. Another transmembrane glycoprotein, cadherin
1 (CDH1 or E-cadherin), has also been demonstrated to be upregulated in secondary metastases [54]. In
summary, these five biomarkers have been validated to be dysregulated in other cancers, and the present
study revealed their potential capacity for distinguishing glioma (IV) and BrM (L.C).

Here, we built a comprehensive and comparative proteomic analysis for both BrMs and gliomas for the first
time, which uncover the different proteome patterns of these two typical malignant tumors in the brain,
indicating potential application in cancer-specific therapy. Further efforts can focus on biomarker validation
with more clinical samples.

5 ASSOCITATED DATA

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org) via the iProX partner repository [55] with the dataset iden-
tifier PXD033881.
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Clinical relevance

Malignant brain tumors, whether primary or secondary, are among the deadliest cancers with poor prognosis
and short patient survival. Despite advances in understanding the driver gene mutation and heterogeneity
within tumor cells, there is limited information about proteomic changes. The aim of our study was to
construct a systemic proteome of those two typical malignant tumors in human brain: primary (gliomas)
and secondary (brain metastases) tumors, and dig out their heterogeneities for disease type-specific diagnosis
and therapy. In the current work, conserved protein patterns were found in brain metastases. Among
gliomas, proteomic heterogeneities were confirmed in different grades of gliomas, which can serve as novel
diagnostic biomarkers for glioma subgrouping. In addition, distinct pathway-level differences among two
types of brain malignancies were firstly summarized, and five newly discovered proteins were recognized as
candidate biomarker to discriminate primary and secondary tumors.
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