Key factors determining nightside energetic electron losses driven by whistler-mode waves

Ethan Tsai¹, Anton V Artemyev², Qianli Ma³, Didier Mourenas⁴, Oleksiy Agapitov⁵, Xiao-Jia Zhang⁶, and Vassilis Angelopoulos³

¹UCLA ²UCLA IGPP ³University of California Los Angeles ⁴CEA ⁵Space Science Laboratory, UC Berkeley ⁶The University of Texas at Dallas

December 9, 2023

Abstract

Energetic electron losses by pitch-angle scattering and precipitation to the atmosphere from the radiation belts are controlled, to a great extent, by resonant wave particle interactions with whistler-mode waves. The efficacy of such precipitation is primarily controlled by wave intensity, although its relative importance, compared to other wave and plasma parameters, remains unclear. Precipitation spectra from the low-altitude, polar-orbiting ELFIN mission have previously been demonstrated to be consistent with energetic precipitation modeling derived from empirical models of field-aligned wave power across a wide-swath of localtime sectors. However, such modeling could not explain the intense, relativistic electron precipitation observed on the nightside. Therefore, this study aims to additionally consider the contributions of three modifications – wave obliquity, frequency spectrum, and local plasma density – to explain this discrepancy on the nightside. By incorporating these effects into both test particle simulations and quasi-linear diffusion modeling, we find that realistic implementations of each individual modification result in only slight changes to the electron precipitation spectrum. However, these modifications, when combined, enable more accurate modeling of ELFIN-observed spectra. In particular, a significant reduction in plasma density enables lower frequency waves, oblique, or even quasi-field aligned waves to resonate with near $\$ ism1\$ MeV electrons closer to the equator. We demonstrate that the levels of modification required to accurately reproduce the nightside spectra of whistler-mode wave-driven relativistic electron precipitation match empirical expectations, and should therefore be included in future radiation belt modeling.

Key factors determining nightside energetic electron losses driven by whistler-mode waves

Ethan Tsai¹, Anton Artemyev¹, Qianli Ma^{2,3}, Didier Mourenas^{4,5}, Oleksiy Agapitov⁶, Xiao-Jia Zhang^{7,1}, Vassilis Angelopoulos¹

5	¹ Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA 90095,
6	USA
7	² Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles,
8	USA
9	3 Boston University, Boston, MA, United States
10	⁴ CEA, DAM, DIF, Arpajon, France
11	⁵ Laboratoire Matière en Conditions Extrêmes, Paris-Saclay University, CEA, Bruyères-le-Châtel, France
12	⁶ Space Sciences Laboratory, University of California, Berkeley, CA, USA
13	7 Department of Physics, The University of Texas at Dallas, Richardson, TX, USA

Key Points:

1

2

3

14

20

15	•	Comparing ELFIN data with test particle and quasi-linear simulations, we inves-
16		tigate whistler-driven electron precipitation on the nightside
17	•	A reduction in background plasma density is key to enabling whistler-mode waves
18		to efficiently scatter electrons up to 1 MeV
19	•	Decreasing wave frequency as a function of latitude and wave obliquity, are both

integral to capturing realistic nightside electron losses

 $Corresponding \ author: \ Ethan \ Tsai, \ \texttt{ethantsaiQucla.edu}$

21 Abstract

Energetic electron losses by pitch-angle scattering and precipitation to the atmosphere 22 from the radiation belts are controlled, to a great extent, by resonant wave particle in-23 teractions with whistler-mode waves. The efficacy of such precipitation is primarily con-24 trolled by wave intensity, although its relative importance, compared to other wave and 25 plasma parameters, remains unclear. Precipitation spectra from the low-altitude, polar-26 orbiting ELFIN mission have previously been demonstrated to be consistent with ener-27 getic precipitation modeling derived from empirical models of field-aligned wave power 28 across a wide-swath of local-time sectors. However, such modeling could not explain the 29 intense, relativistic electron precipitation observed on the nightside. Therefore, this study 30 aims to additionally consider the contributions of three modifications – wave obliquity, 31 frequency spectrum, and local plasma density – to explain this discrepancy on the night-32 side. By incorporating these effects into both test particle simulations and quasi-linear 33 diffusion modeling, we find that realistic implementations of each individual modifica-34 tion result in only slight changes to the electron precipitation spectrum. However, these 35 modifications, when combined, enable more accurate modeling of ELFIN-observed spec-36 tra. In particular, a significant reduction in plasma density enables lower frequency waves, 37 oblique, or even quasi-field aligned waves to resonate with near $\sim 1 \text{ MeV}$ electrons closer 38 to the equator. We demonstrate that the levels of modification required to accurately 39 reproduce the nightside spectra of whistler-mode wave-driven relativistic electron pre-40 cipitation match empirical expectations, and should therefore be included in future ra-41 diation belt modeling. 42

43 Plain Language Summary

Whistler-mode waves are a type of electromagnetic wave that mediate electron dy-44 namics in Earth's radiation belts and are simultaneously important for energizing elec-45 trons and driving loss mechanisms. Most radiation belt models today do not adequately 46 capture the effects of these waves on relativistic electrons, which are important to study 47 because these energetic electrons are often called "Killer Electrons" for their ability to 48 degrade spacecraft electronics. Additionally, when lost into Earth's atmosphere, these 49 electrons can also change atmospheric chemistry and ionospheric properties, making them 50 an important input parameters for atmospheric, ionospheric, and magnetospheric mod-51 eling. This study uses two different modeling methods to determine which properties of 52 whistler-mode waves are most important for accurately capturing these wave-particle in-53 teractions on the nightside, where plasma interactions are more dynamic. The results 54 agree well with statistical results from the Electron Losses and Fields INvestigation (ELFIN) 55 mission, allowing us to fully explain the mechanisms behind whistler-mode wave-driven 56 electron losses on the nightside. 57

58 1 Introduction

Earth's inner magnetosphere is filled with energetic electron fluxes injected from 59 the plasma sheet, that are then further accelerated via resonant interactions with elec-60 tromagnetic whistler-mode (chorus) waves (Millan & Baker, 2012; Shprits et al., 2008). 61 These wave-particle interactions are, in great part, also responsible for energetic elec-62 tron pitch-angle scattering into the loss cone and subsequent electron loss through pre-63 cipitation into Earth's atmosphere (Millan & Thorne, 2007; Shprits et al., 2008). This 64 contribution to both acceleration and pitch-angle scattering of energetic electrons makes 65 the whistler-mode wave a crucial element of outer radiation belt dynamics (Bortnik & 66 Thorne, 2007; Thorne, 2010; Li & Hudson, 2019). Not only do energetic radiation belt 67 electrons serve as an important space weather proxy (Horne et al., 2013), relativistic elec-68 tron can also penetrate deep into the thermosphere/mesosphere (Xu et al., 2020) con-69 tributing to ozone depletion (Thorne, 1980; Lam et al., 2010; Turunen et al., 2016). Un-70

derstanding the mechanisms behind the global distribution of energetic electron losses
 is therefore important for studying radiation belt dynamics and atmospheric chemistry.

Energetic ($\gtrsim 100 \text{ keV}$) electron losses due to whistler-mode waves is one such topic 73 that has yet to be fully investigated. It is known that these waves can scatter electrons 74 up to 1 MeV (O'Brien et al., 2004; Thorne et al., 2005; Blake & O'Brien, 2016; Shumko 75 et al., 2018; Breneman et al., 2017), which is problematic because current radiation belt 76 models typically only incorporate diffusive losses of sub-relativistic electrons (up to \sim 77 500 keV). Additionally, previous research (Tsai et al., 2023) has revealed a day-night dif-78 79 ference in energetic electrons scattered by whistler-mode waves, with more intense electron precipitation on the dayside than on the nightside. This is attributed to two system-80 level properties -(1) nightside regions generally have a lower plasma density and (2) night-81 side wave activity is generally more confined to the equatorial plane (Meredith et al., 2001, 82 2003; Agapitov et al., 2013) – which both cause strong resonant wave particle interac-83 tions to preferentially occur on the dayside, resulting in more extreme energetic electron 84 losses (e.g., Thorne et al., 2005; Mourenas, Artemyev, Agapitov, & Krasnoselskikh, 2014; 85 Wang & Shprits, 2019; Aryan et al., 2020). This is supported by Tsai et al. (2023), which 86 used modeled electron precipitation spectra derived from statistically-averaged wave in-87 tensity distributions from Agapitov et al. (2018) to directly compare with statistical ob-88 servations of electron precipitating fluxes from ELFIN (Angelopoulos et al., 2020). Al-89 though these model-data comparisons showed good agreement between electron precip-90 itation and wave power in the dusk and daysides, ELFIN-measured nightside relativis-91 tic ($\gtrsim 500 \text{ keV}$) precipitating flux rates were substantially larger than anticipated (i.e. 92 modeled) and nearly comparable to that on the dayside. Understanding mechanisms that 93 can cause such intense energetic precipitation is a prerequisite for accurately modeling electron loss in the radiation belts, therefore motivating the need to explore what key 95 factors actually determine nightside electron losses. 96

There are a few prime candidates that determine the efficiency of wave-particle resonant interactions (and, particularly, the energy dependence of whistler-mode wave driven electron scattering):

 Wave intensity distribution along magnetic field lines (see discussion in Thorne et al., 2005; Wang & Shprits, 2019).

102

103

104

105

106

- Obliquity of wave propagation relative to the background magnetic field (see discussion in Lorentzen et al., 2001; Mourenas, Artemyev, Agapitov, & Krasnoselskikh, 2014; Artemyev et al., 2016).
- 3. Wave frequency spectrum and its variation along magnetic field lines (see discussion in Agapitov et al., 2018)

4. Equatorial plasma density magnitude (see discussion in Thorne et al., 2013; Agapitov et al., 2019; Allison & Shprits, 2020) and its variation along magnetic field lines (see discussion in Summers & Ni, 2008; Artemyev et al., 2013).

Having already examined the importance of wave amplitude in Tsai et al. (2023), we now 110 study the remaining three mechanisms which could potentially modulate nightside elec-111 tron precipitating spectra. First, intense nightside whistler-mode waves are typically as-112 sociated with strong plasma sheet injections (Tao et al., 2011; Fu et al., 2014; X. Zhang 113 et al., 2018) which are often accompanied by the enhanced convection electric field which 114 transports cold plasma Earthward, thereby decreasing equatorial plasma density (Vasko, 115 Agapitov, Mozer, Bonnell, et al., 2017; Agapitov et al., 2019). A lower plasma density 116 results in a lower plasma frequency; a lower plasma frequency to gyrofrequency ratio, 117 f_{pe}/f_{ce} yields a higher cyclotron resonance energy $E_R \propto (f_{ce}/f_{pe})^2$ to f_{ce}/f_{pe} (from 118 low to high energy) of electrons for given wave frequencies, wave normal angles, and elec-119 tron pitch-angles (Stix, 1962; Summers et al., 2007; Li, Thorne, Nishimura, et al., 2010; 120 Allison et al., 2021). This nightside localized density reduction can thus potentially in-121 crease the scattering rate of relativistic electrons. 122

Second, statistical observations have shown a clear trend of average wave frequency 123 decreasing with latitude along field lines (i.e. increasing distance from the equatorial plane) 124 (Agapitov et al., 2018). This is likely caused by preferential Landau damping of higher-125 frequency waves resonating with suprathermal electrons (L. Chen et al., 2013; Watt et 126 al., 2013; Maxworth & Golkowski, 2017). A lower normalized wave frequency f/f_{ce} means 127 a higher cyclotron resonance energy $E_R \propto (f_{ce}/f)(1-f/f_{ce})^3$ to $(f_{ce}/f)^{1/2}(1-f/f_{ce})^{3/2}$ 128 from low to high energy (Li, Thorne, Nishimura, et al., 2010; Mourenas et al., 2012). Thus, 129 this reduction in the mean wave frequency in the nightside off-equatorial region may also 130 increase the scattering rate of relativistic electrons. 131

Third, plasma injections are often associated with enhanced electrostatic turbu-132 lence (Mozer et al., 2015; Agapitov et al., 2015; Vasko, Agapitov, Mozer, Artemyev, et 133 al., 2017; Malaspina et al., 2018) that forms a plateau in the field-aligned velocity dis-134 tribution and significantly reduces Landau damping of oblique whistler-mode waves (see 135 discussion in Mourenas et al., 2015; Ma et al., 2017; Artemyev & Mourenas, 2020). In 136 this regime, oblique (with wave normal angles below the Gendrin angle $\theta_G \approx a\cos(2f/f_{ce})$) 137 and very oblique (with wave normal angle up to the resonant cone angle $\theta_r \approx \operatorname{acos}(f/f_{ce})$) 138 waves may survive Landau damping (see Min et al., 2014; R. Chen et al., 2019; Sauer 139 et al., 2020; Ke et al., 2022). These waves then become oblique off the equatorial plane 140 (Bortnik et al., 2007; L. Chen et al., 2013), or, in more unusual cases, are generated within 141 the equatorial source region (Artemyev et al., 2016; Li, Mourenas, et al., 2016; Agapi-142 tov et al., 2016). Wave obliquity not only increases the resonant interaction energy with 143 electrons as $E_R \propto 1/k_{\parallel}^2 \propto 1/\cos^2\theta$ (e.g., Verkhoglyadova et al., 2010; Mourenas et 144 al., 2015), but also allows for interactions with electrons at higher-order cyclotron res-145 onances ($n \gg 1$, e.g., Shklyar & Matsumoto, 2009; Mourenas et al., 2012; Artemyev 146 et al., 2013; Albert, 2017) which can drastically increase the resonance energy $E_R \propto n^2$ 147 (e.g., Lorentzen et al., 2001; Gan et al., 2023). Thus, nightside whistler-mode wave obliq-148 uity could also potentially increase the scattering rate of relativistic electrons. 149

Here, we examine each of these three mechanisms to see whether they can explain 150 the enhanced precipitation of relativistic electrons in the nightside MLT sector using a 151 combination of statistics from ELFIN observations (Angelopoulos et al., 2020), test par-152 ticle simulations (Tsai et al., 2022, 2023), and quasi-linear diffusion code (Ma et al., 2012, 153 2015). This paper is organized as follows: Section 2 details ELFIN observations/statistics 154 and presents observational evidence of intense nightside precipitation of relativistic elec-155 trons; Section 3 describes the basics of the test particle simulation and quasi-linear dif-156 fusion codes; Section 4 compares ELFIN data to results from a variety of runs explor-157 ing the three main modifications – reduced plasma density, wave obliquity, wave frequency 158 variation along magnetic field lines; finally, Section 5 summarizes and discusses the ob-159 tained results. 160

¹⁶¹ 2 Data Sets

The ELFIN CubeSats (ELFIN A and B) are identically equipped with an Ener-162 getic Particle Detector for Electrons (EPDE), capable of measuring energy and pitch-163 angle distributions of energetic electrons with $\Delta E/E = 40\%$ across 16 logarithmically 164 spaced energy channels between 50 keV and 5 MeV (Angelopoulos et al., 2020). Spin-165 ning at just over 21 revolutions per minute (spin period ≈ 2.8 sec), ELFIN's 16 sectors 166 per spin yields a spin phase resolution of $\Delta \alpha = 22.5^{\circ}$. The main data product used in 167 this study is the precipitating-to-trapped flux ratio, $j_{prec}/j_{trap}(E)$, where $j_{trap}(E)$ is the 168 locally trapped (outside of the local bounce loss-cone) electron flux and $j_{prec}(E)$ is the 169 flux integrated over the local loss-cone with a correction to remove the backscattered fluxes 170 from the opposite hemisphere (see details in Mourenas et al., 2021; Angelopoulos et al., 171 2023). Figure 1 shows two typical examples of ELFIN outer radiation belt crossings on 172 the nightside with $j_{trap}(E)$ (a,d) and j_{prec}/j_{trap} (b,e) distributions. 173

This study utilized 30 months (January 2020 - June 2022) of ELFIN's $j_{trap}(E)$ and 174 $j_{prec}(E)$ measurements during strong and bursty energetic electron precipitation events 175 (for details regarding statistical coverage, see Figure 5 in Tsai et al., 2023). In order to 176 obtain a statistical representation of whistler-mode-driven electron precipitation, data 177 was selected based on data quality (minimum 4 counts/second for any given energy or 178 pitch angle bin) and precipitation intensity $(j_{prec}(E)/j_{trap}(E) > 0.5$ at ELFIN's low-179 est energy bin of 63 keV). In addition, there were provisions to identify and remove elec-180 tron precipitation events driven by field-line curvature scattering, EMIC-driven precip-181 itation, and microbursts. Curvature scattering (Imhof et al., 1977; Sergeev et al., 1983; 182 Büchner & Zelenvi, 1989) of plasma sheet and radiation belt electrons can be identified 183 by its sharp energy/latitude dispersion (isotropy boundary) that results in high precipitating-184 to-trapped flux ratio at relativistic energies closer to the planet (see the IB precipitat-185 ing pattern in Fig. 1b and statistical results in Wilkins et al. (2023)). Such data, in ad-186 dition to the isotropic precipitation with $j_{prec}/j_{trap} \sim 1$ of < 300 keV electrons pole-187 ward from the isotropy boundary (Artemyev et al., 2022), are removed from our statis-188 tics. Next, electromagnetic ion cyclotron (EMIC) waves, which are caused by nightside 189 ion injections (Jun et al., 2019; Kim et al., 2021) and efficiently scatter and precipitate 190 relativistic electrons (e.g., Blum, Halford, et al., 2015; Blum, Li, & Denton, 2015; Yah-191 nin et al., 2016, 2017; Capannolo et al., 2019, 2023), are excluded. These EMIC-driven 192 observations are identified by precipitating-to-trapped ratios that reach their peak at >193 500 keV energy (see examples in X. An et al., 2022; Grach et al., 2022; Capannolo et al., 194 2023; Angelopoulos et al., 2023). Additionally, whistler-mode hiss waves provide a wide 195 energy range of scattering, from weak scattering further from the plasmasphere to pre-196 cipitation of relativistic electrons within the plasmasphere (see discussion of ELFIN ob-197 servations of such precipitation in Mourenas et al., 2021; Angelopoulos et al., 2023; X.-198 C. Shen et al., 2023); these hiss precipitation events are also eliminated. Figure 1e shows 199 this particular pattern, which is recognizable by a low j_{prec}/j_{trap} ratio peaking at ≥ 500 200 keV energy at low L-shells. Finally, we exclude all precipitation patterns showing microburst-201 like flux variation within one spin (such events are characterized by precipitating-to-trapped 202 flux ratio exceeding one for relativistic electron energies, see X.-J. Zhang et al., 2022, for 203 further examples). 204

All these effects are programmatically eliminated from statistics leaving us with only one type of precipitating energy distribution: a precipitating-to-trapped ratio monotonically decreasing with energy, observed primarily within L-shells $\in [4, 8]$, corresponding to the outer radiation belt outside the plasmasphere (e.g., Mourenas et al., 2021). This type of precipitation can only be caused by whistler-mode waves (see more details and examples in Tsai et al., 2022; X.-J. Zhang et al., 2022, 2023), and is demonstrated in Figure 1(b,e).

We combine all ELFIN observations from the nightside MLT sector (27950 spins 212 across 4458 radiation belt crossings) and plot the averaged precipitating-to-trapped flux 213 spectra for three geomagnetic activity levels and two L-shell domains (4.5-5.5 and 5.5-5.5 and 5214 7.5) for $AE \in [100, 300]$ nT in Fig. 2d. Fig. 2(a-c) show that the precipitating-to-trapped 215 electron flux ratio j_{prec}/j_{trap} above 100 keV increases significantly as AE increases. The 216 precipitating-to-trapped flux ratio reaches $j_{prec}/j_{trap} \sim 0.1$ up to 200-400 keV when 217 AE > 300 nT. This result is consistent with past observations of stronger energetic elec-218 tron injections from the plasma sheet during periods of higher AE (Tao et al., 2011; Runov 219 et al., 2015; Gabrielse et al., 2014), leading to even more intense whistler-mode waves 220 (Meredith et al., 2001; X. J. Zhang et al., 2018) which can efficiently precipitate 50 – 221 500 keV electrons (Summers et al., 2004; Thorne et al., 2005; Aryan et al., 2020; Agapi-222 tov et al., 2018). The ratio j_{prec}/j_{trap} is also higher at L = 5.5-7.5 than at L = 4.5-223 5.5 in Fig. 2, in agreement with the higher chorus wave power at higher L > 5.0-5.5224 in the night sector in spacecraft statistics (Agapitov et al., 2018; Meredith et al., 2020). 225 The smooth decrease of j_{prec}/j_{trap} as electron energy increases in Fig. 2d is consistent 226 with the expectation that at higher latitudes, wave power decreases while minimum cy-227

Figure 1. Two examples of ELFIN observations with strong precipitation of energetic electrons in the nightside MLT sector showing locally trapped electron fluxes (a,d), precipitating-to-trapped flux ratio (b,e), and ELFIN's MLT, *L*-shell coordinates from (Tsyganenko, 1989) model (c,f).

clotron resonance energy increases, therefore precipitating higher energy electrons at lower
 absolute flux levels (Agapitov et al., 2018; Meredith et al., 2020).

²³⁰ 3 Simulation

Calculating the precipitating-to-trapped flux ratios is useful because it eliminates 231 the trapped flux variability (which can vary by orders of magnitude). The slope of the 232 ratio's energy spectra now represents only the relative effects of resonant interactions with 233 whistler-mode waves. To then compare with ELFIN statistics, we obtain modeled precipitating-234 to-trapped flux ratios using two different types of simulations: (1) a configurable large-235 ensemble test particle simulation for electron resonant interactions, as used in previous 236 work (Tsai et al., 2022, 2023) and (2) a quasi-linear diffusion code which has been used 237 in previous radiation belt simulations (Ma et al., 2012, 2015). The test particle simu-238 lations include potential non-linear resonant effects and consider only purely monochro-239 matic waves, whereas the quasi-linear diffusion code models electron scattering by an en-240 semble of oblique waves with higher order resonant interactions across a distribution of 241 frequencies. Thus, by comparing results obtained by these two approaches, we can fully 242 capture the importance of different resonant effects for electron scattering and losses. 243

244

3.1 Test particle simulation

Our test particle simulation (Tsai et al., 2022, 2023) is designed to compute the 245 expected energy distribution of the electron precipitation flux ratio given realistic wave 246 parameters. In order to obtain enough statistics – especially at higher energies where 247 it is less likely for electrons to be scattered into the loss cone – we use a large number 248 of particles for all test particle simulations in this study with $N = 5 \times 10^6$. For this 249 to run in a reasonable amount of time, we parallelize the code and implement it in Ju-250 lia 1.9.3 (Bezanson et al., 2017) using the differential equations package (Rackauckas & 251 Nie, 2017). The Hamiltonian formulation for wave-particle resonant interactions (Albert 252 et al., 2013; Vainchtein et al., 2018) incorporates nonlinear effects such as phase bunch-253

Figure 2. Plots (a-c) show the statistical distributions of precipitating-to-trapped electron spectra in (MLT, energy) space for several levels of geomagnetic activity. Plots (d) show energy profiles of precipitating-to-trapped fluxes for three geomagnetic activity levels in the nightside MLT \in [18, 4]. The shaded blue range regions represent the upper (AE > 300 nT) and lower (AE < 100 nT) bounds of geomagnetic activity levels while the central black curve depicts AE \in [100, 300] nT.

ing, phase trapping, and anomalous trapping (Demekhov et al., 2006; Bortnik et al., 2008; 254 Katoh et al., 2008; Omura et al., 2007; Kitahara & Katoh, 2019; Albert et al., 2021). The 255 simulation uses monochromatic waves, which is generally valid for describing diffusive 256 scattering in a background dipolar magnetic field due to its strong magnetic field gra-257 dient (Albert, 2001, 2010; Shklyar, 2021). Critically, the wave field is modified by the 258 function $B_w(\lambda, L, MLT, Kp)$ which describes the wave amplitude variation along mag-259 netic field lines using an empirical chorus wave model built using 14 years of Cluster and 260 Van Allen Probe statistics. The wave model is dependent on latitude, geographic loca-261 tion, and geomagnetic activity (see model and coefficients in Agapitov et al., 2018), which 262 is necessary for realistic modeling of energetic electron losses. Further details of the test 263 particle simulation implementation can be found in Tsai et al. (2022, 2023). 264

In this study, we have further augmented the test particle simulation to explore the latitudinal dependence of wave frequency and obliquity so that wave frequency $\omega(\lambda, \theta)$ is a function of both latitude and wave normal angle. Changing into dimensionless variables allows us to provide a mean normalized wave frequency $\omega_m(\lambda) = \omega(\lambda)/\Omega_{ce,eq}$ and mean wave normal angle $\theta(\lambda)$ both as functions of magnetic latitude λ (as described in Section 3.3). With dimensionless variables, the normalized plasma frequency is defined as $\Omega_{pe} = \omega_{pe,eq}/\Omega_{ce,eq}$.

3.2 Quasi-linear diffusion code

272

To instill further confidence in test particle simulation results, we calculate the quasilinear diffusion coefficients using the Full Diffusion Code (Ni et al., 2008, 2011; Shprits & Ni, 2009; Ma et al., 2018) and model the precipitating electron flux using the Fokker-Planck diffusion code (Ma et al., 2012, 2015). This quasi-linear diffusion code physically differs from the test particle simulations primarily in the fact that it prescribes Gaussian distributions for the wave frequency (Glauert & Horne, 2005):

$$\hat{B}^{2}(\omega) \sim \exp\left[-\frac{\left(\omega - \omega_{m}(\lambda)\right)^{2}}{\delta\omega^{2}}\right]$$

²⁷⁹ and the wave normal angle:

$$g(\theta) \sim \exp\left[-\frac{\left(\tan\theta - \tan\theta_m(\lambda)\right)^2}{(\tan\delta\theta)^2}\right]$$

where mean values ω_m and θ_m with bandwidths $\delta\omega$ and $\delta\theta$ represent wave frequency and normal angle, respectively. These distributions are provided relative to mean values, $\omega_m(\lambda)$ and $\theta_m(\lambda)$, which are given as functions of magnetic latitude λ and discussed in the next section (see details in Artemyev et al., 2013; Agapitov et al., 2018; Aryan et al., 2020).

We use the bounce-averaged Fokker-Planck equation to model the electron precipitation rate (Lyons et al., 1972; Glauert & Horne, 2005):

$$\frac{\partial f}{\partial t} = \frac{1}{\tau_b \left(\alpha_{eq}\right) \sin 2\alpha_{eq}} \frac{\partial}{\partial \alpha_{eq}} \left(\tau_b \left(\alpha_{eq}\right) \sin 2\alpha_{eq} \left(\left\langle D_{\alpha\alpha} \right\rangle \frac{\partial f}{\partial \alpha_{eq}} \right) \right) - \frac{f}{\tau_{loss}} \tag{1}$$

where α_{eq} is the equatorial pitch angle, $\tau_b \approx 1.38 - 0.32 \left(\sin \alpha_{eq} + \sin^2 \alpha_{eq}\right)$ (see Orlova & Shprits, 2011), $\langle D_{\alpha\alpha} \rangle$ is the bounce-averaged diffusion rate, and $\tau_{loss}(t)$ is the bounce loss time (and is set to be a quarter of the bounce period inside the local loss-cone and infinity outside the loss cone). We use the quasi-linear diffusion code to numerically solve Eq. (1), with diffusion rates derived from $\hat{B}^2(\omega)$ and $g(\theta)$ distributions (see Ni et al., 2008, 2011; Ma et al., 2015, 2018). Zero-gradient boundary conditions in pitch angle are set to simulate the loss cone filling of electrons due to wave scattering (Ma et al., 2022).

3.3 Frequency and Obliquity Models

293

In both simulations, we use the following two models to compare the effects of whistler wave frequency (normalized to the equatorial gyrofrequency) $\omega_m = \omega/\Omega_{ce,eq}$:

- Model 1: normalized wave frequency held constant at $\omega_m = 0.35$, the typical frequency of whistler mode chorus waves near the equator (Agapitov et al., 2018).
- Model 2: function $\omega(\lambda)$ linearly decreasing from $0.41\Omega_{ce,eq}$ at the equator until reaching a constant $0.16\Omega_{ce,eq}$ for $\lambda \geq 20^{\circ}$. This model is based on statistics of offequatorial parallel and oblique lower-band chorus waves from the Van Allen Probes (Agapitov et al., 2018).

We use the following four models to describe the mean wave normal angle (WNA) θ_m . A scaling factor $\Theta(\lambda) = \lambda/(15^\circ + \lambda)$ is adopted to modify the WNA increase from 0 at the equator to $\Theta(45^\circ) = 0.75$ at 45° latitude in WNA1 and WNA2.

- **FAW:** a field-aligned wave model (with $\theta = 0^{\circ}$ in test particle simulations and $\theta_m = 0^{\circ}$, $\delta\theta = 30^{\circ}$ or $\delta\theta = 5^{\circ}$ in the quasi-linear diffusion code) that describes the most intense population of waves (Li, Santolik, et al., 2016; Agapitov et al., 2013) as they remain field-aligned off equator due to wave ducting by small-scale density structures (Hanzelka & Santolík, 2019; Y. Shen et al., 2021; Ke et al., 2021; Hosseini et al., 2021).
- WNA1: a moderately oblique WNA model with $\theta_1(\lambda) = \theta_G(\lambda) \cdot \Theta(\lambda)$, where $\theta_G = arccos(2\omega/\Omega_{ce})$ is the Gendrin angle (Gendrin, 1961). This model describes fieldaligned waves that are generated at the equator, but become mildly oblique as they propagate through the inhomogeneous plasma (e.g. Breuillard et al., 2012; L. Chen et al., 2013; Ke et al., 2017).
- **WNA2:** a very oblique WNA model with $\theta_2(\lambda) = \theta_r(\lambda) \cdot \Theta(\lambda)$, where $\theta_r = \arccos(\omega/\Omega_{ce})$ is the resonance cone angle. This describes field-aligned waves that are generated at the equator, but become very oblique as they propagate through the inhomogeneous plasma in the case of suppressed Landau damping (see discussion in Artemyev & Mourenas, 2020).

WNA3: an extremely oblique WNA model with $\theta_3(\lambda) = \theta_r(\lambda) - 2^\circ$. This model describes very oblique waves that are generated in the equatorial source region in the presence of field-aligned electron streams suppressing Landau damping (Mourenas et al., 2015; Li, Mourenas, et al., 2016; R. Chen et al., 2019; Kong et al., 2021).

The quasi-linear simulations also require a bandwidth parameter which sets the width 325 of the wave frequency and normal angle Gaussian distributions, defined in Section 3.2. 326 Frequency bandwidth $\delta\omega$ is set to 0.125, and the lower and upper cutoff frequencies are 327 set to be $\omega_m - 2\delta\omega$ and 0.5, respectively. Wave normal angle bandwidth is set to either 328 $\delta\theta = 5^{\circ}$ or $\delta\theta = 30^{\circ}$ for FAW, and $\delta\theta = 10^{\circ}$ for the other models; if $\theta_r(\lambda) - \theta_m(\lambda) < 0$ 329 20°, we set $\delta\theta = (\theta_r(\lambda) - \theta_m(\lambda))/2$. The lower (θ_{LC}) and upper (θ_{UC}) cutoff wave nor-330 mal angles are set as $\tan \theta_{LC} = \max(0, \tan \theta_m - 2 \tan \delta \theta)$ and $\tan \theta_{UC} = \min(\tan 89.9^\circ, \tan \theta_m +$ 331 $2 \tan \delta \theta$, respectively. 332

Finally, the magnetic wave power distribution $B_w^2(\lambda)$ is taken from an empirical 333 statistical model (Agapitov et al., 2018) at 23 MLT and L = 6 for Kp = 3. Note that 334 we use Kp = 3 as a reasonable estimate of average geomagnetic activity level for ELFIN 335 observations of electron precipitation driven by resonance with whistler-mode waves (see 336 Tsai et al., 2023, for further discussion). For quiet conditions $Kp \leq 2$, the wave inten-337 sity provides insufficient levels of precipitating electron fluxes, which is generally corrob-338 orated by the extremely low levels (i.e. near background) of precipitating fluxes ELFIN 339 observes during quiet periods. During disturbed storm times (Kp > 4), the precipitat-340 ing and locally trapped fluxes are occasionally too large and approach saturation of ELFIN's 341 EPDE instrument (see details in X.-J. Zhang et al., 2022). Both types of ELFIN obser-342 vations (either background-level precipitation or nearly-saturated measurements) are ex-343 cluded from the statistical analysis. 344

345 4 Data-model comparison

In this section, the precipitating-to-trapped electron flux ratio j_{prec}/j_{trap} , calculated through test particle simulations (TPS) or Quasi-Linear Diffusion Code (QLDC), are compared with j_{prec}/j_{trap} as measured by ELFIN. This allows us to assess the different roles potentially played by plasma density, wave obliquity, and wave frequency based on precipitating flux ratio variation with energy.

For proper comparison, the simulated j_{prec}/j_{trap} flux ratio is normalized to the ob-351 served j_{prec}/j_{trap} flux ratio at ELFIN's second energy bin (~ 97 keV), thereby remov-352 ing wave amplitude variability such that the spectral slope can be compared for across 353 various scenarios. This is valid because the $\sim 30 - 100$ keV precipitating-to-trapped 354 electron flux ratio correlates well with the equatorial wave amplitude (Li et al., 2013; Ni 355 et al., 2014). In addition, spurious variations in j_{prec}/j_{trap} modeled using our test par-356 ticle simulations tend to become larger below 97 keV, despite the large number of par-357 ticle runs per energy bin. These oscillations are absent from results of the quasi-linear 358 diffusion code, which correlate well with test particle simulation results above 97 keV 359 after normalization. 360

4.1 Role of plasma density

361

Figure 3 shows a comparison between the precipitating-to-trapped electron flux ra-362 tio j_{prec}/j_{trap} measured by ELFIN at L > 5 and 18-4 MLT (black) with j_{prec}/j_{trap} ob-363 tained from TPS (solid red) and QLDC (dashed red) with parallel (FAW model) lower-364 band chorus waves (adopting $\theta = 0^{\circ}$ in test particle simulations, $\delta \theta = 30^{\circ}$ in the quasi-365 linear diffusion code), using wave frequency Model 1 of constant frequency ($\omega_m = 0.35$) 366 chorus waves and a typical plasma frequency to gyrofrequency ratio $\Omega_{pe} = 6.5$ at L =367 6.5 and 23 MLT (Sheeley et al., 2001). In this plot (and remaining Figures 3-7), the gray 368 shaded regions of ELFIN data denote the boundaries of quiet (AE < 100 nT) and ac-369

Figure 3. ELFIN-measured precipitating-to-trapped electron flux ratio at L > 5 on the nightside (18 - 4 MLT) as a function of energy (black curve). The corresponding j_{prec}/j_{trap} flux ratio obtained from test particle simulations is shown for parallel (FAW model, $\theta = 0^{\circ}$) lower-band chorus waves, using frequency Model 1 ($\omega_m = constant$) and a typical $\Omega_{pe} = 6.5$ at L = 6.5and 23 MLT (solid red). Results from the quasi-linear diffusion code using the same parameters is shown in dashed red. Similarly, the cases of reduced density $\Omega_{pe} = 3$ modeled with test particle simulation (solid purple), quasi-linear diffusion code using narrow-band field aligned waves ($\delta \theta = 5^{\circ}$, dashed purple), and more quasi-linear field aligned waves ($\delta \theta = 30^{\circ}$, dashed blue), are shown. All simulation results are normalized to observations at 97 keV.

tive (AE > 350 nT) times. The normalized ratios j_{prec}/j_{trap} obtained from TPS and 370 QLDC are quite similar (compare solid with dashed lines of the same color), validating 371 the reliability of the quasi-linear approach (Kennel & Engelmann, 1966; Lyons et al., 1972; 372 Albert, 2005; Glauert & Horne, 2005; Mourenas et al., 2012; Mourenas, Artemyev, Agapi-373 tov, & Krasnoselskikh, 2014), especially in the case of field aligned waves, as demonstrated 374 in previous studies (Tao et al., 2012; Mourenas, Artemyev, et al., 2022; Gan et al., 2022; 375 Z. An et al., 2022). However, despite their normalization to the measured j_{prec}/j_{trap} at 376 97 keV, these similar ratios of j_{prec}/j_{trap} (red curves) obtained from test particle sim-377 ulations and from the quasi-linear diffusion code become $\sim 1.5-2$ times smaller than 378 the measured j_{prec}/j_{trap} at 200–1000 keV (black), corresponding to a deficiency of pitch-379 angle diffusion occurring at higher energies. For reference, this baseline case (red) rep-380 resents the same discrepancy on the nightside as first described in Tsai et al. (2023). 381

A reduced plasma density should lower the latitude of first-order cyclotron reso-382 nance with chorus waves for electrons near the loss-cone (Mourenas et al., 2012). Since 383 chorus wave power B_w^2 is higher at lower latitudes (Agapitov et al., 2018), a reduced den-384 sity is therefore expected to yield higher electron pitch-angle diffusion rate $D_{\alpha\alpha} \propto B_w^2$ 385 near the loss-cone leading to higher precipitation rates and fluxes at all energies. How-386 ever, adopting a reduced plasma density ($\Omega_{pe} = 3$) in test particle simulations (pur-387 ple line in Fig. 3) and normalizing the flux ratio at 97 keV leads to an even larger dis-388 crepancy across the 300 - 1000 keV range with a $\sim 2 - 3$ times smaller j_{prec}/j_{trap} ra-389 tio than ELFIN statistics show. We therefore interpret this density effect as more im-390 portant at lower energies ($\sim 100 \text{ keV}$) compared to higher energies (> 300 keV) due 391 to $B_w^2(\lambda)$ increasing, in our model and in observations, more steeply towards lower lat-392 itudes at $\lambda \leq 25^{\circ}$ (where resonance with ~ 100 keV electrons occurs) than at $\lambda > 25^{\circ}$ 393 (where resonance with ~ 1 MeV electrons occurs) during disturbed periods at 21-3 MLT 394 (Agapitov et al., 2018). Therefore, the wave power $B_w^2(\lambda)$ seen by electrons near the loss-395 cone increases only marginally at higher energies for both $\theta = 0^{\circ}$ in test-particle sim-396 ulations and $\theta < 5^{\circ}$ or $\theta < 30^{\circ}$ in QLDC simulations (solid/dashed purple and dashed 397 blue lines). This then reduces the normalized pitch-angle diffusion rate $D_{\alpha\alpha}$ near the loss-398 cone and the normalized j_{prec}/j_{trap} flux ratio, which varies roughly like $\approx \sqrt{D_{\alpha\alpha}}$ (Kennel 399 & Petschek, 1966; Li et al., 2013; Mourenas, Zhang, et al., 2022; Mourenas et al., 2023). 400

Adopting a more realistic spread of WNAs for quasi-field aligned waves ($\delta \theta = 30^{\circ}$. 401 blue dashed line) in the quasi-linear diffusion code leads to the effects of additional, higher-402 order cyclotron resonances to become more significant (Artemyev et al., 2016), which is 403 clearly shown as the difference between the blue and purple dashed lines in Figure 3. Due 404 to moderate obliqueness, this effect is most prominent in the lower energies – resonat-405 ing with waves around the equator – extending now to about 180 keV. However, it is not 406 enough to reproduce ELFIN observations up to 1 MeV, because the relative scattering 407 efficiency decreases with the purple curve at higher energies, causing the blue curve to 408 underestimate ELFIN statistics beyond > 250 keV. Despite the fact that, in observa-409 tions, the plasma frequency to gyrofrequency ratio Ω_{pe} does decrease at 18-4 MLT dur-410 ing disturbed periods (O'Brien & Moldwin, 2003), often down to $\Omega_{pe} \approx 3-4$ at $L \sim$ 411 6 when AE > 150 nT (Agapitov et al., 2019), results in Figure 3 show that plasma den-412 sity reduction alone cannot account for a relative increase of electron scattering at higher 413 energies. 414

4.2 Role of wave frequency

415

As noted earlier, statistical observations of lower-band chorus waves show that their normalized frequency is not constant as a function of latitude (as assumed in frequency Model 1), but rather, decreasing due to preferential Landau damping affecting higher frequencies at higher latitudes (Agapitov et al., 2018; Bunch et al., 2013; L. Chen et al., 2013), as reflected by frequency Model 2. Figure 4a shows that the j_{prec}/j_{trap} ratios obtained for wave normal angle model FAW from test particle simulations (solid curves)

Figure 4. To compare the effects of two frequency models, precipitating-to-trapped electron flux ratio j_{prec}/j_{trap} plotted for ELFIN statistics on the nightside (black) is shown in comparison with j_{prec}/j_{trap} ratios obtained from test particle simulations (TPS, solid lines) and quasi-linear diffusion code (QLDC, dashed lines). In (a), Frequency Model 2 (frequency decreasing toward higher latitudes, blue) produces slightly higher precipitation rates at 100 keV relative to 1 MeV as compared to a constant $\omega_m = 0.35$ (red). Plot (b) shows results from a variety of normalized wave frequency values that do not vary as a function of magnetic latitude, demonstrating that absolute frequency has little effect on the slope of the precipitation energy spectra.

and from the quasi-linear diffusion code (dashed curves) are both slightly decreased at E = 200 - 1000 keV when wave frequency Model 2 is used (blue curves), rather than when using Model 1. This is because a reduction of wave frequency alone, when adopting a fixed plasma density $\Omega_{pe} = 6.5$ at L = 6.5, has essentially the same effect as decreasing plasma density in Section 4.1 – albeit weaker in magnitude – by allowing firstorder cyclotron resonance for electrons near the loss-cone to occur at lower latitudes (Mourenas et al., 2012). In turn, this preferentially increases precipitation rates at low energies $E \lesssim$ 100 keV, the typical resonance energies at low-latitude plasma conditions.

Figure 4b shows that decreasing the wave frequency by a fixed amount significantly 430 increases electron precipitation rates by lowering the latitude of resonance with chorus 431 waves. But at the same time, it leads to only a slight increase of the slope of the energy 432 spectrum once normalized to ELFIN statistics, because the amplitude of resonant waves 433 is slightly more increased for 100 keV electrons than for 1 MeV electrons. For a large 434 plasma density, $\Omega_{pe} = 6.5$, this effect on the normalized j_{prec}/j_{trap} remains weak, and 435 both wave frequency Model 1 and 2 end up giving very similar results. Therefore, the 436 effects of frequency variation with latitude alone cannot account for the spectral shape 437 of the precipitation ratio in ELFIN's nightside observations. 438

439 4.3 Role of wave obliquity

Figure 5a compares ELFIN-observed precipitating-to-trapped flux ratio on the night-440 side (black) with that of simulations in order to explore the effects of a variety of wave-441 normal angle distributions paired with constant wave frequency (Model 1) and baseline 442 plasma density (Sheeley et al., 2001). Results from test particle simulations (solid curves) 443 and from the quasi-linear diffusion code (dashed curves) are displayed for four different 444 models of wave normal angle: FAW (red), WNA1 (green), WNA2 (blue), and WNA3 (pur-445 ple), corresponding to a progressively larger amount of wave power in oblique waves closer 446 to the resonance cone angle (see Section 3.3). Despite the large number of particles (N =447

Figure 5. ELFIN-observed j_{prec}/j_{trap} flux ratio at L > 5 on the nightside (18 - 4 MLT) as a function of electron energy (black). The corresponding ratios j_{prec}/j_{trap} obtained from test particle simulations (TPS, solid curves) and from the quasi-linear diffusion code (QLDC, dashed curves) are displayed for lower-band chorus waves in (a), using frequency Model 1 of constant frequency, and parameterized by four wave normal angle models: FAW (red), WNA1 (green), WNA2 (blue), and WNA3 (purple), with a normalization to observations at 97 keV, adopting a typical $\Omega_{pe} = 6.5$ at L = 6.5 and 23 MLT. (b) shows QLDC results for the same four wave normal angle models but for a reduced plasma density of $\Omega_{pe} = 3.0$.

 5×10^6), unnatural oscillations in the test particle simulations make it difficult to quan-448 tify the exact contribution differences among the FAW, WNA1, and WNA2 models. Es-449 pecially because the test particle simulation only includes first-order oblique wave inter-450 actions, it is reasonable to conclude that including wave obliquity in the TPS does not 451 significantly alter precipitation efficiency. However, results from the quasi-linear diffu-452 sion code generally agree with test particle simulation results, indicating the reliability 453 of the quasi-linear approach (described, e.g., by Kennel & Engelmann, 1966; Lyons et 454 al., 1972; Albert, 2005; Glauert & Horne, 2005; Mourenas et al., 2012; Mourenas, Arte-455 myev, Agapitov, & Krasnoselskikh, 2014). Our quasi-linear simulations show that wave 456 obliquity is ineffective at increasing high energy electron precipitation compared to low 457 energy electron precipitation (in the case of $\Omega_{pe} = 6.5$). Note that WNA1 and WNA2 458 models correspond to wave-normal angle distributions that extend up to three-quarters 459 of the Gendrin angle and resonance cone angle, respectively, at $\lambda > 45^{\circ}$, while the WNA3 460 model corresponds to highly oblique waves, at about 2° from the resonance cone angle. 461 Yet the results are nearly identical (dashed blue, dashed green, and dashed purple curves). 462

Oblique chorus waves can resonate with electrons via high-order cyclotron resonances 463 $(n \ge 1 \text{ or } n \le -2, \text{ e.g.}, \text{Shklyar \& Matsumoto, 2009; Mourenas et al., 2012; Artemyev}$ 464 et al., 2013, 2016; Albert, 2017), which can significantly increase diffusion rates at high 465 energy (Lorentzen et al., 2001; Gan et al., 2023). However, diffusion rates near the loss 466 cone due to higher-order cyclotron resonances rapidly decrease in magnitude as |n| in-467 creases, especially from |n| = 1 to |n| = 2 (Shprits & Ni, 2009), although this reduc-468 tion is weaker for highly oblique waves (Artemyev et al., 2016). To increase the ratio of 469 1 MeV to 100 keV pitch-angle diffusion rates near the loss cone, therefore, the waves must 470 be sufficiently oblique and/or plasma density and wave frequency should be sufficiently 471 low to enable only first-order resonance at ~ 100 keV, but higher-order resonances at 472 1 MeV (Artemyev et al., 2016; Mourenas & Ripoll, 2012; Shprits & Ni, 2009; Gan et al., 473 2023). Figure 5b indeed shows that when plasma density is reduced to $\Omega_{pe} = 3$ (or equiv-474

Figure 6. ELFIN-observed nightside (18 – 4 MLT) j_{prec}/j_{trap} electron flux ratio shown as a function of energy (black). (a) shows j_{prec}/j_{trap} flux ratios obtained from quasi-linear diffusion code (QLDC) for parallel (FAW) lower-band chorus waves (red), very oblique waves using wave normal angle model WNA3 (green), waves with a realistic wave frequency distribution (blue), WNA3 with a realistic wave frequency distribution (purple), FAW with reduced density (pink), and everything combined (orange). (b) shows the same flux ratios all normalized to the base case with no modifications (red) demonstrating which energy range each modification is most effective at on a linear scale. This shows that each effect examined alone cannot reproduce results from ELFIN individually.

alently, when wave frequency decreases with latitude, see Section 4.4), electron precipitation is greatly increased at 1 MeV relative to 100 keV as wave obliquity increases, especially in the case of highly oblique waves (WNA3). These results therefore suggest that
wave obliquity, alone, has a near-negligible effect on the high-energy to low-energy electron loss ratio; however, when combined with a density reduction, it can significantly enhance energetic electron losses.

481

4.4 Combined results

Figure 6a shows comparisons between the precipitating-to-trapped electron flux ra-482 tio j_{prec}/j_{trap} measured by ELFIN at L > 5 on the nightside (black), overlaid with j_{prec}/j_{trap} 483 obtained from the quasi-linear diffusion code for the three modifications in question 484 reduced plasma density $\Omega_{pe} = 3$, Frequency Model 2, and WNA3 – alone or in com-485 bination. As surmised in previous sections, each individual modification fails to agree 486 with the observed spectrum. With wave frequency Model 2 (blue) and WNA3 (green) 487 underestimating across entire energy range (i.e., increasing precipitation at 100 keV) and 488 reduced density (pink) providing a relative efficiency bump of j_{prec}/j_{trap} only at E <489 200 keV. Interestingly, however, ELFIN's statistical observations are only slightly un-490 derestimated when combining WNA3 and Frequency Model 2 (purple), and best matched 491 when all three modifications are combined (orange). Figure 6b shows the relative dif-492 ference produced by each modification compared to the baseline red curve. We see that 493 these effects synergistically enhance j_{prec}/j_{trap} flux ratios at higher energies. For exam-494 ple, Model 2 (blue) becomes relatively less effective at higher energy, while WNA3 (green) 495 immediately loses effectiveness, but catches back up closer to 1 MeV. However, when com-496 bined (purple), the relative precipitation is drastically enhanced in the entire 200-1000497 keV range, leading to far better agreement with observations. Further combining WNA3 498 and Frequency Model 2 with a reduced plasma density (orange) significantly enhances 499 precipitation past levels observed by ELFIN (black). This is likely due to two phenom-500 ena: first, the combined effects of a reduced plasma density and a decreasing wave fre-501 quency decrease the latitude at which cyclotron resonance with quasi-parallel waves oc-502

Figure 7. The comparison between observed electron precipitation ratios and simulation results using different wave frequency models, Ω_{pe} ratios, and wave normal angle models. In each plot, the black line denotes statistical averages of j_{prec}/j_{trap} flux ratios for nightside ELFIN observations with L > 5. Plots (a-c) show QLDC results with various modifications parameterized by Ω_{pe} : (a) shows field aligned waves with Frequency Model 1; (b) shows field aligned waves with Frequency Model 2; and (c) shows WNA1 combined with Frequency Model 2. (d) shows that all three effects $-\omega_{pe} \in [2.5, 4]$, combined with Frequency Model 2 and some level of wave obliquity – are necessary for recreating ELFIN nightside statistics.

curs far more significantly than each effect alone (Mourenas et al., 2012), leading to a larger increase of resonant wave power for higher energy electrons that best match ELFIN's observed precipitation spectra; second, the supplementary higher-order cyclotron resonances contributing at ~ 1 MeV, but not at ~ 150 keV, are of lower order (|n| = 2) than for higher density or frequency, allowing for a more dramatic increase of the 1 MeV to 150 keV pitch-angle diffusion rate ratio (Artemyev et al., 2016; Mourenas & Ripoll, 2012; Shprits & Ni, 2009; Gan et al., 2023).

Figure 7 summarizes the findings from each wave parameter combination through-510 out a range of reduced equatorial plasma densities for a better understanding of the in-511 terplay between the three effects considered. Figure 7a shows that only below a certain 512 threshold of $\Omega_{pe} \lesssim 4$ does the interaction of higher-order resonances start to increase 513 precipitation at higher energies. Using the total electron density with $\Omega_{pe} = 2.5$, this 514 effect becomes very pronounced above 100 keV and up to 300 keV, whereas above that 515 energy this effect alone is still incapable of matching observations, as discussed in Sec-516 tion 4.1. The effect of plasma density combined with wave frequency becomes significantly 517 more pronounced throughout the whole energy range when $\Omega_{pe} \leq 4$, as shown in Fig-518 ure 7b, and matches very well with ELFIN's nightside observations when a more extreme 519 $\Omega_{pe} = 2.5$ is used. Adding mild wave obliquity (Figure 7c) results in the best match 520 with ELFIN statistics, demonstrating that all three effects combined are necessary. 521

Figure 7d shows the best fit scenarios for forward-modeling ELFIN-observed precipitatingto-trapped flux ratios, which all require the varying frequency model in addition to reduced plasma density to various degrees. Here, we show that it is possible to obtain decent agreement without the need for wave obliquity by significantly reducing Ω_{pe} to 2.5

(purple). By adding moderately oblique waves (green and blue), more ~ 1 MeV elec-526 trons are precipitated, doing a marginally better job of matching observations. Using ex-527 tremely oblique waves (WNA3) – which describes a population of very oblique waves gen-528 erated around the equator when the Landau damping is largely reduced by field-aligned 529 electron streams (Mourenas et al., 2015; Li, Mourenas, et al., 2016) – requires increas-530 ing plasma density $\Omega_{pe} = 4$ in order to avoid significant overestimation. Therefore, ELFIN 531 observations of nightside electron precipitation spectra (from 50-1000 keV) can be de-532 scribed either under the assumption of a significant plasma density reduction or a more 533 moderate plasma density reduction coupled with a strongly oblique wave population. This 534 required plasma density ($\omega_{pe} \in [2.5, 4]$) is fully consistent with the average measured 535 ω_{pe} levels at 18-4 MLT and L = 5-6.5 in Van Allen Probes statistics during disturbed 536 periods with $AE \in [150, 600]$ nT (Agapitov et al., 2019). These conditions indicate the 537 importance of plasma injections and/or enhanced convection periods and how they cause 538 enhanced nightside electron losses. Such Earthward plasma transport (convection and 539 injections), especially during increased geomagnetic activity, justifies our choice of the 540 cold plasma density reduction (Agapitov et al., 2019). These injections are also associ-541 ated with electron field-aligned streams caused by the electrostatic turbulence around 542 injection regions or the ionosphere outflow of secondary electrons in response to the en-543 hanced precipitation of plasma sheet electron fluxes (see Khazanov et al., 2014, 2018; 544 Artemyev & Mourenas, 2020; Artemyev et al., 2020, and references therein). 545

546 5 Discussion and Conclusions

Today's radiation belt simulations primarily rely on EMIC-driven electron precip-547 itation to explain relativistic electron losses (see, e.g., Ma et al., 2015; Drozdov et al., 548 2017, and references therein), in addition to dropouts related to magnetopause shadow-549 ing loss (e.g., see Shprits et al., 2006; Turner et al., 2014; Boynton et al., 2016, 2017; Olifer 550 et al., 2018; Xiang et al., 2018). Analysis presented here shows that the inclusion of re-551 alistic whistler-mode wave properties can meaningfully enhance relativistic electron scat-552 tering rates, thereby reducing the relative importance of EMIC waves on the nightside, 553 at least for electrons below 1 MeV. While it has been known for a long time that whistler-554 mode waves can accelerate electrons to relativistic energies (Thorne et al., 2013; Li et 555 al., 2014; Mourenas, Artemyev, Agapitov, Krasnoselskikh, & Li, 2014; Omura et al., 2015; 556 Hsieh & Omura, 2017; Allison & Shprits, 2020), contribution of this wave mode to rel-557 ativistic electron losses may be underestimated in modern-day simulations due to the 558 lack of observations that can reliably quantify it. This has recently changed with the avail-559 ability of ELFIN's unique precipitation observations, which now allow us to quantify how 560 well modeling – based on statistical averages of wave propries and plasma density – re-561 flects the observed precipitation energy spectra of energetic electrons. 562

We previously showed that using only field-aligned, monochromatic whistler-mode 563 waves with realistic wave amplitudes as a function of magnetic latitude was sufficient to 564 approximate relativistic electron losses at the dawn, noon, and dusk sectors (Tsai et al., 565 2023). However, the modeled precipitating-to-trapped flux ratio significantly underes-566 timated ELFIN-obtained statistics of precipitation energy spectra in the nightside MLT 567 sector. Pertinent to ELFIN statistics, we specifically excluded all data exhibiting signa-568 tures of field-line curvature scattering, EMIC waves, and any signatures of noise or poor 569 statistics. The resulting ELFIN statistics are 3 years of unambiguous whistler-mode wave-570 driven energetic electron precipitating-to-trapped flux ratios across a range of MLT, L-571 shells, and geomagnetic activity. At first, we used test particle simulations to examine 572 various wave and plasma characteristics that may potentially cause this discrepancy. How-573 ever, test particle simulations showed that, while some effects led to better agreement, 574 the discrepancy was still large. However, by additionally utilizing a state-of-the-art quasi-575 linear diffusion code, we were able to quantify each key wave parameter – alone and in 576 combination – relative to ELFIN observations, thereby determining the importance of 577

including empirically-obtained equatorial plasma frequency, wave-normal angle distri-578 butions, and wave frequency distributions. We found that, in addition to the prerequi-579 site, empirically-provided $B_w(\lambda)$ (Tsai et al., 2023), inclusion of all three modifications 580 - realistic Ω_{pe} , $\omega_m(\lambda)$, and $\theta(\lambda)$ - were sufficient to recover the more intense nightside 581 energetic precipitation observed by ELFIN. A reduced plasma density, indicative of ge-582 omagnetically active times, results in relative enhancement of precipitation in the sub-583 relativistic regime (< 300 keV), while wave obliquity significantly enhances relativistic 584 electron scattering > 500 keV. It seems that a decreasing wave frequency as a function 585 of latitude helps balance the two out, leading to a smooth recovery of the 200-600 keV 586 range, without severely overestimating either ends of the precipitation flux ratio spec-587 trum. 588

The equatorial confinement of whistler-mode waves is attributed to the increase 589 of wave obliquity – or more precisely, the increase of statistical averages of wave normal 590 angles – as expected from wave propagation away from their equatorial source (L. Chen 591 et al., 2013; Breuillard et al., 2012; Agapitov et al., 2013) due to the associated severe 592 damping by Landau resonance with suprathermal electrons (e.g., Bell et al., 2002; Bort-593 nik et al., 2007). This effect is substantially less important on the dayside as compared 594 to the night of waves at higher application of the significantly larger amplitudes of waves at higher 595 latitudes on the dayside (Meredith et al., 2012). Reduced Landau damping is caused by 596 a milder ambient dayside magnetic field gradient (due to magnetospheric compression) 597 and a lower density of suprathermal electrons (Li, Thorne, Bortnik, et al., 2010; Walsh 598 et al., 2020). As a result, waves on the dayside propagate in higher densities, are less oblique, 599 and have a less pronounced decrease in wave frequencies, in direct opposition to what 600 is observed on the night ide. This explains why an empirical model of $B_w(\lambda)$ and field 601 aligned waves is sufficient for recovering dayside energetic electron precipitation (Tsai 602 et al., 2023), while further indicating the importance of including realistic wave and back-603 ground plasma characteristics for such precipitation modeling on the nightside. 604

To conclude, these results highlight the importance of combining whistler-mode wave characteristics and background plasma for accurately modeling relativistic electron losses from the outer radiation belt. Specifically, we note that:

608	• The latitudinal distribution of wave amplitude alone cannot account for the in-
609	tense night side precipitation of $\sim 0.1{-}1~{\rm MeV}$ electrons scattered at mid-to-high
610	latitudes relative to precipitation of $\sim 100~{\rm keV}$ electrons scattered near the equa-
611	tor.
612	• Very oblique waves are important for scattering more energetic electrons – becom-
613	ing more effective in the $\sim~1$ MeV range – but only in the presence of reduced
614	plasma density or decreasing wave frequency.
615	• The decrease of wave frequency with latitude, caused by high-frequency wave damp-
616	ing, is not very important on its own. However, together with a reduced plasma
617	density (with or without oblique waves), it can lead to more precipitation of high
618	energy electrons relative to ~ 100 keV electrons.
619	• Equatorial plasma density decrease during geomagnetically active conditions (char-
620	acterized by enhanced whistler-mode wave intensity) improves the relative efficiency
621	of resonant electron scattering toward the loss-cone at 100 keV compared to 1 MeV,
622	but alone, it is in poor agreement with ELFIN statistics. However, when combined
623	with increasing WNA and decreasing wave frequency as a function of latitude, this
624	plasma density reduction becomes a catalyst, significantly boosting electron pre-
625	cipitation rates across the energy range up to 1 MeV.

So, in order to best explain the increased precipitation observed by ELFIN on the nightside, modeled whistler-mode waves must have a realistic latitudinally-dependent wave frequency model (Model 2) coupled with a reduced plasma density ($\Omega_{pe} \in [2.5, 4]$) and an associated range of wave obliquity from quasi-field aligned ($\theta < 30^{\circ}$) to extremely oblique (WNA3) waves. Any further investigation of these effects likely requires either
detailed and comprehensive simulations using modern ray-tracing techniques (e.g., L. Chen
et al., 2021, 2022; Hosseini et al., 2021; Hanzelka & Santolík, 2022; Kang et al., 2022;
Kang & Bortnik, 2022) or a new generation of satellite missions equipped to make simultaneous measurements of whistler-mode waves and precipitating/trapped electron
populations.

636 Acknowledgments

We are grateful to NASA's CubeSat Launch Initiative and Launch Services Program for 637 ELFIN's successful launch in the desired orbits. We acknowledge early support of ELFIN 638 project by the AFOSR, under its University Nanosat Program, UNP-8 project, contract 639 FA9453-12-D-0285, and by the California Space Grant program. Importantly, we acknowl-640 edge the critical contributions by numerous UCLA students who made the ELFIN mis-641 sion a success. A.V.A and X.-J.Z. acknowledge support from the NASA grants 80NSSC23K0089, 642 80NSSC22K0522, 80NSSC23K0108, 80NSSC19K0844, 80NSSC23K0100 and NSF grant 643 2329897. V. A. acknowledge support from NSF grants AGS-1242918, AGS-2019950, and 644 AGS-2329897. Q.M. acknowledges the NASA grant 80NSSC20K0196 and NSF grant AGS-645 2225445. The work O.V.A. was supported by NASA grants 80NNSC19K0848, 80NSSC20K0697, 646

- 80NSSC22K0433, 80NSSC22K0522, NASA's Living with a Star (LWS) program (con-
- tract 80NSSC20K0218), and by NSF grant number 1914670.

⁶⁴⁹ Open Research

ELFIN data is available at https://data.elfin.ucla.edu/ and online summary plots at https://plots.elfin.ucla.edu/summary.php.

- ⁶⁵² Data access and processing was done using SPEDAS V4.1, see Angelopoulos et al. (2019).
- Test-particle simulation code is found at https://github.com/ethantsai/nlwhistlers
- ⁶⁵⁴ (Tsai, 2023).

655 References

656	Agapitov, O. V., Artemyev, A., Krasnoselskikh, V., Khotyaintsev, Y. V., Moure-	
657	nas, D., Breuillard, H., Rolland, G. (2013, June). Statistics of whist	ler
658	mode waves in the outer radiation belt: Cluster STAFF-SA measurements.	J_{\cdot}
659	Geophys. Res., 118, 3407-3420. doi: 10.1002/jgra.50312	

- Agapitov, O. V., Krasnoselskikh, V., Mozer, F. S., Artemyev, A. V., & Volokitin,
 A. S. (2015, May). Generation of nonlinear electric field bursts in the outer
 radiation belt through the parametric decay of whistler waves. *Geophys. Res. Lett.*, 42, 3715-3722. doi: 10.1002/2015GL064145
- 664Agapitov, O. V., Mourenas, D., Artemyev, A., Hospodarsky, G., & Bonnell, J. W.665(2019, June). Time Scales for Electron Quasi-linear Diffusion by Lower-Band666Chorus Waves: The Effects of ω_{pe}/Ω_{ce} Dependence on Geomagnetic Activity.667Geophys. Res. Lett., 46(12), 6178-6187. doi: 10.1029/2019GL083446
- 668
 Agapitov, O. V., Mourenas, D., Artemyev, A. V., & Mozer, F. S. (2016). Exclusion

 669
 principle for very oblique and parallel lower band chorus waves. Geophys. Res.

 670
 Lett., 43(21), 11,112–11,120. Retrieved from http://dx.doi.org/10.1002/

 671
 2016GL071250
 doi: 10.1002/2016GL071250
- 672Agapitov, O. V., Mourenas, D., Artemyev, A. V., Mozer, F. S., Hospodarsky, G.,673Bonnell, J., & Krasnoselskikh, V. (2018, January). Synthetic Empirical674Chorus Wave Model From Combined Van Allen Probes and Cluster Statis-675tics. Journal of Geophysical Research (Space Physics), 123(1), 297-314. doi:67610.1002/2017JA024843
- Albert, J. M. (2001, May). Comparison of pitch angle diffusion by turbulent and monochromatic whistler waves. J. Geophys. Res., 106, 8477-8482. doi: 10

679	.1029/2000JA000304
690	Albert J. M. (2005 March) Evaluation of quasi-linear diffusion coefficients for
691	whistler mode waves in a plasma with arbitrary density ratio
692	Res_{110} 3218 doi: 10.1029/2004JA010844
002	Albert I. M. (2010. March) Diffusion by one wave and by many waves I. Cae
683 684	<i>phys. Res.</i> , 115, 0. doi: 10.1029/2009JA014732
685	Albert, J. M. (2017, May). Quasi-linear diffusion coefficients for highly oblique
686	whistler mode waves. J. Geophys. Res., 122, 5339-5354. doi: 10.1002/
687	2017JA024124
688	Albert, J. M., Artemyev, A. V., Li, W., Gan, L., & Ma, O. (2021). Models of
689	resonant wave-particle interactions. Journal of Geophysical Research: Space
690	<i>Physics</i> , 126(6), e2021JA029216, doi: 10.1029/2021JA029216
691	Albert, J. M., Tao, X., & Bortnik, J. (2013). Aspects of Nonlinear Wave-Particle In-
602	teractions In D Summers I U Mann D N Baker & M Schulz (Eds.) Du-
603	namics of the earth's radiation belts and inner manetosphere doi: 10.1029/
694	2012GM001324
605	Allison H. J. & Shprits V. Y. (2020 September) Local heating of radiation belt
606	electrons to ultra-relativistic energies Nature Communications 11 4533 doi:
607	10 1038/s41467-020-18053-z
600	Allison H. I. Shnrits, V. V. Zhelavskava, I. S. Wang, D. & Smirnov, A. C. (2021)
600	Ianuary) Gyroresonant wave-particle interactions with chorus waves during
700	extreme depletions of plasma density in the Van Allen radiation belts. Science
700	Advances 7(5) eabc0380 doi: 10.1126/sciady.abc0380
701	An X Artemyey A Angelopoulos V Zhang X Mourenes D & Bortnik I
702	(2022 September) Nonresonant Scattering of Relativistic Electrons by Elec-
704	tromagnetic Ion Cyclotron Waves in Earth's Radiation Belts Phys Rev Lett
705	129(13) 135101 doi: 10.1103/PhysRevLett 129.135101
706	An Z Wu Y & Tao X (2022) Electron dynamics in a chorus wave field
707	generated from particle-in-cell simulations. Geophys. Res. Lett., 49(3).
708	e2022GL097778. doi: 10.1029/2022GL097778
709	Angelopoulos, V., Cruce, P., Drozdov, A., Grimes, E. W., Hatzigeorgiu, N., King,
710	D. A Schroeder, P. (2019, January). The Space Physics Environ-
711	ment Data Analysis System (SPEDAS). Space Sci. Rev., 215, 9. doi:
712	10.1007/s11214-018-0576-4
713	Angelopoulos, V., Tsai, E., Bingley, L., Shaffer, C., Turner, D. L., Runov, A.,
714	Zhang, G. Y. (2020, July). The ELFIN Mission. Space Sci. Rev., 216(5), 103.
715	doi: 10.1007/s11214-020-00721-7
716	Angelopoulos, V., Zhang, X. J., Artemyev, A. V., Mourenas, D., Tsai, E., Wilkins,
717	C., Zarifian, A. (2023, August). Energetic Electron Precipitation Driven by
718	Electromagnetic Ion Cyclotron Waves from ELFIN's Low Altitude Perspective.
719	Space Sci. Rev., 219(5), 37. doi: 10.1007/s11214-023-00984-w
720	Artemyev, A. V., Agapitov, O., Mourenas, D., Krasnoselskikh, V., Shastun, V., &
721	Mozer, F. (2016, April). Oblique Whistler-Mode Waves in the Earth's Inner
722	Magnetosphere: Energy Distribution, Origins, and Role in Radiation Belt Dy-
723	namics. Space Sci. Rev., 200(1-4), 261-355. doi: 10.1007/s11214-016-0252-5
724	Artemyev, A. V., Angelopoulos, V., Zhang, X. J., Runov, A., Petrukovich, A., Naka-
725	mura, R., Wilkins, C. (2022, October). Thinning of the Magnetotail Cur-
726	rent Sheet Inferred From Low-Altitude Observations of Energetic Electrons.
727	Journal of Geophysical Research (Space Physics), 127(10), e2022JA030705.
728	doi: 10.1029/2022JA030705
729	Artemyev, A. V., & Mourenas, D. (2020, March). On Whistler Mode Wave Rela-
730	tion to Electron Field-Aligned Plateau Populations. Journal of Geophysical Re-
731	search (Space Physics), 125(3), e27735. doi: 10.1029/2019JA027735
732	Artemyev, A. V., Mourenas, D., Agapitov, O. V., & Krasnoselskikh, V. V. (2013,
733	April). Parametric validations of analytical lifetime estimates for radiation belt

734	electron diffusion by whistler waves. Annales Geophysicae, 31, 599-624. doi:
735	10.5194/angeo-31-599-2013
736	Artemyev, A. V., Zhang, X. J., Angelopoulos, V., Mourenas, D., Vainchtein, D.,
737	Shen, Y., Runov, A. (2020, September). Ionosphere Feedback to Elec-
738	tron Scattering by Equatorial Whistler Mode Waves. Journal of Geophysical
739	Research (Space Physics), 125(9), e28373. doi: 10.1029/2020JA028373
740	Aryan, H., Agapitov, O. V., Artemyev, A., Mourenas, D., Balikhin, M. A., Boynton,
741	R., & Bortnik, J. (2020, August). Outer Radiation Belt Electron Lifetime
742	Model Based on Combined Van Allen Probes and Cluster VLF Measure-
743	ments. Journal of Geophysical Research (Space Physics), 125(8), e28018. doi:
744	10.1029/2020JA028018
745	Bell, T. F., Inan, U. S., Bortnik, J., & Scudder, J. D. (2002, August). The Landau
746	damping of magnetospherically reflected whistlers within the plasmasphere.
747	Geophys. Res. Lett., 29, 1733. doi: 10.1029/2002GL014752
748	Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh ap-
749	proach to numerical computing. SIAM review, $59(1)$, $65-98$. Retrieved from
750	https://doi.org/10.1137/141000671
751	Blake, J. B., & O'Brien, T. P. (2016, April). Observations of small-scale latitudinal
752	structure in energetic electron precipitation. Journal of Geophysical Research
753	(Space Physics), 121(4), 3031-3035. doi: 10.1002/2015JA021815
754	Blum, L. W., Halford, A., Millan, R., Bonnell, J. W., Goldstein, J., Usanova, M.,
755	Li, X. (2015, July). Observations of coincident EMIC wave activity and
756	duskside energetic electron precipitation on 18-19 January 2013. <i>Geophys.</i>
757	Res. Lett., 42, 5727-5735. doi: 10.1002/2015GL065245
758	Blum, L. W., Li, X., & Denton, M. (2015, May). Rapid MeV electron precipitation
759	as observed by SAMPEX/HILT during high-speed stream-driven storms. J.
760	Geophys. Res., 120, 3783-3794. doi: 10.1002/2014JA020633
761	Bortnik, J., & Thorne, R. M. (2007, March). The dual role of ELF/VLF chorus
762	waves in the acceleration and precipitation of radiation belt electrons. <i>Journal</i>
763	of Atmospheric and Solar-Terrestrial Physics, 69, 378-386. doi: 10.1016/j.jastp
764	.2006.05.030
765	Bortnik, J., Thorne, R. M., & Inan, U. S. (2008, November). Nonlinear interac-
766	tion of energetic electrons with large amplitude chorus. Geophys. Res. Lett.,
767	35, 21102. doi: 10.1029/2008GL035500
768	Bortnik, J., Thorne, R. M., Meredith, N. P., & Santolik, O. (2007, August). Ray
769	tracing of penetrating chorus and its implications for the radiation belts. Geo-
770	phys. Res. Lett., 34, L15109. doi: 10.1029/2007GL030040
771	
	Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2016, September). Electron
772	Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2016, September). Electron flux dropouts at Geostationary Earth Orbit: Occurrences, magnitudes, and
772 773	 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2016, September). Electron flux dropouts at Geostationary Earth Orbit: Occurrences, magnitudes, and main driving factors. <i>Journal of Geophysical Research (Space Physics)</i>, 121,
772 773 774	 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2016, September). Electron flux dropouts at Geostationary Earth Orbit: Occurrences, magnitudes, and main driving factors. <i>Journal of Geophysical Research (Space Physics)</i>, 121, 8448-8461. doi: 10.1002/2016JA022916
772 773 774 775	 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2016, September). Electron flux dropouts at Geostationary Earth Orbit: Occurrences, magnitudes, and main driving factors. Journal of Geophysical Research (Space Physics), 121, 8448-8461. doi: 10.1002/2016JA022916 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2017, November). Electron Flux
772 773 774 775 776	 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2016, September). Electron flux dropouts at Geostationary Earth Orbit: Occurrences, magnitudes, and main driving factors. Journal of Geophysical Research (Space Physics), 121, 8448-8461. doi: 10.1002/2016JA022916 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2017, November). Electron Flux Dropouts at L ~ 4.2 From Global Positioning System Satellites: Occurrences,
772 773 774 775 776 777	 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2016, September). Electron flux dropouts at Geostationary Earth Orbit: Occurrences, magnitudes, and main driving factors. Journal of Geophysical Research (Space Physics), 121, 8448-8461. doi: 10.1002/2016JA022916 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2017, November). Electron Flux Dropouts at L ~ 4.2 From Global Positioning System Satellites: Occurrences, Magnitudes, and Main Driving Factors. Journal of Geophysical Research
772 773 774 775 776 777 778	 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2016, September). Electron flux dropouts at Geostationary Earth Orbit: Occurrences, magnitudes, and main driving factors. Journal of Geophysical Research (Space Physics), 121, 8448-8461. doi: 10.1002/2016JA022916 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2017, November). Electron Flux Dropouts at L ~ 4.2 From Global Positioning System Satellites: Occurrences, Magnitudes, and Main Driving Factors. Journal of Geophysical Research (Space Physics), 122, 11. doi: 10.1002/2017JA024523
772 773 774 775 776 777 778 779	 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2016, September). Electron flux dropouts at Geostationary Earth Orbit: Occurrences, magnitudes, and main driving factors. Journal of Geophysical Research (Space Physics), 121, 8448-8461. doi: 10.1002/2016JA022916 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2017, November). Electron Flux Dropouts at L ~ 4.2 From Global Positioning System Satellites: Occurrences, Magnitudes, and Main Driving Factors. Journal of Geophysical Research (Space Physics), 122, 11. doi: 10.1002/2017JA024523 Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov,
772 773 774 775 776 777 778 779 780	 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2016, September). Electron flux dropouts at Geostationary Earth Orbit: Occurrences, magnitudes, and main driving factors. Journal of Geophysical Research (Space Physics), 121, 8448-8461. doi: 10.1002/2016JA022916 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2017, November). Electron Flux Dropouts at L ~ 4.2 From Global Positioning System Satellites: Occurrences, Magnitudes, and Main Driving Factors. Journal of Geophysical Research (Space Physics), 122, 11. doi: 10.1002/2017JA024523 Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov, O., Kletzing, C. A. (2017, November). Observations Directly Link-
772 773 774 775 776 777 778 779 780 781	 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2016, September). Electron flux dropouts at Geostationary Earth Orbit: Occurrences, magnitudes, and main driving factors. Journal of Geophysical Research (Space Physics), 121, 8448-8461. doi: 10.1002/2016JA022916 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2017, November). Electron Flux Dropouts at L ~ 4.2 From Global Positioning System Satellites: Occurrences, Magnitudes, and Main Driving Factors. Journal of Geophysical Research (Space Physics), 122, 11. doi: 10.1002/2017JA024523 Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov, O., Kletzing, C. A. (2017, November). Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen
772 773 774 775 776 777 778 779 780 781 782	 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2016, September). Electron flux dropouts at Geostationary Earth Orbit: Occurrences, magnitudes, and main driving factors. Journal of Geophysical Research (Space Physics), 121, 8448-8461. doi: 10.1002/2016JA022916 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2017, November). Electron Flux Dropouts at L ~ 4.2 From Global Positioning System Satellites: Occurrences, Magnitudes, and Main Driving Factors. Journal of Geophysical Research (Space Physics), 122, 11. doi: 10.1002/2017JA024523 Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov, O., Kletzing, C. A. (2017, November). Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II. Geophys. Res. Lett., 44 (22), 11,265-11,272. doi:
772 773 774 775 776 777 778 779 780 781 782 783	 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2016, September). Electron flux dropouts at Geostationary Earth Orbit: Occurrences, magnitudes, and main driving factors. Journal of Geophysical Research (Space Physics), 121, 8448-8461. doi: 10.1002/2016JA022916 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2017, November). Electron Flux Dropouts at L ~ 4.2 From Global Positioning System Satellites: Occurrences, Magnitudes, and Main Driving Factors. Journal of Geophysical Research (Space Physics), 122, 11. doi: 10.1002/2017JA024523 Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov, O., Kletzing, C. A. (2017, November). Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II. Geophys. Res. Lett., 44 (22), 11,265-11,272. doi: 10.1002/2017GL075001
772 773 774 775 776 777 778 779 780 781 782 783 784	 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2016, September). Electron flux dropouts at Geostationary Earth Orbit: Occurrences, magnitudes, and main driving factors. Journal of Geophysical Research (Space Physics), 121, 8448-8461. doi: 10.1002/2016JA022916 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2017, November). Electron Flux Dropouts at L ~ 4.2 From Global Positioning System Satellites: Occurrences, Magnitudes, and Main Driving Factors. Journal of Geophysical Research (Space Physics), 122, 11. doi: 10.1002/2017JA024523 Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov, O., Kletzing, C. A. (2017, November). Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II. Geophys. Res. Lett., 44 (22), 11,265-11,272. doi: 10.1002/2017GL075001 Breuillard, H., Zaliznyak, Y., Krasnoselskikh, V., Agapitov, O., Artemyev, A., &
772 773 774 775 776 777 778 779 780 781 782 783 784 784	 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2016, September). Electron flux dropouts at Geostationary Earth Orbit: Occurrences, magnitudes, and main driving factors. Journal of Geophysical Research (Space Physics), 121, 8448-8461. doi: 10.1002/2016JA022916 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2017, November). Electron Flux Dropouts at L ~ 4.2 From Global Positioning System Satellites: Occurrences, Magnitudes, and Main Driving Factors. Journal of Geophysical Research (Space Physics), 122, 11. doi: 10.1002/2017JA024523 Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov, O., Kletzing, C. A. (2017, November). Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II. Geophys. Res. Lett., 44 (22), 11,265-11,272. doi: 10.1002/2017GL075001 Breuillard, H., Zaliznyak, Y., Krasnoselskikh, V., Agapitov, O., Artemyev, A., & Rolland, G. (2012). Chorus wave-normal statistics in the Earth's radia-
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786	 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2016, September). Electron flux dropouts at Geostationary Earth Orbit: Occurrences, magnitudes, and main driving factors. Journal of Geophysical Research (Space Physics), 121, 8448-8461. doi: 10.1002/2016JA022916 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2017, November). Electron Flux Dropouts at L ~ 4.2 From Global Positioning System Satellites: Occurrences, Magnitudes, and Main Driving Factors. Journal of Geophysical Research (Space Physics), 122, 11. doi: 10.1002/2017JA024523 Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov, O., Kletzing, C. A. (2017, November). Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II. Geophys. Res. Lett., 44 (22), 11,265-11,272. doi: 10.1002/2017GL075001 Breuillard, H., Zaliznyak, Y., Krasnoselskikh, V., Agapitov, O., Artemyev, A., & Rolland, G. (2012). Chorus wave-normal statistics in the Earth's radiation belts from ray tracing technique. Ann. Geophys., 30, 1223-1233. doi:
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787	 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2016, September). Electron flux dropouts at Geostationary Earth Orbit: Occurrences, magnitudes, and main driving factors. Journal of Geophysical Research (Space Physics), 121, 8448-8461. doi: 10.1002/2016JA022916 Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2017, November). Electron Flux Dropouts at L ~ 4.2 From Global Positioning System Satellites: Occurrences, Magnitudes, and Main Driving Factors. Journal of Geophysical Research (Space Physics), 122, 11. doi: 10.1002/2017JA024523 Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov, O., Kletzing, C. A. (2017, November). Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II. Geophys. Res. Lett., 44 (22), 11,265-11,272. doi: 10.1002/2017GL075001 Breuillard, H., Zaliznyak, Y., Krasnoselskikh, V., Agapitov, O., Artemyev, A., & Rolland, G. (2012). Chorus wave-normal statistics in the Earth's radiation belts from ray tracing technique. Ann. Geophys., 30, 1223-1233. doi: 10.5194/angeo-30-1223-2012

789	particle motion in magnetotaillike field reversals. I - Basic theory of trapped
790	motion. J. Geophys. Res., 94, 11821-11842. doi: 10.1029/JA094iA09p11821
791	Bunch, N. L., Spasojevic, M., Shprits, Y. Y., Gu, X., & Foust, F. (2013, April). The
792	spectral extent of chorus in the off-equatorial magnetosphere. J. Geophys.
793	Res., 118, 1700-1705. doi: 10.1029/2012JA018182
794	Capannolo, L., Li, W., Ma, Q., Chen, L., Shen, X. C., Spence, H. E., Redmon,
795	R. J. (2019, November). Direct Observation of Subrelativistic Electron Pre-
796	cipitation Potentially Driven by EMIC Waves. Geophys. Res. Lett., 46(22),
797	12,711-12,721. doi: 10.1029/2019GL084202
798	Capannolo, L., Li, W., Ma, Q., Qin, M., Shen, X. C., Angelopoulos, V.,
799	Hanzelka, M. (2023). Electron precipitation observed by elfin using proton
800	precipitation as a proxy for electromagnetic ion cyclotron (emic) waves. Geo-
801	physical Research Letters. doi: https://doi.org/10.1029/2023GL103519
802	Chen, L., Thorne, R. M., Li, W., & Bortnik, J. (2013, March). Modeling the wave
803	normal distribution of chorus waves. J. Geophys. Res., 118, 1074-1088. doi:
804	10.1029/2012JA018343
805	Chen, L., Zhang, XJ., Artemyev, A., Angelopoulos, V., Tsai, E., Wilkins, C., &
806	Horne, R. B. (2022, March). Ducted Chorus Waves Cause Sub-Relativistic and
807	Relativistic Electron Microbursts. Geophys. Res. Lett., 49(5), e97559. doi:
808	10.1029/2021GL097559
809	Chen, L., Zhang, XJ., Artemyev, A., Zheng, L., Xia, Z., Breneman, A. W., &
810	Horne, R. B. (2021, October). Electron microbursts induced by nonducted
811	chorus waves. Frontiers in Astronomy and Space Sciences, 8, 163. doi:
812	10.3389/fspas.2021.745927
813	Chen, R., Gao, X., Lu, Q., & Wang, S. (2019, November). Unraveling the Cor-
814	relation Between Chorus Wave and Electron Beam-Like Distribution in the
815	Earth's Magnetosphere. Geophus. Res. Lett., 46(21), 11,671-11,678. doi:
816	10.1029/2019GL085108
817	Demekhov, A. G., Trakhtengerts, V. Y., Rycroft, M. J., & Nunn, D. (2006, Decem-
818	ber). Electron acceleration in the magnetosphere by whistler-mode waves
819	of varying frequency. <i>Geomagnetism and Aeronomy</i> , 46, 711-716. doi:
820	10.1134/S0016793206060053
821	Drozdov, A. Y., Shprits, Y. Y., Usanova, M. E., Aseev, N. A., Kellerman, A. C.,
822	& Zhu, H. (2017, August). EMIC wave parameterization in the long-
823	term VERB code simulation. J. Geophys. Res., 122, 8488-8501. doi:
824	10.1002/2017JA024389
825	Fu, X., Cowee, M. M., Friedel, R. H., Funsten, H. O., Garv, S. P., Hospodarsky,
826	G. B Winske, D. (2014, October). Whistler anisotropy instabilities as the
827	source of banded chorus: Van Allen Probes observations and particle-in-cell
828	simulations. Journal of Geophysical Research (Space Physics), 119, 8288-8298.
829	doi: 10.1002/2014JA020364
830	Gabrielse, C., Angelopoulos, V., Runov, A., & Turner, D. L. (2014, April). Statisti-
831	cal characteristics of particle injections throughout the equatorial magnetotail.
832	<i>J. Geophys. Res.</i> , 119, 2512-2535. doi: 10.1002/2013JA019638
833	Gan L. Artemyev A. Li W. Zhang XI. Ma O. Mourenas D. Wilkins
834	C. (2023). Bursty energetic electron precipitation by high-order reso-
835	nance with very-oblique whistler-mode waves. Geophus. Res. Lett. doi:
836	10.1029/2022GL101920
837	Gan, L., Li, W., Ma, Q., Artemyev, A. V., & Albert, J. M. (2022) Dependence of
838	nonlinear effects on whistler-mode wave bandwidth and amplitude: A perspec-
839	tive from diffusion coefficients. J. Geonhus Res 127 e2021.IA030063 doi:
840	10.1029/2021JA030063
841	Gendrin, B. (1961, August). Le guidage des whistlers par le champ magnetique
842	Planetary Space Science, 5, 274. doi: 10.1016/0032-0633(61)90096-4
9/2	Glauert S A & Horne B B (2005 April) Calculation of pitch angle and operation
043	Graderity, S. M., & Horne, R. D. (2005, April). Calculation of pitch angle and energy

844	diffusion coefficients with the PADIE code. J. Geophys. Res., 110, 4206. doi:
845	10.1029/2004JA010851
846	Grach, V. S., Artemyev, A. V., Demekhov, A. G., Zhang, XJ., Bortnik, J., An-
847	gelopoulos, V., Roberts, O. W. (2022, September). Relativistic Electron
848	Precipitation by EMIC Waves: Importance of Nonlinear Resonant Effects.
849	Geophys. Res. Lett., 49(17), e99994. doi: 10.1029/2022GL099994
850	Hanzelka, M., & Santolík, O. (2019, June). Effects of Ducting on Whistler Mode
851	Chorus or Exohiss in the Outer Radiation Belt. Geophys. Res. Lett., 46(11),
852	5735-5745. doi: 10.1029/2019GL083115
853	Hanzelka, M., & Santolík, O. (2022, December). Effects of Field-Aligned Cold
854	Plasma Density Filaments on the Fine Structure of Chorus. Geophys. Res.
855	Lett., 49(24), e2022GL101654. doi: 10.1029/2022GL101654
856	Horne, R. B., Glauert, S. A., Meredith, N. P., Boscher, D., Maget, V., Heynderickx,
857	D., & Pitchford, D. (2013, April). Space weather impacts on satellites and
858	forecasting the Earth's electron radiation belts with SPACECAST. Space
859	Weather, 11, 169-186. doi: 10.1002/swe.20023
860	Hosseini, P., Agapitov, O., Harid, V., & Gołkowski, M. (2021, March). Evidence of
861	Small Scale Plasma Irregularity Effects on Whistler Mode Chorus Propagation.
862	Geophys. Res. Lett., 48(5), e92850. doi: 10.1029/2021GL092850
863	Hsieh, YK., & Omura, Y. (2017, January). Nonlinear dynamics of electrons inter-
864	acting with oblique whistler mode chorus in the magnetosphere. J. Geophys.
865	Res., 122, 675-694. doi: 10.1002/2016JA023255
866	Imhof, W. L., Reagan, J. B., & Gaines, E. E. (1977, November). Fine-scale spa-
867	tial structure in the pitch angle distributions of energetic particles near
868	the midnight trapping boundary. J. Geophys. Res., 82, 5215-5221. doi:
869	10.1029/JA082i032p05215
870	Jun, C. W., Yue, C., Bortnik, J., Lvons, L. R., Nishimura, Y., & Kletzing, C. (2019)
871	Mar). EMIC Wave Properties Associated With and Without Injections in
872	The Inner Magnetosphere. Journal of Geophysical Research (Space Physics),
873	124(3), 2029-2045. doi: 10.1029/2018JA026279
874	Kang, N., & Bortnik, J. (2022, March). Structure of Energy Precipitation Induced
875	by Superbolt-Lightning Generated Whistler Waves. <i>Geophys. Res. Lett.</i> ,
876	49(5), e2022GL097770. doi: 10.1029/2022GL097770
877	Kang, N., Bortnik, J., Zhang, X., Claudepierre, S., & Shi, X. (2022, Decem-
878	ber). Relativistic Microburst Scale Size Induced by a Single Point-Source
879	Chorus Element. Geophys. Res. Lett., 49(23), e2022GL100841. doi:
880	10.1029/2022GL100841
881	Katoh, Y., Omura, Y., & Summers, D. (2008, November). Rapid energization of
882	radiation belt electrons by nonlinear wave trapping. Annales Geophysicae, 26,
883	3451-3456. doi: 10.5194/angeo-26-3451-2008
884	Ke, Y., Chen, L., Gao, X., Lu, Q., Wang, X., Chen, R., Wang, S. (2021, April).
885	Whistler Mode Waves Trapped by Density Irregularities in the Earth's Magne-
886	tosphere. Geophys. Res. Lett., 48(7), e92305. doi: 10.1029/2020GL092305
887	Ke, Y., Gao, X., Lu, Q., Wang, X., Chen, R., Chen, H., & Wang, S. (2022,
888	February). Deformation of Electron Distributions Due to Landau Trap-
889	ping by the Whistler-Mode Wave. Geophys. Res. Lett., 49(3), e96428. doi:
890	10.1029/2021GL096428
891	Ke, Y., Gao, X., Lu, Q., Wang, X., & Wang, S. (2017). Generation of rising-tone
892	chorus in a two-dimensional mirror field by using the general curvilinear pic
893	code. J. Geophys. Res Retrieved from http://dx.doi.org/10.1002/
894	2017JA024178 doi: 10.1002/2017JA024178
895	Kennel, C. F., & Engelmann, F. (1966, November). Velocity Space Diffusion from
896	Weak Plasma Turbulence in a Magnetic Field. <i>Physics of Fluids</i> , 9, 2377-2388.
897	doi: 10.1063/1.1761629
898	Kennel, C. F., & Petschek, H. E. (1966, January). Limit on Stably Trapped Particle

899	Fluxes. J. Geophys. Res., 71, 1-28.
900	Khazanov, G. V., Glocer, A., & Himwich, E. W. (2014, Jan). Magnetosphere-
901	ionosphere energy interchange in the electron diffuse aurora. Journal of
902	Geophysical Research (Space Physics), 119(1), 171-184, doi: 10.1002/
903	2013JA019325
004	Khazanov C. V. Rohinson R. M. Zesta E. Sibeck D. C. Chu M. & Crubbs
904	C A (2018 July) Impact of Prognitisting Flastrong and Magnetognhoro
905	In a coupling Processes on Incorphanic Conductories and Wagnetosphere-
906	tonosphere Coupling Processes on tonospheric Conductance. Space weather,
907	$16(7), 829-837.$ doi: $10.1029/20185 \le 0.01837$
908	Kim, H., Schiller, Q., Engebretson, M. J., Noh, S., Kuzichev, I., Lanzerotti, L. J.,
909	Fromm, T. (2021, February). Observations of Particle Loss due to Injec-
910	tion Associated Electromagnetic Ion Cyclotron Waves. Journal of Geophysical
911	Research (Space Physics), 126(2), e28503. doi: 10.1029/2020JA028503
912	Kitahara, M., & Katoh, Y. (2019, Jul). Anomalous Trapping of Low Pitch Angle
913	Electrons by Coherent Whistler Mode Waves. J. Geophys. Res., 124(7), 5568-
914	5583. doi: 10.1029/2019JA026493
015	Kong Z Gao X Chen H Lu O Chen B Ke Y & Wang S (2021 Novem-
016	her) The Correlation Between Whistler Mode Waves and Electron Beam-
916	Like Distribution. Test Derticle Simulations and THEMIS Observations
917	Like Distribution. Test Farticle Simulations and THEMIS Observations.
918	Journal of Geophysical Research (Space Physics), 120(11), e29854.
919	10.1029/2021 JA029834
920	Lam, M. M., Horne, R. B., Meredith, N. P., Glauert, S. A., Moffat-Griffin, T., &
921	Green, J. C. (2010). Origin of energetic electron precipitation; 30 kev into the
922	atmosphere. Journal of Geophysical Research: Space Physics, 115(A4).
923	Li, W., & Hudson, M. K. (2019, Nov). Earth's Van Allen Radiation Belts: From
924	Discovery to the Van Allen Probes Era. Journal of Geophysical Research
925	(Space Physics), 124(11), 8319-8351. doi: 10.1029/2018JA025940
926	Li, W., Mourenas, D., Artemyev, A. V., Bortnik, J., Thorne, R. M., Kletzing, C. A.,
927	Spence, H. E. (2016, September). Unraveling the excitation mechanisms of
928	highly oblique lower band chorus waves. Geophys. Res. Lett., 43, 8867-8875.
929	doi: 10.1002/2016GL070386
929	Li W Ni B Thorne B M Bortnik I Green I C Kletzing C A Hospo-
930	darsky G B (2013 September) Constructing the global distribution of
951	chorus wave intensity using measurements of electrons by the POFS setellites
932	and waves by the Van Allen Probes Coophie Reg. Lett. 10, 4526, 4522 doi:
933	and waves by the vali Anen 1 10bes. Geophys. Ites. Lett., 40 , 4520 - 4532 . doi: 10.1009/ml.50020
934	10.1002/g11.0020
935	Li, W., Santolik, O., Bortnik, J., I norne, R. M., Kletzing, C. A., Kurtn, W. S., &
936	Hospodarsky, G. B. (2016, May). New chorus wave properties near the equator
937	from Van Allen Probes wave observations. Geophys. Res. Lett., 43, 4725-4735.
938	doi: 10.1002/2016GL068780
939	Li, W., Thorne, R. M., Bortnik, J., Nishimura, Y., Angelopoulos, V., Chen, L.,
940	Bonnell, J. W. (2010, December). Global distributions of suprathermal
941	electrons observed on THEMIS and potential mechanisms for access into the
942	plasmasphere. J. Geophys. Res., 115, 0. doi: 10.1029/2010JA015687
943	Li, W., Thorne, R. M., Ma, Q., Ni, B., Bortnik, J., Baker, D. N., Claudepierre,
944	S. G. (2014, June). Radiation belt electron acceleration by chorus waves
945	during the 17 March 2013 storm. J. Geophys. Res., 119, 4681-4693. doi:
946	10.1002/2014JA019945
0.47	Li W Thorne B M Nishimura V Bortnik I Angelonoulos V McFaddon
941	I P Auster II (2010 June) THEMIS analysis of observed equatorial
948	electron distributions responsible for the charus evolution I Coophus Pas
949	115 doi: 10.1020/2000IA014845
950	$I_{10}, u_{01}, 10.1025/2005JA014040$
951	Lorentzen, K. K., Blake, J. B., Inan, U. S., & Bortnik, J. (2001, April). Obser-
952	vations of relativistic electron microbursts in association with VLF chorus. J .
953	Geophys. Res., 10b(A4), 6017-6028. doi: 10.1029/2000JA003018

954	Lyons, L. R., Thorne, R. M., & Kennel, C. F. (1972). Pitch-angle diffusion of radi-
955	ation belt electrons within the plasmasphere. J. Geophys. Res., 77, 3455-3474.
956	doi: 10.1029/JA077i019p03455
957	Ma, Q., Artemyev, A. V., Mourenas, D., Li, W., Thorne, R. M., Kletzing, C. A.,
958	Wygant, J. (2017, December). Very Oblique Whistler Mode Propagation in
959	the Radiation Belts: Effects of Hot Plasma and Landau Damping. Geophys.
960	Res. Lett., 44(24), 12,057-12,066. doi: 10.1002/2017GL075892
961	Ma, Q., Gu, W., Claudepierre, S. G., Li, W., Bortnik, J., Hua, M., & Shen, X. C.
962	(2022, June). Electron Scattering by Very-Low-Frequency and Low-Frequency
963	Waves From Ground Transmitters in the Earth's Inner Radiation Belt and Slot
964	Region. Journal of Geophysical Research (Space Physics), 127(6), e30349. doi:
965	10.1029/2022JA030349
966	Ma, Q., Li, W., Bortnik, J., Thorne, R. M., Chu, X., Ozeke, L. G., Claudepierre,
967	S. G. (2018, March). Quantitative Evaluation of Radial Diffusion and Local
968	Acceleration Processes During GEM Challenge Events. Journal of Geophysical
969	Research (Space Physics), 123(3), 1938-1952. doi: 10.1002/2017JA025114
970	Ma, Q., Li, W., Thorne, R. M., Ni, B., Kletzing, C. A., Kurth, W. S., An-
971	gelopoulos, V. (2015, February). Modeling inward diffusion and slow decay
972	of energetic electrons in the Earth's outer radiation belt. Geophys. Res. Lett.,
973	42, 987-995. doi: 10.1002/2014GL062977
974	Ma, Q., Ni, B., Tao, X., & Thorne, R. M. (2012, April). Evolution of the plasma
975	sheet electron pitch angle distribution by whistler-mode chorus waves
976	in non-dipole magnetic fields. Annales Geophysicae, 30, 751-760. doi:
977	10.5194/angeo-30-751-2012
978	Malaspina, D. M., Ukhorskiy, A., Chu, X., & Wygant, J. (2018, April). A Cen-
979	sus of Plasma Waves and Structures Associated With an Injection Front
980	in the Inner Magnetosphere. J. Geophys. Res., 123, 2566-2587. doi:
981	10.1002/2017JA025005
982	Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode
983	ray tracing in a warm background plasma with finite electron and ion $L_{\text{cl}} = \frac{1}{2} \sum_{i=1}^{n} 1$
984	temperature. J. Geophys. Res., $122(7)$, $7323-7335$. Retrieved from
985	http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546
986	Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm de-
987	trong to relativistic approximation I. Combus. Page 106, 12165, 12179
988	trons to relativistic energies. $J.$ Geophys. Res., 100, 15105-15178. doi: 10.1020/20001A000156
989	Manadith N.D. Harma, D.D. Chan, V.C. Li, W. & Dartrik, L. (2020). Clabal
990	model of whistler mode chorus in the near equatorial ratio (1) = (2020). Global
991	C_{combus} Reg. Lett $/7$ o2020CL 087311 doi: 10.1020/2020CL 087311
992	Geophys. Res. Lett., 47, e2020GL087511. doi: 10.1029/2020GL087511
993	Morodith N D Horno D B Sigard Diot A Bogghor D Voorby K H Li W l
994	Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, B. M. (2012, October). Clobal model of lower band and upper band
995	Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. <i>J. Geophys. Res.</i> 117, 10225. doi:
006	Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012.IA017978
996	 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012JA017978 Meredith N P. Horne R B. Thorne R M & Anderson R B. (2003 August)
996 997 998	 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012JA017978 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August). Favored regions for chorus-driven electron acceleration to relativistic energies
996 997 998 999	 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012JA017978 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August). Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt. Geophys. Res. Lett., 30(16), 160000-1, doi:
996 997 998 999	 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012JA017978 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August). Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt. Geophys. Res. Lett., 30(16), 160000-1. doi: 10.1029/2003GL017698
996 997 998 999 1000	 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012JA017978 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August). Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt. Geophys. Res. Lett., 30(16), 160000-1. doi: 10.1029/2003GL017698 Millan, R. M., & Baker, D. N. (2012, November). Acceleration of Particles to High
996 997 998 999 1000 1001	 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012JA017978 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August). Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt. Geophys. Res. Lett., 30(16), 160000-1. doi: 10.1029/2003GL017698 Millan, R. M., & Baker, D. N. (2012, November). Acceleration of Particles to High Energies in Earth's Radiation Belts. Space Sci. Rev., 173, 103-131. doi: 10
996 997 998 999 1000 1001 1002 1003	 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012JA017978 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August). Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt. Geophys. Res. Lett., 30(16), 160000-1. doi: 10.1029/2003GL017698 Millan, R. M., & Baker, D. N. (2012, November). Acceleration of Particles to High Energies in Earth's Radiation Belts. Space Sci. Rev., 173, 103-131. doi: 10.1007/s11214-012-9941-x
996 997 998 999 1000 1001 1002 1003 1004	 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012JA017978 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August). Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt. Geophys. Res. Lett., 30(16), 160000-1. doi: 10.1029/2003GL017698 Millan, R. M., & Baker, D. N. (2012, November). Acceleration of Particles to High Energies in Earth's Radiation Belts. Space Sci. Rev., 173, 103-131. doi: 10.1007/s11214-012-9941-x Millan, R. M., & Thorne, R. M. (2007, March). Review of radiation belt relativistic
996 997 998 999 1000 1001 1002 1003 1004 1005	 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012JA017978 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August). Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt. Geophys. Res. Lett., 30(16), 160000-1. doi: 10.1029/2003GL017698 Millan, R. M., & Baker, D. N. (2012, November). Acceleration of Particles to High Energies in Earth's Radiation Belts. Space Sci. Rev., 173, 103-131. doi: 10.1007/s11214-012-9941-x Millan, R. M., & Thorne, R. M. (2007, March). Review of radiation belt relativistic electron losses. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 362-
996 997 998 999 1000 1001 1002 1003 1004 1005 1006	 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012JA017978 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August). Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt. Geophys. Res. Lett., 30(16), 160000-1. doi: 10.1029/2003GL017698 Millan, R. M., & Baker, D. N. (2012, November). Acceleration of Particles to High Energies in Earth's Radiation Belts. Space Sci. Rev., 173, 103-131. doi: 10.1007/s11214-012-9941-x Millan, R. M., & Thorne, R. M. (2007, March). Review of radiation belt relativistic electron losses. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 362-377. doi: 10.1016/j.jastp.2006.06.019
996 997 998 999 1000 1001 1002 1003 1004 1005 1006	 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012JA017978 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August). Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt. Geophys. Res. Lett., 30(16), 160000-1. doi: 10.1029/2003GL017698 Millan, R. M., & Baker, D. N. (2012, November). Acceleration of Particles to High Energies in Earth's Radiation Belts. Space Sci. Rev., 173, 103-131. doi: 10.1007/s11214-012-9941-x Millan, R. M., & Thorne, R. M. (2007, March). Review of radiation belt relativistic electron losses. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 362-377. doi: 10.1016/j.jastp.2006.06.019 Min, K., Liu, K., & Li, W. (2014, July). Signatures of electron Landau resonant
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008	 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012JA017978 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August). Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt. Geophys. Res. Lett., 30(16), 160000-1. doi: 10.1029/2003GL017698 Millan, R. M., & Baker, D. N. (2012, November). Acceleration of Particles to High Energies in Earth's Radiation Belts. Space Sci. Rev., 173, 103-131. doi: 10.1007/s11214-012-9941-x Millan, R. M., & Thorne, R. M. (2007, March). Review of radiation belt relativistic electron losses. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 362-377. doi: 10.1016/j.jastp.2006.06.019 Min, K., Liu, K., & Li, W. (2014, July). Signatures of electron Landau resonant interactions with chorus waves from THEMIS observations. J. Geophys. Res.,

1009	119, 5551-5560. doi: 10.1002/2014JA019903
1010	Mourenas, D., Artemyev, A. V., Agapitov, O. V., & Krasnoselskikh, V. (2014,
1011	April). Consequences of geomagnetic activity on energization and loss of radia-
1012	tion belt electrons by oblique chorus waves. J. Geophys. Res., 119, 2775-2796.
1013	doi: 10.1002/2013JA019674
1014	Mourenas, D., Artemyev, A. V., Agapitov, O. V., Krasnoselskikh, V., & Li, W.
1015	(2014, December). Approximate analytical solutions for the trapped electron
1016	distribution due to quasi-linear diffusion by whistler mode waves. J. Geophys.
1017	Res., 119, 9962-9977. doi: 10.1002/2014JA020443
1018	Mourenas, D., Artemyev, A. V., Agapitov, O. V., Krasnoselskikh, V., & Mozer, F. S.
1019	(2015). Very oblique whistler generation by low-energy electron streams. J .
1020	Geophys. Res., 120, 3665-3683. doi: 10.1002/2015JA021135
1021	Mourenas, D., Artemyev, A. V., Ripoll, JF., Agapitov, O. V., & Krasnoselskikh,
1022	V. V. (2012). Timescales for electron quasi-linear diffusion by parallel and
1023	oblique lower-band Chorus waves. J. Geophys. Res., 117, A06234. doi:
1024	10.1029/2012JA017717
1025	Mourenas, D., Artemyev, A. V., Zhang, X. J., & Angelopoulos, V. (2022, Novem-
1026	ber). Extreme Energy Spectra of Relativistic Electron Flux in the Outer
1027	Radiation Belt. Journal of Geophysical Research (Space Physics), 127(11),
1028	e2022JA031038. doi: 10.1029/2022JA031038
1029	Mourenas, D., Artemyev, A. V., Zhang, X. J., & Angelopoulos, V. (2023, Au-
1030	gust). Upper Limit on Outer Radiation Belt Electron Flux Based on Dynam-
1031	ical Equilibrium. Journal of Geophysical Research (Space Physics), 128(8),
1032	e2023JA031676. doi: 10.1029/2023JA031676
1033	Mourenas, D., Artemyev, A. V., Zhang, X. J., Angelopoulos, V., Tsai, E., &
1034	Wilkins, C. (2021, November). Electron Lifetimes and Diffusion Rates
1035	Inferred From ELFIN Measurements at Low Altitude: First Results.
1036	Journal of Geophysical Research (Space Physics), 126(11), e29757. doi:
1037	10.1029/2021JA029757
1038	Mourenas, D., & Ripoll, JF. (2012). Analytical estimates of quasi-linear diffusion
1039	coefficients and electron lifetimes in the inner radiation belt. J. Geophys. Res.,
1040	117, A01204. doi: 10.1029/2011JA016985
1041	Mourenas, D., Zhang, X. J., Nunn, D., Artemyev, A. V., Angelopoulos, V., Tsai, E.,
1042	& Wilkins, C. (2022, May). Short Chorus Wave Packets: Generation Within
1043	Chorus Elements, Statistics, and Consequences on Energetic Electron Precipi-
1044	tation. Journal of Geophysical Research (Space Physics), 127(5), e30310. doi:
1045	10.1029/2022JA030310
1046	Mozer, F. S., Agapitov, O., Artemyev, A., Drake, J. F., Krasnoselskikh, V., Lejosne,
1047	S., & Vasko, I. (2015). Time domain structures: What and where they are,
1048	what they do, and how they are made. Geophys. Res. Lett., 42, 3627-3638.
1049	doi: 10.1002/2015GL063946
1050	Ni, B., Li, W., Thorne, R. M., Bortnik, J., Green, J. C., Kletzing, C. A., Soria-
1051	Santacruz Pich, M. (2014, July). A novel technique to construct the global
1052	distribution of whistler mode chorus wave intensity using low-altitude POES
1053	electron data. J. Geophys. Res., 119, 5685-5699. doi: 10.1002/2014JA019935
1054	Ni, B., Thorne, R. M., Meredith, N. P., Shprits, Y. Y., & Horne, R. B. (2011, Octo-
1055	ber). Diffuse auroral scattering by whistler mode chorus waves: Dependence on
1056	wave normal angle distribution. J. Geophys. Res., 116, 10207. doi: 10.1029/
1057	2011JA016517
1058	Ni, B., Thorne, R. M., Shprits, Y. Y., & Bortnik, J. (2008, June). Resonant
1059	scattering of plasma sheet electrons by whistler-mode chorus: Contribu-
1060	tion to diffuse auroral precipitation. Geophys. Res. Lett., 35, 11106. doi:
1061	10.1029/2008 GL034032
1062	O'Brien, T. P., Looper, M. D., & Blake, J. B. (2004, February). Quantification of
1063	relativistic electron microburst losses during the GEM storms. Geophys. Res.

1064	Lett., $31(4)$, L04802. doi: $10.1029/2003$ GL018621
1065	O'Brien, T. P., & Moldwin, M. B. (2003, February). Empirical plasmapause
1066	models from magnetic indices. <i>Geophys. Res. Lett.</i> , 30, 1152. doi:
1067	10.1029/2002GL016007
1068	Olifer, L., Mann, I. R., Boyd, A. J., Ozeke, L. G., & Choi, D. (2018, May). On
1069	the Role of Last Closed Drift Shell Dynamics in Driving Fast Losses and Van
1070	Allen Radiation Belt Extinction. J. Geophys. Res., 123, 3692-3703. doi:
1071	10.1029/2018JA025190
1072	Omura, Y., Furuya, N., & Summers, D. (2007, June). Relativistic turning ac-
1073	celeration of resonant electrons by coherent whistler mode waves in a dipole
1074	magnetic field. J. Geophys. Res., 112, 6236. doi: 10.1029/2006JA012243
1075	Omura, Y., Miyashita, Y., Yoshikawa, M., Summers, D., Hikishima, M., Ebihara, Y.,
1076	& Kubota, Y. (2015, November). Formation process of relativistic electron flux
1077	through interaction with chorus emissions in the Earth's inner magnetosphere.
1078	J. Geophys. Res., 120, 9545-9562, doi: 10.1002/2015JA021563
1079	Orlova K G & Shprits Y Y (2011 September) On the bounce-averaging of scat-
1080	tering rates and the calculation of bounce period Physics of Plasmas 18(9)
1081	092904. doi: 10.1063/1.3638137
1092	Backauckas C & Nie O (2017) Differentialequations il-a performant and feature-
1002	rich ecosystem for solving differential equations in julia <i>Journal of Open Re-</i>
1005	search Software 5(1)
1004	Bunov A Angelonoulos V Cabrielse C Liu I Turner D L & Zhou X -Z
1005	(2015 June) Average thermodynamic and spectral properties of plasma in
1080	and around dipolarizing flux bundles I Geonbus Res 120 4369-4383 doi:
1007	10 1002/2015 I A 021166
1000	Sauer K Baumgaerte K k Sydora B D (2020) Can formation around $(1/2)$
1089	sauer, R., Baumgaerte, R., & Sydola, R. D. (2020). Gap formation around $\omega_e/2$
1090	the magnetosphere: Predictions from dispersion theory Earth and Planetary
1091	Physics / 138 Retrieved from http://enpcgg.vml-journal.net//article/
1092	id/3c6a82bf = 66b3 = 436a = 94ca = bc744f2a3c29 doi: 10.26464/app2020020
1093	Sorgoov V A Sarbing F M Tsyganopko N A Lundblad I A & Sorgos F
1094	(1983 October) Pitch-angle scattering of energetic protons in the magne-
1095	totail current sheet as the dominant source of their isotropic precipitation
1090	into the nightside ionosphere Planetary Space Science 31 1147-1155 doi:
1098	10.1016/0032-0633(83)90103-4
1000	Sheeley B W Moldwin M B Bassoul H K & Anderson B B (2001 Novem-
1100	ber) An empirical plasmasphere and trough density model: CBRES observa-
1100	tions J Geophys Res 106 25631-25642 doi: 10.1029/2000.IA.000286
1102	Shen X-C Li W Capannolo L Ma O Oin M Artemyev A V Huang
1103	S. (2023, April). Modulation of Energetic Electron Precipitation Driven
1104	by Three Types of Whistler Mode Wayes. Geophys. Res. Lett., 50(8).
1105	e2022GL101682. doi: 10.1029/2022GL101682
1106	Shen Y Chen L Zhang X - J Artemyey A Angelopoulos V Cully C M
1107	Horne B B (2021 December) Conjugate Observation of Magnetospheric
1108	Chorus Propagating to the Jonosphere by Ducting Geophys Res Lett
1100	/8(23), e95933, doi: 10.1029/2021GL095933
1110	Shklvar, D. R. (2021, February). A Theory of Interaction Between Relativistic Elec-
1111	trons and Magnetospherically Reflected Whistlers. Journal of Geophysical Re-
1112	search (Space Physics), 126(2), e28799. doi: 10.1029/2020.IA028799
1113	Shklvar, D. R., & Matsumoto, H (2009 April) Oblique Whistler-Mode Waves
1114	in the Inhomogeneous Magnetospheric Plasma: Resonant Interactions with
1115	Energetic Charged Particles. Surveys in Geophysics. 30, 55-104 doi:
1116	10.1007/s10712-009-9061-7
1117	Shprits, Y. Y., & Ni, B. (2009, November). Dependence of the quasi-linear scatter-
1118	ing rates on the wave normal distribution of chorus waves. J. Geonhus. Res.
	\mathbf{C}

1110	11/ 11205 doi: 10.1020/2000 IA01/223
1119	Shprite V V Subbotin D A Moradith N P & Elkington S B (2008 Novam
1120	bor) Bayiow of modeling of losses and sources of relativistic electrons in the
1121	outer radiation balt II: Local accoleration and loss I lowrnal of Atmospheric
1122	and Solar Terrestrial Physics 70, 1604 1712, doi: 10.1016/j.jostp.2008.06.014
1123	Charite V V Therma D M Friedel D Decree C D Fernall J Dalar D N
1124	Snprits, Y. Y., Inorne, R. M., Friedel, R., Reeves, G. D., Fennell, J., Baker, D. N.,
1125	& Kanekal, S. G. (2006, November). Outward radial diffusion driven by losses
1126	at magnetopause. J. Geophys. Res., 111, 11214. doi: 10.1029/2006JA011657
1127	Shumko, M., Turner, D. L., O'Brien, T. P., Claudepierre, S. G., Sample, J., Hartley,
1128	D. P., Mitchell, D. G. (2018, August). Evidence of Microbursts Observed
1129	Near the Equatorial Plane in the Outer Van Allen Radiation Belt. Geophys.
1130	<i>Res. Lett.</i> , 45(16), 8044-8053. doi: 10.1029/2018GL078451
1131	Stix, T. H. (1962). The Theory of Plasma Waves.
1132	Summers, D., Ma, C., Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson,
1133	R. R. (2004, January). Modeling outer-zone relativistic electron response to
1134	whistler-mode chorus activity during substorms. Journal of Atmospheric and
1135	Solar-Terrestrial Physics, 66, 133-146. doi: 10.1016/j.jastp.2003.09.013
1136	Summers, D., & Ni, B. (2008, July). Effects of latitudinal distributions of particle
1137	density and wave power on cyclotron resonant diffusion rates of radiation belt
1138	electrons. Earth, Planets, and Space, 60, 763-771.
1139	Summers, D., Ni, B., & Meredith, N. P. (2007, April). Timescales for radiation belt
1140	electron acceleration and loss due to resonant wave-particle interactions: 1.
1141	Theory. J. Geophys. Res., 112, 4206. doi: 10.1029/2006JA011801
1142	Tao, X., Bortnik, J., Albert, J. M., & Thorne, R. M. (2012, October). Comparison
1143	of bounce-averaged quasi-linear diffusion coefficients for parallel propagating
1144	whistler mode waves with test particle simulations. J. Geophys. Res., 117,
1145	10205. doi: 10.1029/2012JA017931
1146	Tao, X., Thorne, R. M., Li, W., Ni, B., Meredith, N. P., & Horne, R. B. (2011)
1147	April). Evolution of electron pitch angle distributions following injection
1148	from the plasma sheet. J. Geophys. Res., 116, A04229. doi: 10.1029/
1149	2010JA016245
1150	Thorne, R. M. (1980, March). The importance of energetic particle precipitation
1151	on the chemical composition of the middle atmosphere. Pure and Applied Geo-
1152	<i>physics</i> , 118(1), 128-151, doi: 10.1007/BF01586448
1153	Thorne B M $(2010$ November) Badiation belt dynamics: The importance of
1154	wave-particle interactions Geophys Res Lett 372 22107 doi: 10.1029/
1155	2010GL044990
1155	Thorne B M Li W Ni B Ma O Bortnik I Chen L Kanekal S G
1150	(2013 December) Bapid local acceleration of relativistic radiation-
1157	helt electrons by magnetospheric chorus Nature 50/ 411-414 doi:
1150	$10\ 1038/\text{nature} 12889$
1159	Thorne B M O'Brien T P Shorits V V Summers D & Horne B B (2005
1160	Sontombor) Timoscale for MeV electron microburst loss during geomegnetic
1161	storms I Geonbus Res 110 0202 doi: 10.1020/2004 IA010882
1102	Tesi F (2023 June) athentasi/nlauhistlang/2009 Zonada Detrieved from
1163	https://doi.org/10.5281/zonodo.202274 (Coffware) doi: 10.5281/zonodo
1164	8083874
1165	.0000074 The E Automatic A Annalan sular V $\ell_{\rm e}$ 7 hanne V I (2022 Assumption In
1166	reatization Whistlen Mode Ware Interstite Along Eight Lines Using Electron Electron and the second statement of the second sta
1167	Provinitation Moodurements - Journal of Comparison Description
1168	r recipitation measurements. Journal of Geophysical Research (Space Physics),
1169	120(0), e2025JA051578. doi: $10.1029/2025JA051578$
1170	I sai, E., Artemyev, A., Znang, AJ., & Angelopoulos, V. (2022, May). Relativistic
1171	Electron Precipitation Driven by Nonlinear Resonance With Whistler-Mode W_{rescale} for M_{rescale} by M_{rescal
1172	waves. Journal of Geophysical Research (Space Physics), 127(5), e30338. doi: 10.1020/202014.020228
1173	10.1029/2022JA050558

1174 1175	a warped tail current sheet. <i>Planetary Space Science</i> , <i>37</i> , 5-20. doi: 10.1016/
1176	0032 - 0633(89)90066 - 4
1177	Turner, D. L., Angelopoulos, V., Li, W., Bortnik, J., Ni, B., Ma, Q., Rodriguez,
1178	J. V. (2014, March). Competing source and loss mechanisms due to wave-
1179	particle interactions in Earth's outer radiation belt during the 30 September to
1180	3 October 2012 geomagnetic storm. J. Geophys. Res., 119, 1960-1979. doi:
1181	10.1002/2014JA019770
1182	Turunen, E., Kero, A., Verronen, P. T., Miyoshi, Y., Oyama, SI., & Saito, S.
1183	(2016). Mesospheric ozone destruction by high-energy electron precipitation as-
1184	sociated with pulsating aurora. Journal of Geophysical Research: Atmospheres,
1185	121(19), 11–852.
1186	Vainchtein, D., Zhang, X. J., Artemyev, A. V., Mourenas, D., Angelopoulos, V.,
1187	& Thorne, R. M. (2018, October). Evolution of Electron Distribution
1188	Driven by Nonlinear Resonances With Intense Field-Aligned Chorus Waves.
1189	Journal of Geophysical Research (Space Physics), 123(10), 8149-8169. doi:
1190	10.1029/2018JA025654
1191	Vasko, I. Y., Agapitov, O. V., Mozer, F. S., Artemyev, A. V., Drake, J. F., &
1192	Kuzichev, I. V. (2017, January). Electron holes in the outer radiation belt:
1193	Characteristics and their role in electron energization. J. Geophys. Res., 122,
1194	120-135. doi: 10.1002/2016JA023083
1195	Vasko, I. Y., Agapitov, O. V., Mozer, F. S., Bonnell, J. W., Artemyev, A. V., Kras-
1196	noselskikh, V. V., Hospodarsky, G. (2017, May). Electron-acoustic solitons
1197	and double layers in the inner magnetosphere. Geophys. Res. Lett., 44, 4575-
1198	4583. doi: 10.1002/2017GL074026
1199	Verkhoglyadova, O. P., Tsurutani, B. T., & Lakhina, G. S. (2010, September). Prop-
1200	erties of obliquely propagating chorus. Journal of Geophysical Research (Space
1201	<i>Physics</i>), 115(1), A00F19. doi: 10.1029/2009JA014809
1202	Walsh, B. M., Hull, A. J., Agapitov, O., Mozer, F. S., & Li, H. (2020). A census of
1203	magnetospheric electrons from several ev to 30 kev. Journal of Geophysical Re-
1204	search: Space Physics, 125(5), e2019JA027577. Retrieved from https://
1205	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JA027577
1206	$(e2019JA027577 \ 10.1029/2019JA027577)$ doi: $10.1029/2019JA027577$
1207	Wang, D., & Shprits, Y. Y. (2019, July). On How High-Latitude Chorus Waves Tip
1208	the Balance Between Acceleration and Loss of Relativistic Electrons. <i>Geophys.</i>
1209	Res. Lett., $46(14)$, 7945-7954. doi: 10.1029/2019GL082681
1210	Watt, C. E. J., Degeling, A. W., & Rankin, R. (2013, May). Constructing the fre-
1211	quency and wave normal distribution of whistler-mode wave power. J. Geo-
1212	phys. Res., 118, 1984-1991. doi: 10.1002/jgra.50231
1213	Wilkins, C., Angelopoulos, V., Runov, A., Artemyev, A., Zhang, X. J., Liu, J.,
1214	& Tsai, E. (2023, October). Statistical Characteristics of the Electron
1215	Isotropy Boundary. Journal of Geophysical Research (Space Physics), 128(10),
1216	$e^{2023}JA031774.$ doi: $10.1029/2023JA031774$
1217	Xiang, Z., Tu, W., Ni, B., Henderson, M. G., & Cao, X. (2018, August). A Statis-
1218	tical Survey of Radiation Belt Dropouts Observed by Van Allen Probes. Geo-
1219	phys. Res. Lett., 45, 8035-8043. doi: 10.1029/2018GL078907
1220	Xu, W., Marshall, R. A., Tyssøy, H. N., & Fang, X. (2020). A generalized method
1221	for calculating atmospheric ionization by energetic electron precipitation. Jour-
1222	nal of Geophysical Research: Space Physics, 125(11), e2020JA028482.
1223	Yahnin, A. G., Yahnina, T. A., Raita, T., & Manninen, J. (2017, September).
1224	Ground pulsation magnetometer observations conjugated with relativistic elec-
1225	tron precipitation. Journal of Geophysical Research (Space Physics), 122(9),
1226	9169-9182. doi: 10.1002/2017JA024249
1227	Yahnin, A. G., Yahnina, T. A., Semenova, N. V., Gvozdevsky, B. B., & Pashin,
1228	A. B. (2016, September). Relativistic electron precipitation as seen by NOAA

1229	POES. Journal of Geophysical Research (Space Physics), 121(9), 8286-8299.
1230	doi: 10.1002/2016JA022765
1231	Zhang, X., Angelopoulos, V., Artemyev, A. V., & Liu, J. (2018, September).
1232	Whistler and Electron Firehose Instability Control of Electron Distributions in
1233	and Around Dipolarizing Flux Bundles. Geophys. Res. Lett., 45, 9380-9389.
1234	doi: 10.1029/2018GL079613
1235	Zhang, XJ., Angelopoulos, V., Artemyev, A., Mourenas, D., Agapitov, O., Tsai,
1236	E., & Wilkins, C. (2023, January). Temporal Scales of Electron Precipitation
1237	Driven by Whistler-Mode Waves. Journal of Geophysical Research (Space
1238	<i>Physics</i>), 128(1), e2022JA031087. doi: 10.1029/2022JA031087
1239	Zhang, XJ., Angelopoulos, V., Mourenas, D., Artemyev, A., Tsai, E., & Wilkins,
1240	C. (2022, May). Characteristics of Electron Microburst Precipitation Based
1241	on High-Resolution ELFIN Measurements. Journal of Geophysical Research
1242	(Space Physics), 127(5), e30509. doi: 10.1029/2022JA030509
1243	Zhang, X. J., Thorne, R., Artemyev, A., Mourenas, D., Angelopoulos, V., Bortnik,
1244	J., Hospodarsky, G. B. (2018, July). Properties of Intense Field-Aligned
1245	Lower-Band Chorus Waves: Implications for Nonlinear Wave-Particle Inter-

- actions. Journal of Geophysical Research (Space Physics), 123(7), 5379-5393.
- 1247 doi: 10.1029/2018JA025390

Key factors determining nightside energetic electron losses driven by whistler-mode waves

Ethan Tsai¹, Anton Artemyev¹, Qianli Ma^{2,3}, Didier Mourenas^{4,5}, Oleksiy Agapitov⁶, Xiao-Jia Zhang^{7,1}, Vassilis Angelopoulos¹

5	¹ Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA 90095,
6	USA
7	² Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles,
8	USA
9	3 Boston University, Boston, MA, United States
10	⁴ CEA, DAM, DIF, Arpajon, France
11	⁵ Laboratoire Matière en Conditions Extrêmes, Paris-Saclay University, CEA, Bruyères-le-Châtel, France
12	⁶ Space Sciences Laboratory, University of California, Berkeley, CA, USA
13	7 Department of Physics, The University of Texas at Dallas, Richardson, TX, USA

Key Points:

1

2

3

14

20

15	•	Comparing ELFIN data with test particle and quasi-linear simulations, we inves-
16		tigate whistler-driven electron precipitation on the nightside
17	•	A reduction in background plasma density is key to enabling whistler-mode waves
18		to efficiently scatter electrons up to 1 MeV
19	•	Decreasing wave frequency as a function of latitude and wave obliquity, are both

integral to capturing realistic nightside electron losses

 $Corresponding \ author: \ Ethan \ Tsai, \ \texttt{ethantsaiQucla.edu}$

21 Abstract

Energetic electron losses by pitch-angle scattering and precipitation to the atmosphere 22 from the radiation belts are controlled, to a great extent, by resonant wave particle in-23 teractions with whistler-mode waves. The efficacy of such precipitation is primarily con-24 trolled by wave intensity, although its relative importance, compared to other wave and 25 plasma parameters, remains unclear. Precipitation spectra from the low-altitude, polar-26 orbiting ELFIN mission have previously been demonstrated to be consistent with ener-27 getic precipitation modeling derived from empirical models of field-aligned wave power 28 across a wide-swath of local-time sectors. However, such modeling could not explain the 29 intense, relativistic electron precipitation observed on the nightside. Therefore, this study 30 aims to additionally consider the contributions of three modifications – wave obliquity, 31 frequency spectrum, and local plasma density – to explain this discrepancy on the night-32 side. By incorporating these effects into both test particle simulations and quasi-linear 33 diffusion modeling, we find that realistic implementations of each individual modifica-34 tion result in only slight changes to the electron precipitation spectrum. However, these 35 modifications, when combined, enable more accurate modeling of ELFIN-observed spec-36 tra. In particular, a significant reduction in plasma density enables lower frequency waves, 37 oblique, or even quasi-field aligned waves to resonate with near $\sim 1 \text{ MeV}$ electrons closer 38 to the equator. We demonstrate that the levels of modification required to accurately 39 reproduce the nightside spectra of whistler-mode wave-driven relativistic electron pre-40 cipitation match empirical expectations, and should therefore be included in future ra-41 diation belt modeling. 42

43 Plain Language Summary

Whistler-mode waves are a type of electromagnetic wave that mediate electron dy-44 namics in Earth's radiation belts and are simultaneously important for energizing elec-45 trons and driving loss mechanisms. Most radiation belt models today do not adequately 46 capture the effects of these waves on relativistic electrons, which are important to study 47 because these energetic electrons are often called "Killer Electrons" for their ability to 48 degrade spacecraft electronics. Additionally, when lost into Earth's atmosphere, these 49 electrons can also change atmospheric chemistry and ionospheric properties, making them 50 an important input parameters for atmospheric, ionospheric, and magnetospheric mod-51 eling. This study uses two different modeling methods to determine which properties of 52 whistler-mode waves are most important for accurately capturing these wave-particle in-53 teractions on the nightside, where plasma interactions are more dynamic. The results 54 agree well with statistical results from the Electron Losses and Fields INvestigation (ELFIN) 55 mission, allowing us to fully explain the mechanisms behind whistler-mode wave-driven 56 electron losses on the nightside. 57

58 1 Introduction

Earth's inner magnetosphere is filled with energetic electron fluxes injected from 59 the plasma sheet, that are then further accelerated via resonant interactions with elec-60 tromagnetic whistler-mode (chorus) waves (Millan & Baker, 2012; Shprits et al., 2008). 61 These wave-particle interactions are, in great part, also responsible for energetic elec-62 tron pitch-angle scattering into the loss cone and subsequent electron loss through pre-63 cipitation into Earth's atmosphere (Millan & Thorne, 2007; Shprits et al., 2008). This 64 contribution to both acceleration and pitch-angle scattering of energetic electrons makes 65 the whistler-mode wave a crucial element of outer radiation belt dynamics (Bortnik & 66 Thorne, 2007; Thorne, 2010; Li & Hudson, 2019). Not only do energetic radiation belt 67 electrons serve as an important space weather proxy (Horne et al., 2013), relativistic elec-68 tron can also penetrate deep into the thermosphere/mesosphere (Xu et al., 2020) con-69 tributing to ozone depletion (Thorne, 1980; Lam et al., 2010; Turunen et al., 2016). Un-70

derstanding the mechanisms behind the global distribution of energetic electron losses
 is therefore important for studying radiation belt dynamics and atmospheric chemistry.

Energetic ($\gtrsim 100 \text{ keV}$) electron losses due to whistler-mode waves is one such topic 73 that has yet to be fully investigated. It is known that these waves can scatter electrons 74 up to 1 MeV (O'Brien et al., 2004; Thorne et al., 2005; Blake & O'Brien, 2016; Shumko 75 et al., 2018; Breneman et al., 2017), which is problematic because current radiation belt 76 models typically only incorporate diffusive losses of sub-relativistic electrons (up to \sim 77 500 keV). Additionally, previous research (Tsai et al., 2023) has revealed a day-night dif-78 79 ference in energetic electrons scattered by whistler-mode waves, with more intense electron precipitation on the dayside than on the nightside. This is attributed to two system-80 level properties -(1) nightside regions generally have a lower plasma density and (2) night-81 side wave activity is generally more confined to the equatorial plane (Meredith et al., 2001, 82 2003; Agapitov et al., 2013) – which both cause strong resonant wave particle interac-83 tions to preferentially occur on the dayside, resulting in more extreme energetic electron 84 losses (e.g., Thorne et al., 2005; Mourenas, Artemyev, Agapitov, & Krasnoselskikh, 2014; 85 Wang & Shprits, 2019; Aryan et al., 2020). This is supported by Tsai et al. (2023), which 86 used modeled electron precipitation spectra derived from statistically-averaged wave in-87 tensity distributions from Agapitov et al. (2018) to directly compare with statistical ob-88 servations of electron precipitating fluxes from ELFIN (Angelopoulos et al., 2020). Al-89 though these model-data comparisons showed good agreement between electron precip-90 itation and wave power in the dusk and daysides, ELFIN-measured nightside relativis-91 tic ($\gtrsim 500 \text{ keV}$) precipitating flux rates were substantially larger than anticipated (i.e. 92 modeled) and nearly comparable to that on the dayside. Understanding mechanisms that 93 can cause such intense energetic precipitation is a prerequisite for accurately modeling electron loss in the radiation belts, therefore motivating the need to explore what key 95 factors actually determine nightside electron losses. 96

There are a few prime candidates that determine the efficiency of wave-particle resonant interactions (and, particularly, the energy dependence of whistler-mode wave driven electron scattering):

 Wave intensity distribution along magnetic field lines (see discussion in Thorne et al., 2005; Wang & Shprits, 2019).

102

103

104

105

106

- Obliquity of wave propagation relative to the background magnetic field (see discussion in Lorentzen et al., 2001; Mourenas, Artemyev, Agapitov, & Krasnoselskikh, 2014; Artemyev et al., 2016).
- 3. Wave frequency spectrum and its variation along magnetic field lines (see discussion in Agapitov et al., 2018)

4. Equatorial plasma density magnitude (see discussion in Thorne et al., 2013; Agapitov et al., 2019; Allison & Shprits, 2020) and its variation along magnetic field lines (see discussion in Summers & Ni, 2008; Artemyev et al., 2013).

Having already examined the importance of wave amplitude in Tsai et al. (2023), we now 110 study the remaining three mechanisms which could potentially modulate nightside elec-111 tron precipitating spectra. First, intense nightside whistler-mode waves are typically as-112 sociated with strong plasma sheet injections (Tao et al., 2011; Fu et al., 2014; X. Zhang 113 et al., 2018) which are often accompanied by the enhanced convection electric field which 114 transports cold plasma Earthward, thereby decreasing equatorial plasma density (Vasko, 115 Agapitov, Mozer, Bonnell, et al., 2017; Agapitov et al., 2019). A lower plasma density 116 results in a lower plasma frequency; a lower plasma frequency to gyrofrequency ratio, 117 f_{pe}/f_{ce} yields a higher cyclotron resonance energy $E_R \propto (f_{ce}/f_{pe})^2$ to f_{ce}/f_{pe} (from 118 low to high energy) of electrons for given wave frequencies, wave normal angles, and elec-119 tron pitch-angles (Stix, 1962; Summers et al., 2007; Li, Thorne, Nishimura, et al., 2010; 120 Allison et al., 2021). This nightside localized density reduction can thus potentially in-121 crease the scattering rate of relativistic electrons. 122

Second, statistical observations have shown a clear trend of average wave frequency 123 decreasing with latitude along field lines (i.e. increasing distance from the equatorial plane) 124 (Agapitov et al., 2018). This is likely caused by preferential Landau damping of higher-125 frequency waves resonating with suprathermal electrons (L. Chen et al., 2013; Watt et 126 al., 2013; Maxworth & Golkowski, 2017). A lower normalized wave frequency f/f_{ce} means 127 a higher cyclotron resonance energy $E_R \propto (f_{ce}/f)(1-f/f_{ce})^3$ to $(f_{ce}/f)^{1/2}(1-f/f_{ce})^{3/2}$ 128 from low to high energy (Li, Thorne, Nishimura, et al., 2010; Mourenas et al., 2012). Thus, 129 this reduction in the mean wave frequency in the nightside off-equatorial region may also 130 increase the scattering rate of relativistic electrons. 131

Third, plasma injections are often associated with enhanced electrostatic turbu-132 lence (Mozer et al., 2015; Agapitov et al., 2015; Vasko, Agapitov, Mozer, Artemyev, et 133 al., 2017; Malaspina et al., 2018) that forms a plateau in the field-aligned velocity dis-134 tribution and significantly reduces Landau damping of oblique whistler-mode waves (see 135 discussion in Mourenas et al., 2015; Ma et al., 2017; Artemyev & Mourenas, 2020). In 136 this regime, oblique (with wave normal angles below the Gendrin angle $\theta_G \approx a\cos(2f/f_{ce})$) 137 and very oblique (with wave normal angle up to the resonant cone angle $\theta_r \approx \operatorname{acos}(f/f_{ce})$) 138 waves may survive Landau damping (see Min et al., 2014; R. Chen et al., 2019; Sauer 139 et al., 2020; Ke et al., 2022). These waves then become oblique off the equatorial plane 140 (Bortnik et al., 2007; L. Chen et al., 2013), or, in more unusual cases, are generated within 141 the equatorial source region (Artemyev et al., 2016; Li, Mourenas, et al., 2016; Agapi-142 tov et al., 2016). Wave obliquity not only increases the resonant interaction energy with 143 electrons as $E_R \propto 1/k_{\parallel}^2 \propto 1/\cos^2\theta$ (e.g., Verkhoglyadova et al., 2010; Mourenas et 144 al., 2015), but also allows for interactions with electrons at higher-order cyclotron res-145 onances ($n \gg 1$, e.g., Shklyar & Matsumoto, 2009; Mourenas et al., 2012; Artemyev 146 et al., 2013; Albert, 2017) which can drastically increase the resonance energy $E_R \propto n^2$ 147 (e.g., Lorentzen et al., 2001; Gan et al., 2023). Thus, nightside whistler-mode wave obliq-148 uity could also potentially increase the scattering rate of relativistic electrons. 149

Here, we examine each of these three mechanisms to see whether they can explain 150 the enhanced precipitation of relativistic electrons in the nightside MLT sector using a 151 combination of statistics from ELFIN observations (Angelopoulos et al., 2020), test par-152 ticle simulations (Tsai et al., 2022, 2023), and quasi-linear diffusion code (Ma et al., 2012, 153 2015). This paper is organized as follows: Section 2 details ELFIN observations/statistics 154 and presents observational evidence of intense nightside precipitation of relativistic elec-155 trons; Section 3 describes the basics of the test particle simulation and quasi-linear dif-156 fusion codes; Section 4 compares ELFIN data to results from a variety of runs explor-157 ing the three main modifications – reduced plasma density, wave obliquity, wave frequency 158 variation along magnetic field lines; finally, Section 5 summarizes and discusses the ob-159 tained results. 160

¹⁶¹ 2 Data Sets

The ELFIN CubeSats (ELFIN A and B) are identically equipped with an Ener-162 getic Particle Detector for Electrons (EPDE), capable of measuring energy and pitch-163 angle distributions of energetic electrons with $\Delta E/E = 40\%$ across 16 logarithmically 164 spaced energy channels between 50 keV and 5 MeV (Angelopoulos et al., 2020). Spin-165 ning at just over 21 revolutions per minute (spin period ≈ 2.8 sec), ELFIN's 16 sectors 166 per spin yields a spin phase resolution of $\Delta \alpha = 22.5^{\circ}$. The main data product used in 167 this study is the precipitating-to-trapped flux ratio, $j_{prec}/j_{trap}(E)$, where $j_{trap}(E)$ is the 168 locally trapped (outside of the local bounce loss-cone) electron flux and $j_{prec}(E)$ is the 169 flux integrated over the local loss-cone with a correction to remove the backscattered fluxes 170 from the opposite hemisphere (see details in Mourenas et al., 2021; Angelopoulos et al., 171 2023). Figure 1 shows two typical examples of ELFIN outer radiation belt crossings on 172 the nightside with $j_{trap}(E)$ (a,d) and j_{prec}/j_{trap} (b,e) distributions. 173

This study utilized 30 months (January 2020 - June 2022) of ELFIN's $j_{trap}(E)$ and 174 $j_{prec}(E)$ measurements during strong and bursty energetic electron precipitation events 175 (for details regarding statistical coverage, see Figure 5 in Tsai et al., 2023). In order to 176 obtain a statistical representation of whistler-mode-driven electron precipitation, data 177 was selected based on data quality (minimum 4 counts/second for any given energy or 178 pitch angle bin) and precipitation intensity $(j_{prec}(E)/j_{trap}(E) > 0.5$ at ELFIN's low-179 est energy bin of 63 keV). In addition, there were provisions to identify and remove elec-180 tron precipitation events driven by field-line curvature scattering, EMIC-driven precip-181 itation, and microbursts. Curvature scattering (Imhof et al., 1977; Sergeev et al., 1983; 182 Büchner & Zelenvi, 1989) of plasma sheet and radiation belt electrons can be identified 183 by its sharp energy/latitude dispersion (isotropy boundary) that results in high precipitating-184 to-trapped flux ratio at relativistic energies closer to the planet (see the IB precipitat-185 ing pattern in Fig. 1b and statistical results in Wilkins et al. (2023)). Such data, in ad-186 dition to the isotropic precipitation with $j_{prec}/j_{trap} \sim 1$ of < 300 keV electrons pole-187 ward from the isotropy boundary (Artemyev et al., 2022), are removed from our statis-188 tics. Next, electromagnetic ion cyclotron (EMIC) waves, which are caused by nightside 189 ion injections (Jun et al., 2019; Kim et al., 2021) and efficiently scatter and precipitate 190 relativistic electrons (e.g., Blum, Halford, et al., 2015; Blum, Li, & Denton, 2015; Yah-191 nin et al., 2016, 2017; Capannolo et al., 2019, 2023), are excluded. These EMIC-driven 192 observations are identified by precipitating-to-trapped ratios that reach their peak at >193 500 keV energy (see examples in X. An et al., 2022; Grach et al., 2022; Capannolo et al., 194 2023; Angelopoulos et al., 2023). Additionally, whistler-mode hiss waves provide a wide 195 energy range of scattering, from weak scattering further from the plasmasphere to pre-196 cipitation of relativistic electrons within the plasmasphere (see discussion of ELFIN ob-197 servations of such precipitation in Mourenas et al., 2021; Angelopoulos et al., 2023; X.-198 C. Shen et al., 2023); these hiss precipitation events are also eliminated. Figure 1e shows 199 this particular pattern, which is recognizable by a low j_{prec}/j_{trap} ratio peaking at ≥ 500 200 keV energy at low L-shells. Finally, we exclude all precipitation patterns showing microburst-201 like flux variation within one spin (such events are characterized by precipitating-to-trapped 202 flux ratio exceeding one for relativistic electron energies, see X.-J. Zhang et al., 2022, for 203 further examples). 204

All these effects are programmatically eliminated from statistics leaving us with only one type of precipitating energy distribution: a precipitating-to-trapped ratio monotonically decreasing with energy, observed primarily within L-shells $\in [4, 8]$, corresponding to the outer radiation belt outside the plasmasphere (e.g., Mourenas et al., 2021). This type of precipitation can only be caused by whistler-mode waves (see more details and examples in Tsai et al., 2022; X.-J. Zhang et al., 2022, 2023), and is demonstrated in Figure 1(b,e).

We combine all ELFIN observations from the nightside MLT sector (27950 spins 212 across 4458 radiation belt crossings) and plot the averaged precipitating-to-trapped flux 213 spectra for three geomagnetic activity levels and two L-shell domains (4.5-5.5 and 5.5-5.5 and 5214 7.5) for $AE \in [100, 300]$ nT in Fig. 2d. Fig. 2(a-c) show that the precipitating-to-trapped 215 electron flux ratio j_{prec}/j_{trap} above 100 keV increases significantly as AE increases. The 216 precipitating-to-trapped flux ratio reaches $j_{prec}/j_{trap} \sim 0.1$ up to 200-400 keV when 217 AE > 300 nT. This result is consistent with past observations of stronger energetic elec-218 tron injections from the plasma sheet during periods of higher AE (Tao et al., 2011; Runov 219 et al., 2015; Gabrielse et al., 2014), leading to even more intense whistler-mode waves 220 (Meredith et al., 2001; X. J. Zhang et al., 2018) which can efficiently precipitate 50 – 221 500 keV electrons (Summers et al., 2004; Thorne et al., 2005; Aryan et al., 2020; Agapi-222 tov et al., 2018). The ratio j_{prec}/j_{trap} is also higher at L = 5.5-7.5 than at L = 4.5-223 5.5 in Fig. 2, in agreement with the higher chorus wave power at higher L > 5.0-5.5224 in the night sector in spacecraft statistics (Agapitov et al., 2018; Meredith et al., 2020). 225 The smooth decrease of j_{prec}/j_{trap} as electron energy increases in Fig. 2d is consistent 226 with the expectation that at higher latitudes, wave power decreases while minimum cy-227

Figure 1. Two examples of ELFIN observations with strong precipitation of energetic electrons in the nightside MLT sector showing locally trapped electron fluxes (a,d), precipitating-to-trapped flux ratio (b,e), and ELFIN's MLT, *L*-shell coordinates from (Tsyganenko, 1989) model (c,f).

clotron resonance energy increases, therefore precipitating higher energy electrons at lower
 absolute flux levels (Agapitov et al., 2018; Meredith et al., 2020).

²³⁰ 3 Simulation

Calculating the precipitating-to-trapped flux ratios is useful because it eliminates 231 the trapped flux variability (which can vary by orders of magnitude). The slope of the 232 ratio's energy spectra now represents only the relative effects of resonant interactions with 233 whistler-mode waves. To then compare with ELFIN statistics, we obtain modeled precipitating-234 to-trapped flux ratios using two different types of simulations: (1) a configurable large-235 ensemble test particle simulation for electron resonant interactions, as used in previous 236 work (Tsai et al., 2022, 2023) and (2) a quasi-linear diffusion code which has been used 237 in previous radiation belt simulations (Ma et al., 2012, 2015). The test particle simu-238 lations include potential non-linear resonant effects and consider only purely monochro-239 matic waves, whereas the quasi-linear diffusion code models electron scattering by an en-240 semble of oblique waves with higher order resonant interactions across a distribution of 241 frequencies. Thus, by comparing results obtained by these two approaches, we can fully 242 capture the importance of different resonant effects for electron scattering and losses. 243

244

3.1 Test particle simulation

Our test particle simulation (Tsai et al., 2022, 2023) is designed to compute the 245 expected energy distribution of the electron precipitation flux ratio given realistic wave 246 parameters. In order to obtain enough statistics – especially at higher energies where 247 it is less likely for electrons to be scattered into the loss cone – we use a large number 248 of particles for all test particle simulations in this study with $N = 5 \times 10^6$. For this 249 to run in a reasonable amount of time, we parallelize the code and implement it in Ju-250 lia 1.9.3 (Bezanson et al., 2017) using the differential equations package (Rackauckas & 251 Nie, 2017). The Hamiltonian formulation for wave-particle resonant interactions (Albert 252 et al., 2013; Vainchtein et al., 2018) incorporates nonlinear effects such as phase bunch-253

Figure 2. Plots (a-c) show the statistical distributions of precipitating-to-trapped electron spectra in (MLT, energy) space for several levels of geomagnetic activity. Plots (d) show energy profiles of precipitating-to-trapped fluxes for three geomagnetic activity levels in the nightside MLT \in [18, 4]. The shaded blue range regions represent the upper (AE > 300 nT) and lower (AE < 100 nT) bounds of geomagnetic activity levels while the central black curve depicts AE \in [100, 300] nT.

ing, phase trapping, and anomalous trapping (Demekhov et al., 2006; Bortnik et al., 2008; 254 Katoh et al., 2008; Omura et al., 2007; Kitahara & Katoh, 2019; Albert et al., 2021). The 255 simulation uses monochromatic waves, which is generally valid for describing diffusive 256 scattering in a background dipolar magnetic field due to its strong magnetic field gra-257 dient (Albert, 2001, 2010; Shklyar, 2021). Critically, the wave field is modified by the 258 function $B_w(\lambda, L, MLT, Kp)$ which describes the wave amplitude variation along mag-259 netic field lines using an empirical chorus wave model built using 14 years of Cluster and 260 Van Allen Probe statistics. The wave model is dependent on latitude, geographic loca-261 tion, and geomagnetic activity (see model and coefficients in Agapitov et al., 2018), which 262 is necessary for realistic modeling of energetic electron losses. Further details of the test 263 particle simulation implementation can be found in Tsai et al. (2022, 2023). 264

In this study, we have further augmented the test particle simulation to explore the latitudinal dependence of wave frequency and obliquity so that wave frequency $\omega(\lambda, \theta)$ is a function of both latitude and wave normal angle. Changing into dimensionless variables allows us to provide a mean normalized wave frequency $\omega_m(\lambda) = \omega(\lambda)/\Omega_{ce,eq}$ and mean wave normal angle $\theta(\lambda)$ both as functions of magnetic latitude λ (as described in Section 3.3). With dimensionless variables, the normalized plasma frequency is defined as $\Omega_{pe} = \omega_{pe,eq}/\Omega_{ce,eq}$.

3.2 Quasi-linear diffusion code

272

To instill further confidence in test particle simulation results, we calculate the quasilinear diffusion coefficients using the Full Diffusion Code (Ni et al., 2008, 2011; Shprits & Ni, 2009; Ma et al., 2018) and model the precipitating electron flux using the Fokker-Planck diffusion code (Ma et al., 2012, 2015). This quasi-linear diffusion code physically differs from the test particle simulations primarily in the fact that it prescribes Gaussian distributions for the wave frequency (Glauert & Horne, 2005):

$$\hat{B}^{2}(\omega) \sim \exp\left[-\frac{\left(\omega - \omega_{m}(\lambda)\right)^{2}}{\delta\omega^{2}}\right]$$

²⁷⁹ and the wave normal angle:

$$g(\theta) \sim \exp\left[-\frac{\left(\tan\theta - \tan\theta_m(\lambda)\right)^2}{(\tan\delta\theta)^2}\right]$$

where mean values ω_m and θ_m with bandwidths $\delta\omega$ and $\delta\theta$ represent wave frequency and normal angle, respectively. These distributions are provided relative to mean values, $\omega_m(\lambda)$ and $\theta_m(\lambda)$, which are given as functions of magnetic latitude λ and discussed in the next section (see details in Artemyev et al., 2013; Agapitov et al., 2018; Aryan et al., 2020).

We use the bounce-averaged Fokker-Planck equation to model the electron precipitation rate (Lyons et al., 1972; Glauert & Horne, 2005):

$$\frac{\partial f}{\partial t} = \frac{1}{\tau_b \left(\alpha_{eq}\right) \sin 2\alpha_{eq}} \frac{\partial}{\partial \alpha_{eq}} \left(\tau_b \left(\alpha_{eq}\right) \sin 2\alpha_{eq} \left(\left\langle D_{\alpha\alpha} \right\rangle \frac{\partial f}{\partial \alpha_{eq}} \right) \right) - \frac{f}{\tau_{loss}} \tag{1}$$

where α_{eq} is the equatorial pitch angle, $\tau_b \approx 1.38 - 0.32 \left(\sin \alpha_{eq} + \sin^2 \alpha_{eq}\right)$ (see Orlova & Shprits, 2011), $\langle D_{\alpha\alpha} \rangle$ is the bounce-averaged diffusion rate, and $\tau_{loss}(t)$ is the bounce loss time (and is set to be a quarter of the bounce period inside the local loss-cone and infinity outside the loss cone). We use the quasi-linear diffusion code to numerically solve Eq. (1), with diffusion rates derived from $\hat{B}^2(\omega)$ and $g(\theta)$ distributions (see Ni et al., 2008, 2011; Ma et al., 2015, 2018). Zero-gradient boundary conditions in pitch angle are set to simulate the loss cone filling of electrons due to wave scattering (Ma et al., 2022).

3.3 Frequency and Obliquity Models

293

In both simulations, we use the following two models to compare the effects of whistler wave frequency (normalized to the equatorial gyrofrequency) $\omega_m = \omega/\Omega_{ce,eq}$:

- Model 1: normalized wave frequency held constant at $\omega_m = 0.35$, the typical frequency of whistler mode chorus waves near the equator (Agapitov et al., 2018).
- Model 2: function $\omega(\lambda)$ linearly decreasing from $0.41\Omega_{ce,eq}$ at the equator until reaching a constant $0.16\Omega_{ce,eq}$ for $\lambda \geq 20^{\circ}$. This model is based on statistics of offequatorial parallel and oblique lower-band chorus waves from the Van Allen Probes (Agapitov et al., 2018).

We use the following four models to describe the mean wave normal angle (WNA) θ_m . A scaling factor $\Theta(\lambda) = \lambda/(15^\circ + \lambda)$ is adopted to modify the WNA increase from 0 at the equator to $\Theta(45^\circ) = 0.75$ at 45° latitude in WNA1 and WNA2.

- **FAW:** a field-aligned wave model (with $\theta = 0^{\circ}$ in test particle simulations and $\theta_m = 0^{\circ}$, $\delta\theta = 30^{\circ}$ or $\delta\theta = 5^{\circ}$ in the quasi-linear diffusion code) that describes the most intense population of waves (Li, Santolik, et al., 2016; Agapitov et al., 2013) as they remain field-aligned off equator due to wave ducting by small-scale density structures (Hanzelka & Santolík, 2019; Y. Shen et al., 2021; Ke et al., 2021; Hosseini et al., 2021).
- WNA1: a moderately oblique WNA model with $\theta_1(\lambda) = \theta_G(\lambda) \cdot \Theta(\lambda)$, where $\theta_G = arccos(2\omega/\Omega_{ce})$ is the Gendrin angle (Gendrin, 1961). This model describes fieldaligned waves that are generated at the equator, but become mildly oblique as they propagate through the inhomogeneous plasma (e.g. Breuillard et al., 2012; L. Chen et al., 2013; Ke et al., 2017).
- **WNA2:** a very oblique WNA model with $\theta_2(\lambda) = \theta_r(\lambda) \cdot \Theta(\lambda)$, where $\theta_r = \arccos(\omega/\Omega_{ce})$ is the resonance cone angle. This describes field-aligned waves that are generated at the equator, but become very oblique as they propagate through the inhomogeneous plasma in the case of suppressed Landau damping (see discussion in Artemyev & Mourenas, 2020).

WNA3: an extremely oblique WNA model with $\theta_3(\lambda) = \theta_r(\lambda) - 2^\circ$. This model describes very oblique waves that are generated in the equatorial source region in the presence of field-aligned electron streams suppressing Landau damping (Mourenas et al., 2015; Li, Mourenas, et al., 2016; R. Chen et al., 2019; Kong et al., 2021).

The quasi-linear simulations also require a bandwidth parameter which sets the width 325 of the wave frequency and normal angle Gaussian distributions, defined in Section 3.2. 326 Frequency bandwidth $\delta\omega$ is set to 0.125, and the lower and upper cutoff frequencies are 327 set to be $\omega_m - 2\delta\omega$ and 0.5, respectively. Wave normal angle bandwidth is set to either 328 $\delta\theta = 5^{\circ}$ or $\delta\theta = 30^{\circ}$ for FAW, and $\delta\theta = 10^{\circ}$ for the other models; if $\theta_r(\lambda) - \theta_m(\lambda) < 0$ 329 20°, we set $\delta\theta = (\theta_r(\lambda) - \theta_m(\lambda))/2$. The lower (θ_{LC}) and upper (θ_{UC}) cutoff wave nor-330 mal angles are set as $\tan \theta_{LC} = \max(0, \tan \theta_m - 2 \tan \delta \theta)$ and $\tan \theta_{UC} = \min(\tan 89.9^\circ, \tan \theta_m +$ 331 $2 \tan \delta \theta$, respectively. 332

Finally, the magnetic wave power distribution $B_w^2(\lambda)$ is taken from an empirical 333 statistical model (Agapitov et al., 2018) at 23 MLT and L = 6 for Kp = 3. Note that 334 we use Kp = 3 as a reasonable estimate of average geomagnetic activity level for ELFIN 335 observations of electron precipitation driven by resonance with whistler-mode waves (see 336 Tsai et al., 2023, for further discussion). For quiet conditions $Kp \leq 2$, the wave inten-337 sity provides insufficient levels of precipitating electron fluxes, which is generally corrob-338 orated by the extremely low levels (i.e. near background) of precipitating fluxes ELFIN 339 observes during quiet periods. During disturbed storm times (Kp > 4), the precipitat-340 ing and locally trapped fluxes are occasionally too large and approach saturation of ELFIN's 341 EPDE instrument (see details in X.-J. Zhang et al., 2022). Both types of ELFIN obser-342 vations (either background-level precipitation or nearly-saturated measurements) are ex-343 cluded from the statistical analysis. 344

345 4 Data-model comparison

In this section, the precipitating-to-trapped electron flux ratio j_{prec}/j_{trap} , calculated through test particle simulations (TPS) or Quasi-Linear Diffusion Code (QLDC), are compared with j_{prec}/j_{trap} as measured by ELFIN. This allows us to assess the different roles potentially played by plasma density, wave obliquity, and wave frequency based on precipitating flux ratio variation with energy.

For proper comparison, the simulated j_{prec}/j_{trap} flux ratio is normalized to the ob-351 served j_{prec}/j_{trap} flux ratio at ELFIN's second energy bin (~ 97 keV), thereby remov-352 ing wave amplitude variability such that the spectral slope can be compared for across 353 various scenarios. This is valid because the $\sim 30 - 100$ keV precipitating-to-trapped 354 electron flux ratio correlates well with the equatorial wave amplitude (Li et al., 2013; Ni 355 et al., 2014). In addition, spurious variations in j_{prec}/j_{trap} modeled using our test par-356 ticle simulations tend to become larger below 97 keV, despite the large number of par-357 ticle runs per energy bin. These oscillations are absent from results of the quasi-linear 358 diffusion code, which correlate well with test particle simulation results above 97 keV 359 after normalization. 360

4.1 Role of plasma density

361

Figure 3 shows a comparison between the precipitating-to-trapped electron flux ra-362 tio j_{prec}/j_{trap} measured by ELFIN at L > 5 and 18-4 MLT (black) with j_{prec}/j_{trap} ob-363 tained from TPS (solid red) and QLDC (dashed red) with parallel (FAW model) lower-364 band chorus waves (adopting $\theta = 0^{\circ}$ in test particle simulations, $\delta \theta = 30^{\circ}$ in the quasi-365 linear diffusion code), using wave frequency Model 1 of constant frequency ($\omega_m = 0.35$) 366 chorus waves and a typical plasma frequency to gyrofrequency ratio $\Omega_{pe} = 6.5$ at L =367 6.5 and 23 MLT (Sheeley et al., 2001). In this plot (and remaining Figures 3-7), the gray 368 shaded regions of ELFIN data denote the boundaries of quiet (AE < 100 nT) and ac-369

Figure 3. ELFIN-measured precipitating-to-trapped electron flux ratio at L > 5 on the nightside (18 - 4 MLT) as a function of energy (black curve). The corresponding j_{prec}/j_{trap} flux ratio obtained from test particle simulations is shown for parallel (FAW model, $\theta = 0^{\circ}$) lower-band chorus waves, using frequency Model 1 ($\omega_m = constant$) and a typical $\Omega_{pe} = 6.5$ at L = 6.5and 23 MLT (solid red). Results from the quasi-linear diffusion code using the same parameters is shown in dashed red. Similarly, the cases of reduced density $\Omega_{pe} = 3$ modeled with test particle simulation (solid purple), quasi-linear diffusion code using narrow-band field aligned waves ($\delta \theta = 5^{\circ}$, dashed purple), and more quasi-linear field aligned waves ($\delta \theta = 30^{\circ}$, dashed blue), are shown. All simulation results are normalized to observations at 97 keV.

tive (AE > 350 nT) times. The normalized ratios j_{prec}/j_{trap} obtained from TPS and 370 QLDC are quite similar (compare solid with dashed lines of the same color), validating 371 the reliability of the quasi-linear approach (Kennel & Engelmann, 1966; Lyons et al., 1972; 372 Albert, 2005; Glauert & Horne, 2005; Mourenas et al., 2012; Mourenas, Artemyev, Agapi-373 tov, & Krasnoselskikh, 2014), especially in the case of field aligned waves, as demonstrated 374 in previous studies (Tao et al., 2012; Mourenas, Artemyev, et al., 2022; Gan et al., 2022; 375 Z. An et al., 2022). However, despite their normalization to the measured j_{prec}/j_{trap} at 376 97 keV, these similar ratios of j_{prec}/j_{trap} (red curves) obtained from test particle sim-377 ulations and from the quasi-linear diffusion code become $\sim 1.5-2$ times smaller than 378 the measured j_{prec}/j_{trap} at 200–1000 keV (black), corresponding to a deficiency of pitch-379 angle diffusion occurring at higher energies. For reference, this baseline case (red) rep-380 resents the same discrepancy on the nightside as first described in Tsai et al. (2023). 381

A reduced plasma density should lower the latitude of first-order cyclotron reso-382 nance with chorus waves for electrons near the loss-cone (Mourenas et al., 2012). Since 383 chorus wave power B_w^2 is higher at lower latitudes (Agapitov et al., 2018), a reduced den-384 sity is therefore expected to yield higher electron pitch-angle diffusion rate $D_{\alpha\alpha} \propto B_w^2$ 385 near the loss-cone leading to higher precipitation rates and fluxes at all energies. How-386 ever, adopting a reduced plasma density ($\Omega_{pe} = 3$) in test particle simulations (pur-387 ple line in Fig. 3) and normalizing the flux ratio at 97 keV leads to an even larger dis-388 crepancy across the 300 - 1000 keV range with a $\sim 2 - 3$ times smaller j_{prec}/j_{trap} ra-389 tio than ELFIN statistics show. We therefore interpret this density effect as more im-390 portant at lower energies ($\sim 100 \text{ keV}$) compared to higher energies (> 300 keV) due 391 to $B_w^2(\lambda)$ increasing, in our model and in observations, more steeply towards lower lat-392 itudes at $\lambda \leq 25^{\circ}$ (where resonance with ~ 100 keV electrons occurs) than at $\lambda > 25^{\circ}$ 393 (where resonance with ~ 1 MeV electrons occurs) during disturbed periods at 21-3 MLT 394 (Agapitov et al., 2018). Therefore, the wave power $B_w^2(\lambda)$ seen by electrons near the loss-395 cone increases only marginally at higher energies for both $\theta = 0^{\circ}$ in test-particle sim-396 ulations and $\theta < 5^{\circ}$ or $\theta < 30^{\circ}$ in QLDC simulations (solid/dashed purple and dashed 397 blue lines). This then reduces the normalized pitch-angle diffusion rate $D_{\alpha\alpha}$ near the loss-398 cone and the normalized j_{prec}/j_{trap} flux ratio, which varies roughly like $\approx \sqrt{D_{\alpha\alpha}}$ (Kennel 399 & Petschek, 1966; Li et al., 2013; Mourenas, Zhang, et al., 2022; Mourenas et al., 2023). 400

Adopting a more realistic spread of WNAs for quasi-field aligned waves ($\delta \theta = 30^{\circ}$. 401 blue dashed line) in the quasi-linear diffusion code leads to the effects of additional, higher-402 order cyclotron resonances to become more significant (Artemyev et al., 2016), which is 403 clearly shown as the difference between the blue and purple dashed lines in Figure 3. Due 404 to moderate obliqueness, this effect is most prominent in the lower energies – resonat-405 ing with waves around the equator – extending now to about 180 keV. However, it is not 406 enough to reproduce ELFIN observations up to 1 MeV, because the relative scattering 407 efficiency decreases with the purple curve at higher energies, causing the blue curve to 408 underestimate ELFIN statistics beyond > 250 keV. Despite the fact that, in observa-409 tions, the plasma frequency to gyrofrequency ratio Ω_{pe} does decrease at 18-4 MLT dur-410 ing disturbed periods (O'Brien & Moldwin, 2003), often down to $\Omega_{pe} \approx 3-4$ at $L \sim$ 411 6 when AE > 150 nT (Agapitov et al., 2019), results in Figure 3 show that plasma den-412 sity reduction alone cannot account for a relative increase of electron scattering at higher 413 energies. 414

4.2 Role of wave frequency

415

As noted earlier, statistical observations of lower-band chorus waves show that their normalized frequency is not constant as a function of latitude (as assumed in frequency Model 1), but rather, decreasing due to preferential Landau damping affecting higher frequencies at higher latitudes (Agapitov et al., 2018; Bunch et al., 2013; L. Chen et al., 2013), as reflected by frequency Model 2. Figure 4a shows that the j_{prec}/j_{trap} ratios obtained for wave normal angle model FAW from test particle simulations (solid curves)

Figure 4. To compare the effects of two frequency models, precipitating-to-trapped electron flux ratio j_{prec}/j_{trap} plotted for ELFIN statistics on the nightside (black) is shown in comparison with j_{prec}/j_{trap} ratios obtained from test particle simulations (TPS, solid lines) and quasi-linear diffusion code (QLDC, dashed lines). In (a), Frequency Model 2 (frequency decreasing toward higher latitudes, blue) produces slightly higher precipitation rates at 100 keV relative to 1 MeV as compared to a constant $\omega_m = 0.35$ (red). Plot (b) shows results from a variety of normalized wave frequency values that do not vary as a function of magnetic latitude, demonstrating that absolute frequency has little effect on the slope of the precipitation energy spectra.

and from the quasi-linear diffusion code (dashed curves) are both slightly decreased at E = 200 - 1000 keV when wave frequency Model 2 is used (blue curves), rather than when using Model 1. This is because a reduction of wave frequency alone, when adopting a fixed plasma density $\Omega_{pe} = 6.5$ at L = 6.5, has essentially the same effect as decreasing plasma density in Section 4.1 – albeit weaker in magnitude – by allowing firstorder cyclotron resonance for electrons near the loss-cone to occur at lower latitudes (Mourenas et al., 2012). In turn, this preferentially increases precipitation rates at low energies $E \lesssim$ 100 keV, the typical resonance energies at low-latitude plasma conditions.

Figure 4b shows that decreasing the wave frequency by a fixed amount significantly 430 increases electron precipitation rates by lowering the latitude of resonance with chorus 431 waves. But at the same time, it leads to only a slight increase of the slope of the energy 432 spectrum once normalized to ELFIN statistics, because the amplitude of resonant waves 433 is slightly more increased for 100 keV electrons than for 1 MeV electrons. For a large 434 plasma density, $\Omega_{pe} = 6.5$, this effect on the normalized j_{prec}/j_{trap} remains weak, and 435 both wave frequency Model 1 and 2 end up giving very similar results. Therefore, the 436 effects of frequency variation with latitude alone cannot account for the spectral shape 437 of the precipitation ratio in ELFIN's nightside observations. 438

439 4.3 Role of wave obliquity

Figure 5a compares ELFIN-observed precipitating-to-trapped flux ratio on the night-440 side (black) with that of simulations in order to explore the effects of a variety of wave-441 normal angle distributions paired with constant wave frequency (Model 1) and baseline 442 plasma density (Sheeley et al., 2001). Results from test particle simulations (solid curves) 443 and from the quasi-linear diffusion code (dashed curves) are displayed for four different 444 models of wave normal angle: FAW (red), WNA1 (green), WNA2 (blue), and WNA3 (pur-445 ple), corresponding to a progressively larger amount of wave power in oblique waves closer 446 to the resonance cone angle (see Section 3.3). Despite the large number of particles (N =447

Figure 5. ELFIN-observed j_{prec}/j_{trap} flux ratio at L > 5 on the nightside (18 - 4 MLT) as a function of electron energy (black). The corresponding ratios j_{prec}/j_{trap} obtained from test particle simulations (TPS, solid curves) and from the quasi-linear diffusion code (QLDC, dashed curves) are displayed for lower-band chorus waves in (a), using frequency Model 1 of constant frequency, and parameterized by four wave normal angle models: FAW (red), WNA1 (green), WNA2 (blue), and WNA3 (purple), with a normalization to observations at 97 keV, adopting a typical $\Omega_{pe} = 6.5$ at L = 6.5 and 23 MLT. (b) shows QLDC results for the same four wave normal angle models but for a reduced plasma density of $\Omega_{pe} = 3.0$.

 5×10^6), unnatural oscillations in the test particle simulations make it difficult to quan-448 tify the exact contribution differences among the FAW, WNA1, and WNA2 models. Es-449 pecially because the test particle simulation only includes first-order oblique wave inter-450 actions, it is reasonable to conclude that including wave obliquity in the TPS does not 451 significantly alter precipitation efficiency. However, results from the quasi-linear diffu-452 sion code generally agree with test particle simulation results, indicating the reliability 453 of the quasi-linear approach (described, e.g., by Kennel & Engelmann, 1966; Lyons et 454 al., 1972; Albert, 2005; Glauert & Horne, 2005; Mourenas et al., 2012; Mourenas, Arte-455 myev, Agapitov, & Krasnoselskikh, 2014). Our quasi-linear simulations show that wave 456 obliquity is ineffective at increasing high energy electron precipitation compared to low 457 energy electron precipitation (in the case of $\Omega_{pe} = 6.5$). Note that WNA1 and WNA2 458 models correspond to wave-normal angle distributions that extend up to three-quarters 459 of the Gendrin angle and resonance cone angle, respectively, at $\lambda > 45^{\circ}$, while the WNA3 460 model corresponds to highly oblique waves, at about 2° from the resonance cone angle. 461 Yet the results are nearly identical (dashed blue, dashed green, and dashed purple curves). 462

Oblique chorus waves can resonate with electrons via high-order cyclotron resonances 463 $(n \ge 1 \text{ or } n \le -2, \text{ e.g.}, \text{Shklyar \& Matsumoto, 2009; Mourenas et al., 2012; Artemyev}$ 464 et al., 2013, 2016; Albert, 2017), which can significantly increase diffusion rates at high 465 energy (Lorentzen et al., 2001; Gan et al., 2023). However, diffusion rates near the loss 466 cone due to higher-order cyclotron resonances rapidly decrease in magnitude as |n| in-467 creases, especially from |n| = 1 to |n| = 2 (Shprits & Ni, 2009), although this reduc-468 tion is weaker for highly oblique waves (Artemyev et al., 2016). To increase the ratio of 469 1 MeV to 100 keV pitch-angle diffusion rates near the loss cone, therefore, the waves must 470 be sufficiently oblique and/or plasma density and wave frequency should be sufficiently 471 low to enable only first-order resonance at ~ 100 keV, but higher-order resonances at 472 1 MeV (Artemyev et al., 2016; Mourenas & Ripoll, 2012; Shprits & Ni, 2009; Gan et al., 473 2023). Figure 5b indeed shows that when plasma density is reduced to $\Omega_{pe} = 3$ (or equiv-474

Figure 6. ELFIN-observed nightside (18 – 4 MLT) j_{prec}/j_{trap} electron flux ratio shown as a function of energy (black). (a) shows j_{prec}/j_{trap} flux ratios obtained from quasi-linear diffusion code (QLDC) for parallel (FAW) lower-band chorus waves (red), very oblique waves using wave normal angle model WNA3 (green), waves with a realistic wave frequency distribution (blue), WNA3 with a realistic wave frequency distribution (purple), FAW with reduced density (pink), and everything combined (orange). (b) shows the same flux ratios all normalized to the base case with no modifications (red) demonstrating which energy range each modification is most effective at on a linear scale. This shows that each effect examined alone cannot reproduce results from ELFIN individually.

alently, when wave frequency decreases with latitude, see Section 4.4), electron precipitation is greatly increased at 1 MeV relative to 100 keV as wave obliquity increases, especially in the case of highly oblique waves (WNA3). These results therefore suggest that
wave obliquity, alone, has a near-negligible effect on the high-energy to low-energy electron loss ratio; however, when combined with a density reduction, it can significantly enhance energetic electron losses.

481

4.4 Combined results

Figure 6a shows comparisons between the precipitating-to-trapped electron flux ra-482 tio j_{prec}/j_{trap} measured by ELFIN at L > 5 on the nightside (black), overlaid with j_{prec}/j_{trap} 483 obtained from the quasi-linear diffusion code for the three modifications in question 484 reduced plasma density $\Omega_{pe} = 3$, Frequency Model 2, and WNA3 – alone or in com-485 bination. As surmised in previous sections, each individual modification fails to agree 486 with the observed spectrum. With wave frequency Model 2 (blue) and WNA3 (green) 487 underestimating across entire energy range (i.e., increasing precipitation at 100 keV) and 488 reduced density (pink) providing a relative efficiency bump of j_{prec}/j_{trap} only at E <489 200 keV. Interestingly, however, ELFIN's statistical observations are only slightly un-490 derestimated when combining WNA3 and Frequency Model 2 (purple), and best matched 491 when all three modifications are combined (orange). Figure 6b shows the relative dif-492 ference produced by each modification compared to the baseline red curve. We see that 493 these effects synergistically enhance j_{prec}/j_{trap} flux ratios at higher energies. For exam-494 ple, Model 2 (blue) becomes relatively less effective at higher energy, while WNA3 (green) 495 immediately loses effectiveness, but catches back up closer to 1 MeV. However, when com-496 bined (purple), the relative precipitation is drastically enhanced in the entire 200-1000497 keV range, leading to far better agreement with observations. Further combining WNA3 498 and Frequency Model 2 with a reduced plasma density (orange) significantly enhances 499 precipitation past levels observed by ELFIN (black). This is likely due to two phenom-500 ena: first, the combined effects of a reduced plasma density and a decreasing wave fre-501 quency decrease the latitude at which cyclotron resonance with quasi-parallel waves oc-502

Figure 7. The comparison between observed electron precipitation ratios and simulation results using different wave frequency models, Ω_{pe} ratios, and wave normal angle models. In each plot, the black line denotes statistical averages of j_{prec}/j_{trap} flux ratios for nightside ELFIN observations with L > 5. Plots (a-c) show QLDC results with various modifications parameterized by Ω_{pe} : (a) shows field aligned waves with Frequency Model 1; (b) shows field aligned waves with Frequency Model 2; and (c) shows WNA1 combined with Frequency Model 2. (d) shows that all three effects $-\omega_{pe} \in [2.5, 4]$, combined with Frequency Model 2 and some level of wave obliquity – are necessary for recreating ELFIN nightside statistics.

curs far more significantly than each effect alone (Mourenas et al., 2012), leading to a larger increase of resonant wave power for higher energy electrons that best match ELFIN's observed precipitation spectra; second, the supplementary higher-order cyclotron resonances contributing at ~ 1 MeV, but not at ~ 150 keV, are of lower order (|n| = 2) than for higher density or frequency, allowing for a more dramatic increase of the 1 MeV to 150 keV pitch-angle diffusion rate ratio (Artemyev et al., 2016; Mourenas & Ripoll, 2012; Shprits & Ni, 2009; Gan et al., 2023).

Figure 7 summarizes the findings from each wave parameter combination through-510 out a range of reduced equatorial plasma densities for a better understanding of the in-511 terplay between the three effects considered. Figure 7a shows that only below a certain 512 threshold of $\Omega_{pe} \lesssim 4$ does the interaction of higher-order resonances start to increase 513 precipitation at higher energies. Using the total electron density with $\Omega_{pe} = 2.5$, this 514 effect becomes very pronounced above 100 keV and up to 300 keV, whereas above that 515 energy this effect alone is still incapable of matching observations, as discussed in Sec-516 tion 4.1. The effect of plasma density combined with wave frequency becomes significantly 517 more pronounced throughout the whole energy range when $\Omega_{pe} \leq 4$, as shown in Fig-518 ure 7b, and matches very well with ELFIN's nightside observations when a more extreme 519 $\Omega_{pe} = 2.5$ is used. Adding mild wave obliquity (Figure 7c) results in the best match 520 with ELFIN statistics, demonstrating that all three effects combined are necessary. 521

Figure 7d shows the best fit scenarios for forward-modeling ELFIN-observed precipitatingto-trapped flux ratios, which all require the varying frequency model in addition to reduced plasma density to various degrees. Here, we show that it is possible to obtain decent agreement without the need for wave obliquity by significantly reducing Ω_{pe} to 2.5

(purple). By adding moderately oblique waves (green and blue), more ~ 1 MeV elec-526 trons are precipitated, doing a marginally better job of matching observations. Using ex-527 tremely oblique waves (WNA3) – which describes a population of very oblique waves gen-528 erated around the equator when the Landau damping is largely reduced by field-aligned 529 electron streams (Mourenas et al., 2015; Li, Mourenas, et al., 2016) – requires increas-530 ing plasma density $\Omega_{pe} = 4$ in order to avoid significant overestimation. Therefore, ELFIN 531 observations of nightside electron precipitation spectra (from 50-1000 keV) can be de-532 scribed either under the assumption of a significant plasma density reduction or a more 533 moderate plasma density reduction coupled with a strongly oblique wave population. This 534 required plasma density ($\omega_{pe} \in [2.5, 4]$) is fully consistent with the average measured 535 ω_{pe} levels at 18-4 MLT and L = 5-6.5 in Van Allen Probes statistics during disturbed 536 periods with $AE \in [150, 600]$ nT (Agapitov et al., 2019). These conditions indicate the 537 importance of plasma injections and/or enhanced convection periods and how they cause 538 enhanced nightside electron losses. Such Earthward plasma transport (convection and 539 injections), especially during increased geomagnetic activity, justifies our choice of the 540 cold plasma density reduction (Agapitov et al., 2019). These injections are also associ-541 ated with electron field-aligned streams caused by the electrostatic turbulence around 542 injection regions or the ionosphere outflow of secondary electrons in response to the en-543 hanced precipitation of plasma sheet electron fluxes (see Khazanov et al., 2014, 2018; 544 Artemyev & Mourenas, 2020; Artemyev et al., 2020, and references therein). 545

546 5 Discussion and Conclusions

Today's radiation belt simulations primarily rely on EMIC-driven electron precip-547 itation to explain relativistic electron losses (see, e.g., Ma et al., 2015; Drozdov et al., 548 2017, and references therein), in addition to dropouts related to magnetopause shadow-549 ing loss (e.g., see Shprits et al., 2006; Turner et al., 2014; Boynton et al., 2016, 2017; Olifer 550 et al., 2018; Xiang et al., 2018). Analysis presented here shows that the inclusion of re-551 alistic whistler-mode wave properties can meaningfully enhance relativistic electron scat-552 tering rates, thereby reducing the relative importance of EMIC waves on the nightside, 553 at least for electrons below 1 MeV. While it has been known for a long time that whistler-554 mode waves can accelerate electrons to relativistic energies (Thorne et al., 2013; Li et 555 al., 2014; Mourenas, Artemyev, Agapitov, Krasnoselskikh, & Li, 2014; Omura et al., 2015; 556 Hsieh & Omura, 2017; Allison & Shprits, 2020), contribution of this wave mode to rel-557 ativistic electron losses may be underestimated in modern-day simulations due to the 558 lack of observations that can reliably quantify it. This has recently changed with the avail-559 ability of ELFIN's unique precipitation observations, which now allow us to quantify how 560 well modeling – based on statistical averages of wave propries and plasma density – re-561 flects the observed precipitation energy spectra of energetic electrons. 562

We previously showed that using only field-aligned, monochromatic whistler-mode 563 waves with realistic wave amplitudes as a function of magnetic latitude was sufficient to 564 approximate relativistic electron losses at the dawn, noon, and dusk sectors (Tsai et al., 565 2023). However, the modeled precipitating-to-trapped flux ratio significantly underes-566 timated ELFIN-obtained statistics of precipitation energy spectra in the nightside MLT 567 sector. Pertinent to ELFIN statistics, we specifically excluded all data exhibiting signa-568 tures of field-line curvature scattering, EMIC waves, and any signatures of noise or poor 569 statistics. The resulting ELFIN statistics are 3 years of unambiguous whistler-mode wave-570 driven energetic electron precipitating-to-trapped flux ratios across a range of MLT, L-571 shells, and geomagnetic activity. At first, we used test particle simulations to examine 572 various wave and plasma characteristics that may potentially cause this discrepancy. How-573 ever, test particle simulations showed that, while some effects led to better agreement, 574 the discrepancy was still large. However, by additionally utilizing a state-of-the-art quasi-575 linear diffusion code, we were able to quantify each key wave parameter – alone and in 576 combination – relative to ELFIN observations, thereby determining the importance of 577

including empirically-obtained equatorial plasma frequency, wave-normal angle distri-578 butions, and wave frequency distributions. We found that, in addition to the prerequi-579 site, empirically-provided $B_w(\lambda)$ (Tsai et al., 2023), inclusion of all three modifications 580 - realistic Ω_{pe} , $\omega_m(\lambda)$, and $\theta(\lambda)$ - were sufficient to recover the more intense nightside 581 energetic precipitation observed by ELFIN. A reduced plasma density, indicative of ge-582 omagnetically active times, results in relative enhancement of precipitation in the sub-583 relativistic regime (< 300 keV), while wave obliquity significantly enhances relativistic 584 electron scattering > 500 keV. It seems that a decreasing wave frequency as a function 585 of latitude helps balance the two out, leading to a smooth recovery of the 200-600 keV 586 range, without severely overestimating either ends of the precipitation flux ratio spec-587 trum. 588

The equatorial confinement of whistler-mode waves is attributed to the increase 589 of wave obliquity – or more precisely, the increase of statistical averages of wave normal 590 angles – as expected from wave propagation away from their equatorial source (L. Chen 591 et al., 2013; Breuillard et al., 2012; Agapitov et al., 2013) due to the associated severe 592 damping by Landau resonance with suprathermal electrons (e.g., Bell et al., 2002; Bort-593 nik et al., 2007). This effect is substantially less important on the dayside as compared 594 to the night of waves at higher application of the significantly larger amplitudes of waves at higher 595 latitudes on the dayside (Meredith et al., 2012). Reduced Landau damping is caused by 596 a milder ambient dayside magnetic field gradient (due to magnetospheric compression) 597 and a lower density of suprathermal electrons (Li, Thorne, Bortnik, et al., 2010; Walsh 598 et al., 2020). As a result, waves on the dayside propagate in higher densities, are less oblique, 599 and have a less pronounced decrease in wave frequencies, in direct opposition to what 600 is observed on the night ide. This explains why an empirical model of $B_w(\lambda)$ and field 601 aligned waves is sufficient for recovering dayside energetic electron precipitation (Tsai 602 et al., 2023), while further indicating the importance of including realistic wave and back-603 ground plasma characteristics for such precipitation modeling on the nightside. 604

To conclude, these results highlight the importance of combining whistler-mode wave characteristics and background plasma for accurately modeling relativistic electron losses from the outer radiation belt. Specifically, we note that:

608	• The latitudinal distribution of wave amplitude alone cannot account for the in-
609	tense night side precipitation of $\sim 0.1{-}1~{\rm MeV}$ electrons scattered at mid-to-high
610	latitudes relative to precipitation of $\sim 100~{\rm keV}$ electrons scattered near the equa-
611	tor.
612	• Very oblique waves are important for scattering more energetic electrons – becom-
613	ing more effective in the $\sim~1$ MeV range – but only in the presence of reduced
614	plasma density or decreasing wave frequency.
615	• The decrease of wave frequency with latitude, caused by high-frequency wave damp-
616	ing, is not very important on its own. However, together with a reduced plasma
617	density (with or without oblique waves), it can lead to more precipitation of high
618	energy electrons relative to ~ 100 keV electrons.
619	• Equatorial plasma density decrease during geomagnetically active conditions (char-
620	acterized by enhanced whistler-mode wave intensity) improves the relative efficiency
621	of resonant electron scattering toward the loss-cone at 100 keV compared to 1 MeV,
622	but alone, it is in poor agreement with ELFIN statistics. However, when combined
623	with increasing WNA and decreasing wave frequency as a function of latitude, this
624	plasma density reduction becomes a catalyst, significantly boosting electron pre-
625	cipitation rates across the energy range up to 1 MeV.

So, in order to best explain the increased precipitation observed by ELFIN on the nightside, modeled whistler-mode waves must have a realistic latitudinally-dependent wave frequency model (Model 2) coupled with a reduced plasma density ($\Omega_{pe} \in [2.5, 4]$) and an associated range of wave obliquity from quasi-field aligned ($\theta < 30^{\circ}$) to extremely oblique (WNA3) waves. Any further investigation of these effects likely requires either
detailed and comprehensive simulations using modern ray-tracing techniques (e.g., L. Chen
et al., 2021, 2022; Hosseini et al., 2021; Hanzelka & Santolík, 2022; Kang et al., 2022;
Kang & Bortnik, 2022) or a new generation of satellite missions equipped to make simultaneous measurements of whistler-mode waves and precipitating/trapped electron
populations.

636 Acknowledgments

We are grateful to NASA's CubeSat Launch Initiative and Launch Services Program for 637 ELFIN's successful launch in the desired orbits. We acknowledge early support of ELFIN 638 project by the AFOSR, under its University Nanosat Program, UNP-8 project, contract 639 FA9453-12-D-0285, and by the California Space Grant program. Importantly, we acknowl-640 edge the critical contributions by numerous UCLA students who made the ELFIN mis-641 sion a success. A.V.A and X.-J.Z. acknowledge support from the NASA grants 80NSSC23K0089, 642 80NSSC22K0522, 80NSSC23K0108, 80NSSC19K0844, 80NSSC23K0100 and NSF grant 643 2329897. V. A. acknowledge support from NSF grants AGS-1242918, AGS-2019950, and 644 AGS-2329897. Q.M. acknowledges the NASA grant 80NSSC20K0196 and NSF grant AGS-645 2225445. The work O.V.A. was supported by NASA grants 80NNSC19K0848, 80NSSC20K0697, 646

- 80NSSC22K0433, 80NSSC22K0522, NASA's Living with a Star (LWS) program (con-
- tract 80NSSC20K0218), and by NSF grant number 1914670.

⁶⁴⁹ Open Research

ELFIN data is available at https://data.elfin.ucla.edu/ and online summary plots at https://plots.elfin.ucla.edu/summary.php.

- ⁶⁵² Data access and processing was done using SPEDAS V4.1, see Angelopoulos et al. (2019).
- Test-particle simulation code is found at https://github.com/ethantsai/nlwhistlers
- ⁶⁵⁴ (Tsai, 2023).

655 References

656	Agapitov, O. V., Artemyev, A., Krasnoselskikh, V., Khotyaintsev, Y. V., Moure-	
657	nas, D., Breuillard, H., Rolland, G. (2013, June). Statistics of whist	ler
658	mode waves in the outer radiation belt: Cluster STAFF-SA measurements.	J_{\cdot}
659	Geophys. Res., 118, 3407-3420. doi: 10.1002/jgra.50312	

- Agapitov, O. V., Krasnoselskikh, V., Mozer, F. S., Artemyev, A. V., & Volokitin,
 A. S. (2015, May). Generation of nonlinear electric field bursts in the outer
 radiation belt through the parametric decay of whistler waves. *Geophys. Res. Lett.*, 42, 3715-3722. doi: 10.1002/2015GL064145
- 664Agapitov, O. V., Mourenas, D., Artemyev, A., Hospodarsky, G., & Bonnell, J. W.665(2019, June). Time Scales for Electron Quasi-linear Diffusion by Lower-Band666Chorus Waves: The Effects of ω_{pe}/Ω_{ce} Dependence on Geomagnetic Activity.667Geophys. Res. Lett., 46(12), 6178-6187. doi: 10.1029/2019GL083446
- 668
 Agapitov, O. V., Mourenas, D., Artemyev, A. V., & Mozer, F. S. (2016). Exclusion

 669
 principle for very oblique and parallel lower band chorus waves. Geophys. Res.

 670
 Lett., 43(21), 11,112–11,120. Retrieved from http://dx.doi.org/10.1002/

 671
 2016GL071250
 doi: 10.1002/2016GL071250
- 672Agapitov, O. V., Mourenas, D., Artemyev, A. V., Mozer, F. S., Hospodarsky, G.,673Bonnell, J., & Krasnoselskikh, V. (2018, January). Synthetic Empirical674Chorus Wave Model From Combined Van Allen Probes and Cluster Statis-675tics. Journal of Geophysical Research (Space Physics), 123(1), 297-314. doi:67610.1002/2017JA024843
- Albert, J. M. (2001, May). Comparison of pitch angle diffusion by turbulent and monochromatic whistler waves. J. Geophys. Res., 106, 8477-8482. doi: 10

679	.1029/2000JA000304
690	Albert J. M. (2005 March) Evaluation of quasi-linear diffusion coefficients for
691	whistler mode waves in a plasma with arbitrary density ratio
692	Res_{110} 3218 doi: 10.1029/2004JA010844
002	Albert I. M. (2010. March) Diffusion by one wave and by many waves I. Cae
683 684	<i>phys. Res.</i> , 115, 0. doi: 10.1029/2009JA014732
685	Albert, J. M. (2017, May). Quasi-linear diffusion coefficients for highly oblique
686	whistler mode waves. J. Geophys. Res., 122, 5339-5354. doi: 10.1002/
687	2017JA024124
688	Albert, J. M., Artemyev, A. V., Li, W., Gan, L., & Ma, O. (2021). Models of
689	resonant wave-particle interactions. Journal of Geophysical Research: Space
690	<i>Physics</i> , 126(6), e2021JA029216, doi: 10.1029/2021JA029216
691	Albert, J. M., Tao, X., & Bortnik, J. (2013). Aspects of Nonlinear Wave-Particle In-
602	teractions In D Summers I U Mann D N Baker & M Schulz (Eds.) Du-
603	namics of the earth's radiation belts and inner manetosphere doi: 10.1029/
694	2012GM001324
605	Allison H. I. & Shprits V. Y. (2020 September) Local heating of radiation belt
606	electrons to ultra-relativistic energies Nature Communications 11 4533 doi:
607	10 1038/s41467-020-18053-z
600	Allison H. I. Shnrits, V. V. Zhelavskava, I. S. Wang, D. & Smirnov, A. C. (2021)
600	Ianuary) Gyroresonant wave-particle interactions with chorus waves during
700	extreme depletions of plasma density in the Van Allen radiation belts. Science
700	Advances 7(5) eabc0380 doi: 10.1126/sciady.abc0380
701	An X Artemyey A Angelopoulos V Zhang X Mourenes D & Bortnik I
702	(2022 September) Nonresonant Scattering of Relativistic Electrons by Elec-
704	tromagnetic Ion Cyclotron Waves in Earth's Radiation Belts Phys Rev Lett
705	129(13) 135101 doi: 10.1103/PhysRevLett 129.135101
706	An Z Wu Y & Tao X (2022) Electron dynamics in a chorus wave field
707	generated from particle-in-cell simulations. Geophys. Res. Lett., 49(3).
708	e2022GL097778. doi: 10.1029/2022GL097778
709	Angelopoulos, V., Cruce, P., Drozdov, A., Grimes, E. W., Hatzigeorgiu, N., King,
710	D. A Schroeder, P. (2019, January). The Space Physics Environ-
711	ment Data Analysis System (SPEDAS). Space Sci. Rev., 215, 9. doi:
712	10.1007/s11214-018-0576-4
713	Angelopoulos, V., Tsai, E., Bingley, L., Shaffer, C., Turner, D. L., Runov, A.,
714	Zhang, G. Y. (2020, July). The ELFIN Mission. Space Sci. Rev., 216(5), 103.
715	doi: 10.1007/s11214-020-00721-7
716	Angelopoulos, V., Zhang, X. J., Artemyev, A. V., Mourenas, D., Tsai, E., Wilkins,
717	C., Zarifian, A. (2023, August). Energetic Electron Precipitation Driven by
718	Electromagnetic Ion Cyclotron Waves from ELFIN's Low Altitude Perspective.
719	Space Sci. Rev., 219(5), 37. doi: 10.1007/s11214-023-00984-w
720	Artemyev, A. V., Agapitov, O., Mourenas, D., Krasnoselskikh, V., Shastun, V., &
721	Mozer, F. (2016, April). Oblique Whistler-Mode Waves in the Earth's Inner
722	Magnetosphere: Energy Distribution, Origins, and Role in Radiation Belt Dy-
723	namics. Space Sci. Rev., 200(1-4), 261-355. doi: 10.1007/s11214-016-0252-5
724	Artemyev, A. V., Angelopoulos, V., Zhang, X. J., Runov, A., Petrukovich, A., Naka-
725	mura, R., Wilkins, C. (2022, October). Thinning of the Magnetotail Cur-
726	rent Sheet Inferred From Low-Altitude Observations of Energetic Electrons.
727	Journal of Geophysical Research (Space Physics), 127(10), e2022JA030705.
728	doi: 10.1029/2022JA030705
729	Artemyev, A. V., & Mourenas, D. (2020, March). On Whistler Mode Wave Rela-
730	tion to Electron Field-Aligned Plateau Populations. Journal of Geophysical Re-
731	search (Space Physics), 125(3), e27735. doi: 10.1029/2019JA027735
732	Artemyev, A. V., Mourenas, D., Agapitov, O. V., & Krasnoselskikh, V. V. (2013,
733	April). Parametric validations of analytical lifetime estimates for radiation belt

734	electron diffusion by whistler waves. Annales Geophysicae, 31, 599-624. doi:
735	10.5194/angeo-31-599-2013
736	Artemyev, A. V., Zhang, X. J., Angelopoulos, V., Mourenas, D., Vainchtein, D.,
737	Shen, Y., Runov, A. (2020, September). Ionosphere Feedback to Elec-
738	tron Scattering by Equatorial Whistler Mode Waves. Journal of Geophysical
739	Research (Space Physics), 125(9), e28373. doi: 10.1029/2020JA028373
740	Aryan, H., Agapitov, O. V., Artemyev, A., Mourenas, D., Balikhin, M. A., Boynton,
741	R., & Bortnik, J. (2020, August). Outer Radiation Belt Electron Lifetime
742	Model Based on Combined Van Allen Probes and Cluster VLF Measure-
743	ments. Journal of Geophysical Research (Space Physics), 125(8), e28018. doi:
744	10.1029/2020JA028018
745	Bell, T. F., Inan, U. S., Bortnik, J., & Scudder, J. D. (2002, August). The Landau
746	damping of magnetospherically reflected whistlers within the plasmasphere.
747	Geophys. Res. Lett., 29, 1733. doi: 10.1029/2002GL014752
748	Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh ap-
749	proach to numerical computing. SIAM review, 59(1), 65–98. Retrieved from
750	https://doi.org/10.1137/141000671
751	Blake, J. B., & O'Brien, T. P. (2016, April). Observations of small-scale latitudinal
752	structure in energetic electron precipitation. Journal of Geophysical Research
753	(Space Physics), 121(4), 3031-3035, doi: 10.1002/2015JA021815
754	Blum, L. W., Halford, A., Millan, R., Bonnell, J. W., Goldstein, J., Usanova, M.,
755	Li, X. (2015, July). Observations of coincident EMIC wave activity and
756	duskside energetic electron precipitation on 18-19 January 2013. <i>Geophys.</i>
757	Res. Lett., 42, 5727-5735. doi: 10.1002/2015GL065245
758	Blum, L. W., Li, X., & Denton, M. (2015, May). Rapid MeV electron precipitation
759	as observed by SAMPEX/HILT during high-speed stream-driven storms. J.
760	Geophus. Res., 120, 3783-3794. doi: 10.1002/2014JA020633
761	Bortnik, J., & Thorne, R. M. (2007, March). The dual role of ELF/VLF chorus
762	waves in the acceleration and precipitation of radiation belt electrons. <i>Journal</i>
763	of Atmospheric and Solar-Terrestrial Physics, 69, 378-386. doi: 10.1016/j.jastp
764	.2006.05.030
765	Bortnik, J., Thorne, R. M., & Inan, U. S. (2008, November). Nonlinear interac-
766	tion of energetic electrons with large amplitude chorus. <i>Geophys. Res. Lett.</i> ,
767	35, 21102. doi: 10.1029/2008GL035500
768	Bortnik, J., Thorne, R. M., Meredith, N. P., & Santolik, O. (2007, August). Ray
769	tracing of penetrating chorus and its implications for the radiation belts. Geo-
770	phys. Res. Lett., 34, L15109. doi: 10.1029/2007GL030040
771	Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2016, September). Electron
772	flux dropouts at Geostationary Earth Orbit: Occurrences, magnitudes, and
773	main driving factors. Journal of Geophysical Research (Space Physics), 121,
774	8448-8461. doi: 10.1002/2016JA022916
775	Boynton, R. J., Mourenas, D., & Balikhin, M. A. (2017, November). Electron Flux
776	Dropouts at $L \sim 4.2$ From Global Positioning System Satellites: Occurrences,
777	Magnitudes, and Main Driving Factors. Journal of Geophysical Research
778	(Space Physics) 122, 11, doi: 10.1002/2017.IA024523
779	(Space 1 hyperce); 122; 11: doi: 10.1002/2011011021020
780	Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov,
100	 Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov, O., Kletzing, C. A. (2017, November). Observations Directly Link-
781	 Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov, O., Kletzing, C. A. (2017, November). Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen
781 782	 Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov, O., Kletzing, C. A. (2017, November). Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II. <i>Geophys. Res. Lett.</i>, 44 (22), 11,265-11,272. doi:
781 782 783	 Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov, O., Kletzing, C. A. (2017, November). Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II. <i>Geophys. Res. Lett.</i>, 44 (22), 11,265-11,272. doi: 10.1002/2017GL075001
781 782 783 784	 Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov, O., Kletzing, C. A. (2017, November). Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II. <i>Geophys. Res. Lett.</i>, 44 (22), 11,265-11,272. doi: 10.1002/2017GL075001 Breuillard, H., Zaliznyak, Y., Krasnoselskikh, V., Agapitov, O., Artemyev, A., &
781 782 783 784 785	 Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov, O., Kletzing, C. A. (2017, November). Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II. Geophys. Res. Lett., 44 (22), 11,265-11,272. doi: 10.1002/2017GL075001 Breuillard, H., Zaliznyak, Y., Krasnoselskikh, V., Agapitov, O., Artemyev, A., & Rolland, G. (2012). Chorus wave-normal statistics in the Earth's radia-
781 782 783 784 785 786	 Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov, O., Kletzing, C. A. (2017, November). Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II. Geophys. Res. Lett., 44 (22), 11,265-11,272. doi: 10.1002/2017GL075001 Breuillard, H., Zaliznyak, Y., Krasnoselskikh, V., Agapitov, O., Artemyev, A., & Rolland, G. (2012). Chorus wave-normal statistics in the Earth's radiation belts from ray tracing technique. Ann. Geophys., 30, 1223-1233. doi:
781 782 783 784 785 786 786	 Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov, O., Kletzing, C. A. (2017, November). Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II. <i>Geophys. Res. Lett.</i>, 44 (22), 11,265-11,272. doi: 10.1002/2017GL075001 Breuillard, H., Zaliznyak, Y., Krasnoselskikh, V., Agapitov, O., Artemyev, A., & Rolland, G. (2012). Chorus wave-normal statistics in the Earth's radiation belts from ray tracing technique. <i>Ann. Geophys.</i>, 30, 1223-1233. doi: 10.5194/angeo-30-1223-2012

789	particle motion in magnetotaillike field reversals. I - Basic theory of trapped
790	motion. J. Geophys. Res., 94, 11821-11842. doi: 10.1029/JA094iA09p11821
791	Bunch, N. L., Spasojevic, M., Shprits, Y. Y., Gu, X., & Foust, F. (2013, April). The
792	spectral extent of chorus in the off-equatorial magnetosphere. J. Geophys.
793	Res., 118, 1700-1705. doi: 10.1029/2012JA018182
794	Capannolo, L., Li, W., Ma, Q., Chen, L., Shen, X. C., Spence, H. E., Redmon,
795	R. J. (2019, November). Direct Observation of Subrelativistic Electron Pre-
796	cipitation Potentially Driven by EMIC Waves. Geophys. Res. Lett., 46(22),
797	12,711-12,721. doi: 10.1029/2019GL084202
798	Capannolo, L., Li, W., Ma, Q., Qin, M., Shen, X. C., Angelopoulos, V.,
799	Hanzelka, M. (2023). Electron precipitation observed by elfin using proton
800	precipitation as a proxy for electromagnetic ion cyclotron (emic) waves. Geo-
801	physical Research Letters. doi: https://doi.org/10.1029/2023GL103519
802	Chen, L., Thorne, R. M., Li, W., & Bortnik, J. (2013, March). Modeling the wave
803	normal distribution of chorus waves. J. Geophys. Res., 118, 1074-1088. doi:
804	10.1029/2012JA018343
805	Chen, L., Zhang, XJ., Artemyev, A., Angelopoulos, V., Tsai, E., Wilkins, C., &
806	Horne, R. B. (2022, March). Ducted Chorus Waves Cause Sub-Relativistic and
807	Relativistic Electron Microbursts. Geophys. Res. Lett., 49(5), e97559. doi:
808	10.1029/2021GL097559
809	Chen, L., Zhang, XJ., Artemyey, A., Zheng, L., Xia, Z., Breneman, A. W., &
810	Horne, R. B. (2021, October). Electron microbursts induced by nonducted
811	chorus waves. Frontiers in Astronomy and Space Sciences, 8, 163. doi:
812	10.3389/fspas.2021.745927
813	Chen, R., Gao, X., Lu, Q., & Wang, S. (2019, November). Unraveling the Cor-
814	relation Between Chorus Wave and Electron Beam-Like Distribution in the
815	Earth's Magnetosphere. Geophus. Res. Lett., 46(21), 11,671-11,678. doi:
816	10.1029/2019GL085108
817	Demekhov, A. G., Trakhtengerts, V. Y., Rycroft, M. J., & Nunn, D. (2006, Decem-
818	ber). Electron acceleration in the magnetosphere by whistler-mode waves
819	of varying frequency. <i>Geomagnetism and Aeronomy</i> , 46, 711-716. doi:
820	10.1134/S0016793206060053
821	Drozdov, A. Y., Shprits, Y. Y., Usanova, M. E., Aseev, N. A., Kellerman, A. C.,
822	& Zhu, H. (2017, August). EMIC wave parameterization in the long-
823	term VERB code simulation. J. Geophys. Res., 122, 8488-8501. doi:
824	10.1002/2017JA024389
825	Fu, X., Cowee, M. M., Friedel, R. H., Funsten, H. O., Garv, S. P., Hospodarsky,
826	G. B., Winske, D. (2014, October). Whistler anisotropy instabilities as the
827	source of banded chorus: Van Allen Probes observations and particle-in-cell
828	simulations. Journal of Geophysical Research (Space Physics), 119, 8288-8298.
829	doi: 10.1002/2014JA020364
830	Gabrielse, C., Angelopoulos, V., Runov, A., & Turner, D. L. (2014, April). Statisti-
831	cal characteristics of particle injections throughout the equatorial magnetotail.
832	J. Geophus. Res., 119, 2512-2535. doi: 10.1002/2013JA019638
833	Gan, L., Artemyev, A., Li, W., Zhang, XJ., Ma, Q., Mourenas, D., Wilkins,
834	C. (2023). Bursty energetic electron precipitation by high-order reso-
835	nance with very-oblique whistler-mode waves. <i>Geophys. Res. Lett.</i> . doi:
836	10.1029/2022GL101920
837	Gan, L., Li, W., Ma, Q., Artemvev, A. V., & Albert, J. M. (2022). Dependence of
838	nonlinear effects on whistler-mode wave bandwidth and amplitude: A perspec-
839	tive from diffusion coefficients. J. Geophys. Res. 127, e2021JA030063. doi:
840	10.1029/2021JA030063
841	Gendrin, R. (1961, August). Le guidage des whistlers par le champ magnetique.
842	Planetary Space Science, 5, 274. doi: 10.1016/0032-0633(61)90096-4
843	Glauert, S. A., & Horne, R. B. (2005, April). Calculation of pitch angle and energy
-	, , ,

844	diffusion coefficients with the PADIE code. J. Geophys. Res., 110, 4206. doi:
845	10.1029/2004JA010851
846	Grach, V. S., Artemyev, A. V., Demekhov, A. G., Zhang, XJ., Bortnik, J., An-
847	gelopoulos, V., Roberts, O. W. (2022, September). Relativistic Electron
848	Precipitation by EMIC Waves: Importance of Nonlinear Resonant Effects.
849	Geophys. Res. Lett., $49(17)$, e99994. doi: 10.1029/2022GL099994
850	Hanzelka, M., & Santolík, O. (2019, June). Effects of Ducting on Whistler Mode
851	Chorus or Exohiss in the Outer Radiation Belt. Geophys. Res. Lett., $46(11)$,
852	5735-5745. doi: $10.1029/2019$ GL083115
853	Hanzelka, M., & Santolík, O. (2022, December). Effects of Field-Aligned Cold
854	Plasma Density Filaments on the Fine Structure of Chorus. Geophys. Res.
855	Lett., $49(24)$, e2022GL101654. doi: 10.1029/2022GL101654
856	Horne, R. B., Glauert, S. A., Meredith, N. P., Boscher, D., Maget, V., Heynderickx,
857	D., & Pitchford, D. (2013, April). Space weather impacts on satellites and
858	forecasting the Earth's electron radiation belts with SPACECAST. Space
859	Weather, 11, 169-186. doi: 10.1002/swe.20023
860	Hosseini, P., Agapitov, O., Harid, V., & Gołkowski, M. (2021, March). Evidence of
861	Small Scale Plasma Irregularity Effects on Whistler Mode Chorus Propagation.
862	Geophus, Res. Lett., 48(5), e92850, doi: 10.1029/2021GL092850
863	Hsieh Y-K & Omura Y (2017 January) Nonlinear dynamics of electrons inter-
864	acting with oblique whistler mode chorus in the magnetosphere <i>J. Geophys</i>
865	<i>Res</i> 122 675-694 doi: 10.1002/2016JA023255
966	Imbof W L Beagan J B & Gaines E E (1977 November) Fine-scale spa-
000	tial structure in the pitch angle distributions of energetic particles near
007	the midnight trapping boundary <i>L Geophys Res</i> 82 5215-5221 doi:
808	101029/14082i032 m5215
009	Jun C W Vuo C Bortnik I Lyons I B Nishimura V & Klotzing C (2010
870	Mar) FMIC Wave Properties Associated With and Without Injections in
871	The Inner Magnetosphere Lowrnal of Coonducted With and Without Injections in
872	124(3), 2029-2045, doi: 10.1029/2018JA026279
874	Kang N & Bortnik J (2022 March) Structure of Energy Precipitation Induced
875	by Superbolt-Lightning Generated Whistler Waves Geonbus Res Lett
876	(9(5), e2022GL097770, doi: 10.1029/2022GL097770
977	Kang N Bortnik J Zhang X Claudenierre S & Shi X (2022 Decem-
070	ber) Belativistic Microburst Scale Size Induced by a Single Point-Source
970	Chorus Element Geonbus Res Lett /9(23) e2022GL100841 doi:
880	10 1029/2022GL100841
000	Katoh V Omura V & Summers D (2008 November) Bapid energization of
001	radiation belt electrons by nonlinear wave trapping Annales Geonhusicae 26
002	3451-3456 doi: 10.5194/angeo-26-3451-2008
003	Ke V Chen L Cao X Lu O Wang X Chen R Wang S (2021 April)
884	Whistler Mode Wayos Tranned by Density Irregularities in the Earth's Magne
885	tosphere Ceonhys Res Lett 18(7) e02305 doi: 10.1020/2020CL.002305
880	Ko V Cao X Lu O Wang X Chan B Chan H & Wang S (2020)
887	February Deformation of Electron Distributions Due to Landau Tran
888	replicitly). Deformation of Electron Distributions Due to Landau Trap- ping by the Whistler Mode Ways Coophys. Res. Lett. $10(3)$, 206428 doi:
889	ping by the winster-mode wave. Geophys. Res. Lett., $49(5)$, $e90426$. doi: 10.1020/2021/1.006428
890	10.1029/2021GL090420
891	chorus in a two dimonsional mirror field by using the general superilinear ric
892	and L Combus Res. Detrieved from http://dvi.doi.org/10.1000/
893	Coue. J. Geophys. Res., Representation intep://ax.aoi.org/10.1002/ 201714024178 doi: 10.1002/201714.024179
894	$Z U I I J A U Z 4 I I (\delta U U U U U Z / 2 U I I J A U Z 4 I (\delta U U U U U Z 4 U U Z 4 U U U U U U U U U$
895	Weak Diagrae Turbulance in a Magnetic Field Discussion from
896	weak riasma rurbulence in a Magnetic rielu. <i>Physics of riulas</i> , 9, 2377-2388. doi: 10.1063/1.1761690
897	uoi: 10.1009/1.1/01029 We well O E is Detected. II E (1066 Le) L: :: O is D :: :
898	Kennel, C. F., & Fetschek, H. E. (1900, January). Limit on Stably Irapped Particle

899	Fluxes. J. Geophys. Res., 71, 1-28.
900	Khazanov, G. V., Glocer, A., & Himwich, E. W. (2014, Jan). Magnetosphere-
901	ionosphere energy interchange in the electron diffuse aurora. Journal of
902	Geophysical Research (Space Physics), 119(1), 171-184, doi: 10.1002/
903	2013JA019325
004	Khazanov C. V. Rohinson R. M. Zesta E. Sibeck D. C. Chu M. & Crubbs
904	C A (2018 July) Impact of Prognitisting Flastrong and Magnetognhoro
905	In a coupling Processes on Incorphanic Conductories and Wagnetosphere-
906	tonosphere Coupling Processes on tonospheric Conductance. Space weather,
907	$16(7), 829-837.$ doi: $10.1029/20185 \le 0.01837$
908	Kim, H., Schiller, Q., Engebretson, M. J., Noh, S., Kuzichev, I., Lanzerotti, L. J.,
909	Fromm, T. (2021, February). Observations of Particle Loss due to Injec-
910	tion Associated Electromagnetic Ion Cyclotron Waves. Journal of Geophysical
911	Research (Space Physics), 126(2), e28503. doi: 10.1029/2020JA028503
912	Kitahara, M., & Katoh, Y. (2019, Jul). Anomalous Trapping of Low Pitch Angle
913	Electrons by Coherent Whistler Mode Waves. J. Geophys. Res., 124(7), 5568-
914	5583. doi: 10.1029/2019JA026493
015	Kong Z Gao X Chen H Lu O Chen B Ke Y & Wang S (2021 Novem-
016	her) The Correlation Between Whistler Mode Waves and Electron Beam-
916	Like Distribution. Test Derticle Simulations and THEMIS Observations
917	Like Distribution. Test Farticle Simulations and THEMIS Observations.
918	Journal of Geophysical Research (Space Physics), 120(11), e29854.
919	10.1029/2021 JA029834
920	Lam, M. M., Horne, R. B., Meredith, N. P., Glauert, S. A., Moffat-Griffin, T., &
921	Green, J. C. (2010). Origin of energetic electron precipitation; 30 kev into the
922	atmosphere. Journal of Geophysical Research: Space Physics, 115(A4).
923	Li, W., & Hudson, M. K. (2019, Nov). Earth's Van Allen Radiation Belts: From
924	Discovery to the Van Allen Probes Era. Journal of Geophysical Research
925	(Space Physics), 124(11), 8319-8351. doi: 10.1029/2018JA025940
926	Li, W., Mourenas, D., Artemyev, A. V., Bortnik, J., Thorne, R. M., Kletzing, C. A.,
927	Spence, H. E. (2016, September). Unraveling the excitation mechanisms of
928	highly oblique lower band chorus waves. Geophys. Res. Lett., 43, 8867-8875.
929	doi: 10.1002/2016GL070386
929	Li W Ni B Thorne B M Bortnik I Green I C Kletzing C A Hospo-
930	darsky G B (2013 September) Constructing the global distribution of
951	chorus wave intensity using measurements of electrons by the POFS setellites
932	and waves by the Van Allen Probes Coophie Reg. Lett. 10, 4526, 4522 doi:
933	and waves by the vali Anen 1 10bes. Geophys. Ites. Lett., 40 , 4520 - 4532 . doi: 10.1009/ml.50020
934	10.1002/g11.0020
935	Li, W., Santolik, O., Bortnik, J., I norne, R. M., Kletzing, C. A., Kurtn, W. S., &
936	Hospodarsky, G. B. (2016, May). New chorus wave properties near the equator
937	from Van Allen Probes wave observations. Geophys. Res. Lett., 43, 4725-4735.
938	doi: 10.1002/2016GL068780
939	Li, W., Thorne, R. M., Bortnik, J., Nishimura, Y., Angelopoulos, V., Chen, L.,
940	Bonnell, J. W. (2010, December). Global distributions of suprathermal
941	electrons observed on THEMIS and potential mechanisms for access into the
942	plasmasphere. J. Geophys. Res., 115, 0. doi: 10.1029/2010JA015687
943	Li, W., Thorne, R. M., Ma, Q., Ni, B., Bortnik, J., Baker, D. N., Claudepierre,
944	S. G. (2014, June). Radiation belt electron acceleration by chorus waves
945	during the 17 March 2013 storm. J. Geophys. Res., 119, 4681-4693. doi:
946	10.1002/2014JA019945
0.47	Li W Thorne B M Nishimura V Bortnik I Angelonoulos V McFaddon
941	I P Auster II (2010 June) THEMIS analysis of observed equatorial
948	electron distributions responsible for the charus evolution I Coophus Pas
949	115 doi: 10.1020/2000IA014845
950	$I_{10}, u_{01}, 10.1025/2005JA014040$
951	Lorentzen, K. K., Blake, J. B., Inan, U. S., & Bortnik, J. (2001, April). Obser-
952	vations of relativistic electron microbursts in association with VLF chorus. J .
953	Geophys. Res., 10b(A4), 6017-6028. doi: 10.1029/2000JA003018

954	Lyons, L. R., Thorne, R. M., & Kennel, C. F. (1972). Pitch-angle diffusion of radi-
955	ation belt electrons within the plasmasphere. J. Geophys. Res., 77, 3455-3474.
956	$M_{2} \cap A_{2} = M_{2} \cap M_{2$
957 958	Wygant, J. (2017, December). Very Oblique Whistler Mode Propagation in
959	the Radiation Belts: Effects of Hot Plasma and Landau Damping. <i>Geophys.</i>
960	<i>Res. Lett.</i> , 44 (24), 12,057-12,066. doi: 10.1002/2017GL075892
961	Ma, Q., Gu, W., Claudepierre, S. G., Li, W., Bortnik, J., Hua, M., & Shen, X. C.
962	(2022, June). Electron Scattering by Very-Low-Frequency and Low-Frequency
963	Waves From Ground Transmitters in the Earth's Inner Radiation Belt and Slot
964	Region. Journal of Geophysical Research (Space Physics), 127(6), e30349. doi:
965	10.1029/2022JA030349
066	Ma O Li W Bortnik I Thorne B M Chu X Ozeke L G Claudenierre
900	S. G. (2018 March) Quantitative Evaluation of Radial Diffusion and Local
907	Acceleration Processes During GEM Challenge Events Journal of Geonbusical
968	Research (Space Physics), 123(3), 1938-1952. doi: 10.1002/2017JA025114
970	Ma Q Li W Thorne B M Ni B Kletzing C A Kurth W S An-
071	gelopoulos V (2015 February) Modeling inward diffusion and slow decay
971	of energetic electrons in the Earth's outer radiation helt <i>Ceonhus Res Lett</i>
972	/2 087 005 doi: 10 1002/2014CI 062077
973	42, 501-555. doi: 10.1002/2014GL002577 Ma O N; P Tao V & Thomas P M (2012 April) Evolution of the plasma
974	wa, Q., M. D., Tao, A., & Thorne, R. M. (2012, April). Evolution of the plasma
975	in non dinolo morportio foldo
976	In non-upper magnetic neus. Annules Geophysicae, 50 , $751-700$. doi: 10.5104/aprece 20.751.2012
977	10.5194/ aligeo-50-751-2012 Melenning D. M. Illehendrig A. Chu, Y. & Wessent I. (2018 April) A. Can
978	Malaspina, D. M., Uknorskiy, A., Chu, A., & Wygant, J. (2018, April). A Cen-
979	sus of Plasma waves and Structures Associated with an injection Front
980	In the inner Magnetosphere. J. Geophys. Res., 123 , $2500-2587$. doi: 10.1002/2017IA.025005
0.01	
901	$M_{\text{constant}} = \frac{10002}{20113} + \frac{1002}{2000} + \frac{10002}{2000} + \frac{100002}{2000} + \frac{100002}{2000} + \frac{10002}{2000} + \frac$
982	Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode
982 983	Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion
982 983 984	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323–7335. Retrieved from http://dx.acm/10.1002/2016 LA022546. doi: 10.1002/2016 LA022546
982 983 984 985	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323–7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546
982 983 984 985 986	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323–7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm demonstration of charmer and charmer and charmer of charmer and cha
982 983 984 985 986 987	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323–7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm dependence of chorus amplitudes: Implications for the acceleration of electron and the interval of the state of th
981 982 983 984 985 986 986 987 988	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323-7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J. Geophys. Res., 106, 13165-13178. doi: 10.1002/2000156
981 982 983 984 985 986 986 987 988 988	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323-7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J. Geophys. Res., 106, 13165-13178. doi: 10.1029/2000JA900156
981 982 983 984 985 986 986 987 988 989 989	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323–7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J. Geophys. Res., 106, 13165-13178. doi: 10.1029/2000JA900156 Meredith, N. P., Horne, R. B., Shen, XC., Li, W., & Bortnik, J. (2020). Global
981 982 983 984 985 986 987 988 989 989 9990 991	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323–7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J. Geophys. Res., 106, 13165-13178. doi: 10.1029/2000JA900156 Meredith, N. P., Horne, R. B., Shen, XC., Li, W., & Bortnik, J. (2020). Global model of whistler mode chorus in the near-equatorial region (\lambda_m < 18°).
981 982 983 984 985 986 987 988 989 990 990 991 992	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323–7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J. Geophys. Res., 106, 13165-13178. doi: 10.1029/2000JA900156 Meredith, N. P., Horne, R. B., Shen, XC., Li, W., & Bortnik, J. (2020). Global model of whistler mode chorus in the near-equatorial region (λ_m < 18°). Geophys. Res. Lett., 47, e2020GL087311. doi: 10.1029/2020GL087311
981 982 983 984 985 986 986 987 988 989 990 991 991 992 993	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323–7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J. Geophys. Res., 106, 13165-13178. doi: 10.1029/2000JA900156 Meredith, N. P., Horne, R. B., Shen, XC., Li, W., & Bortnik, J. (2020). Global model of whistler mode chorus in the near-equatorial region (λ_m < 18°). Geophys. Res. Lett., 47, e2020GL087311. doi: 10.1029/2020GL087311 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., &
982 983 984 985 986 986 987 988 989 990 990 991 992 993 994	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323–7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J. Geophys. Res., 106, 13165-13178. doi: 10.1029/2000JA900156 Meredith, N. P., Horne, R. B., Shen, XC., Li, W., & Bortnik, J. (2020). Global model of whistler mode chorus in the near-equatorial region (\lambda_m < 18°). Geophys. Res. Lett., 47, e2020GL087311. doi: 10.1029/2020GL087311 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band
982 983 984 985 986 987 988 989 990 991 992 992 993 994 995	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323–7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J. Geophys. Res., 106, 13165-13178. doi: 10.1029/2000JA900156 Meredith, N. P., Horne, R. B., Shen, XC., Li, W., & Bortnik, J. (2020). Global model of whistler mode chorus in the near-equatorial region (\lambda_m < 18°). Geophys. Res. Lett., 47, e2020GL087311. doi: 10.1029/2020GL087311 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi:
981 982 983 984 985 986 987 988 989 990 990 991 992 993 994 995 996	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323–7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J. Geophys. Res., 106, 13165-13178. doi: 10.1029/2000JA900156 Meredith, N. P., Horne, R. B., Shen, XC., Li, W., & Bortnik, J. (2020). Global model of whistler mode chorus in the near-equatorial region (\lambda_m < 18°). Geophys. Res. Lett., 47, e2020GL087311. doi: 10.1029/2020GL087311 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012JA017978
981 982 983 984 985 986 987 988 989 990 991 992 991 992 993 994 995 996 997	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323–7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J. Geophys. Res., 106, 13165-13178. doi: 10.1029/2000JA900156 Meredith, N. P., Horne, R. B., Shen, XC., Li, W., & Bortnik, J. (2020). Global model of whistler mode chorus in the near-equatorial region (\lambda_m < 18°). Geophys. Res. Lett., 47, e2020GL087311. doi: 10.1029/2020GL087311 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012JA017978 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August).
981 982 983 984 985 986 987 988 989 990 991 990 991 992 993 994 995 996 997 998	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323–7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J. Geophys. Res., 106, 13165-13178. doi: 10.1029/2000JA900156 Meredith, N. P., Horne, R. B., Shen, XC., Li, W., & Bortnik, J. (2020). Global model of whistler mode chorus in the near-equatorial region (λ_m < 18°). Geophys. Res. Lett., 47, e2020GL087311. doi: 10.1029/2020GL087311 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012JA017978 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August). Favored regions for chorus-driven electron acceleration to relativistic energies
981 982 983 984 985 986 987 988 989 990 991 991 991 991 993 994 995 996 995 996 997 998	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323–7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J. Geophys. Res., 106, 13165-13178. doi: 10.1029/2000JA900156 Meredith, N. P., Horne, R. B., Shen, XC., Li, W., & Bortnik, J. (2020). Global model of whistler mode chorus in the near-equatorial region (\lambda_m < 18°). Geophys. Res. Lett., 47, e2020GL087311. doi: 10.1029/2020GL087311 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012JA017978 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August). Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt. Geophys. Res. Lett., 30(16), 160000-1. doi:
981 982 983 984 985 986 987 988 989 990 991 992 991 992 993 994 995 995 996 997 998 997	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323–7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J. Geophys. Res., 106, 13165-13178. doi: 10.1029/2000JA900156 Meredith, N. P., Horne, R. B., Shen, XC., Li, W., & Bortnik, J. (2020). Global model of whistler mode chorus in the near-equatorial region (\lambda_m < 18°). Geophys. Res. Lett., 47, e2020GL087311. doi: 10.1029/2020GL087311 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012JA017978 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August). Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt. Geophys. Res. Lett., 30(16), 160000-1. doi: 10.1029/2003GL017698
981 982 983 984 985 986 987 988 989 990 991 992 993 992 993 994 995 995 996 997 998 999 999	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323–7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J. Geophys. Res., 106, 13165-13178. doi: 10.1029/2000JA900156 Meredith, N. P., Horne, R. B., Shen, XC., Li, W., & Bortnik, J. (2020). Global model of whistler mode chorus in the near-equatorial region (λ_m < 18°). Geophys. Res. Lett., 47, e2020GL087311. doi: 10.1029/2020GL087311 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012JA017978 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August). Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt. Geophys. Res. Lett., 30(16), 160000-1. doi: 10.1029/2003GL017698 Millan, R. M., & Baker, D. N. (2012, November). Acceleration of Particles to High
982 983 984 985 986 987 988 989 990 991 992 993 992 993 994 995 996 995 996 997 998 999 999 1000	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323–7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J. Geophys. Res., 106, 13165-13178. doi: 10.1029/2000JA900156 Meredith, N. P., Horne, R. B., Shen, XC., Li, W., & Bortnik, J. (2020). Global model of whistler mode chorus in the near-equatorial region (λ_m < 18°). Geophys. Res. Lett., 47, e2020GL087311. doi: 10.1029/2020GL087311 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012JA017978 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August). Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt. Geophys. Res. Lett., 30(16), 160000-1. doi: 10.1029/2003GL017698 Millan, R. M., & Baker, D. N. (2012, November). Acceleration of Particles to High Energies in Earth's Radiation Belts. Space Sci. Rev., 173, 103-131. doi: 10
981 982 983 984 985 986 987 988 989 990 991 990 991 992 993 994 995 996 995 996 997 998 999 998 999 1000 1001	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323–7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J. Geophys. Res., 106, 13165-13178. doi: 10.1029/2000JA900156 Meredith, N. P., Horne, R. B., Shen, XC., Li, W., & Bortnik, J. (2020). Global model of whistler mode chorus in the near-equatorial region (\lambda_m < 18°). Geophys. Res. Lett., 47, e2020GL087311. doi: 10.1029/2020GL087311 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012JA017978 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August). Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt. Geophys. Res. Lett., 30(16), 160000-1. doi: 10.1029/2003GL017698 Millan, R. M., & Baker, D. N. (2012, November). Acceleration of Particles to High Energies in Earth's Radiation Belts. Space Sci. Rev., 173, 103-131. doi: 10.1007/s11214-012-9941-x
981 982 983 984 985 986 987 988 989 990 991 991 992 993 994 995 995 995 995 996 997 998 999 1000 1001	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323–7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J. Geophys. Res., 106, 13165-13178. doi: 10.1029/2000JA900156 Meredith, N. P., Horne, R. B., Shen, XC., Li, W., & Bortnik, J. (2020). Global model of whistler mode chorus in the near-equatorial region (λ_m < 18°). Geophys. Res. Lett., 47, e2020GL087311. doi: 10.1029/2002GL087311 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012JA017978 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August). Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt. Geophys. Res. Lett., 30(16), 160000-1. doi: 10.1029/2003GL017698 Millan, R. M., & Baker, D. N. (2012, November). Acceleration of Particles to High Energies in Earth's Radiation Belts. Space Sci. Rev., 173, 103-131. doi: 10.1007/s11214-012-9941-x Millan, R. M., & Thorne, R. M. (2007, March). Review of radiation belt relativistic
982 983 984 985 986 987 988 989 990 991 992 993 992 993 994 995 994 995 996 997 998 999 1000 1001 1002 1003 1004	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323–7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J. Geophys. Res., 106, 13165-13178. doi: 10.1029/2000JA900156 Meredith, N. P., Horne, R. B., Shen, XC., Li, W., & Bortnik, J. (2020). Global model of whistler mode chorus in the near-equatorial region (λ_m < 18°). Geophys. Res. Lett., 47, e2020GL087311. doi: 10.1029/2020GL087311 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2001ZJA017978 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August). Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt. Geophys. Res. Lett., 30(16), 160000-1. doi: 10.1029/2003GL017698 Millan, R. M., & Baker, D. N. (2012, November). Acceleration of Particles to High Energies in Earth's Radiation Belts. Space Sci. Rev., 173, 103-131. doi: 10.1007/s11214-012-9941-x Millan, R. M., & Thorne, R. M. (2007, March). Review of radiation belt relativistic electron losses. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 362-
982 983 984 985 986 987 988 989 990 991 992 993 992 993 994 995 995 995 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323–7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J. Geophys. Res., 106, 13165-13178. doi: 10.1029/2000JA900156 Meredith, N. P., Horne, R. B., Shen, XC., Li, W., & Bortnik, J. (2020). Global model of whistler mode chorus in the near-equatorial region (λ_m < 18°). Geophys. Res. Lett., 47, e2020GL087311. doi: 10.1029/2020GL087311 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2003GL017678 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August). Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt. Geophys. Res. Lett., 30(16), 160000-1. doi: 10.1029/2003GL017698 Millan, R. M., & Baker, D. N. (2012, November). Acceleration of Particles to High Energies in Earth's Radiation Belts. Space Sci. Rev., 173, 103-131. doi: 10.1007/s11214-012-9941-x Millan, R. M., & Thorne, R. M. (2007, March). Review of radiation belt relativistic electron losses. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 362-377. doi: 10.1016/j.jastp.2006.06.019
982 983 984 985 986 987 988 989 990 991 992 993 992 993 994 995 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006	 Maxworth, A. S., & Golkowski, M. (2017). Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature. J. Geophys. Res., 122(7), 7323–7335. Retrieved from http://dx.doi.org/10.1002/2016JA023546 doi: 10.1002/2016JA023546 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J. Geophys. Res., 106, 13165-13178. doi: 10.1029/2000JA900156 Meredith, N. P., Horne, R. B., Shen, XC., Li, W., & Bortnik, J. (2020). Global model of whistler mode chorus in the near-equatorial region (\lambda_m < 18^\circ). Geophys. Res. Lett., 47, e2020GL087311. doi: 10.1029/2020GL087311 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012, October). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res., 117, 10225. doi: 10.1029/2012JA017978 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August). Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt. Geophys. Res. Lett., 30(16), 160000-1. doi: 10.1029/2003GL017698 Millan, R. M., & Baker, D. N. (2012, November). Acceleration of Particles to High Energies in Earth's Radiation Belts. Space Sci. Rev., 173, 103-131. doi: 10.1007/s11214-012-9941-x Millan, R. M., & Thorne, R. M. (2007, March). Review of radiation belt relativistic electron losses. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 362-377. doi: 10.1016/j.jastp.2006.06.019 Min, K., Liu, K., & Li, W. (2014, July). Signatures of electron Landau resonant

1009	119, 5551-5560. doi: 10.1002/2014JA019903
1010	Mourenas, D., Artemyev, A. V., Agapitov, O. V., & Krasnoselskikh, V. (2014,
1011	April). Consequences of geomagnetic activity on energization and loss of radia-
1012	tion belt electrons by oblique chorus waves. J. Geophys. Res., 119, 2775-2796.
1013	doi: 10.1002/2013JA019674
1014	Mourenas, D., Artemyev, A. V., Agapitov, O. V., Krasnoselskikh, V., & Li, W.
1015	(2014, December). Approximate analytical solutions for the trapped electron
1016	distribution due to quasi-linear diffusion by whistler mode waves. J. Geophys.
1017	Res., 119, 9962-9977. doi: 10.1002/2014JA020443
1018	Mourenas, D., Artemyev, A. V., Agapitov, O. V., Krasnoselskikh, V., & Mozer, F. S.
1019	(2015). Very oblique whistler generation by low-energy electron streams. J .
1020	Geophys. Res., 120, 3665-3683. doi: 10.1002/2015JA021135
1021	Mourenas, D., Artemyev, A. V., Ripoll, JF., Agapitov, O. V., & Krasnoselskikh,
1022	V. V. (2012). Timescales for electron quasi-linear diffusion by parallel and
1023	oblique lower-band Chorus waves. J. Geophys. Res., 117, A06234. doi:
1024	10.1029/2012JA017717
1025	Mourenas, D., Artemyev, A. V., Zhang, X. J., & Angelopoulos, V. (2022, Novem-
1026	ber). Extreme Energy Spectra of Relativistic Electron Flux in the Outer
1027	Radiation Belt. Journal of Geophysical Research (Space Physics), 127(11),
1028	e2022JA031038. doi: 10.1029/2022JA031038
1029	Mourenas, D., Artemyev, A. V., Zhang, X. J., & Angelopoulos, V. (2023, Au-
1030	gust). Upper Limit on Outer Radiation Belt Electron Flux Based on Dynam-
1031	ical Equilibrium. Journal of Geophysical Research (Space Physics), 128(8),
1032	e2023JA031676. doi: 10.1029/2023JA031676
1033	Mourenas, D., Artemyev, A. V., Zhang, X. J., Angelopoulos, V., Tsai, E., &
1034	Wilkins, C. (2021, November). Electron Lifetimes and Diffusion Rates
1035	Inferred From ELFIN Measurements at Low Altitude: First Results.
1036	Journal of Geophysical Research (Space Physics), 126(11), e29757. doi:
1037	10.1029/2021JA029757
1038	Mourenas, D., & Ripoll, JF. (2012). Analytical estimates of quasi-linear diffusion
1039	coefficients and electron lifetimes in the inner radiation belt. J. Geophys. Res.,
1040	117, A01204. doi: 10.1029/2011JA016985
1041	Mourenas, D., Zhang, X. J., Nunn, D., Artemyev, A. V., Angelopoulos, V., Tsai, E.,
1042	& Wilkins, C. (2022, May). Short Chorus Wave Packets: Generation Within
1043	Chorus Elements, Statistics, and Consequences on Energetic Electron Precipi-
1044	tation. Journal of Geophysical Research (Space Physics), 127(5), e30310. doi:
1045	10.1029/2022JA030310
1046	Mozer, F. S., Agapitov, O., Artemyev, A., Drake, J. F., Krasnoselskikh, V., Lejosne,
1047	S., & Vasko, I. (2015). Time domain structures: What and where they are,
1048	what they do, and how they are made. Geophys. Res. Lett., 42, 3627-3638.
1049	doi: 10.1002/2015GL063946
1050	Ni, B., Li, W., Thorne, R. M., Bortnik, J., Green, J. C., Kletzing, C. A., Soria-
1051	Santacruz Pich, M. (2014, July). A novel technique to construct the global
1052	distribution of whistler mode chorus wave intensity using low-altitude POES
1053	electron data. J. Geophys. Res., 119, 5685-5699. doi: 10.1002/2014JA019935
1054	Ni, B., Thorne, R. M., Meredith, N. P., Shprits, Y. Y., & Horne, R. B. (2011, Octo-
1055	ber). Diffuse auroral scattering by whistler mode chorus waves: Dependence on
1056	wave normal angle distribution. J. Geophys. Res., 116, 10207. doi: 10.1029/
1057	2011JA016517
1058	Ni, B., Thorne, R. M., Shprits, Y. Y., & Bortnik, J. (2008, June). Resonant
1059	scattering of plasma sheet electrons by whistler-mode chorus: Contribu-
1060	tion to diffuse auroral precipitation. <i>Geophys. Res. Lett.</i> , 35, 11106. doi:
1061	10.1029/2008GL034032
1062	O'Brien, T. P., Looper, M. D., & Blake, J. B. (2004, February). Quantification of
1063	relativistic electron microburst losses during the GEM storms. <i>Geophys. Res.</i>

1064	Lett., $31(4)$, L04802. doi: $10.1029/2003$ GL018621
1065	O'Brien, T. P., & Moldwin, M. B. (2003, February). Empirical plasmapause
1066	models from magnetic indices. <i>Geophys. Res. Lett.</i> , 30, 1152. doi:
1067	10.1029/2002GL016007
1068	Olifer, L., Mann, I. R., Boyd, A. J., Ozeke, L. G., & Choi, D. (2018, May). On
1069	the Role of Last Closed Drift Shell Dynamics in Driving Fast Losses and Van
1070	Allen Radiation Belt Extinction. J. Geophys. Res., 123, 3692-3703. doi:
1071	10.1029/2018JA025190
1072	Omura, Y., Furuya, N., & Summers, D. (2007, June). Relativistic turning ac-
1073	celeration of resonant electrons by coherent whistler mode waves in a dipole
1074	magnetic field. J. Geophys. Res., 112, 6236. doi: 10.1029/2006JA012243
1075	Omura, Y., Miyashita, Y., Yoshikawa, M., Summers, D., Hikishima, M., Ebihara, Y.,
1076	& Kubota, Y. (2015, November). Formation process of relativistic electron flux
1077	through interaction with chorus emissions in the Earth's inner magnetosphere.
1078	J. Geophys. Res., 120, 9545-9562. doi: 10.1002/2015JA021563
1079	Orlova, K. G., & Shprits, Y. Y. (2011, September). On the bounce-averaging of scat-
1080	tering rates and the calculation of bounce period. <i>Physics of Plasmas</i> , 18(9),
1081	092904. doi: 10.1063/1.3638137
1082	Rackauckas, C., & Nie, Q. (2017). Differential equations.jl-a performant and feature-
1083	rich ecosystem for solving differential equations in julia. Journal of Open Re-
1084	search Software, 5(1).
1085	Runov, A., Angelopoulos, V., Gabrielse, C., Liu, J., Turner, D. L., & Zhou, XZ.
1086	(2015, June). Average thermodynamic and spectral properties of plasma in
1087	and around dipolarizing flux bundles. J. Geophys. Res., 120, 4369-4383. doi:
1088	10.1002/2015JA021166
1089	Sauer, K., Baumgaerte, K., & Sydora, R. D. (2020). Gap formation around $\omega_e/2$
1090	and generation of low-band whistler waves by landau-resonant electrons in
1091	the magnetosphere: Predictions from dispersion theory. Earth and Planetary
1092	Physics, 4, 138. Retrieved from http://eppcgs.xml-journal.net//article/
1093	id/3c6a82bf-66b3-436e-94ce-bc744f2e3c29 doi: 10.26464/epp2020020
1094	Sergeev, V. A., Sazhina, E. M., Tsyganenko, N. A., Lundblad, J. A., & Soraas, F.
1095	(1983, October). Pitch-angle scattering of energetic protons in the magne-
1096	totail current sheet as the dominant source of their isotropic precipitation
1097	into the nightside ionosphere. Planetary Space Science, 31, 1147-1155. doi:
1098	10.1016/0032-0633(83)90103-4
1099	Sheeley, B. W., Moldwin, M. B., Rassoul, H. K., & Anderson, R. R. (2001, Novem-
1100	ber). An empirical plasmasphere and trough density model: CRRES observa-
1101	tions. J. Geophys. Res., 106, 25631-25642. doi: 10.1029/2000JA000286
1102	Shen, XC., Li, W., Capannolo, L., Ma, Q., Qin, M., Artemyev, A. V., Huang,
1103	S. (2023, April). Modulation of Energetic Electron Precipitation Driven
1104	by Three Types of Whistler Mode Waves. $Geophys. Res. Lett., 50(8),$
1105	e2022GL101682. doi: $10.1029/2022GL101682$
1106	Shen, Y., Chen, L., Zhang, XJ., Artemyev, A., Angelopoulos, V., Cully, C. M.,
1107	Horne, R. B. (2021, December). Conjugate Observation of Magnetospheric
1108	Chorus Propagating to the Ionosphere by Ducting. Geophys. Res. Lett.,
1109	48(23), e95933. doi: 10.1029/2021GL095933
1110	Shklyar, D. R. (2021, February). A Theory of Interaction Between Relativistic Elec-
1111	trons and Magnetospherically Reflected Whistlers. Journal of Geophysical Re-
1112	search (Space Physics), 126(2), e28799. doi: 10.1029/2020JA028799
1113	Shklyar, D. R., & Matsumoto, H. (2009, April). Oblique Whistler-Mode Waves
1114	in the Inhomogeneous Magnetospheric Plasma: Resonant Interactions with
1115	Energetic Charged Particles. Surveys in Geophysics, 30, 55-104. doi:
1116	10.1007/s10712-009-9061-7
1117	Shprits, Y. Y., & Ni, B. (2009, November). Dependence of the quasi-linear scatter-
1118	ing rates on the wave normal distribution of chorus waves. J. Geophys. Res.,

1110	11/ 11205 doi: 10/1029/2009JA014223
1119	Shprits V V Subbotin D A Meredith N P & Elkington S B (2008 Novem-
1120	ber) Review of modeling of losses and sources of relativistic electrons in the
1121	outer radiation belt II: Local acceleration and loss <i>Journal of Atmospheric</i>
1122	and Solar-Terrestrial Physics 70 1694-1713 doi: 10.1016/j.jastp.2008.06.014
1123	Shorits V V Thorne B M Friedel B Beeves G D Fennell I Baker D N
1124	& Kanekal S. G. (2006 November) Outward radial diffusion driven by losses
1125	at magnetopause J Geophys Res 111 11214 doi: 10.1029/2006JA011657
1120	Shumko M Turner D L O'Brien T P Claudepierre S G Sample I Hartley
1127	D P Mitchell D G (2018 August) Evidence of Microbursts Observed
1129	Near the Equatorial Plane in the Outer Van Allen Radiation Belt. <i>Geophys.</i>
1130	Res. Lett., 45(16), 8044-8053, doi: 10.1029/2018GL078451
1131	Stix, T. H. (1962). The Theory of Plasma Waves.
1132	Summers D Ma C Meredith N P Horne B B Thorne B M & Anderson
1132	B B (2004 January) Modeling outer-zone relativistic electron response to
1134	whistler-mode chorus activity during substorms. Journal of Atmospheric and
1135	Solar-Terrestrial Physics, 66, 133-146, doi: 10.1016/j.jastp.2003.09.013
1136	Summers, D., & Ni, B. (2008, July). Effects of latitudinal distributions of particle
1137	density and wave power on cyclotron resonant diffusion rates of radiation belt
1138	electrons. Earth. Planets. and Space, 60, 763-771.
1139	Summers, D., Ni, B., & Meredith, N. P. (2007, April). Timescales for radiation belt
1140	electron acceleration and loss due to resonant wave-particle interactions: 1.
1141	Theory. J. Geophys. Res., 112, 4206. doi: 10.1029/2006JA011801
1142	Tao, X., Bortnik, J., Albert, J. M., & Thorne, R. M. (2012, October). Comparison
1143	of bounce-averaged quasi-linear diffusion coefficients for parallel propagating
1144	whistler mode waves with test particle simulations. J. Geophys. Res., 117,
1145	10205. doi: 10.1029/2012JA017931
1146	Tao, X., Thorne, R. M., Li, W., Ni, B., Meredith, N. P., & Horne, R. B. (2011,
1147	April). Evolution of electron pitch angle distributions following injection
1148	from the plasma sheet. J. Geophys. Res., 116, A04229. doi: 10.1029/
1149	2010JA016245
1150	Thorne, R. M. (1980, March). The importance of energetic particle precipitation
1151	on the chemical composition of the middle atmosphere. Pure and Applied Geo-
1152	physics, 118(1), 128-151. doi: 10.1007/BF01586448
1153	Thorne, R. M. (2010, November). Radiation belt dynamics: The importance of
1154	wave-particle interactions. Geophys. Res. Lett., 372, 22107. doi: 10.1029/
1155	2010GL044990
1156	Thorne, R. M., Li, W., Ni, B., Ma, Q., Bortnik, J., Chen, L., Kanekal, S. G.
1157	(2013, December). Rapid local acceleration of relativistic radiation-
1158	belt electrons by magnetospheric chorus. Nature, 504, 411-414. doi:
1159	10.1038/nature12889
1160	Thorne, R. M., O'Brien, T. P., Shprits, Y. Y., Summers, D., & Horne, R. B. (2005,
1161	September). Timescale for MeV electron microburst loss during geomagnetic
1162	storms. J. Geophys. Res., 110, 9202. doi: 10.1029/2004JA010882
1163	Tsai, E. (2023, June). <i>ethantsai/nlwhistlers:jgr2023</i> . Zenodo. Retrieved from
1164	https://doi.org/10.5281/zenodo.8083874 (Software) doi: 10.5281/zenodo
1165	
1166	I sai, E., Artemyev, A., Angelopoulos, V., & Zhang, AJ. (2023, August). In-
1167	vestigating whistler-mode wave intensity Along Field Lines Using Electron Draginitation Magguramenta - Journal of Comparison Descende (Comparison)
1168	recipitation measurements. Journal of Geophysical Research (Space Physics), 108(8), 200231A021578, doi: 10.1020/20221A021578
1169	120(0), 02020 JA001070. UOI. 10.1029/2020 JA001070 Tasi E Artomyoy A Zhang V I & Angelenovles V (2022 Mey) Deletivistic
1170	Electron Precipitation Driven by Nonlinear Resenance With Whistler Mode
1172	Wayes Journal of Geophysical Research (Space Physics) 107(5) 230338 doi:
1172	$10\ 1029/2022$ I A 030338
11/3	10.1020/2022011000000

1174 1175	a warped tail current sheet. <i>Planetary Space Science</i> , 37, 5-20. doi: 10.1016/
1176	0032 - 0633(89)90066 - 4
1177	Turner, D. L., Angelopoulos, V., Li, W., Bortnik, J., Ni, B., Ma, Q., Rodriguez,
1178	J. V. (2014, March). Competing source and loss mechanisms due to wave-
1179	particle interactions in Earth's outer radiation belt during the 30 September to
1180	3 October 2012 geomagnetic storm. J. Geophys. Res., 119, 1960-1979. doi:
1181	10.1002/2014JA019770
1182	Turunen, E., Kero, A., Verronen, P. T., Miyoshi, Y., Oyama, SI., & Saito, S.
1183	(2016). Mesospheric ozone destruction by high-energy electron precipitation as-
1184	sociated with pulsating aurora. Journal of Geophysical Research: Atmospheres,
1185	121(19), 11-852.
1186	Vainchtein, D., Zhang, X. J., Artemyev, A. V., Mourenas, D., Angelopoulos, V.,
1187	& Thorne, R. M. (2018, October). Evolution of Electron Distribution
1188	Driven by Nonlinear Resonances With Intense Field-Aligned Chorus Waves.
1189	Journal of Geophysical Research (Space Physics), 123(10), 8149-8169. doi:
1190	10.1029/2018JA025654
1191	Vasko, I. Y., Agapitov, O. V., Mozer, F. S., Artemyev, A. V., Drake, J. F., &
1192	Kuzichev, I. V. (2017, January). Electron holes in the outer radiation belt:
1193	Characteristics and their role in electron energization. J. Geophys. Res., 122,
1194	120-135. doi: 10.1002/2016JA023083
1195	Vasko, I. Y., Agapitov, O. V., Mozer, F. S., Bonnell, J. W., Artemyev, A. V., Kras-
1196	noselskikh, V. V., Hospodarsky, G. (2017, May). Electron-acoustic solitons
1197	and double layers in the inner magnetosphere. Geophys. Res. Lett., 44, 4575-
1198	4583. doi: $10.1002/2017GL074026$
1199	Verkhoglyadova, O. P., Tsurutani, B. T., & Lakhina, G. S. (2010, September). Prop-
1200	erties of obliquely propagating chorus. Journal of Geophysical Research (Space
1201	Pnysics, 115(1), A00F19. doi: 10.1029/2009JA014809
1202	waish, B. M., Hull, A. J., Agapitov, O., Mozer, F. S., & Li, H. (2020). A census of
1203	accoreb: Space Physical 125(5) a2010 IA 027577 Botrioved from https://
1204	acurule onlinelibrary uiley com/doi/abs/10 1020/201010027577
1205	(e2019JA027577 10 1029/2019JA027577) doi: 10 1029/2019JA027577
1200	Wang D & Shprits V V (2019 July) On How High Latitude Chorus Waves Tip
1207	the Balance Between Acceleration and Loss of Relativistic Electrons Geophys
1200	Res. Lett., 46(14), 7945-7954, doi: 10.1029/2019GL082681
1210	Watt, C. E. J., Degeling, A. W., & Bankin, B. (2013, May). Constructing the fre-
1211	quency and wave normal distribution of whistler-mode wave power. J. Geo-
1212	<i>phys. Res.</i> , 118, 1984-1991. doi: 10.1002/jgra.50231
1213	Wilkins, C., Angelopoulos, V., Runov, A., Artemyev, A., Zhang, X. J., Liu, J.,
1214	& Tsai, E. (2023, October). Statistical Characteristics of the Electron
1215	Isotropy Boundary. Journal of Geophysical Research (Space Physics), 128(10),
1216	e2023JA031774. doi: 10.1029/2023JA031774
1217	Xiang, Z., Tu, W., Ni, B., Henderson, M. G., & Cao, X. (2018, August). A Statis-
1218	tical Survey of Radiation Belt Dropouts Observed by Van Allen Probes. Geo-
1219	phys. Res. Lett., 45, 8035-8043. doi: 10.1029/2018GL078907
1220	Xu, W., Marshall, R. A., Tyssøy, H. N., & Fang, X. (2020). A generalized method
1221	for calculating atmospheric ionization by energetic electron precipitation. $Jour$ -
1222	nal of Geophysical Research: Space Physics, 125(11), e2020JA028482.
1223	Yahnin, A. G., Yahnina, T. A., Raita, T., & Manninen, J. (2017, September).
1224	Ground pulsation magnetometer observations conjugated with relativistic elec-
1225	tron precipitation. Journal of Geophysical Research (Space Physics), 122(9),
1226	9169-9182. doi: 10.1002/2017JA024249
1227	Yahnin, A. G., Yahnina, T. A., Semenova, N. V., Gvozdevsky, B. B., & Pashin,
1228	A. B. (2016, September). Relativistic electron precipitation as seen by NOAA

1229	POES. Journal of Geophysical Research (Space Physics), 121(9), 8286-8299.
1230	doi: 10.1002/2016JA022765
1231	Zhang, X., Angelopoulos, V., Artemyev, A. V., & Liu, J. (2018, September).
1232	Whistler and Electron Firehose Instability Control of Electron Distributions in
1233	and Around Dipolarizing Flux Bundles. Geophys. Res. Lett., 45, 9380-9389.
1234	doi: 10.1029/2018GL079613
1235	Zhang, XJ., Angelopoulos, V., Artemyev, A., Mourenas, D., Agapitov, O., Tsai,
1236	E., & Wilkins, C. (2023, January). Temporal Scales of Electron Precipitation
1237	Driven by Whistler-Mode Waves. Journal of Geophysical Research (Space
1238	<i>Physics</i>), 128(1), e2022JA031087. doi: 10.1029/2022JA031087
1239	Zhang, XJ., Angelopoulos, V., Mourenas, D., Artemyev, A., Tsai, E., & Wilkins,
1240	C. (2022, May). Characteristics of Electron Microburst Precipitation Based
1241	on High-Resolution ELFIN Measurements. Journal of Geophysical Research
1242	(Space Physics), 127(5), e30509. doi: 10.1029/2022JA030509
1243	Zhang, X. J., Thorne, R., Artemyev, A., Mourenas, D., Angelopoulos, V., Bortnik,
1244	J., Hospodarsky, G. B. (2018, July). Properties of Intense Field-Aligned
1245	Lower-Band Chorus Waves: Implications for Nonlinear Wave-Particle Inter-

- actions. Journal of Geophysical Research (Space Physics), 123(7), 5379-5393.
- 1247 doi: 10.1029/2018JA025390