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Abstract

Energetic electron losses by pitch-angle scattering and precipitation to the atmosphere from the radiation belts are controlled, to

a great extent, by resonant wave particle interactions with whistler-mode waves. The efficacy of such precipitation is primarily

controlled by wave intensity, although its relative importance, compared to other wave and plasma parameters, remains unclear.

Precipitation spectra from the low-altitude, polar-orbiting ELFIN mission have previously been demonstrated to be consistent

with energetic precipitation modeling derived from empirical models of field-aligned wave power across a wide-swath of local-

time sectors. However, such modeling could not explain the intense, relativistic electron precipitation observed on the nightside.

Therefore, this study aims to additionally consider the contributions of three modifications – wave obliquity, frequency spectrum,

and local plasma density – to explain this discrepancy on the nightside. By incorporating these effects into both test particle

simulations and quasi-linear diffusion modeling, we find that realistic implementations of each individual modification result in

only slight changes to the electron precipitation spectrum. However, these modifications, when combined, enable more accurate

modeling of ELFIN-observed spectra. In particular, a significant reduction in plasma density enables lower frequency waves,

oblique, or even quasi-field aligned waves to resonate with near $\sim1$ MeV electrons closer to the equator. We demonstrate

that the levels of modification required to accurately reproduce the nightside spectra of whistler-mode wave-driven relativistic

electron precipitation match empirical expectations, and should therefore be included in future radiation belt modeling.
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Abstract21

Energetic electron losses by pitch-angle scattering and precipitation to the atmosphere22

from the radiation belts are controlled, to a great extent, by resonant wave particle in-23

teractions with whistler-mode waves. The efficacy of such precipitation is primarily con-24

trolled by wave intensity, although its relative importance, compared to other wave and25

plasma parameters, remains unclear. Precipitation spectra from the low-altitude, polar-26

orbiting ELFIN mission have previously been demonstrated to be consistent with ener-27

getic precipitation modeling derived from empirical models of field-aligned wave power28

across a wide-swath of local-time sectors. However, such modeling could not explain the29

intense, relativistic electron precipitation observed on the nightside. Therefore, this study30

aims to additionally consider the contributions of three modifications – wave obliquity,31

frequency spectrum, and local plasma density – to explain this discrepancy on the night-32

side. By incorporating these effects into both test particle simulations and quasi-linear33

diffusion modeling, we find that realistic implementations of each individual modifica-34

tion result in only slight changes to the electron precipitation spectrum. However, these35

modifications, when combined, enable more accurate modeling of ELFIN-observed spec-36

tra. In particular, a significant reduction in plasma density enables lower frequency waves,37

oblique, or even quasi-field aligned waves to resonate with near ∼ 1 MeV electrons closer38

to the equator. We demonstrate that the levels of modification required to accurately39

reproduce the nightside spectra of whistler-mode wave-driven relativistic electron pre-40

cipitation match empirical expectations, and should therefore be included in future ra-41

diation belt modeling.42

Plain Language Summary43

Whistler-mode waves are a type of electromagnetic wave that mediate electron dy-44

namics in Earth’s radiation belts and are simultaneously important for energizing elec-45

trons and driving loss mechanisms. Most radiation belt models today do not adequately46

capture the effects of these waves on relativistic electrons, which are important to study47

because these energetic electrons are often called “Killer Electrons” for their ability to48

degrade spacecraft electronics. Additionally, when lost into Earth’s atmosphere, these49

electrons can also change atmospheric chemistry and ionospheric properties, making them50

an important input parameters for atmospheric, ionospheric, and magnetospheric mod-51

eling. This study uses two different modeling methods to determine which properties of52

whistler-mode waves are most important for accurately capturing these wave-particle in-53

teractions on the nightside, where plasma interactions are more dynamic. The results54

agree well with statistical results from the Electron Losses and Fields INvestigation (ELFIN)55

mission, allowing us to fully explain the mechanisms behind whistler-mode wave-driven56

electron losses on the nightside.57

1 Introduction58

Earth’s inner magnetosphere is filled with energetic electron fluxes injected from59

the plasma sheet, that are then further accelerated via resonant interactions with elec-60

tromagnetic whistler-mode (chorus) waves (Millan & Baker, 2012; Shprits et al., 2008).61

These wave-particle interactions are, in great part, also responsible for energetic elec-62

tron pitch-angle scattering into the loss cone and subsequent electron loss through pre-63

cipitation into Earth’s atmosphere (Millan & Thorne, 2007; Shprits et al., 2008). This64

contribution to both acceleration and pitch-angle scattering of energetic electrons makes65

the whistler-mode wave a crucial element of outer radiation belt dynamics (Bortnik &66

Thorne, 2007; Thorne, 2010; Li & Hudson, 2019). Not only do energetic radiation belt67

electrons serve as an important space weather proxy (Horne et al., 2013), relativistic elec-68

tron can also penetrate deep into the thermosphere/mesosphere (Xu et al., 2020) con-69

tributing to ozone depletion (Thorne, 1980; Lam et al., 2010; Turunen et al., 2016). Un-70
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derstanding the mechanisms behind the global distribution of energetic electron losses71

is therefore important for studying radiation belt dynamics and atmospheric chemistry.72

Energetic (≳ 100 keV) electron losses due to whistler-mode waves is one such topic73

that has yet to be fully investigated. It is known that these waves can scatter electrons74

up to 1 MeV (O’Brien et al., 2004; Thorne et al., 2005; Blake & O’Brien, 2016; Shumko75

et al., 2018; Breneman et al., 2017), which is problematic because current radiation belt76

models typically only incorporate diffusive losses of sub-relativistic electrons (up to ∼77

500 keV). Additionally, previous research (Tsai et al., 2023) has revealed a day-night dif-78

ference in energetic electrons scattered by whistler-mode waves, with more intense elec-79

tron precipitation on the dayside than on the nightside. This is attributed to two system-80

level properties – (1) nightside regions generally have a lower plasma density and (2) night-81

side wave activity is generally more confined to the equatorial plane (Meredith et al., 2001,82

2003; Agapitov et al., 2013) – which both cause strong resonant wave particle interac-83

tions to preferentially occur on the dayside, resulting in more extreme energetic electron84

losses (e.g., Thorne et al., 2005; Mourenas, Artemyev, Agapitov, & Krasnoselskikh, 2014;85

Wang & Shprits, 2019; Aryan et al., 2020). This is supported by Tsai et al. (2023), which86

used modeled electron precipitation spectra derived from statistically-averaged wave in-87

tensity distributions from Agapitov et al. (2018) to directly compare with statistical ob-88

servations of electron precipitating fluxes from ELFIN (Angelopoulos et al., 2020). Al-89

though these model-data comparisons showed good agreement between electron precip-90

itation and wave power in the dusk and daysides, ELFIN-measured nightside relativis-91

tic (≳ 500 keV) precipitating flux rates were substantially larger than anticipated (i.e.92

modeled) and nearly comparable to that on the dayside. Understanding mechanisms that93

can cause such intense energetic precipitation is a prerequisite for accurately modeling94

electron loss in the radiation belts, therefore motivating the need to explore what key95

factors actually determine nightside electron losses.96

There are a few prime candidates that determine the efficiency of wave-particle res-97

onant interactions (and, particularly, the energy dependence of whistler-mode wave driven98

electron scattering):99

1. Wave intensity distribution along magnetic field lines (see discussion in Thorne100

et al., 2005; Wang & Shprits, 2019).101

2. Obliquity of wave propagation relative to the background magnetic field (see dis-102

cussion in Lorentzen et al., 2001; Mourenas, Artemyev, Agapitov, & Krasnosel-103

skikh, 2014; Artemyev et al., 2016).104

3. Wave frequency spectrum and its variation along magnetic field lines (see discus-105

sion in Agapitov et al., 2018)106

4. Equatorial plasma density magnitude (see discussion in Thorne et al., 2013; Agapi-107

tov et al., 2019; Allison & Shprits, 2020) and its variation along magnetic field lines108

(see discussion in Summers & Ni, 2008; Artemyev et al., 2013).109

Having already examined the importance of wave amplitude in Tsai et al. (2023), we now110

study the remaining three mechanisms which could potentially modulate nightside elec-111

tron precipitating spectra. First, intense nightside whistler-mode waves are typically as-112

sociated with strong plasma sheet injections (Tao et al., 2011; Fu et al., 2014; X. Zhang113

et al., 2018) which are often accompanied by the enhanced convection electric field which114

transports cold plasma Earthward, thereby decreasing equatorial plasma density (Vasko,115

Agapitov, Mozer, Bonnell, et al., 2017; Agapitov et al., 2019). A lower plasma density116

results in a lower plasma frequency; a lower plasma frequency to gyrofrequency ratio,117

fpe/fce yields a higher cyclotron resonance energy ER ∝ (fce/fpe)
2 to fce/fpe (from118

low to high energy) of electrons for given wave frequencies, wave normal angles, and elec-119

tron pitch-angles (Stix, 1962; Summers et al., 2007; Li, Thorne, Nishimura, et al., 2010;120

Allison et al., 2021). This nightside localized density reduction can thus potentially in-121

crease the scattering rate of relativistic electrons.122
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Second, statistical observations have shown a clear trend of average wave frequency123

decreasing with latitude along field lines (i.e. increasing distance from the equatorial plane)124

(Agapitov et al., 2018). This is likely caused by preferential Landau damping of higher-125

frequency waves resonating with suprathermal electrons (L. Chen et al., 2013; Watt et126

al., 2013; Maxworth & Golkowski, 2017). A lower normalized wave frequency f/fce means127

a higher cyclotron resonance energy ER ∝ (fce/f)(1−f/fce)
3 to (fce/f)1/2(1−f/fce)

3/2
128

from low to high energy (Li, Thorne, Nishimura, et al., 2010; Mourenas et al., 2012). Thus,129

this reduction in the mean wave frequency in the nightside off-equatorial region may also130

increase the scattering rate of relativistic electrons.131

Third, plasma injections are often associated with enhanced electrostatic turbu-132

lence (Mozer et al., 2015; Agapitov et al., 2015; Vasko, Agapitov, Mozer, Artemyev, et133

al., 2017; Malaspina et al., 2018) that forms a plateau in the field-aligned velocity dis-134

tribution and significantly reduces Landau damping of oblique whistler-mode waves (see135

discussion in Mourenas et al., 2015; Ma et al., 2017; Artemyev & Mourenas, 2020). In136

this regime, oblique (with wave normal angles below the Gendrin angle θG ≈ acos(2f/fce))137

and very oblique (with wave normal angle up to the resonant cone angle θr ≈ acos(f/fce))138

waves may survive Landau damping (see Min et al., 2014; R. Chen et al., 2019; Sauer139

et al., 2020; Ke et al., 2022). These waves then become oblique off the equatorial plane140

(Bortnik et al., 2007; L. Chen et al., 2013), or, in more unusual cases, are generated within141

the equatorial source region (Artemyev et al., 2016; Li, Mourenas, et al., 2016; Agapi-142

tov et al., 2016). Wave obliquity not only increases the resonant interaction energy with143

electrons as ER ∝ 1/k2∥ ∝ 1/ cos2 θ (e.g., Verkhoglyadova et al., 2010; Mourenas et144

al., 2015), but also allows for interactions with electrons at higher-order cyclotron res-145

onances (n ≫ 1, e.g., Shklyar & Matsumoto, 2009; Mourenas et al., 2012; Artemyev146

et al., 2013; Albert, 2017) which can drastically increase the resonance energy ER ∝ n2
147

(e.g., Lorentzen et al., 2001; Gan et al., 2023). Thus, nightside whistler-mode wave obliq-148

uity could also potentially increase the scattering rate of relativistic electrons.149

Here, we examine each of these three mechanisms to see whether they can explain150

the enhanced precipitation of relativistic electrons in the nightside MLT sector using a151

combination of statistics from ELFIN observations (Angelopoulos et al., 2020), test par-152

ticle simulations (Tsai et al., 2022, 2023), and quasi-linear diffusion code (Ma et al., 2012,153

2015). This paper is organized as follows: Section 2 details ELFIN observations/statistics154

and presents observational evidence of intense nightside precipitation of relativistic elec-155

trons; Section 3 describes the basics of the test particle simulation and quasi-linear dif-156

fusion codes; Section 4 compares ELFIN data to results from a variety of runs explor-157

ing the three main modifications – reduced plasma density, wave obliquity, wave frequency158

variation along magnetic field lines; finally, Section 5 summarizes and discusses the ob-159

tained results.160

2 Data Sets161

The ELFIN CubeSats (ELFIN A and B) are identically equipped with an Ener-162

getic Particle Detector for Electrons (EPDE), capable of measuring energy and pitch-163

angle distributions of energetic electrons with ∆E/E = 40% across 16 logarithmically164

spaced energy channels between 50 keV and 5 MeV (Angelopoulos et al., 2020). Spin-165

ning at just over 21 revolutions per minute (spin period ≈ 2.8 sec), ELFIN’s 16 sectors166

per spin yields a spin phase resolution of ∆α = 22.5◦. The main data product used in167

this study is the precipitating-to-trapped flux ratio, jprec/jtrap(E), where jtrap(E) is the168

locally trapped (outside of the local bounce loss-cone) electron flux and jprec(E) is the169

flux integrated over the local loss-cone with a correction to remove the backscattered fluxes170

from the opposite hemisphere (see details in Mourenas et al., 2021; Angelopoulos et al.,171

2023). Figure 1 shows two typical examples of ELFIN outer radiation belt crossings on172

the nightside with jtrap(E) (a,d) and jprec/jtrap (b,e) distributions.173

–4–



manuscript submitted to JGR: Space Physics

This study utilized 30 months (January 2020 - June 2022) of ELFIN’s jtrap(E) and174

jprec(E) measurements during strong and bursty energetic electron precipitation events175

(for details regarding statistical coverage, see Figure 5 in Tsai et al., 2023). In order to176

obtain a statistical representation of whistler-mode-driven electron precipitation, data177

was selected based on data quality (minimum 4 counts/second for any given energy or178

pitch angle bin) and precipitation intensity (jprec(E)/jtrap(E) > 0.5 at ELFIN’s low-179

est energy bin of 63 keV). In addition, there were provisions to identify and remove elec-180

tron precipitation events driven by field-line curvature scattering, EMIC-driven precip-181

itation, and microbursts. Curvature scattering (Imhof et al., 1977; Sergeev et al., 1983;182

Büchner & Zelenyi, 1989) of plasma sheet and radiation belt electrons can be identified183

by its sharp energy/latitude dispersion (isotropy boundary) that results in high precipitating-184

to-trapped flux ratio at relativistic energies closer to the planet (see the IB precipitat-185

ing pattern in Fig. 1b and statistical results in Wilkins et al. (2023)). Such data, in ad-186

dition to the isotropic precipitation with jprec/jtrap ∼ 1 of < 300 keV electrons pole-187

ward from the isotropy boundary (Artemyev et al., 2022), are removed from our statis-188

tics. Next, electromagnetic ion cyclotron (EMIC) waves, which are caused by nightside189

ion injections (Jun et al., 2019; Kim et al., 2021) and efficiently scatter and precipitate190

relativistic electrons (e.g., Blum, Halford, et al., 2015; Blum, Li, & Denton, 2015; Yah-191

nin et al., 2016, 2017; Capannolo et al., 2019, 2023), are excluded. These EMIC-driven192

observations are identified by precipitating-to-trapped ratios that reach their peak at ≥193

500 keV energy (see examples in X. An et al., 2022; Grach et al., 2022; Capannolo et al.,194

2023; Angelopoulos et al., 2023). Additionally, whistler-mode hiss waves provide a wide195

energy range of scattering, from weak scattering further from the plasmasphere to pre-196

cipitation of relativistic electrons within the plasmasphere (see discussion of ELFIN ob-197

servations of such precipitation in Mourenas et al., 2021; Angelopoulos et al., 2023; X.-198

C. Shen et al., 2023); these hiss precipitation events are also eliminated. Figure 1e shows199

this particular pattern, which is recognizable by a low jprec/jtrap ratio peaking at ≥ 500200

keV energy at low L-shells. Finally, we exclude all precipitation patterns showing microburst-201

like flux variation within one spin (such events are characterized by precipitating-to-trapped202

flux ratio exceeding one for relativistic electron energies, see X.-J. Zhang et al., 2022, for203

further examples).204

All these effects are programmatically eliminated from statistics leaving us with205

only one type of precipitating energy distribution: a precipitating-to-trapped ratio mono-206

tonically decreasing with energy, observed primarily within L-shells ∈ [4, 8], correspond-207

ing to the outer radiation belt outside the plasmasphere (e.g., Mourenas et al., 2021).208

This type of precipitation can only be caused by whistler-mode waves (see more details209

and examples in Tsai et al., 2022; X.-J. Zhang et al., 2022, 2023), and is demonstrated210

in Figure 1(b,e).211

We combine all ELFIN observations from the nightside MLT sector (27950 spins212

across 4458 radiation belt crossings) and plot the averaged precipitating-to-trapped flux213

spectra for three geomagnetic activity levels and two L-shell domains (4.5−5.5 and 5.5−214

7.5) for AE ∈ [100, 300] nT in Fig. 2d. Fig. 2(a-c) show that the precipitating-to-trapped215

electron flux ratio jprec/jtrap above 100 keV increases significantly as AE increases. The216

precipitating-to-trapped flux ratio reaches jprec/jtrap ∼ 0.1 up to 200−400 keV when217

AE > 300 nT. This result is consistent with past observations of stronger energetic elec-218

tron injections from the plasma sheet during periods of higher AE (Tao et al., 2011; Runov219

et al., 2015; Gabrielse et al., 2014), leading to even more intense whistler-mode waves220

(Meredith et al., 2001; X. J. Zhang et al., 2018) which can efficiently precipitate 50−221

500 keV electrons (Summers et al., 2004; Thorne et al., 2005; Aryan et al., 2020; Agapi-222

tov et al., 2018). The ratio jprec/jtrap is also higher at L = 5.5−7.5 than at L = 4.5−223

5.5 in Fig. 2, in agreement with the higher chorus wave power at higher L > 5.0−5.5224

in the night sector in spacecraft statistics (Agapitov et al., 2018; Meredith et al., 2020).225

The smooth decrease of jprec/jtrap as electron energy increases in Fig. 2d is consistent226

with the expectation that at higher latitudes, wave power decreases while minimum cy-227
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Figure 1. Two examples of ELFIN observations with strong precipitation of energetic elec-

trons in the nightside MLT sector showing locally trapped electron fluxes (a,d), precipitating-to-

trapped flux ratio (b,e), and ELFIN’s MLT, L-shell coordinates from (Tsyganenko, 1989) model

(c,f).

clotron resonance energy increases, therefore precipitating higher energy electrons at lower228

absolute flux levels (Agapitov et al., 2018; Meredith et al., 2020).229

3 Simulation230

Calculating the precipitating-to-trapped flux ratios is useful because it eliminates231

the trapped flux variability (which can vary by orders of magnitude). The slope of the232

ratio’s energy spectra now represents only the relative effects of resonant interactions with233

whistler-mode waves. To then compare with ELFIN statistics, we obtain modeled precipitating-234

to-trapped flux ratios using two different types of simulations: (1) a configurable large-235

ensemble test particle simulation for electron resonant interactions, as used in previous236

work (Tsai et al., 2022, 2023) and (2) a quasi-linear diffusion code which has been used237

in previous radiation belt simulations (Ma et al., 2012, 2015). The test particle simu-238

lations include potential non-linear resonant effects and consider only purely monochro-239

matic waves, whereas the quasi-linear diffusion code models electron scattering by an en-240

semble of oblique waves with higher order resonant interactions across a distribution of241

frequencies. Thus, by comparing results obtained by these two approahces, we can fully242

capture the importance of different resonant effects for electron scattering and losses.243

3.1 Test particle simulation244

Our test particle simulation (Tsai et al., 2022, 2023) is designed to compute the245

expected energy distribution of the electron precipitation flux ratio given realistic wave246

parameters. In order to obtain enough statistics – especially at higher energies where247

it is less likely for electrons to be scattered into the loss cone – we use a large number248

of particles for all test particle simulations in this study with N = 5 × 106. For this249

to run in a reasonable amount of time, we parallelize the code and implement it in Ju-250

lia 1.9.3 (Bezanson et al., 2017) using the differential equations package (Rackauckas &251

Nie, 2017). The Hamiltonian formulation for wave-particle resonant interactions (Albert252

et al., 2013; Vainchtein et al., 2018) incorporates nonlinear effects such as phase bunch-253
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Figure 2. Plots (a-c) show the statistical distributions of precipitating-to-trapped electron

spectra in (MLT, energy) space for several levels of geomagnetic activity. Plots (d) show energy

profiles of precipitating-to-trapped fluxes for three geomagnetic activity levels in the nightside

MLT ∈ [18, 4]. The shaded blue range regions represent the upper (AE > 300 nT) and lower

(AE < 100 nT) bounds of geomagnetic activity levels while the central black curve depicts AE

∈ [100, 300] nT.

ing, phase trapping, and anomalous trapping (Demekhov et al., 2006; Bortnik et al., 2008;254

Katoh et al., 2008; Omura et al., 2007; Kitahara & Katoh, 2019; Albert et al., 2021). The255

simulation uses monochromatic waves, which is generally valid for describing diffusive256

scattering in a background dipolar magnetic field due to its strong magnetic field gra-257

dient (Albert, 2001, 2010; Shklyar, 2021). Critically, the wave field is modified by the258

function Bw(λ,L,MLT,Kp) which describes the wave amplitude variation along mag-259

netic field lines using an empirical chorus wave model built using 14 years of Cluster and260

Van Allen Probe statistics. The wave model is dependent on latitude, geographic loca-261

tion, and geomagnetic activity (see model and coefficients in Agapitov et al., 2018), which262

is necessary for realistic modeling of energetic electron losses. Further details of the test263

particle simulation implementation can be found in Tsai et al. (2022, 2023).264

In this study, we have further augmented the test particle simulation to explore the265

latitudinal dependence of wave frequency and obliquity so that wave frequency ω(λ, θ)266

is a function of both latitude and wave normal angle. Changing into dimensionless vari-267

ables allows us to provide a mean normalized wave frequency ωm(λ) = ω(λ)/Ωce,eq and268

mean wave normal angle θ(λ) both as functions of magnetic latitude λ (as described in269

Section 3.3). With dimensionless variables, the normalized plasma frequency is defined270

as Ωpe = ωpe,eq/Ωce,eq.271

3.2 Quasi-linear diffusion code272

To instill further confidence in test particle simulation results, we calculate the quasi-273

linear diffusion coefficients using the Full Diffusion Code (Ni et al., 2008, 2011; Shprits274

& Ni, 2009; Ma et al., 2018) and model the precipitating electron flux using the Fokker-275

Planck diffusion code (Ma et al., 2012, 2015). This quasi-linear diffusion code physically276

differs from the test particle simulations primarily in the fact that it prescribes Gaus-277

sian distributions for the wave frequency (Glauert & Horne, 2005):278

B̂2 (ω) ∼ exp

[
− (ω − ωm(λ))

2

δω2

]
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and the wave normal angle:279

g (θ) ∼ exp

[
− (tan θ − tan θm(λ))

2

(tan δθ)2

]

where mean values ωm and θm with bandwidths δω and δθ represent wave frequency and280

normal angle, respectively. These distributions are provided relative to mean values, ωm(λ)281

and θm(λ), which are given as functions of magnetic latitude λ and discussed in the next282

section (see details in Artemyev et al., 2013; Agapitov et al., 2018; Aryan et al., 2020).283

We use the bounce-averaged Fokker-Planck equation to model the electron precip-284

itation rate (Lyons et al., 1972; Glauert & Horne, 2005):285

∂f

∂t
=

1

τb (αeq) sin 2αeq

∂

∂αeq

(
τb (αeq) sin 2αeq

(
⟨Dαα⟩

∂f

∂αeq

))
− f

τloss
(1)

where αeq is the equatorial pitch angle, τb ≈ 1.38−0.32
(
sinαeq + sin2 αeq

)
(see Orlova286

& Shprits, 2011), ⟨Dαα⟩ is the bounce-averaged diffusion rate, and τloss(t) is the bounce287

loss time (and is set to be a quarter of the bounce period inside the local loss-cone and288

infinity outside the loss cone). We use the quasi-linear diffusion code to numerically solve289

Eq. (1), with diffusion rates derived from B̂2 (ω) and g (θ) distributions (see Ni et al.,290

2008, 2011; Ma et al., 2015, 2018). Zero-gradient boundary conditions in pitch angle are291

set to simulate the loss cone filling of electrons due to wave scattering (Ma et al., 2022).292

3.3 Frequency and Obliquity Models293

In both simulations, we use the following two models to compare the effects of whistler294

wave frequency (normalized to the equatorial gyrofreqency) ωm = ω/Ωce,eq:295

Model 1: normalized wave frequency held constant at ωm = 0.35, the typical frequency296

of whistler mode chorus waves near the equator (Agapitov et al., 2018).297

Model 2: function ω(λ) linearly decreasing from 0.41Ωce,eq at the equator until reach-298

ing a constant 0.16Ωce,eq for λ ≥ 20◦. This model is based on statistics of off-299

equatorial parallel and oblique lower-band chorus waves from the Van Allen Probes300

(Agapitov et al., 2018).301

We use the following four models to describe the mean wave normal angle (WNA)302

θm. A scaling factor Θ(λ) = λ/(15◦+λ) is adopted to modify the WNA increase from303

0 at the equator to Θ(45◦) = 0.75 at 45◦ latitude in WNA1 and WNA2.304

FAW: a field-aligned wave model (with θ = 0◦ in test particle simulations and θm =305

0◦, δθ = 30◦ or δθ = 5◦ in the quasi-linear diffusion code) that describes the306

most intense population of waves (Li, Santolik, et al., 2016; Agapitov et al., 2013)307

as they remain field-aligned off equator due to wave ducting by small-scale den-308

sity structures (Hanzelka & Santoĺık, 2019; Y. Shen et al., 2021; Ke et al., 2021;309

Hosseini et al., 2021).310

WNA1: a moderately oblique WNA model with θ1(λ) = θG(λ) · Θ(λ), where θG =311

arccos (2ω/Ωce) is the Gendrin angle (Gendrin, 1961). This model describes field-312

aligned waves that are generated at the equator, but become mildly oblique as they313

propagate through the inhomogeneous plasma (e.g. Breuillard et al., 2012; L. Chen314

et al., 2013; Ke et al., 2017).315

WNA2: a very oblique WNA model with θ2(λ) = θr(λ)·Θ(λ), where θr = arccos (ω/Ωce)316

is the resonance cone angle. This describes field-aligned waves that are generated317

at the equator, but become very oblique as they propagate through the inhomo-318

geneous plasma in the case of suppressed Landau damping (see discussion in Arte-319

myev & Mourenas, 2020).320

–8–



manuscript submitted to JGR: Space Physics

WNA3: an extremely oblique WNA model with θ3(λ) = θr(λ)− 2◦. This model de-321

scribes very oblique waves that are generated in the equatorial source region in322

the presence of field-aligned electron streams suppressing Landau damping (Mourenas323

et al., 2015; Li, Mourenas, et al., 2016; R. Chen et al., 2019; Kong et al., 2021).324

The quasi-linear simulations also require a bandwidth parameter which sets the width325

of the wave frequency and normal angle Gaussian distributions, defined in Section 3.2.326

Frequency bandwidth δω is set to 0.125, and the lower and upper cutoff frequencies are327

set to be ωm−2δω and 0.5, respectively. Wave normal angle bandwidth is set to either328

δθ = 5◦ or δθ = 30◦ for FAW, and δθ = 10◦ for the other models; if θr(λ) − θm(λ) <329

20◦, we set δθ = (θr(λ)−θm(λ))/2. The lower (θLC) and upper (θUC) cutoff wave nor-330

mal angles are set as tan θLC = max(0, tan θm−2 tan δθ) and tan θUC = min(tan 89.9◦, tan θm+331

2 tan δθ), respectively.332

Finally, the magnetic wave power distribution B2
w(λ) is taken from an empirical333

statistical model (Agapitov et al., 2018) at 23 MLT and L = 6 for Kp = 3. Note that334

we use Kp = 3 as a reasonable estimate of average geomagnetic activity level for ELFIN335

observations of electron precipitation driven by resonance with whistler-mode waves (see336

Tsai et al., 2023, for further discussion). For quiet conditions Kp ≤ 2, the wave inten-337

sity provides insufficient levels of precipitating electron fluxes, which is generally corrob-338

orated by the extremely low levels (i.e. near background) of precipitating fluxes ELFIN339

observes during quiet periods. During disturbed storm times (Kp > 4), the precipitat-340

ing and locally trapped fluxes are occasionally too large and approach saturation of ELFIN’s341

EPDE instrument (see details in X.-J. Zhang et al., 2022). Both types of ELFIN obser-342

vations (either background-level precipitation or nearly-saturated measurements) are ex-343

cluded from the statistical analysis.344

4 Data-model comparison345

In this section, the precipitating-to-trapped electron flux ratio jprec/jtrap, calcu-346

lated through test particle simulations (TPS) or Quasi-Linear Diffusion Code (QLDC),347

are compared with jprec/jtrap as measured by ELFIN. This allows us to assess the dif-348

ferent roles potentially played by plasma density, wave obliquity, and wave frequency based349

on precipitating flux ratio variation with energy.350

For proper comparison, the simulated jprec/jtrap flux ratio is normalized to the ob-351

served jprec/jtrap flux ratio at ELFIN’s second energy bin (∼ 97 keV), thereby remov-352

ing wave amplitude variability such that the spectral slope can be compared for across353

various scenarios. This is valid because the ∼ 30 − 100 keV precipitating-to-trapped354

electron flux ratio correlates well with the equatorial wave amplitude (Li et al., 2013; Ni355

et al., 2014). In addition, spurious variations in jprec/jtrap modeled using our test par-356

ticle simulations tend to become larger below 97 keV, despite the large number of par-357

ticle runs per energy bin. These oscillations are absent from results of the quasi-linear358

diffusion code, which correlate well with test particle simulation results above 97 keV359

after normalization.360

4.1 Role of plasma density361

Figure 3 shows a comparison between the precipitating-to-trapped electron flux ra-362

tio jprec/jtrap measured by ELFIN at L > 5 and 18-4 MLT (black) with jprec/jtrap ob-363

tained from TPS (solid red) and QLDC (dashed red) with parallel (FAW model) lower-364

band chorus waves (adopting θ = 0◦ in test particle simulations, δθ = 30◦ in the quasi-365

linear diffusion code), using wave frequency Model 1 of constant frequency (ωm = 0.35)366

chorus waves and a typical plasma frequency to gyrofrequency ratio Ωpe = 6.5 at L =367

6.5 and 23 MLT (Sheeley et al., 2001). In this plot (and remaining Figures 3-7), the gray368

shaded regions of ELFIN data denote the boundaries of quiet (AE < 100 nT) and ac-369
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Figure 3. ELFIN-measured precipitating-to-trapped electron flux ratio at L > 5 on the night-

side (18 − 4 MLT) as a function of energy (black curve). The corresponding jprec/jtrap flux ratio

obtained from test particle simulations is shown for parallel (FAW model, θ = 0◦) lower-band

chorus waves, using frequency Model 1 (ωm = constant) and a typical Ωpe = 6.5 at L = 6.5

and 23 MLT (solid red). Results from the quasi-linear diffusion code using the same parameters

is shown in dashed red. Similarly, the cases of reduced density Ωpe = 3 modeled with test par-

ticle simulation (solid purple), quasi-linear diffusion code using narrow-band field aligned waves

(δθ = 5◦, dashed purple), and more quasi-linear field aligned waves (δθ = 30◦, dashed blue), are

shown. All simulation results are normalized to observations at 97 keV.
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tive (AE > 350 nT) times. The normalized ratios jprec/jtrap obtained from TPS and370

QLDC are quite similar (compare solid with dashed lines of the same color), validating371

the reliability of the quasi-linear approach (Kennel & Engelmann, 1966; Lyons et al., 1972;372

Albert, 2005; Glauert & Horne, 2005; Mourenas et al., 2012; Mourenas, Artemyev, Agapi-373

tov, & Krasnoselskikh, 2014), especially in the case of field aligned waves, as demonstrated374

in previous studies (Tao et al., 2012; Mourenas, Artemyev, et al., 2022; Gan et al., 2022;375

Z. An et al., 2022). However, despite their normalization to the measured jprec/jtrap at376

97 keV, these similar ratios of jprec/jtrap (red curves) obtained from test particle sim-377

ulations and from the quasi-linear diffusion code become ∼ 1.5−2 times smaller than378

the measured jprec/jtrap at 200−1000 keV (black), corresponding to a deficiency of pitch-379

angle diffusion occurring at higher energies. For reference, this baseline case (red) rep-380

resents the same discrepancy on the nightside as first described in Tsai et al. (2023).381

A reduced plasma density should lower the latitude of first-order cyclotron reso-382

nance with chorus waves for electrons near the loss-cone (Mourenas et al., 2012). Since383

chorus wave power B2
w is higher at lower latitudes (Agapitov et al., 2018), a reduced den-384

sity is therefore expected to yield higher electron pitch-angle diffusion rate Dαα ∝ B2
w385

near the loss-cone leading to higher precipitation rates and fluxes at all energies. How-386

ever, adopting a reduced plasma density (Ωpe = 3) in test particle simulations (pur-387

ple line in Fig. 3) and normalizing the flux ratio at 97 keV leads to an even larger dis-388

crepancy across the 300− 1000 keV range with a ∼ 2− 3 times smaller jprec/jtrap ra-389

tio than ELFIN statistics show. We therefore interpret this density effect as more im-390

portant at lower energies (∼ 100 keV) compared to higher energies (> 300 keV) due391

to B2
w(λ) increasing, in our model and in observations, more steeply towards lower lat-392

itudes at λ ≲ 25◦ (where resonance with ∼ 100 keV electrons occurs) than at λ > 25◦393

(where resonance with ∼ 1 MeV electrons occurs) during disturbed periods at 21-3 MLT394

(Agapitov et al., 2018). Therefore, the wave power B2
w(λ) seen by electrons near the loss-395

cone increases only marginally at higher energies for both θ = 0◦ in test-particle sim-396

ulations and θ < 5◦ or θ < 30◦ in QLDC simulations (solid/dashed purple and dashed397

blue lines). This then reduces the normalized pitch-angle diffusion rate Dαα near the loss-398

cone and the normalized jprec/jtrap flux ratio, which varies roughly like ≈
√
Dαα (Kennel399

& Petschek, 1966; Li et al., 2013; Mourenas, Zhang, et al., 2022; Mourenas et al., 2023).400

Adopting a more realistic spread of WNAs for quasi-field aligned waves (δθ = 30◦,401

blue dashed line) in the quasi-linear diffusion code leads to the effects of additional, higher-402

order cyclotron resonances to become more significant (Artemyev et al., 2016), which is403

clearly shown as the difference between the blue and purple dashed lines in Figure 3. Due404

to moderate obliqueness, this effect is most prominent in the lower energies – resonat-405

ing with waves around the equator – extending now to about 180 keV. However, it is not406

enough to reproduce ELFIN observations up to 1 MeV, because the relative scattering407

efficiency decreases with the purple curve at higher energies, causing the blue curve to408

underestimate ELFIN statistics beyond > 250 keV. Despite the fact that, in observa-409

tions, the plasma frequency to gyrofrequency ratio Ωpe does decrease at 18-4 MLT dur-410

ing disturbed periods (O’Brien & Moldwin, 2003), often down to Ωpe ≈ 3 − 4 at L ∼411

6 when AE > 150 nT (Agapitov et al., 2019), results in Figure 3 show that plasma den-412

sity reduction alone cannot account for a relative increase of electron scattering at higher413

energies.414

4.2 Role of wave frequency415

As noted earlier, statistical observations of lower-band chorus waves show that their416

normalized frequency is not constant as a function of latitude (as assumed in frequency417

Model 1), but rather, decreasing due to preferential Landau damping affecting higher418

frequencies at higher latitudes (Agapitov et al., 2018; Bunch et al., 2013; L. Chen et al.,419

2013), as reflected by frequency Model 2. Figure 4a shows that the jprec/jtrap ratios ob-420

tained for wave normal angle model FAW from test particle simulations (solid curves)421
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(a) Comparing constant and decreasing wave frequencies (b) Constant frequencies only

AE > 350 nT
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Figure 4. To compare the effects of two frequency models, precipitating-to-trapped electron

flux ratio jprec/jtrap plotted for ELFIN statistics on the nightside (black) is shown in comparison

with jprec/jtrap ratios obtained from test particle simulations (TPS, solid lines) and quasi-linear

diffusion code (QLDC, dashed lines). In (a), Frequency Model 2 (frequency decreasing toward

higher latitudes, blue) produces slightly higher precipitation rates at 100 keV relative to 1 MeV

as compared to a constant ωm = 0.35 (red). Plot (b) shows results from a variety of normalized

wave frequency values that do not vary as a function of magnetic latitude, demonstrating that

absolute frequency has little effect on the slope of the precipitation energy spectra.

and from the quasi-linear diffusion code (dashed curves) are both slightly decreased at422

E = 200 − 1000 keV when wave frequency Model 2 is used (blue curves), rather than423

when using Model 1. This is because a reduction of wave frequency alone, when adopt-424

ing a fixed plasma density Ωpe = 6.5 at L = 6.5, has essentially the same effect as de-425

creasing plasma density in Section 4.1 – albeit weaker in magnitude – by allowing first-426

order cyclotron resonance for electrons near the loss-cone to occur at lower latitudes (Mourenas427

et al., 2012). In turn, this preferentially increases precipitation rates at low energies E ≲428

100 keV, the typical resonance energies at low-latitude plasma conditions.429

Figure 4b shows that decreasing the wave frequency by a fixed amount significantly430

increases electron precipitation rates by lowering the latitude of resonance with chorus431

waves. But at the same time, it leads to only a slight increase of the slope of the energy432

spectrum once normalized to ELFIN statistics, because the amplitude of resonant waves433

is slightly more increased for 100 keV electrons than for 1 MeV electrons. For a large434

plasma density, Ωpe = 6.5, this effect on the normalized jprec/jtrap remains weak, and435

both wave frequency Model 1 and 2 end up giving very similar results. Therefore, the436

effects of frequency variation with latitude alone cannot account for the spectral shape437

of the precipitation ratio in ELFIN’s nightside observations.438

4.3 Role of wave obliquity439

Figure 5a compares ELFIN-observed precipitating-to-trapped flux ratio on the night-440

side (black) with that of simulations in order to explore the effects of a variety of wave-441

normal angle distributions paired with constant wave frequency (Model 1) and baseline442

plasma density (Sheeley et al., 2001). Results from test particle simulations (solid curves)443

and from the quasi-linear diffusion code (dashed curves) are displayed for four different444

models of wave normal angle: FAW (red), WNA1 (green), WNA2 (blue), and WNA3 (pur-445

ple), corresponding to a progressively larger amount of wave power in oblique waves closer446

to the resonance cone angle (see Section 3.3). Despite the large number of particles (N =447
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Figure 5. ELFIN-observed jprec/jtrap flux ratio at L > 5 on the nightside (18 − 4 MLT) as

a function of electron energy (black). The corresponding ratios jprec/jtrap obtained from test

particle simulations (TPS, solid curves) and from the quasi-linear diffusion code (QLDC, dashed

curves) are displayed for lower-band chorus waves in (a), using frequency Model 1 of constant

frequency, and parameterized by four wave normal angle models: FAW (red), WNA1 (green),

WNA2 (blue), and WNA3 (purple), with a normalization to observations at 97 keV, adopting

a typical Ωpe = 6.5 at L = 6.5 and 23 MLT. (b) shows QLDC results for the same four wave

normal angle models but for a reduced plasma density of Ωpe = 3.0.

5×106), unnatural oscillations in the test particle simulations make it difficult to quan-448

tify the exact contribution differences among the FAW, WNA1, and WNA2 models. Es-449

pecially because the test particle simulation only includes first-order oblique wave inter-450

actions, it is reasonable to conclude that including wave obliquity in the TPS does not451

significantly alter precipitation efficiency. However, results from the quasi-linear diffu-452

sion code generally agree with test particle simulation results, indicating the reliability453

of the quasi-linear approach (described, e.g., by Kennel & Engelmann, 1966; Lyons et454

al., 1972; Albert, 2005; Glauert & Horne, 2005; Mourenas et al., 2012; Mourenas, Arte-455

myev, Agapitov, & Krasnoselskikh, 2014). Our quasi-linear simulations show that wave456

obliquity is ineffective at increasing high energy electron precipitation compared to low457

energy electron precipitation (in the case of Ωpe = 6.5). Note that WNA1 and WNA2458

models correspond to wave-normal angle distributions that extend up to three-quarters459

of the Gendrin angle and resonance cone angle, respectively, at λ > 45◦, while the WNA3460

model corresponds to highly oblique waves, at about 2◦ from the resonance cone angle.461

Yet the results are nearly identical (dashed blue, dashed green, and dashed purple curves).462

Oblique chorus waves can resonate with electrons via high-order cyclotron resonances463

(n ≥ 1 or n ≤ −2, e.g., Shklyar & Matsumoto, 2009; Mourenas et al., 2012; Artemyev464

et al., 2013, 2016; Albert, 2017), which can significantly increase diffusion rates at high465

energy (Lorentzen et al., 2001; Gan et al., 2023). However, diffusion rates near the loss466

cone due to higher-order cyclotron resonances rapidly decrease in magnitude as |n| in-467

creases, especially from |n| = 1 to |n| = 2 (Shprits & Ni, 2009), although this reduc-468

tion is weaker for highly oblique waves (Artemyev et al., 2016). To increase the ratio of469

1 MeV to 100 keV pitch-angle diffusion rates near the loss cone, therefore, the waves must470

be sufficiently oblique and/or plasma density and wave frequency should be sufficiently471

low to enable only first-order resonance at ∼ 100 keV, but higher-order resonances at472

1 MeV (Artemyev et al., 2016; Mourenas & Ripoll, 2012; Shprits & Ni, 2009; Gan et al.,473

2023). Figure 5b indeed shows that when plasma density is reduced to Ωpe = 3 (or equiv-474
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Figure 6. ELFIN-observed nightside (18 − 4 MLT) jprec/jtrap electron flux ratio shown as a

function of energy (black). (a) shows jprec/jtrap flux ratios obtained from quasi-linear diffusion

code (QLDC) for parallel (FAW) lower-band chorus waves (red), very oblique waves using wave

normal angle model WNA3 (green), waves with a realistic wave frequency distribution (blue),

WNA3 with a realistic wave frequency distribution (purple), FAW with reduced density (pink),

and everything combined (orange). (b) shows the same flux ratios all normalized to the base case

with no modifications (red) demonstrating which energy range each modification is most effective

at on a linear scale. This shows that each effect examined alone cannot reproduce results from

ELFIN individually.

alently, when wave frequency decreases with latitude, see Section 4.4), electron precip-475

itation is greatly increased at 1 MeV relative to 100 keV as wave obliquity increases, es-476

pecially in the case of highly oblique waves (WNA3). These results therefore suggest that477

wave obliquity, alone, has a near-negligible effect on the high-energy to low-energy elec-478

tron loss ratio; however, when combined with a density reduction, it can significantly en-479

hance energetic electron losses.480

4.4 Combined results481

Figure 6a shows comparisons between the precipitating-to-trapped electron flux ra-482

tio jprec/jtrap measured by ELFIN at L > 5 on the nightside (black), overlaid with jprec/jtrap483

obtained from the quasi-linear diffusion code for the three modifications in question –484

reduced plasma density Ωpe = 3, Frequency Model 2, and WNA3 – alone or in com-485

bination. As surmised in previous sections, each individual modification fails to agree486

with the observed spectrum. With wave frequency Model 2 (blue) and WNA3 (green)487

underestimating across entire energy range (i.e., increasing precipitation at 100 keV) and488

reduced density (pink) providing a relative efficiency bump of jprec/jtrap only at E <489

200 keV. Interestingly, however, ELFIN’s statistical observations are only slightly un-490

derestimated when combining WNA3 and Frequency Model 2 (purple), and best matched491

when all three modifications are combined (orange). Figure 6b shows the relative dif-492

ference produced by each modification compared to the baseline red curve. We see that493

these effects synergistically enhance jprec/jtrap flux ratios at higher energies. For exam-494

ple, Model 2 (blue) becomes relatively less effective at higher energy, while WNA3 (green)495

immediately loses effectiveness, but catches back up closer to 1 MeV. However, when com-496

bined (purple), the relative precipitation is drastically enhanced in the entire 200−1000497

keV range, leading to far better agreement with observations. Further combining WNA3498

and Frequency Model 2 with a reduced plasma density (orange) significantly enhances499

precipitation past levels observed by ELFIN (black). This is likely due to two phenom-500

ena: first, the combined effects of a reduced plasma density and a decreasing wave fre-501

quency decrease the latitude at which cyclotron resonance with quasi-parallel waves oc-502
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Figure 7. The comparison between observed electron precipitation ratios and simulation re-

sults using different wave frequency models, Ωpe ratios, and wave normal angle models. In each

plot, the black line denotes statistical averages of jprec/jtrap flux ratios for nightside ELFIN ob-

servations with L > 5. Plots (a-c) show QLDC results with various modifications parameterized

by Ωpe: (a) shows field aligned waves with Frequency Model 1; (b) shows field aligned waves with

Frequency Model 2; and (c) shows WNA1 combined with Frequency Model 2. (d) shows that all

three effects – ωpe ∈ [2.5, 4], combined with Frequency Model 2 and some level of wave obliquity –

are necessary for recreating ELFIN nightside statistics.

curs far more significantly than each effect alone (Mourenas et al., 2012), leading to a503

larger increase of resonant wave power for higher energy electrons that best match ELFIN’s504

observed precipitation spectra; second, the supplementary higher-order cyclotron reso-505

nances contributing at ∼ 1 MeV, but not at ∼ 150 keV, are of lower order (|n| = 2)506

than for higher density or frequency, allowing for a more dramatic increase of the 1 MeV507

to 150 keV pitch-angle diffusion rate ratio (Artemyev et al., 2016; Mourenas & Ripoll,508

2012; Shprits & Ni, 2009; Gan et al., 2023).509

Figure 7 summarizes the findings from each wave parameter combination through-510

out a range of reduced equatorial plasma densities for a better understanding of the in-511

terplay between the three effects considered. Figure 7a shows that only below a certain512

threshold of Ωpe ≲ 4 does the interaction of higher-order resonances start to increase513

precipitation at higher energies. Using the total electron density with Ωpe = 2.5, this514

effect becomes very pronounced above 100 keV and up to 300 keV, whereas above that515

energy this effect alone is still incapable of matching observations, as discussed in Sec-516

tion 4.1. The effect of plasma density combined with wave frequency becomes significantly517

more pronounced throughout the whole energy range when Ωpe ≲ 4, as shown in Fig-518

ure 7b, and matches very well with ELFIN’s nightside observations when a more extreme519

Ωpe = 2.5 is used. Adding mild wave obliquity (Figure 7c) results in the best match520

with ELFIN statistics, demonstrating that all three effects combined are necessary.521

Figure 7d shows the best fit scenarios for forward-modeling ELFIN-observed precipitating-522

to-trapped flux ratios, which all require the varying frequency model in addition to re-523

duced plasma density to various degrees. Here, we show that it is possible to obtain de-524

cent agreement without the need for wave obliquity by significantly reducing Ωpe to 2.5525
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(purple). By adding moderately oblique waves (green and blue), more ∼ 1 MeV elec-526

trons are precipitated, doing a marginally better job of matching observations. Using ex-527

tremely oblique waves (WNA3) – which describes a population of very oblique waves gen-528

erated around the equator when the Landau damping is largely reduced by field-aligned529

electron streams (Mourenas et al., 2015; Li, Mourenas, et al., 2016) – requires increas-530

ing plasma density Ωpe = 4 in order to avoid significant overestimation. Therefore, ELFIN531

observations of nightside electron precipitation spectra (from 50−1000 keV) can be de-532

scribed either under the assumption of a significant plasma density reduction or a more533

moderate plasma density reduction coupled with a strongly oblique wave population. This534

required plasma density (ωpe ∈ [2.5, 4]) is fully consistent with the average measured535

ωpe levels at 18-4 MLT and L = 5−6.5 in Van Allen Probes statistics during disturbed536

periods with AE ∈ [150, 600] nT (Agapitov et al., 2019). These conditions indicate the537

importance of plasma injections and/or enhanced convection periods and how they cause538

enhanced nightside electron losses. Such Earthward plasma transport (convection and539

injections), especially during increased geomagnetic activity, justifies our choice of the540

cold plasma density reduction (Agapitov et al., 2019). These injections are also associ-541

ated with electron field-aligned streams caused by the electrostatic turbulence around542

injection regions or the ionosphere outflow of secondary electrons in response to the en-543

hanced precipitation of plasma sheet electron fluxes (see Khazanov et al., 2014, 2018;544

Artemyev & Mourenas, 2020; Artemyev et al., 2020, and references therein).545

5 Discussion and Conclusions546

Today’s radiation belt simulations primarily rely on EMIC-driven electron precip-547

itation to explain relativistic electron losses (see, e.g., Ma et al., 2015; Drozdov et al.,548

2017, and references therein), in addition to dropouts related to magnetopause shadow-549

ing loss (e.g., see Shprits et al., 2006; Turner et al., 2014; Boynton et al., 2016, 2017; Olifer550

et al., 2018; Xiang et al., 2018). Analysis presented here shows that the inclusion of re-551

alistic whistler-mode wave properties can meaningfully enhance relativistic electron scat-552

tering rates, thereby reducing the relative importance of EMIC waves on the nightside,553

at least for electrons below 1 MeV. While it has been known for a long time that whistler-554

mode waves can accelerate electrons to relativistic energies (Thorne et al., 2013; Li et555

al., 2014; Mourenas, Artemyev, Agapitov, Krasnoselskikh, & Li, 2014; Omura et al., 2015;556

Hsieh & Omura, 2017; Allison & Shprits, 2020), contribution of this wave mode to rel-557

ativistic electron losses may be underestimated in modern-day simulations due to the558

lack of observations that can reliably quantify it. This has recently changed with the avail-559

ability of ELFIN’s unique precipitation observations, which now allow us to quantify how560

well modeling – based on statistical averages of wave proprties and plasma density – re-561

flects the observed precipitation energy spectra of energetic electrons.562

We previously showed that using only field-aligned, monochromatic whistler-mode563

waves with realistic wave amplitudes as a function of magnetic latitude was sufficient to564

approximate relativistic electron losses at the dawn, noon, and dusk sectors (Tsai et al.,565

2023). However, the modeled precipitating-to-trapped flux ratio significantly underes-566

timated ELFIN-obtained statistics of precipitation energy spectra in the nightside MLT567

sector. Pertinent to ELFIN statistics, we specifically excluded all data exhibiting signa-568

tures of field-line curvature scattering, EMIC waves, and any signatures of noise or poor569

statistics. The resulting ELFIN statistics are 3 years of unambiguous whistler-mode wave-570

driven energetic electron precipitating-to-trapped flux ratios across a range of MLT, L-571

shells, and geomagnetic activity. At first, we used test particle simulations to examine572

various wave and plasma characteristics that may potentially cause this discrepancy. How-573

ever, test particle simulations showed that, while some effects led to better agreement,574

the discrepancy was still large. However, by additionally utilizing a state-of-the-art quasi-575

linear diffusion code, we were able to quantify each key wave parameter – alone and in576

combination – relative to ELFIN observations, thereby determining the importance of577
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including empirically-obtained equatorial plasma frequency, wave-normal angle distri-578

butions, and wave frequency distributions. We found that, in addition to the prerequi-579

site, empirically-provided Bw(λ) (Tsai et al., 2023), inclusion of all three modifications580

– realistic Ωpe, ωm(λ), and θ(λ) – were sufficient to recover the more intense nightside581

energetic precipitation observed by ELFIN. A reduced plasma density, indicative of ge-582

omagnetically active times, results in relative enhancement of precipitation in the sub-583

relativistic regime (< 300 keV), while wave obliquity significantly enhances relativistic584

electron scattering > 500 keV. It seems that a decreasing wave frequency as a function585

of latitude helps balance the two out, leading to a smooth recovery of the 200−600 keV586

range, without severely overestimating either ends of the precipitation flux ratio spec-587

trum.588

The equatorial confinement of whistler-mode waves is attributed to the increase589

of wave obliquity – or more precisely, the increase of statistical averages of wave normal590

angles – as expected from wave propagation away from their equatorial source (L. Chen591

et al., 2013; Breuillard et al., 2012; Agapitov et al., 2013) due to the associated severe592

damping by Landau resonance with suprathermal electrons (e.g., Bell et al., 2002; Bort-593

nik et al., 2007). This effect is substantially less important on the dayside as compared594

to the nightside, as evidenced by the significantly larger amplitudes of waves at higher595

latitudes on the dayside (Meredith et al., 2012). Reduced Landau damping is caused by596

a milder ambient dayside magnetic field gradient (due to magnetospheric compression)597

and a lower density of suprathermal electrons (Li, Thorne, Bortnik, et al., 2010; Walsh598

et al., 2020). As a result, waves on the dayside propagate in higher densities, are less oblique,599

and have a less pronounced decrease in wave frequencies, in direct opposition to what600

is observed on the nightside. This explains why an empirical model of Bw(λ) and field601

aligned waves is sufficient for recovering dayside energetic electron precipitation (Tsai602

et al., 2023), while further indicating the importance of including realistic wave and back-603

ground plasma characteristics for such precipitation modeling on the nightside.604

To conclude, these results highlight the importance of combining whistler-mode wave605

characteristics and background plasma for accurately modeling relativistic electron losses606

from the outer radiation belt. Specifically, we note that:607

• The latitudinal distribution of wave amplitude alone cannot account for the in-608

tense nightside precipitation of ∼ 0.1−1 MeV electrons scattered at mid-to-high609

latitudes relative to precipitation of ∼ 100 keV electrons scattered near the equa-610

tor.611

• Very oblique waves are important for scattering more energetic electrons – becom-612

ing more effective in the ∼ 1 MeV range – but only in the presence of reduced613

plasma density or decreasing wave frequency.614

• The decrease of wave frequency with latitude, caused by high-frequency wave damp-615

ing, is not very important on its own. However, together with a reduced plasma616

density (with or without oblique waves), it can lead to more precipitation of high617

energy electrons relative to ∼ 100 keV electrons.618

• Equatorial plasma density decrease during geomagnetically active conditions (char-619

acterized by enhanced whistler-mode wave intensity) improves the relative efficiency620

of resonant electron scattering toward the loss-cone at 100 keV compared to 1 MeV,621

but alone, it is in poor agreement with ELFIN statistics. However, when combined622

with increasing WNA and decreasing wave frequency as a function of latitude, this623

plasma density reduction becomes a catalyst, significantly boosting electron pre-624

cipitation rates across the energy range up to 1 MeV.625

So, in order to best explain the increased precipitation observed by ELFIN on the night-626

side, modeled whistler-mode waves must have a realistic latitudinally-dependent wave627

frequency model (Model 2) coupled with a reduced plasma density (Ωpe ∈ [2.5, 4]) and628

an associated range of wave obliquity from quasi-field aligned (θ < 30◦) to extremely629
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oblique (WNA3) waves. Any further investigation of these effects likely requires either630

detailed and comprehensive simulations using modern ray-tracing techniques (e.g., L. Chen631

et al., 2021, 2022; Hosseini et al., 2021; Hanzelka & Santoĺık, 2022; Kang et al., 2022;632

Kang & Bortnik, 2022) or a new generation of satellite missions equipped to make si-633

multaneous measurements of whistler-mode waves and precipitating/trapped electron634

populations.635
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Abstract21

Energetic electron losses by pitch-angle scattering and precipitation to the atmosphere22

from the radiation belts are controlled, to a great extent, by resonant wave particle in-23

teractions with whistler-mode waves. The efficacy of such precipitation is primarily con-24

trolled by wave intensity, although its relative importance, compared to other wave and25

plasma parameters, remains unclear. Precipitation spectra from the low-altitude, polar-26

orbiting ELFIN mission have previously been demonstrated to be consistent with ener-27

getic precipitation modeling derived from empirical models of field-aligned wave power28

across a wide-swath of local-time sectors. However, such modeling could not explain the29

intense, relativistic electron precipitation observed on the nightside. Therefore, this study30

aims to additionally consider the contributions of three modifications – wave obliquity,31

frequency spectrum, and local plasma density – to explain this discrepancy on the night-32

side. By incorporating these effects into both test particle simulations and quasi-linear33

diffusion modeling, we find that realistic implementations of each individual modifica-34

tion result in only slight changes to the electron precipitation spectrum. However, these35

modifications, when combined, enable more accurate modeling of ELFIN-observed spec-36

tra. In particular, a significant reduction in plasma density enables lower frequency waves,37

oblique, or even quasi-field aligned waves to resonate with near ∼ 1 MeV electrons closer38

to the equator. We demonstrate that the levels of modification required to accurately39

reproduce the nightside spectra of whistler-mode wave-driven relativistic electron pre-40

cipitation match empirical expectations, and should therefore be included in future ra-41

diation belt modeling.42

Plain Language Summary43

Whistler-mode waves are a type of electromagnetic wave that mediate electron dy-44

namics in Earth’s radiation belts and are simultaneously important for energizing elec-45

trons and driving loss mechanisms. Most radiation belt models today do not adequately46

capture the effects of these waves on relativistic electrons, which are important to study47

because these energetic electrons are often called “Killer Electrons” for their ability to48

degrade spacecraft electronics. Additionally, when lost into Earth’s atmosphere, these49

electrons can also change atmospheric chemistry and ionospheric properties, making them50

an important input parameters for atmospheric, ionospheric, and magnetospheric mod-51

eling. This study uses two different modeling methods to determine which properties of52

whistler-mode waves are most important for accurately capturing these wave-particle in-53

teractions on the nightside, where plasma interactions are more dynamic. The results54

agree well with statistical results from the Electron Losses and Fields INvestigation (ELFIN)55

mission, allowing us to fully explain the mechanisms behind whistler-mode wave-driven56

electron losses on the nightside.57

1 Introduction58

Earth’s inner magnetosphere is filled with energetic electron fluxes injected from59

the plasma sheet, that are then further accelerated via resonant interactions with elec-60

tromagnetic whistler-mode (chorus) waves (Millan & Baker, 2012; Shprits et al., 2008).61

These wave-particle interactions are, in great part, also responsible for energetic elec-62

tron pitch-angle scattering into the loss cone and subsequent electron loss through pre-63

cipitation into Earth’s atmosphere (Millan & Thorne, 2007; Shprits et al., 2008). This64

contribution to both acceleration and pitch-angle scattering of energetic electrons makes65

the whistler-mode wave a crucial element of outer radiation belt dynamics (Bortnik &66

Thorne, 2007; Thorne, 2010; Li & Hudson, 2019). Not only do energetic radiation belt67

electrons serve as an important space weather proxy (Horne et al., 2013), relativistic elec-68

tron can also penetrate deep into the thermosphere/mesosphere (Xu et al., 2020) con-69

tributing to ozone depletion (Thorne, 1980; Lam et al., 2010; Turunen et al., 2016). Un-70
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derstanding the mechanisms behind the global distribution of energetic electron losses71

is therefore important for studying radiation belt dynamics and atmospheric chemistry.72

Energetic (≳ 100 keV) electron losses due to whistler-mode waves is one such topic73

that has yet to be fully investigated. It is known that these waves can scatter electrons74

up to 1 MeV (O’Brien et al., 2004; Thorne et al., 2005; Blake & O’Brien, 2016; Shumko75

et al., 2018; Breneman et al., 2017), which is problematic because current radiation belt76

models typically only incorporate diffusive losses of sub-relativistic electrons (up to ∼77

500 keV). Additionally, previous research (Tsai et al., 2023) has revealed a day-night dif-78

ference in energetic electrons scattered by whistler-mode waves, with more intense elec-79

tron precipitation on the dayside than on the nightside. This is attributed to two system-80

level properties – (1) nightside regions generally have a lower plasma density and (2) night-81

side wave activity is generally more confined to the equatorial plane (Meredith et al., 2001,82

2003; Agapitov et al., 2013) – which both cause strong resonant wave particle interac-83

tions to preferentially occur on the dayside, resulting in more extreme energetic electron84

losses (e.g., Thorne et al., 2005; Mourenas, Artemyev, Agapitov, & Krasnoselskikh, 2014;85

Wang & Shprits, 2019; Aryan et al., 2020). This is supported by Tsai et al. (2023), which86

used modeled electron precipitation spectra derived from statistically-averaged wave in-87

tensity distributions from Agapitov et al. (2018) to directly compare with statistical ob-88

servations of electron precipitating fluxes from ELFIN (Angelopoulos et al., 2020). Al-89

though these model-data comparisons showed good agreement between electron precip-90

itation and wave power in the dusk and daysides, ELFIN-measured nightside relativis-91

tic (≳ 500 keV) precipitating flux rates were substantially larger than anticipated (i.e.92

modeled) and nearly comparable to that on the dayside. Understanding mechanisms that93

can cause such intense energetic precipitation is a prerequisite for accurately modeling94

electron loss in the radiation belts, therefore motivating the need to explore what key95

factors actually determine nightside electron losses.96

There are a few prime candidates that determine the efficiency of wave-particle res-97

onant interactions (and, particularly, the energy dependence of whistler-mode wave driven98

electron scattering):99

1. Wave intensity distribution along magnetic field lines (see discussion in Thorne100

et al., 2005; Wang & Shprits, 2019).101

2. Obliquity of wave propagation relative to the background magnetic field (see dis-102

cussion in Lorentzen et al., 2001; Mourenas, Artemyev, Agapitov, & Krasnosel-103

skikh, 2014; Artemyev et al., 2016).104

3. Wave frequency spectrum and its variation along magnetic field lines (see discus-105

sion in Agapitov et al., 2018)106

4. Equatorial plasma density magnitude (see discussion in Thorne et al., 2013; Agapi-107

tov et al., 2019; Allison & Shprits, 2020) and its variation along magnetic field lines108

(see discussion in Summers & Ni, 2008; Artemyev et al., 2013).109

Having already examined the importance of wave amplitude in Tsai et al. (2023), we now110

study the remaining three mechanisms which could potentially modulate nightside elec-111

tron precipitating spectra. First, intense nightside whistler-mode waves are typically as-112

sociated with strong plasma sheet injections (Tao et al., 2011; Fu et al., 2014; X. Zhang113

et al., 2018) which are often accompanied by the enhanced convection electric field which114

transports cold plasma Earthward, thereby decreasing equatorial plasma density (Vasko,115

Agapitov, Mozer, Bonnell, et al., 2017; Agapitov et al., 2019). A lower plasma density116

results in a lower plasma frequency; a lower plasma frequency to gyrofrequency ratio,117

fpe/fce yields a higher cyclotron resonance energy ER ∝ (fce/fpe)
2 to fce/fpe (from118

low to high energy) of electrons for given wave frequencies, wave normal angles, and elec-119

tron pitch-angles (Stix, 1962; Summers et al., 2007; Li, Thorne, Nishimura, et al., 2010;120

Allison et al., 2021). This nightside localized density reduction can thus potentially in-121

crease the scattering rate of relativistic electrons.122
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Second, statistical observations have shown a clear trend of average wave frequency123

decreasing with latitude along field lines (i.e. increasing distance from the equatorial plane)124

(Agapitov et al., 2018). This is likely caused by preferential Landau damping of higher-125

frequency waves resonating with suprathermal electrons (L. Chen et al., 2013; Watt et126

al., 2013; Maxworth & Golkowski, 2017). A lower normalized wave frequency f/fce means127

a higher cyclotron resonance energy ER ∝ (fce/f)(1−f/fce)
3 to (fce/f)1/2(1−f/fce)

3/2
128

from low to high energy (Li, Thorne, Nishimura, et al., 2010; Mourenas et al., 2012). Thus,129

this reduction in the mean wave frequency in the nightside off-equatorial region may also130

increase the scattering rate of relativistic electrons.131

Third, plasma injections are often associated with enhanced electrostatic turbu-132

lence (Mozer et al., 2015; Agapitov et al., 2015; Vasko, Agapitov, Mozer, Artemyev, et133

al., 2017; Malaspina et al., 2018) that forms a plateau in the field-aligned velocity dis-134

tribution and significantly reduces Landau damping of oblique whistler-mode waves (see135

discussion in Mourenas et al., 2015; Ma et al., 2017; Artemyev & Mourenas, 2020). In136

this regime, oblique (with wave normal angles below the Gendrin angle θG ≈ acos(2f/fce))137

and very oblique (with wave normal angle up to the resonant cone angle θr ≈ acos(f/fce))138

waves may survive Landau damping (see Min et al., 2014; R. Chen et al., 2019; Sauer139

et al., 2020; Ke et al., 2022). These waves then become oblique off the equatorial plane140

(Bortnik et al., 2007; L. Chen et al., 2013), or, in more unusual cases, are generated within141

the equatorial source region (Artemyev et al., 2016; Li, Mourenas, et al., 2016; Agapi-142

tov et al., 2016). Wave obliquity not only increases the resonant interaction energy with143

electrons as ER ∝ 1/k2∥ ∝ 1/ cos2 θ (e.g., Verkhoglyadova et al., 2010; Mourenas et144

al., 2015), but also allows for interactions with electrons at higher-order cyclotron res-145

onances (n ≫ 1, e.g., Shklyar & Matsumoto, 2009; Mourenas et al., 2012; Artemyev146

et al., 2013; Albert, 2017) which can drastically increase the resonance energy ER ∝ n2
147

(e.g., Lorentzen et al., 2001; Gan et al., 2023). Thus, nightside whistler-mode wave obliq-148

uity could also potentially increase the scattering rate of relativistic electrons.149

Here, we examine each of these three mechanisms to see whether they can explain150

the enhanced precipitation of relativistic electrons in the nightside MLT sector using a151

combination of statistics from ELFIN observations (Angelopoulos et al., 2020), test par-152

ticle simulations (Tsai et al., 2022, 2023), and quasi-linear diffusion code (Ma et al., 2012,153

2015). This paper is organized as follows: Section 2 details ELFIN observations/statistics154

and presents observational evidence of intense nightside precipitation of relativistic elec-155

trons; Section 3 describes the basics of the test particle simulation and quasi-linear dif-156

fusion codes; Section 4 compares ELFIN data to results from a variety of runs explor-157

ing the three main modifications – reduced plasma density, wave obliquity, wave frequency158

variation along magnetic field lines; finally, Section 5 summarizes and discusses the ob-159

tained results.160

2 Data Sets161

The ELFIN CubeSats (ELFIN A and B) are identically equipped with an Ener-162

getic Particle Detector for Electrons (EPDE), capable of measuring energy and pitch-163

angle distributions of energetic electrons with ∆E/E = 40% across 16 logarithmically164

spaced energy channels between 50 keV and 5 MeV (Angelopoulos et al., 2020). Spin-165

ning at just over 21 revolutions per minute (spin period ≈ 2.8 sec), ELFIN’s 16 sectors166

per spin yields a spin phase resolution of ∆α = 22.5◦. The main data product used in167

this study is the precipitating-to-trapped flux ratio, jprec/jtrap(E), where jtrap(E) is the168

locally trapped (outside of the local bounce loss-cone) electron flux and jprec(E) is the169

flux integrated over the local loss-cone with a correction to remove the backscattered fluxes170

from the opposite hemisphere (see details in Mourenas et al., 2021; Angelopoulos et al.,171

2023). Figure 1 shows two typical examples of ELFIN outer radiation belt crossings on172

the nightside with jtrap(E) (a,d) and jprec/jtrap (b,e) distributions.173
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This study utilized 30 months (January 2020 - June 2022) of ELFIN’s jtrap(E) and174

jprec(E) measurements during strong and bursty energetic electron precipitation events175

(for details regarding statistical coverage, see Figure 5 in Tsai et al., 2023). In order to176

obtain a statistical representation of whistler-mode-driven electron precipitation, data177

was selected based on data quality (minimum 4 counts/second for any given energy or178

pitch angle bin) and precipitation intensity (jprec(E)/jtrap(E) > 0.5 at ELFIN’s low-179

est energy bin of 63 keV). In addition, there were provisions to identify and remove elec-180

tron precipitation events driven by field-line curvature scattering, EMIC-driven precip-181

itation, and microbursts. Curvature scattering (Imhof et al., 1977; Sergeev et al., 1983;182

Büchner & Zelenyi, 1989) of plasma sheet and radiation belt electrons can be identified183

by its sharp energy/latitude dispersion (isotropy boundary) that results in high precipitating-184

to-trapped flux ratio at relativistic energies closer to the planet (see the IB precipitat-185

ing pattern in Fig. 1b and statistical results in Wilkins et al. (2023)). Such data, in ad-186

dition to the isotropic precipitation with jprec/jtrap ∼ 1 of < 300 keV electrons pole-187

ward from the isotropy boundary (Artemyev et al., 2022), are removed from our statis-188

tics. Next, electromagnetic ion cyclotron (EMIC) waves, which are caused by nightside189

ion injections (Jun et al., 2019; Kim et al., 2021) and efficiently scatter and precipitate190

relativistic electrons (e.g., Blum, Halford, et al., 2015; Blum, Li, & Denton, 2015; Yah-191

nin et al., 2016, 2017; Capannolo et al., 2019, 2023), are excluded. These EMIC-driven192

observations are identified by precipitating-to-trapped ratios that reach their peak at ≥193

500 keV energy (see examples in X. An et al., 2022; Grach et al., 2022; Capannolo et al.,194

2023; Angelopoulos et al., 2023). Additionally, whistler-mode hiss waves provide a wide195

energy range of scattering, from weak scattering further from the plasmasphere to pre-196

cipitation of relativistic electrons within the plasmasphere (see discussion of ELFIN ob-197

servations of such precipitation in Mourenas et al., 2021; Angelopoulos et al., 2023; X.-198

C. Shen et al., 2023); these hiss precipitation events are also eliminated. Figure 1e shows199

this particular pattern, which is recognizable by a low jprec/jtrap ratio peaking at ≥ 500200

keV energy at low L-shells. Finally, we exclude all precipitation patterns showing microburst-201

like flux variation within one spin (such events are characterized by precipitating-to-trapped202

flux ratio exceeding one for relativistic electron energies, see X.-J. Zhang et al., 2022, for203

further examples).204

All these effects are programmatically eliminated from statistics leaving us with205

only one type of precipitating energy distribution: a precipitating-to-trapped ratio mono-206

tonically decreasing with energy, observed primarily within L-shells ∈ [4, 8], correspond-207

ing to the outer radiation belt outside the plasmasphere (e.g., Mourenas et al., 2021).208

This type of precipitation can only be caused by whistler-mode waves (see more details209

and examples in Tsai et al., 2022; X.-J. Zhang et al., 2022, 2023), and is demonstrated210

in Figure 1(b,e).211

We combine all ELFIN observations from the nightside MLT sector (27950 spins212

across 4458 radiation belt crossings) and plot the averaged precipitating-to-trapped flux213

spectra for three geomagnetic activity levels and two L-shell domains (4.5−5.5 and 5.5−214

7.5) for AE ∈ [100, 300] nT in Fig. 2d. Fig. 2(a-c) show that the precipitating-to-trapped215

electron flux ratio jprec/jtrap above 100 keV increases significantly as AE increases. The216

precipitating-to-trapped flux ratio reaches jprec/jtrap ∼ 0.1 up to 200−400 keV when217

AE > 300 nT. This result is consistent with past observations of stronger energetic elec-218

tron injections from the plasma sheet during periods of higher AE (Tao et al., 2011; Runov219

et al., 2015; Gabrielse et al., 2014), leading to even more intense whistler-mode waves220

(Meredith et al., 2001; X. J. Zhang et al., 2018) which can efficiently precipitate 50−221

500 keV electrons (Summers et al., 2004; Thorne et al., 2005; Aryan et al., 2020; Agapi-222

tov et al., 2018). The ratio jprec/jtrap is also higher at L = 5.5−7.5 than at L = 4.5−223

5.5 in Fig. 2, in agreement with the higher chorus wave power at higher L > 5.0−5.5224

in the night sector in spacecraft statistics (Agapitov et al., 2018; Meredith et al., 2020).225

The smooth decrease of jprec/jtrap as electron energy increases in Fig. 2d is consistent226

with the expectation that at higher latitudes, wave power decreases while minimum cy-227
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Figure 1. Two examples of ELFIN observations with strong precipitation of energetic elec-

trons in the nightside MLT sector showing locally trapped electron fluxes (a,d), precipitating-to-

trapped flux ratio (b,e), and ELFIN’s MLT, L-shell coordinates from (Tsyganenko, 1989) model

(c,f).

clotron resonance energy increases, therefore precipitating higher energy electrons at lower228

absolute flux levels (Agapitov et al., 2018; Meredith et al., 2020).229

3 Simulation230

Calculating the precipitating-to-trapped flux ratios is useful because it eliminates231

the trapped flux variability (which can vary by orders of magnitude). The slope of the232

ratio’s energy spectra now represents only the relative effects of resonant interactions with233

whistler-mode waves. To then compare with ELFIN statistics, we obtain modeled precipitating-234

to-trapped flux ratios using two different types of simulations: (1) a configurable large-235

ensemble test particle simulation for electron resonant interactions, as used in previous236

work (Tsai et al., 2022, 2023) and (2) a quasi-linear diffusion code which has been used237

in previous radiation belt simulations (Ma et al., 2012, 2015). The test particle simu-238

lations include potential non-linear resonant effects and consider only purely monochro-239

matic waves, whereas the quasi-linear diffusion code models electron scattering by an en-240

semble of oblique waves with higher order resonant interactions across a distribution of241

frequencies. Thus, by comparing results obtained by these two approahces, we can fully242

capture the importance of different resonant effects for electron scattering and losses.243

3.1 Test particle simulation244

Our test particle simulation (Tsai et al., 2022, 2023) is designed to compute the245

expected energy distribution of the electron precipitation flux ratio given realistic wave246

parameters. In order to obtain enough statistics – especially at higher energies where247

it is less likely for electrons to be scattered into the loss cone – we use a large number248

of particles for all test particle simulations in this study with N = 5 × 106. For this249

to run in a reasonable amount of time, we parallelize the code and implement it in Ju-250

lia 1.9.3 (Bezanson et al., 2017) using the differential equations package (Rackauckas &251

Nie, 2017). The Hamiltonian formulation for wave-particle resonant interactions (Albert252

et al., 2013; Vainchtein et al., 2018) incorporates nonlinear effects such as phase bunch-253

–6–



manuscript submitted to JGR: Space Physics

AE∈[100,300]nT

j pr
ec

/j t
ra

p, 
 L
∈

[5
.5

, 7
.5

]

10−3

10−2

10−1

energy, keV
60 100 300 500 1000

(d)

j pr
ec

/j t
ra

p, 
L∈

[4
.5

,5
.5

]

10−3

10−2

10−1

60 100 300 500 1000

18
20
22
0
2
4
6

energy, keV
100 300 1000

18
20
22

(c) jprec/jtrap, AE>300nT
10−3 10−2 10−1

0
2
4
6

100 300 1000

18
20
22
0
2
4
6

energy, keV
100 300 1000

18
20
22

(b)
        jprec/jtrap,
AE∈[100,300]nT

10−3 10−2 10−1

0
2
4
6

100 300 1000

M
LT

, L
∈

[5
.5

, 7
.5

]

18
20
22
0
2
4
6

energy, keV
100 300 1000

M
LT

, L
∈

[4
.5

,5
.5

]

18
20
22

(a) jprec/jtrap, AE<100nT

10−3 10−2 10−1

0
2
4
6

100 300 1000

Figure 2. Plots (a-c) show the statistical distributions of precipitating-to-trapped electron

spectra in (MLT, energy) space for several levels of geomagnetic activity. Plots (d) show energy

profiles of precipitating-to-trapped fluxes for three geomagnetic activity levels in the nightside

MLT ∈ [18, 4]. The shaded blue range regions represent the upper (AE > 300 nT) and lower

(AE < 100 nT) bounds of geomagnetic activity levels while the central black curve depicts AE

∈ [100, 300] nT.

ing, phase trapping, and anomalous trapping (Demekhov et al., 2006; Bortnik et al., 2008;254

Katoh et al., 2008; Omura et al., 2007; Kitahara & Katoh, 2019; Albert et al., 2021). The255

simulation uses monochromatic waves, which is generally valid for describing diffusive256

scattering in a background dipolar magnetic field due to its strong magnetic field gra-257

dient (Albert, 2001, 2010; Shklyar, 2021). Critically, the wave field is modified by the258

function Bw(λ,L,MLT,Kp) which describes the wave amplitude variation along mag-259

netic field lines using an empirical chorus wave model built using 14 years of Cluster and260

Van Allen Probe statistics. The wave model is dependent on latitude, geographic loca-261

tion, and geomagnetic activity (see model and coefficients in Agapitov et al., 2018), which262

is necessary for realistic modeling of energetic electron losses. Further details of the test263

particle simulation implementation can be found in Tsai et al. (2022, 2023).264

In this study, we have further augmented the test particle simulation to explore the265

latitudinal dependence of wave frequency and obliquity so that wave frequency ω(λ, θ)266

is a function of both latitude and wave normal angle. Changing into dimensionless vari-267

ables allows us to provide a mean normalized wave frequency ωm(λ) = ω(λ)/Ωce,eq and268

mean wave normal angle θ(λ) both as functions of magnetic latitude λ (as described in269

Section 3.3). With dimensionless variables, the normalized plasma frequency is defined270

as Ωpe = ωpe,eq/Ωce,eq.271

3.2 Quasi-linear diffusion code272

To instill further confidence in test particle simulation results, we calculate the quasi-273

linear diffusion coefficients using the Full Diffusion Code (Ni et al., 2008, 2011; Shprits274

& Ni, 2009; Ma et al., 2018) and model the precipitating electron flux using the Fokker-275

Planck diffusion code (Ma et al., 2012, 2015). This quasi-linear diffusion code physically276

differs from the test particle simulations primarily in the fact that it prescribes Gaus-277

sian distributions for the wave frequency (Glauert & Horne, 2005):278

B̂2 (ω) ∼ exp

[
− (ω − ωm(λ))

2

δω2

]

–7–
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and the wave normal angle:279

g (θ) ∼ exp

[
− (tan θ − tan θm(λ))

2

(tan δθ)2

]

where mean values ωm and θm with bandwidths δω and δθ represent wave frequency and280

normal angle, respectively. These distributions are provided relative to mean values, ωm(λ)281

and θm(λ), which are given as functions of magnetic latitude λ and discussed in the next282

section (see details in Artemyev et al., 2013; Agapitov et al., 2018; Aryan et al., 2020).283

We use the bounce-averaged Fokker-Planck equation to model the electron precip-284

itation rate (Lyons et al., 1972; Glauert & Horne, 2005):285

∂f

∂t
=

1

τb (αeq) sin 2αeq

∂

∂αeq

(
τb (αeq) sin 2αeq

(
⟨Dαα⟩

∂f

∂αeq

))
− f

τloss
(1)

where αeq is the equatorial pitch angle, τb ≈ 1.38−0.32
(
sinαeq + sin2 αeq

)
(see Orlova286

& Shprits, 2011), ⟨Dαα⟩ is the bounce-averaged diffusion rate, and τloss(t) is the bounce287

loss time (and is set to be a quarter of the bounce period inside the local loss-cone and288

infinity outside the loss cone). We use the quasi-linear diffusion code to numerically solve289

Eq. (1), with diffusion rates derived from B̂2 (ω) and g (θ) distributions (see Ni et al.,290

2008, 2011; Ma et al., 2015, 2018). Zero-gradient boundary conditions in pitch angle are291

set to simulate the loss cone filling of electrons due to wave scattering (Ma et al., 2022).292

3.3 Frequency and Obliquity Models293

In both simulations, we use the following two models to compare the effects of whistler294

wave frequency (normalized to the equatorial gyrofreqency) ωm = ω/Ωce,eq:295

Model 1: normalized wave frequency held constant at ωm = 0.35, the typical frequency296

of whistler mode chorus waves near the equator (Agapitov et al., 2018).297

Model 2: function ω(λ) linearly decreasing from 0.41Ωce,eq at the equator until reach-298

ing a constant 0.16Ωce,eq for λ ≥ 20◦. This model is based on statistics of off-299

equatorial parallel and oblique lower-band chorus waves from the Van Allen Probes300

(Agapitov et al., 2018).301

We use the following four models to describe the mean wave normal angle (WNA)302

θm. A scaling factor Θ(λ) = λ/(15◦+λ) is adopted to modify the WNA increase from303

0 at the equator to Θ(45◦) = 0.75 at 45◦ latitude in WNA1 and WNA2.304

FAW: a field-aligned wave model (with θ = 0◦ in test particle simulations and θm =305

0◦, δθ = 30◦ or δθ = 5◦ in the quasi-linear diffusion code) that describes the306

most intense population of waves (Li, Santolik, et al., 2016; Agapitov et al., 2013)307

as they remain field-aligned off equator due to wave ducting by small-scale den-308

sity structures (Hanzelka & Santoĺık, 2019; Y. Shen et al., 2021; Ke et al., 2021;309

Hosseini et al., 2021).310

WNA1: a moderately oblique WNA model with θ1(λ) = θG(λ) · Θ(λ), where θG =311

arccos (2ω/Ωce) is the Gendrin angle (Gendrin, 1961). This model describes field-312

aligned waves that are generated at the equator, but become mildly oblique as they313

propagate through the inhomogeneous plasma (e.g. Breuillard et al., 2012; L. Chen314

et al., 2013; Ke et al., 2017).315

WNA2: a very oblique WNA model with θ2(λ) = θr(λ)·Θ(λ), where θr = arccos (ω/Ωce)316

is the resonance cone angle. This describes field-aligned waves that are generated317

at the equator, but become very oblique as they propagate through the inhomo-318

geneous plasma in the case of suppressed Landau damping (see discussion in Arte-319

myev & Mourenas, 2020).320
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WNA3: an extremely oblique WNA model with θ3(λ) = θr(λ)− 2◦. This model de-321

scribes very oblique waves that are generated in the equatorial source region in322

the presence of field-aligned electron streams suppressing Landau damping (Mourenas323

et al., 2015; Li, Mourenas, et al., 2016; R. Chen et al., 2019; Kong et al., 2021).324

The quasi-linear simulations also require a bandwidth parameter which sets the width325

of the wave frequency and normal angle Gaussian distributions, defined in Section 3.2.326

Frequency bandwidth δω is set to 0.125, and the lower and upper cutoff frequencies are327

set to be ωm−2δω and 0.5, respectively. Wave normal angle bandwidth is set to either328

δθ = 5◦ or δθ = 30◦ for FAW, and δθ = 10◦ for the other models; if θr(λ) − θm(λ) <329

20◦, we set δθ = (θr(λ)−θm(λ))/2. The lower (θLC) and upper (θUC) cutoff wave nor-330

mal angles are set as tan θLC = max(0, tan θm−2 tan δθ) and tan θUC = min(tan 89.9◦, tan θm+331

2 tan δθ), respectively.332

Finally, the magnetic wave power distribution B2
w(λ) is taken from an empirical333

statistical model (Agapitov et al., 2018) at 23 MLT and L = 6 for Kp = 3. Note that334

we use Kp = 3 as a reasonable estimate of average geomagnetic activity level for ELFIN335

observations of electron precipitation driven by resonance with whistler-mode waves (see336

Tsai et al., 2023, for further discussion). For quiet conditions Kp ≤ 2, the wave inten-337

sity provides insufficient levels of precipitating electron fluxes, which is generally corrob-338

orated by the extremely low levels (i.e. near background) of precipitating fluxes ELFIN339

observes during quiet periods. During disturbed storm times (Kp > 4), the precipitat-340

ing and locally trapped fluxes are occasionally too large and approach saturation of ELFIN’s341

EPDE instrument (see details in X.-J. Zhang et al., 2022). Both types of ELFIN obser-342

vations (either background-level precipitation or nearly-saturated measurements) are ex-343

cluded from the statistical analysis.344

4 Data-model comparison345

In this section, the precipitating-to-trapped electron flux ratio jprec/jtrap, calcu-346

lated through test particle simulations (TPS) or Quasi-Linear Diffusion Code (QLDC),347

are compared with jprec/jtrap as measured by ELFIN. This allows us to assess the dif-348

ferent roles potentially played by plasma density, wave obliquity, and wave frequency based349

on precipitating flux ratio variation with energy.350

For proper comparison, the simulated jprec/jtrap flux ratio is normalized to the ob-351

served jprec/jtrap flux ratio at ELFIN’s second energy bin (∼ 97 keV), thereby remov-352

ing wave amplitude variability such that the spectral slope can be compared for across353

various scenarios. This is valid because the ∼ 30 − 100 keV precipitating-to-trapped354

electron flux ratio correlates well with the equatorial wave amplitude (Li et al., 2013; Ni355

et al., 2014). In addition, spurious variations in jprec/jtrap modeled using our test par-356

ticle simulations tend to become larger below 97 keV, despite the large number of par-357

ticle runs per energy bin. These oscillations are absent from results of the quasi-linear358

diffusion code, which correlate well with test particle simulation results above 97 keV359

after normalization.360

4.1 Role of plasma density361

Figure 3 shows a comparison between the precipitating-to-trapped electron flux ra-362

tio jprec/jtrap measured by ELFIN at L > 5 and 18-4 MLT (black) with jprec/jtrap ob-363

tained from TPS (solid red) and QLDC (dashed red) with parallel (FAW model) lower-364

band chorus waves (adopting θ = 0◦ in test particle simulations, δθ = 30◦ in the quasi-365

linear diffusion code), using wave frequency Model 1 of constant frequency (ωm = 0.35)366

chorus waves and a typical plasma frequency to gyrofrequency ratio Ωpe = 6.5 at L =367

6.5 and 23 MLT (Sheeley et al., 2001). In this plot (and remaining Figures 3-7), the gray368

shaded regions of ELFIN data denote the boundaries of quiet (AE < 100 nT) and ac-369
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Figure 3. ELFIN-measured precipitating-to-trapped electron flux ratio at L > 5 on the night-

side (18 − 4 MLT) as a function of energy (black curve). The corresponding jprec/jtrap flux ratio

obtained from test particle simulations is shown for parallel (FAW model, θ = 0◦) lower-band

chorus waves, using frequency Model 1 (ωm = constant) and a typical Ωpe = 6.5 at L = 6.5

and 23 MLT (solid red). Results from the quasi-linear diffusion code using the same parameters

is shown in dashed red. Similarly, the cases of reduced density Ωpe = 3 modeled with test par-

ticle simulation (solid purple), quasi-linear diffusion code using narrow-band field aligned waves

(δθ = 5◦, dashed purple), and more quasi-linear field aligned waves (δθ = 30◦, dashed blue), are

shown. All simulation results are normalized to observations at 97 keV.
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tive (AE > 350 nT) times. The normalized ratios jprec/jtrap obtained from TPS and370

QLDC are quite similar (compare solid with dashed lines of the same color), validating371

the reliability of the quasi-linear approach (Kennel & Engelmann, 1966; Lyons et al., 1972;372

Albert, 2005; Glauert & Horne, 2005; Mourenas et al., 2012; Mourenas, Artemyev, Agapi-373

tov, & Krasnoselskikh, 2014), especially in the case of field aligned waves, as demonstrated374

in previous studies (Tao et al., 2012; Mourenas, Artemyev, et al., 2022; Gan et al., 2022;375

Z. An et al., 2022). However, despite their normalization to the measured jprec/jtrap at376

97 keV, these similar ratios of jprec/jtrap (red curves) obtained from test particle sim-377

ulations and from the quasi-linear diffusion code become ∼ 1.5−2 times smaller than378

the measured jprec/jtrap at 200−1000 keV (black), corresponding to a deficiency of pitch-379

angle diffusion occurring at higher energies. For reference, this baseline case (red) rep-380

resents the same discrepancy on the nightside as first described in Tsai et al. (2023).381

A reduced plasma density should lower the latitude of first-order cyclotron reso-382

nance with chorus waves for electrons near the loss-cone (Mourenas et al., 2012). Since383

chorus wave power B2
w is higher at lower latitudes (Agapitov et al., 2018), a reduced den-384

sity is therefore expected to yield higher electron pitch-angle diffusion rate Dαα ∝ B2
w385

near the loss-cone leading to higher precipitation rates and fluxes at all energies. How-386

ever, adopting a reduced plasma density (Ωpe = 3) in test particle simulations (pur-387

ple line in Fig. 3) and normalizing the flux ratio at 97 keV leads to an even larger dis-388

crepancy across the 300− 1000 keV range with a ∼ 2− 3 times smaller jprec/jtrap ra-389

tio than ELFIN statistics show. We therefore interpret this density effect as more im-390

portant at lower energies (∼ 100 keV) compared to higher energies (> 300 keV) due391

to B2
w(λ) increasing, in our model and in observations, more steeply towards lower lat-392

itudes at λ ≲ 25◦ (where resonance with ∼ 100 keV electrons occurs) than at λ > 25◦393

(where resonance with ∼ 1 MeV electrons occurs) during disturbed periods at 21-3 MLT394

(Agapitov et al., 2018). Therefore, the wave power B2
w(λ) seen by electrons near the loss-395

cone increases only marginally at higher energies for both θ = 0◦ in test-particle sim-396

ulations and θ < 5◦ or θ < 30◦ in QLDC simulations (solid/dashed purple and dashed397

blue lines). This then reduces the normalized pitch-angle diffusion rate Dαα near the loss-398

cone and the normalized jprec/jtrap flux ratio, which varies roughly like ≈
√
Dαα (Kennel399

& Petschek, 1966; Li et al., 2013; Mourenas, Zhang, et al., 2022; Mourenas et al., 2023).400

Adopting a more realistic spread of WNAs for quasi-field aligned waves (δθ = 30◦,401

blue dashed line) in the quasi-linear diffusion code leads to the effects of additional, higher-402

order cyclotron resonances to become more significant (Artemyev et al., 2016), which is403

clearly shown as the difference between the blue and purple dashed lines in Figure 3. Due404

to moderate obliqueness, this effect is most prominent in the lower energies – resonat-405

ing with waves around the equator – extending now to about 180 keV. However, it is not406

enough to reproduce ELFIN observations up to 1 MeV, because the relative scattering407

efficiency decreases with the purple curve at higher energies, causing the blue curve to408

underestimate ELFIN statistics beyond > 250 keV. Despite the fact that, in observa-409

tions, the plasma frequency to gyrofrequency ratio Ωpe does decrease at 18-4 MLT dur-410

ing disturbed periods (O’Brien & Moldwin, 2003), often down to Ωpe ≈ 3 − 4 at L ∼411

6 when AE > 150 nT (Agapitov et al., 2019), results in Figure 3 show that plasma den-412

sity reduction alone cannot account for a relative increase of electron scattering at higher413

energies.414

4.2 Role of wave frequency415

As noted earlier, statistical observations of lower-band chorus waves show that their416

normalized frequency is not constant as a function of latitude (as assumed in frequency417

Model 1), but rather, decreasing due to preferential Landau damping affecting higher418

frequencies at higher latitudes (Agapitov et al., 2018; Bunch et al., 2013; L. Chen et al.,419

2013), as reflected by frequency Model 2. Figure 4a shows that the jprec/jtrap ratios ob-420

tained for wave normal angle model FAW from test particle simulations (solid curves)421
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Figure 4. To compare the effects of two frequency models, precipitating-to-trapped electron

flux ratio jprec/jtrap plotted for ELFIN statistics on the nightside (black) is shown in comparison

with jprec/jtrap ratios obtained from test particle simulations (TPS, solid lines) and quasi-linear

diffusion code (QLDC, dashed lines). In (a), Frequency Model 2 (frequency decreasing toward

higher latitudes, blue) produces slightly higher precipitation rates at 100 keV relative to 1 MeV

as compared to a constant ωm = 0.35 (red). Plot (b) shows results from a variety of normalized

wave frequency values that do not vary as a function of magnetic latitude, demonstrating that

absolute frequency has little effect on the slope of the precipitation energy spectra.

and from the quasi-linear diffusion code (dashed curves) are both slightly decreased at422

E = 200 − 1000 keV when wave frequency Model 2 is used (blue curves), rather than423

when using Model 1. This is because a reduction of wave frequency alone, when adopt-424

ing a fixed plasma density Ωpe = 6.5 at L = 6.5, has essentially the same effect as de-425

creasing plasma density in Section 4.1 – albeit weaker in magnitude – by allowing first-426

order cyclotron resonance for electrons near the loss-cone to occur at lower latitudes (Mourenas427

et al., 2012). In turn, this preferentially increases precipitation rates at low energies E ≲428

100 keV, the typical resonance energies at low-latitude plasma conditions.429

Figure 4b shows that decreasing the wave frequency by a fixed amount significantly430

increases electron precipitation rates by lowering the latitude of resonance with chorus431

waves. But at the same time, it leads to only a slight increase of the slope of the energy432

spectrum once normalized to ELFIN statistics, because the amplitude of resonant waves433

is slightly more increased for 100 keV electrons than for 1 MeV electrons. For a large434

plasma density, Ωpe = 6.5, this effect on the normalized jprec/jtrap remains weak, and435

both wave frequency Model 1 and 2 end up giving very similar results. Therefore, the436

effects of frequency variation with latitude alone cannot account for the spectral shape437

of the precipitation ratio in ELFIN’s nightside observations.438

4.3 Role of wave obliquity439

Figure 5a compares ELFIN-observed precipitating-to-trapped flux ratio on the night-440

side (black) with that of simulations in order to explore the effects of a variety of wave-441

normal angle distributions paired with constant wave frequency (Model 1) and baseline442

plasma density (Sheeley et al., 2001). Results from test particle simulations (solid curves)443

and from the quasi-linear diffusion code (dashed curves) are displayed for four different444

models of wave normal angle: FAW (red), WNA1 (green), WNA2 (blue), and WNA3 (pur-445

ple), corresponding to a progressively larger amount of wave power in oblique waves closer446

to the resonance cone angle (see Section 3.3). Despite the large number of particles (N =447
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Figure 5. ELFIN-observed jprec/jtrap flux ratio at L > 5 on the nightside (18 − 4 MLT) as

a function of electron energy (black). The corresponding ratios jprec/jtrap obtained from test

particle simulations (TPS, solid curves) and from the quasi-linear diffusion code (QLDC, dashed

curves) are displayed for lower-band chorus waves in (a), using frequency Model 1 of constant

frequency, and parameterized by four wave normal angle models: FAW (red), WNA1 (green),

WNA2 (blue), and WNA3 (purple), with a normalization to observations at 97 keV, adopting

a typical Ωpe = 6.5 at L = 6.5 and 23 MLT. (b) shows QLDC results for the same four wave

normal angle models but for a reduced plasma density of Ωpe = 3.0.

5×106), unnatural oscillations in the test particle simulations make it difficult to quan-448

tify the exact contribution differences among the FAW, WNA1, and WNA2 models. Es-449

pecially because the test particle simulation only includes first-order oblique wave inter-450

actions, it is reasonable to conclude that including wave obliquity in the TPS does not451

significantly alter precipitation efficiency. However, results from the quasi-linear diffu-452

sion code generally agree with test particle simulation results, indicating the reliability453

of the quasi-linear approach (described, e.g., by Kennel & Engelmann, 1966; Lyons et454

al., 1972; Albert, 2005; Glauert & Horne, 2005; Mourenas et al., 2012; Mourenas, Arte-455

myev, Agapitov, & Krasnoselskikh, 2014). Our quasi-linear simulations show that wave456

obliquity is ineffective at increasing high energy electron precipitation compared to low457

energy electron precipitation (in the case of Ωpe = 6.5). Note that WNA1 and WNA2458

models correspond to wave-normal angle distributions that extend up to three-quarters459

of the Gendrin angle and resonance cone angle, respectively, at λ > 45◦, while the WNA3460

model corresponds to highly oblique waves, at about 2◦ from the resonance cone angle.461

Yet the results are nearly identical (dashed blue, dashed green, and dashed purple curves).462

Oblique chorus waves can resonate with electrons via high-order cyclotron resonances463

(n ≥ 1 or n ≤ −2, e.g., Shklyar & Matsumoto, 2009; Mourenas et al., 2012; Artemyev464

et al., 2013, 2016; Albert, 2017), which can significantly increase diffusion rates at high465

energy (Lorentzen et al., 2001; Gan et al., 2023). However, diffusion rates near the loss466

cone due to higher-order cyclotron resonances rapidly decrease in magnitude as |n| in-467

creases, especially from |n| = 1 to |n| = 2 (Shprits & Ni, 2009), although this reduc-468

tion is weaker for highly oblique waves (Artemyev et al., 2016). To increase the ratio of469

1 MeV to 100 keV pitch-angle diffusion rates near the loss cone, therefore, the waves must470

be sufficiently oblique and/or plasma density and wave frequency should be sufficiently471

low to enable only first-order resonance at ∼ 100 keV, but higher-order resonances at472

1 MeV (Artemyev et al., 2016; Mourenas & Ripoll, 2012; Shprits & Ni, 2009; Gan et al.,473

2023). Figure 5b indeed shows that when plasma density is reduced to Ωpe = 3 (or equiv-474
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Figure 6. ELFIN-observed nightside (18 − 4 MLT) jprec/jtrap electron flux ratio shown as a

function of energy (black). (a) shows jprec/jtrap flux ratios obtained from quasi-linear diffusion

code (QLDC) for parallel (FAW) lower-band chorus waves (red), very oblique waves using wave

normal angle model WNA3 (green), waves with a realistic wave frequency distribution (blue),

WNA3 with a realistic wave frequency distribution (purple), FAW with reduced density (pink),

and everything combined (orange). (b) shows the same flux ratios all normalized to the base case

with no modifications (red) demonstrating which energy range each modification is most effective

at on a linear scale. This shows that each effect examined alone cannot reproduce results from

ELFIN individually.

alently, when wave frequency decreases with latitude, see Section 4.4), electron precip-475

itation is greatly increased at 1 MeV relative to 100 keV as wave obliquity increases, es-476

pecially in the case of highly oblique waves (WNA3). These results therefore suggest that477

wave obliquity, alone, has a near-negligible effect on the high-energy to low-energy elec-478

tron loss ratio; however, when combined with a density reduction, it can significantly en-479

hance energetic electron losses.480

4.4 Combined results481

Figure 6a shows comparisons between the precipitating-to-trapped electron flux ra-482

tio jprec/jtrap measured by ELFIN at L > 5 on the nightside (black), overlaid with jprec/jtrap483

obtained from the quasi-linear diffusion code for the three modifications in question –484

reduced plasma density Ωpe = 3, Frequency Model 2, and WNA3 – alone or in com-485

bination. As surmised in previous sections, each individual modification fails to agree486

with the observed spectrum. With wave frequency Model 2 (blue) and WNA3 (green)487

underestimating across entire energy range (i.e., increasing precipitation at 100 keV) and488

reduced density (pink) providing a relative efficiency bump of jprec/jtrap only at E <489

200 keV. Interestingly, however, ELFIN’s statistical observations are only slightly un-490

derestimated when combining WNA3 and Frequency Model 2 (purple), and best matched491

when all three modifications are combined (orange). Figure 6b shows the relative dif-492

ference produced by each modification compared to the baseline red curve. We see that493

these effects synergistically enhance jprec/jtrap flux ratios at higher energies. For exam-494

ple, Model 2 (blue) becomes relatively less effective at higher energy, while WNA3 (green)495

immediately loses effectiveness, but catches back up closer to 1 MeV. However, when com-496

bined (purple), the relative precipitation is drastically enhanced in the entire 200−1000497

keV range, leading to far better agreement with observations. Further combining WNA3498

and Frequency Model 2 with a reduced plasma density (orange) significantly enhances499

precipitation past levels observed by ELFIN (black). This is likely due to two phenom-500

ena: first, the combined effects of a reduced plasma density and a decreasing wave fre-501

quency decrease the latitude at which cyclotron resonance with quasi-parallel waves oc-502
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Figure 7. The comparison between observed electron precipitation ratios and simulation re-

sults using different wave frequency models, Ωpe ratios, and wave normal angle models. In each

plot, the black line denotes statistical averages of jprec/jtrap flux ratios for nightside ELFIN ob-

servations with L > 5. Plots (a-c) show QLDC results with various modifications parameterized

by Ωpe: (a) shows field aligned waves with Frequency Model 1; (b) shows field aligned waves with

Frequency Model 2; and (c) shows WNA1 combined with Frequency Model 2. (d) shows that all

three effects – ωpe ∈ [2.5, 4], combined with Frequency Model 2 and some level of wave obliquity –

are necessary for recreating ELFIN nightside statistics.

curs far more significantly than each effect alone (Mourenas et al., 2012), leading to a503

larger increase of resonant wave power for higher energy electrons that best match ELFIN’s504

observed precipitation spectra; second, the supplementary higher-order cyclotron reso-505

nances contributing at ∼ 1 MeV, but not at ∼ 150 keV, are of lower order (|n| = 2)506

than for higher density or frequency, allowing for a more dramatic increase of the 1 MeV507

to 150 keV pitch-angle diffusion rate ratio (Artemyev et al., 2016; Mourenas & Ripoll,508

2012; Shprits & Ni, 2009; Gan et al., 2023).509

Figure 7 summarizes the findings from each wave parameter combination through-510

out a range of reduced equatorial plasma densities for a better understanding of the in-511

terplay between the three effects considered. Figure 7a shows that only below a certain512

threshold of Ωpe ≲ 4 does the interaction of higher-order resonances start to increase513

precipitation at higher energies. Using the total electron density with Ωpe = 2.5, this514

effect becomes very pronounced above 100 keV and up to 300 keV, whereas above that515

energy this effect alone is still incapable of matching observations, as discussed in Sec-516

tion 4.1. The effect of plasma density combined with wave frequency becomes significantly517

more pronounced throughout the whole energy range when Ωpe ≲ 4, as shown in Fig-518

ure 7b, and matches very well with ELFIN’s nightside observations when a more extreme519

Ωpe = 2.5 is used. Adding mild wave obliquity (Figure 7c) results in the best match520

with ELFIN statistics, demonstrating that all three effects combined are necessary.521

Figure 7d shows the best fit scenarios for forward-modeling ELFIN-observed precipitating-522

to-trapped flux ratios, which all require the varying frequency model in addition to re-523

duced plasma density to various degrees. Here, we show that it is possible to obtain de-524

cent agreement without the need for wave obliquity by significantly reducing Ωpe to 2.5525
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(purple). By adding moderately oblique waves (green and blue), more ∼ 1 MeV elec-526

trons are precipitated, doing a marginally better job of matching observations. Using ex-527

tremely oblique waves (WNA3) – which describes a population of very oblique waves gen-528

erated around the equator when the Landau damping is largely reduced by field-aligned529

electron streams (Mourenas et al., 2015; Li, Mourenas, et al., 2016) – requires increas-530

ing plasma density Ωpe = 4 in order to avoid significant overestimation. Therefore, ELFIN531

observations of nightside electron precipitation spectra (from 50−1000 keV) can be de-532

scribed either under the assumption of a significant plasma density reduction or a more533

moderate plasma density reduction coupled with a strongly oblique wave population. This534

required plasma density (ωpe ∈ [2.5, 4]) is fully consistent with the average measured535

ωpe levels at 18-4 MLT and L = 5−6.5 in Van Allen Probes statistics during disturbed536

periods with AE ∈ [150, 600] nT (Agapitov et al., 2019). These conditions indicate the537

importance of plasma injections and/or enhanced convection periods and how they cause538

enhanced nightside electron losses. Such Earthward plasma transport (convection and539

injections), especially during increased geomagnetic activity, justifies our choice of the540

cold plasma density reduction (Agapitov et al., 2019). These injections are also associ-541

ated with electron field-aligned streams caused by the electrostatic turbulence around542

injection regions or the ionosphere outflow of secondary electrons in response to the en-543

hanced precipitation of plasma sheet electron fluxes (see Khazanov et al., 2014, 2018;544

Artemyev & Mourenas, 2020; Artemyev et al., 2020, and references therein).545

5 Discussion and Conclusions546

Today’s radiation belt simulations primarily rely on EMIC-driven electron precip-547

itation to explain relativistic electron losses (see, e.g., Ma et al., 2015; Drozdov et al.,548

2017, and references therein), in addition to dropouts related to magnetopause shadow-549

ing loss (e.g., see Shprits et al., 2006; Turner et al., 2014; Boynton et al., 2016, 2017; Olifer550

et al., 2018; Xiang et al., 2018). Analysis presented here shows that the inclusion of re-551

alistic whistler-mode wave properties can meaningfully enhance relativistic electron scat-552

tering rates, thereby reducing the relative importance of EMIC waves on the nightside,553

at least for electrons below 1 MeV. While it has been known for a long time that whistler-554

mode waves can accelerate electrons to relativistic energies (Thorne et al., 2013; Li et555

al., 2014; Mourenas, Artemyev, Agapitov, Krasnoselskikh, & Li, 2014; Omura et al., 2015;556

Hsieh & Omura, 2017; Allison & Shprits, 2020), contribution of this wave mode to rel-557

ativistic electron losses may be underestimated in modern-day simulations due to the558

lack of observations that can reliably quantify it. This has recently changed with the avail-559

ability of ELFIN’s unique precipitation observations, which now allow us to quantify how560

well modeling – based on statistical averages of wave proprties and plasma density – re-561

flects the observed precipitation energy spectra of energetic electrons.562

We previously showed that using only field-aligned, monochromatic whistler-mode563

waves with realistic wave amplitudes as a function of magnetic latitude was sufficient to564

approximate relativistic electron losses at the dawn, noon, and dusk sectors (Tsai et al.,565

2023). However, the modeled precipitating-to-trapped flux ratio significantly underes-566

timated ELFIN-obtained statistics of precipitation energy spectra in the nightside MLT567

sector. Pertinent to ELFIN statistics, we specifically excluded all data exhibiting signa-568

tures of field-line curvature scattering, EMIC waves, and any signatures of noise or poor569

statistics. The resulting ELFIN statistics are 3 years of unambiguous whistler-mode wave-570

driven energetic electron precipitating-to-trapped flux ratios across a range of MLT, L-571

shells, and geomagnetic activity. At first, we used test particle simulations to examine572

various wave and plasma characteristics that may potentially cause this discrepancy. How-573

ever, test particle simulations showed that, while some effects led to better agreement,574

the discrepancy was still large. However, by additionally utilizing a state-of-the-art quasi-575

linear diffusion code, we were able to quantify each key wave parameter – alone and in576

combination – relative to ELFIN observations, thereby determining the importance of577
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including empirically-obtained equatorial plasma frequency, wave-normal angle distri-578

butions, and wave frequency distributions. We found that, in addition to the prerequi-579

site, empirically-provided Bw(λ) (Tsai et al., 2023), inclusion of all three modifications580

– realistic Ωpe, ωm(λ), and θ(λ) – were sufficient to recover the more intense nightside581

energetic precipitation observed by ELFIN. A reduced plasma density, indicative of ge-582

omagnetically active times, results in relative enhancement of precipitation in the sub-583

relativistic regime (< 300 keV), while wave obliquity significantly enhances relativistic584

electron scattering > 500 keV. It seems that a decreasing wave frequency as a function585

of latitude helps balance the two out, leading to a smooth recovery of the 200−600 keV586

range, without severely overestimating either ends of the precipitation flux ratio spec-587

trum.588

The equatorial confinement of whistler-mode waves is attributed to the increase589

of wave obliquity – or more precisely, the increase of statistical averages of wave normal590

angles – as expected from wave propagation away from their equatorial source (L. Chen591

et al., 2013; Breuillard et al., 2012; Agapitov et al., 2013) due to the associated severe592

damping by Landau resonance with suprathermal electrons (e.g., Bell et al., 2002; Bort-593

nik et al., 2007). This effect is substantially less important on the dayside as compared594

to the nightside, as evidenced by the significantly larger amplitudes of waves at higher595

latitudes on the dayside (Meredith et al., 2012). Reduced Landau damping is caused by596

a milder ambient dayside magnetic field gradient (due to magnetospheric compression)597

and a lower density of suprathermal electrons (Li, Thorne, Bortnik, et al., 2010; Walsh598

et al., 2020). As a result, waves on the dayside propagate in higher densities, are less oblique,599

and have a less pronounced decrease in wave frequencies, in direct opposition to what600

is observed on the nightside. This explains why an empirical model of Bw(λ) and field601

aligned waves is sufficient for recovering dayside energetic electron precipitation (Tsai602

et al., 2023), while further indicating the importance of including realistic wave and back-603

ground plasma characteristics for such precipitation modeling on the nightside.604

To conclude, these results highlight the importance of combining whistler-mode wave605

characteristics and background plasma for accurately modeling relativistic electron losses606

from the outer radiation belt. Specifically, we note that:607

• The latitudinal distribution of wave amplitude alone cannot account for the in-608

tense nightside precipitation of ∼ 0.1−1 MeV electrons scattered at mid-to-high609

latitudes relative to precipitation of ∼ 100 keV electrons scattered near the equa-610

tor.611

• Very oblique waves are important for scattering more energetic electrons – becom-612

ing more effective in the ∼ 1 MeV range – but only in the presence of reduced613

plasma density or decreasing wave frequency.614

• The decrease of wave frequency with latitude, caused by high-frequency wave damp-615

ing, is not very important on its own. However, together with a reduced plasma616

density (with or without oblique waves), it can lead to more precipitation of high617

energy electrons relative to ∼ 100 keV electrons.618

• Equatorial plasma density decrease during geomagnetically active conditions (char-619

acterized by enhanced whistler-mode wave intensity) improves the relative efficiency620

of resonant electron scattering toward the loss-cone at 100 keV compared to 1 MeV,621

but alone, it is in poor agreement with ELFIN statistics. However, when combined622

with increasing WNA and decreasing wave frequency as a function of latitude, this623

plasma density reduction becomes a catalyst, significantly boosting electron pre-624

cipitation rates across the energy range up to 1 MeV.625

So, in order to best explain the increased precipitation observed by ELFIN on the night-626

side, modeled whistler-mode waves must have a realistic latitudinally-dependent wave627

frequency model (Model 2) coupled with a reduced plasma density (Ωpe ∈ [2.5, 4]) and628

an associated range of wave obliquity from quasi-field aligned (θ < 30◦) to extremely629
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oblique (WNA3) waves. Any further investigation of these effects likely requires either630

detailed and comprehensive simulations using modern ray-tracing techniques (e.g., L. Chen631

et al., 2021, 2022; Hosseini et al., 2021; Hanzelka & Santoĺık, 2022; Kang et al., 2022;632

Kang & Bortnik, 2022) or a new generation of satellite missions equipped to make si-633

multaneous measurements of whistler-mode waves and precipitating/trapped electron634

populations.635
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