Ponalagusamy R.¹ and R Ponalagusamy²

¹Affiliation not available ²Department of Mathematics, National Institute of Technology

December 5, 2023

A Short Note on "Two-layered Model (Casson-Newtonian) for Blood Flow Through an Arterial Stenosis: Axially Variable Slip Velocity at the Wall"

R. Ponalagusamy

Department of Mathematics, National Institute of Technology, Tiruchirappalli-620 015, Tamilnadu, India.

(E-mail: <u>rpalagu@nitt.edu</u>)

Abstract

The purpose of this note is to analyze the work done by Ponalagusamy and Tamilselvi [1]. Ponalagusamy and Tamilselvi [1] have obtained the analytic expression for an axially variable slip velocity at the wall by assuming the flow rate for the case of one-layered model with slip velocity is equal to that of two-layered model with zero slip velocity. This assumption may, in general, not be valid. Keeping this in view, the flow rate for the case of one-layered model with slip velocity is generally considered to be equal to the product of a constant(C_1) and the flow rate of two-layered model without slip velocity, where $0 < C_1$. Slip velocity at the wall has been computed for different values of C_1 for tube diameters 40 μm and 66.6 μm . It is observed from the present investigation that a series of experiments on blood flow is to be performed to determine the proper values of C_1 under various values of flow parameters and radius of the arterial stenosis.

Key words: New formulas, Blood flow, Axially variable slip velocity, Stenosed arteries, A twofluid model, Casson fluid, Different shapes of stenoses

Discussion and Conclusion

In the paper [1], it is mentioned that the introduction of a thin solvent layer near the wall produces the same effect as that of the slip at the wall (Bennett [2]). In the case of one layered model ($R = R_1$) with slip at the wall, the flow rate Q_{1L} is given as (for more detail, refer [1]):

$$Q_{1L} =$$

$$\frac{\rho^* q(z) \operatorname{Re}}{8\beta} R^4 + R^2 u_s(z) + \frac{\operatorname{Re} \theta \rho^*}{3} \{ R^3 - R_p^3 \} - \frac{2\sqrt{2}\rho^* \operatorname{Re}}{7\sqrt{\beta}} \{ \theta q(z) \}^{\frac{1}{2}} \{ R^{\frac{7}{2}} - R_p^{\frac{7}{2}} \},$$
...(1)

where $\rho^* = \frac{\overline{\rho}_p}{\overline{\rho}}$, $\text{Re} = \frac{\overline{\rho}\overline{U}_0\overline{R}_0}{\overline{\mu}^*}$ and $\overline{\rho}$ and $\overline{\mu}^*$ are the density and viscosity of the fluid when the flow is one-layered. For the two-layered model without slip at the wall ($u_s = 0$), the flow rate Q_{2L} is given as

$$Q_{2L} =$$

$$\frac{q(z)R_{ep}R^{4}}{8\beta} \left[1 - (1 - \frac{\delta(z)}{R})^{4} (1 - \mu) \right] + \frac{\mu R_{ep} \theta R^{3}}{3} \{ (1 - \frac{\delta(z)}{R})^{3} - (\frac{R_{p}}{R})^{3} \} \\ - \frac{2\sqrt{2}\mu R_{ep}}{7\sqrt{\beta}} \{ \theta q(z)R^{7} \}^{\frac{1}{2}} [\{ 1 - \frac{\delta(z)}{R} \}^{\frac{7}{2}} - (\frac{R_{p}}{R})^{\frac{7}{2}}]$$
 (2)

where $\delta(z) = \overline{\delta}(\overline{z})/\overline{R}_0$ is the non-dimensional peripheral layer thickness which is a function of axial distance z. Since the two models (one-layered with slip and two-layered without slip) represent the same phenomena and reported by(Bennett[2]), the flow rates can be equated as

$$Q_{1L} = C_1 Q_{2L}$$

$$\frac{\rho^* q(z) \operatorname{Re}}{8\beta} R^4 + R^2 u_s(z) + \frac{\operatorname{Re} \theta \rho^*}{3} \{R^3 - R_p^3\} - \frac{2\sqrt{2}\rho^* \operatorname{Re}}{7\sqrt{\beta}} \{\theta q(z)\}^{\frac{1}{2}} \{R^{\frac{7}{2}} - R_p^{\frac{7}{2}}\} =$$

$$C_{1} \left\{ \frac{q(z)R_{ep}R^{4}}{8\beta} \left[1 - (1 - \frac{\delta(z)}{R})^{4} (1 - \mu) \right] + \frac{\mu R_{ep} \theta R^{3}}{3} \left\{ (1 - \frac{\delta(z)}{R})^{3} - (\frac{R_{p}}{R})^{3} \right\} - \frac{2\sqrt{2}\mu R_{ep}}{7\sqrt{\beta}} \left\{ \theta q(z)R^{7} \right\}^{\frac{1}{2}} \left[\left\{ 1 - \frac{\delta(z)}{R} \right\}^{\frac{7}{2}} - (\frac{R_{p}}{R})^{\frac{7}{2}} \right] \right\}$$

Where $Q_{2L} = Q^*$.

....(3)

From Eq.(3), one can obtain $u_s(z)$ as

$$u_{s}(z) = \frac{q(z)R^{2}}{8\beta} \left[C_{1}R_{ep} \left[1 - (1 - \frac{\delta(z)}{R})^{4} (1 - \mu) \right] - \rho^{*} \operatorname{Re} \right]$$

+ $\frac{R\theta}{3} \left[C_{1}\mu R_{ep} \left\{ (1 - \frac{\delta(z)}{R})^{3} - (\frac{R_{p}}{R})^{3} \right\} - \rho^{*} \operatorname{Re} \left\{ 1 - (\frac{R_{p}}{R})^{3} \right\} \right] + \frac{2}{7} \left\{ 2\theta q(z)R^{3} / \beta \right\}^{\frac{1}{2}} \left[\rho^{*} \operatorname{Re} \left\{ 1 - (\frac{Rp}{R})^{7/2} \right\} \right]$
- $C_{1}\mu R_{ep} \left\{ (1 - \frac{\delta(z)}{R})^{\frac{7}{2}} - (\frac{R_{p}}{R})^{7/2} \right\} \right]$...(4)

From Eq.(4), the dimensional form of the slip velocity \bar{u}_s is obtained as

It is to be mentioned that '-'over a letter denotes the corresponding dimensional quantity.

The slip velocities at the wall with $C_1 = 1$ for tube diameters $40 \mu m$ and $66.6 \mu m$ are mistakenly mentioned in the paper [1] and the corresponding corrected values are given in Table-I.

Tube Diameter	$\overline{u}_s \ cm/\sec$			
	$C_1 = 0.25$	$C_1 = 0.5$	$C_1 = 0.75$	<i>C</i> ₁ =1
40 µm	0.30248	1.06002	2.01756	2.87511
66.6 µт	0.06103	0.36307	0.66512	0.96716

Table-I Slip Velocity $\overline{u}_s \ cm/\sec$

It is observed from Table-I that the slip velocity at the wall decreases as the value of C_1 decreases. The value of C_1 should be less than unity due to the fact that the slip velocity cannot

be greater than the velocity at the centre of the tube for tube diameter $40 \,\mu m$. Whereas for the case of tube diameter $66.6 \,\mu m$, the value of C_1 may be greater than unity. Hence, it is concluded that a series of experiments on blood flow is to be carried out to determine the proper values of C_1 under various values of flow parameters.

REFERENCES

- Ponalagusamy R. and Tamilselvi R. A Study on Two-Layered Model (Casson-Newtonian) for Blood flow through an arterial stenosis: Axially Variable Slip Velocity at the wall. Journal of The Franklin Institute, **348**(2011), 2308-2321.
- 2. Bennett L. Red cell slip at wall in vitro. Science 155(1967), 1554-1556.