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Abstract 

Cancers of the blood stemming from genetic or environmental abnormalities are included in the broad category of 

blood diseases. Some forms of leukemia may respond better to therapy than others, and there are a number of factors 

that contribute to the failure of current medications to effectively address blood diseases, including drug resistance. 

Many different factors, both inherited and acquired, may cause leukemia, which is characterized by the uncontrolled 

growth of one or more cell lines. Oncogene signal transducer and activator of transcription (STAT) family transcription 

factor STAT3, in particular, plays a crucial role in the initiation and development of hematological illnesses as a result 

of mutations, malfunction, or hyperactivity. In addition, research indicates that microRNAs, as biological molecules, 

may promote or inhibit tumor growth in different types of cancer. Additionally, it has been found that STAT3 has a 

robust connection to miRNA. For example, miRNAs may control STAT3 by targeting its upstream mediators such as 

IL6, IL9, and JAKs or directly binding to the STAT3 gene. However, STAT3 has the ability to control miRNAs. The 

purpose of this review was to identify the function of microRNAs and STAT3 and how they interact with one another 

in hematological malignancies. 

Keywords: Interleukin, Janus kinase, Leukemia, microRNAs, signal transducer, activator of transcription 3 

 

Introduction 

Particularly in undifferentiated cells, members of the STAT family, and STAT3 in particular, are oncogenic factors with 

a wide range of cellular functions they regulate, including proliferation, survival, angiogenesis, and 

metastasis.11,17,18,19. The JAK kinase family typically activates the STAT family cytoplasmic transcription factor by 

phosphorylating tyrosine residues on STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6.20 Once activated, 

STATs dimerize and are translocated into the nucleus, where they are responsible for regulating gene expression. After 

that, these STAT dimers bind to specific gene promoter sequences and modify the transcription of genes involved in 

cellular processes adjustment, encompassing differentiation, proliferation, and apoptosis.8,17,21 STAT3 plays a 

significant role in tumorigenesis by affecting the expression of cell cycle regulators (e.g., c-Myc [cellular Myc], cyclin 

D1) and cancer-promoting genes such as members of the anti-apoptotic Bcl-2 (B-cell lymphoma 2) family (e.g., Mcl-1 

[myeloid cell leukemia 1], Bcl-2, Bcl-XL [B-cell lymphoma-extra large]).22 To date, numerous strategies have been 

investigated or even used to find therapeutic strategies for suppressing JAK/STAT signaling.11,13,20,23,24.In 

continued efforts to more understanding the mechanisms of JAK/STAT3 signaling inhibition, a large number of studies 

have identified the pivotal role of miRNAs in the regulation of STAT3 or signaling pathway in which STAT3 is 

involved.25, 26, 27, 28, 29. On the other hand, several studies have implied the possible role of STAT3 in regulating 

miRNA expression.30, 31, 32. MicroRNAs (miRNAs) are a type of endogenous, non-coding, single-stranded RNA that 

range in length from 19 to 25 nucleotides and alter gene expression post-transcriptionally by binding to the 3′ 
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untranslated regions (3′ UTRs) and thereby promoting the mRNA's degradation or triggering the inhibition of mRNA 

translation, respectively.33, 34, 35 miRNAs actively contribute to a wide range of cellular processes, including In 

conclusion, multiple studies suggest that miRNAs and STAT3 may induce a basic regulatory influence on each other, 

either directly or indirectly.44, 45, 46, 47 Herein, we have emphasized the powerful significance of miRNAs in 

regulating STAT3 expression and activity in hematological diseases. 

Chronic lymphocytic leukemia (CLL) and the crosstalk between microRNAs and the JAK/STAT3 signaling 

pathway. 

An accumulation of mature and small B cells expressing CD5+ and CD19+ immune phenotype markers, affecting 

peripheral blood, bone marrow (BM), and lymphoid tissues, characterizes chronic lymphocytic leukemia (CLL), one of 

the most common hematological disorders worldwide and the most common adult leukemia disorder in the western 

hemisphere.48. 

Association of CLL-Related Genes IL9, STAT3, miR-A21, and miR-155 

Studies have shown that IL9 levels are often elevated in CLL patients,48 and Chen et al. found that CLL cell 

proliferation was enhanced and apoptosis was reduced when they used recombinant human IL9. They also analyzed 

the relationship between the upregulation of IL9 expression and the expression levels of STAT3, P-STAT3, miR-21, 

miR-51 in peripheral blood mononuclear cell (PBMC) of CLL patients, and found an increase in expression of STAT3 

and P-STAT3 in CLL patients.48 IL9 is more commonly known as Th2 cytokine, contributes to allergic diseases.50 

Findings have presented that IL9 in addition to the involvement in T-reg and mast cell-mediated tumor immunity,51 

may participate in growth, tumor progression, and the anti-apoptotic process.48 Many studies have shown that the 

IL9-a chain stimulates mutant JAK1 phosphorylation resulted in activation of the STAT family, in particular, STAT3.52, 

53, 54 Chen and his coworkers signified that the transfection of miR-21 and miR-21 overexpressed CLL cell lines could 

stimulate IL9 production in these cells, enabling IL9 production in CLL cells upon promotion of p-STAT3 cellular 

levels.48 These findings implied that an IL9 endogenous/IL9 exogenous/miR-21/miR-155/STAT3 axis exists in CLL 

cells, which could be useful in finding new therapeutic patterns.48 

In CLL cells, miR-21 is associated with the STAT3 signaling pathway. 

Among the proteins involved in cell-to-microenvironment interaction, the zeta chain of T cell receptor-associated 

protein kinase 70 (ZAP70) can enhance cell response to microenvironmental stimuli in CLL cells.49,55 The B-cell 

receptor (BCR) signaling pathway plays an important role in this regard. miR-21 is overexpressed in various leukemic 

disorders including CLL,56,57 possibly involved in the development of drug resistance and survival along with 

augmenting of disease progression.58 Besides, the presence of the relationship between miR-21 and poor prognosis in 

CLL59 as well as cell proliferation and oncogenesis has been evidenced.60 Carabia et al showed that stimulation of 

BCR signaling by the microenvironment can regulate the expression of miR-21 and its target repressor genes, including 

protein inhibitor of activated STAT3 (PIAS3),61 programmed cell death 4 (PDCD4),62 and phosphatase and tensin 

homolog (PTEN)63 via the signaling pathway stimulated or progressed by mitogen-activated protein kinase (MAPK 

or MAP kinase) and STAT3.49 The ZAP70 protein plays an important role in different signaling pathways also 

modulates the interaction between the cells and related microenvironments.49 Carabia and her colleagues analyzed 

the expression changes of miR-21 following ZAP70 status in CD19+ B cells derived from patients who were diagnosed 

with CLL and found that miR-21 was highly expressed in patients with higher expression of ZAP70. Similar findings 

were seen in a study of miR-21 expression level in Ramos cells (human Burkitt's lymphoma B cells) transfected with 

GFP-ZAP70.49 In yet another study, stimulation of the IL-6 receptor (one of the B cell receptors) on the surface of the 

myeloma B cells resulted in pre-miR regulation by STAT3 translocation into the nucleus.64 Thus, Carabia et al. 

The role of miR-155 in CLL cells and its connection to STAT3 signaling 
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The miR-155 is involved in tumorigenesis and autoimmunity65 and its overexpression can lead to lymphoma onset in 

mice.66 The miR-155 regulates the proliferation and development of hematopoietic cells21 as well as contributed to 

immune cell response, production of antibodies, cytokines, and antigen expression.67,68 In this context, a study 

showed that overexpression of miR-155 in the murine model leads to B cell proliferation and is associated with 

lymphoma development.66 Similarly, overexpression of miR-155 has been observed in CLL56,69,70 accompanied by 

Hodgkin and non-Hodgkin's lymphoma.68,71,72 Other investigations have implied that IL-6 may activate STAT3 

expression and function in CLL cells73,74; on the other hand, overexpression of miR-155 has been found in 

CLL.56,69,70,75,76 Considering the results, it seems that IL6 increases the miR-155 expression, delivering proof of the 

concept of the important influences of miRNA in leukemia pathogenesis or therapy.21 In this regard, Li et al detected 

miR-155 overexpression in CLL cells upon exposure with rh IL-6 and verified STAT3 binding to the miR-155 promoter 

in rh IL-6-exposed CLL cells. They concluded that IL-6 induced STAT3 binding to the miR-155 promoter despite the 

fact that STAT3 directly regulates miR-155 production. Structural and molecular analysis confirmed the presence of 

two STAT3 binding sites in the miR-155 gene promoter.21 Phosphorylated STAT3 associates with gamma interferon 

activation site (GAS)-LIKE components in the promoter region of various genes.77 In fact, Li et al introduced two GAS-

LIKE elements within the miR-155 promoter, allowing STAT3 binding to the miR-155 promoter by these elements.21 

Acute lymphoblastic leukemia (ALL) is characterized by a crosstalk between microRNAs and the JAK/STAT3 signaling 

pathway. High proliferation of immature lymphocytic cells in bone marrow (BM), peripheral blood, and other organs 

characterizes the acute lymphoblastic leukemia (ALL), a heterogeneous hematologic illness.  

In Mojdeh Mahmoudian and colleagues' study, it was discovered that certain microRNAs showed increased expression 

in BC tumor compared to the adjacent tissues. Specifically, hsa-miR-25-3p, -29a-5p, -105-3p, and -181b1-5p were 

upregulated, while hsa-miR-335-5p and -339-5p were downregulated. The upregulation or downregulation of these 

candidate microRNAs was found to be associated with TNM stages, except for hsa-miR-339-5p. Additionally, with the 

exception of hsa-miR-105-3p, each candidate microRNA correlated with HER-2 status. Furthermore, the analysis of 

ROC curves revealed that the combination of these six microRNAs could potentially serve as a biomarker to 

differentiate between tumor and non-tumor breast tissue samples. 

Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL) and the JAK/STAT3 signaling pathway. 

ALL with BCR-ABL1 gene fusion (Philadelphia chromosome-positive) in the precursor of B-lineage subtypes, which is 

resulted in constitutive activation of ABL tyrosine kinase, is one of the most fatal leukemia showing unfavorable 

prognosis79,80; however, commonly demonstrate an appropriate response to tyrosine kinase inhibitors (TKI).79,80 

Nevertheless, the relapses incidence rate is notable in these patients, highlighting the importance of new insights to 

treating this condition.81 It has been clarified that BCR/ABL fusion protein in chronic myeloid leukemia (CML), 

stimulates the expression of IL-6, which is a multipotent cytokine that prepares the favorable micro-environment for 

expansion and maintenance of the leukemic stem cells.82 Despite that BCR/ABL fusion gene is the indicator marker of 

Ph+ ALL, the relation between BCR/ABL fusion and IL-6 in Ph+ ALL has not yet been elucidated entirely.83 As 

described, IL-6 binds to its specific receptor (IL-6R) and then triggers the JAK/STAT3 signaling pathway.84,85 In a 

study, Jiang et al evaluated the level of BCR-ABL expression in Ph+ ALL patients to investigate the association between 

BCR-ABL and miR-451 in mononuclear cells of these patients, and found that BCR-ABL has an inverse relation with 

miR-451.83 Bioinformatic analysis showed that IL-6R can be a target of miR-451a.86 It has been reported that miR-451a 

represses the proliferation of some types of cancer cells such as lung adenocarcinoma87 and renal cell carcinoma.88 

Besides, in CML, miR-451a is inversely related to BCR-ABL gene expression levels, and its downregulation is paralleled 

to imatinib resistance.89 Examination of the underlying mechanisms of miR-451a on the ALL cell line with Philadelphia 

chromosome-positive showed that this mi-RNA directly suppresses IL-6R via targeting its 3′-UTR. According to 

research by Jiang et al.,83 serum IL-6 concentration was positively correlated with BCR/ABL mRNA levels, and miR-

451a downregulated the levels of phosphorylated JAK2 and STAT3 without affecting total rates of JAK2 and STAT3, 
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indicating the inhibitory effects of the miR-451 on the IL6/JAK/STAT3 axis by suppressing the IL6R and p-JAK and p- 

Therefore, increased miR-451 expression in these individuals may have therapeutic potential for dealing with this 

rapidly progressing form of leukemia.83 

Neutropenia in T-cell large granulocytic (TLGL) leukemia: role of the JAK/STAT pathway, miR-146b, and FASL 

T-cell large granular lymphocytic (TLGL) is a rare type of leukemia characterized by the abnormal proliferation of large 

granular T lymphocytes in the peripheral blood.90,91 TLGL leukemic cells are divided into two clusters, cluster A 

displaying a CD8+/CD4/CD57+ immune phenotype and cluster B displaying a CD4+/CD57+ immune phenotype.92 

Although the exact cause of TL. It has been reported that increased levels of soluble FASL in the blood circulation are 

one of the most important possible factors contributing to the pathogenesis of neutropenia in T-LGL patients.96,97 

Many studies also have the existence of the improbable but plausible mechanism of degeneration of mature neutrophils 

and myeloid progenitors through FAS/FASL signaling.92 Teramo et al. reported that STAT3 plays a key role in FASL 

transcription, and they demonstrated that an increased rate of FASL expression in TLGL patients was associated with 

a higher level of STAT3 activity95. However, the molecular mechanism of FASL regulation by STAT3 has not yet been 

elucidated. In another study, Mariotti and her co-workers also detected elevated levels of tyrosine-phosphorylated 

(YP)-STAT3 in CD8+ T-LGLL patients, but not in CD4+ T-LGLs patients.92 Mariotti et al revealed that FASL mRNA 

expression is correlated with the upregulation of STAT3 activation and inversely with the absolute neutrophil counts 

(ANC).92 They determined that miR-146b was downregulated in CD8+ TLGL compared to CD4+,92 as well as found 

that there is an association between miR-146b expression and ANC levels concomitant with the levels of YP-STAT3 in 

T-LGLs patients.92 In addition, they found that miR-146b has an inverse correlation with STAT3 tyrosine 

phosphorylation, neutropenia, FASL expression, and soluble FASL release in blood circulation,92,95 emphasizing the 

importance of the STAT3-miR146b-FasL axis in TLGL leukemia.92 Respecting the previous findings that STAT3 can 

stimulate inhibitory influence on gene expression through inducing the target genes promoter methylation,102,103 it 

has been confirmed that STAT3 stimulates miR-146b promoter methylation through regulating the expression of 

methyl transferase-1 in solid tumors and T lymphocytic malignancies.104 Regardless of the presence of correlation 

between STAT3 function and miR-146b cellular levels in malignant condition,104,105 it also has been reported STAT3 

activates miR-146b in normal tissues.106,107 Overall, Mariotti et al suggested that STAT3 suppressed the miR-146b 

expression in TLGL by inducing the miR-146b promoter methylation.92 Considering molecular analysis, human 

antigen R (HuR), which plays a well-known role in mRNA stabilization and FASL expression, has been shown that can 

be another target of miR-146b.108, 109, 110 Mariotti et al detected that HuR protein is an endogenous target of miR-

146b in CD8+ T-LGLs, and also indicated that miR-146b downregulated the FASL expression indirectly and post-

transcriptionally through reducing the HuR protein levels. Accordingly, they hypothesized that persistent STAT3 

activity in CD8+ T-LGLs led to miR-146b loss, which in turn led to HuR protein translation, which in turn enabled FasL 

synthesis and neutropenia incidence.92,95 

CML-related miRNA-JAK/STAT3 signaling interaction 

CML is a clonal disease of hematopoietic stem cells that generates the Philadelphia chromosome (Ph+) as a consequence 

of the BCR-ABL oncogenic protein fusion caused by translocation t(9:22), accounting for roughly 15% of adult-onset 

leukemias.111. 

miR-147 and STAT3 signaling: a possible link 

The miR-147 has been shown to have both tumorigenic and tumor suppressive functions in a wide range of human 

cancers112, 113, 114, 115. Han et al. demonstrated that the hypoxia-induced damage was exacerbated in the PC12 cell 

line, commonly derived from a transplantable rat pheochromocytoma, due to the attenuation in miR-147 levels.117 

Specifically, they demonstrated that maternally expressed gene 3 (MEG3) as a long noncoding RNAs (lncRNAs) 

boosted apoptosis in response to hypoxia. The miRNAs database evaluation for miRNAs that interact with MEG3 has 
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uncovered miR-147 as a possible miRNA in this respect. Two human CML cell lines, KCL22 and K562, were shown to 

display lower amounts of MEG3 and miR-147 when compared to healthy BMMCs. It seems that MEG3 may bind to 

miR-147, resulting in decreased expression of miR-147. Additionally, Li et al. found that miR-147 and MEG3 were 

highly methylated in CML patients compared to healthy controls. Accordingly, they revealed that the expression rate 

of the methylation-related genes, such as HDAC1 (histone deacetylase 1), DNMT1 (DNA methyl transferase 1), 

DNMT3A, DNMT3B, were dramatically enhanced in the CML patients with accelerated phase. They reasoned that 

because histone deacetylation and DNA methylation were implicated in the downregulation of miR-147 and MEG3 

levels in CML patients, that these mechanisms must be responsible for the observed findings. In addition, they 

proposed that MEG3 may be downregulated by STAT3 by inhibiting the phosphorylation of JAK/STAT118, and they 

reported that JAK2 and STAT3 can negatively regulate MEG3 upon binding to it. They also demonstrated that miR-

147 and MEG3 may adversely control one another and fine-tune leukemia development, thus providing more evidence 

that STAT3 and miR-147 have indirect effects on one another via MEG3.118. 

miR-574-3P and JAK/STAT3 signaling: a possible link 

It has been shown that miR-574-3p plays a crucial function in the development of some malignancies. MiR-574-3p is 

important as a potential prognostic marker for breast cancer,120 and its lower expression is observed in the early stages 

of gastric cancer; however, upregulation of miR-574-3p inhibits proliferation, invasion, and the migration of human 

gastric caner cells.119, 120. The expression of miR-574-3P was found to be considerably lower in the peripheral blood 

of CML patients compared to that of a healthy donor in a study conducted by Yang et al. They also demonstrated that 

overexpressing miR-574-3P significantly reduced cell growth and promoted apoptosis in human K562 CML cells, 

whereas downregulating miR-574-3P had the opposite effect. After searching the TargetScanHuman database, they 

discovered that IL6 could be a direct miR-574-3p target. They also discovered that miR-574-3p transfection significantly 

reduced IL6 expression (both mRNA and protein levels). These results demonstrated that miR-574-3p regulates IL6 

expression negatively and that IL6 is a direct target of this miRNA. As known, IL6 is identified as an inflammatory 

cytokine involved in the pathogenesis of hematological disorders such as multiple myeloma.124 Maeda et al showed 

that IL6 may contribute to both myeloid proliferation and lymphocytopenia.125 They suggested that IL6 could control 

the cell destination of leukemic multipotent progenitor cells and may support a positive feedback loop to maintain 

CML progression.82 It is also known to be a prognostic factor for the follow-up of imatinib treatment in CML 

patients.126 It has already been found that overexpression of IL6 significantly induces K562 CML cell proliferation, 

and conversely inhibits their apoptosis.127 Also, reports confirm that IL-6 can activate the JAK/STAT3 and MAPK 

signaling pathway and is involved in the development of CML.55 Rendering findings, Yang et al proposed that miR-

574-3P can suppress the IL6/JAK/STAT3 signaling pathway through directly targeting IL6, which in turn, inhibits the 

proliferation and induce apoptosis in CML cells,127 describing miR-574-3p as a potent target for CML treatment. 

The role of STAT3 in mediating the connection between miR-34a and myeloid cell-derived embryonic hemoglobin 

synthesis. 

Sickle cell anemia (SCA) is a hereditary blood condition that causes aberrant synthesis of hemoglobin S (Hb S). 

Annually more than 300,000 newborns are born with cyclic anemia, which is one of the most common blood disorders 

in the world associated with a poor prognosis.128 Despite the recent increase in new therapeutic approaches, 

hydroxyurea is still the principal of SCA treatment showing the competence to reduce SCA-related mortalities.129 

Indeed, the most effective treatment for the cycle cell anemia is increasing Hb F production with the formula α2γ2 (a 

combination of two alpha chains and two gamma chains globulin) that improves clinical symptoms and consequently 

prolongs the patient overall survival rates.130,131 The therapeutic role of Hb F is related to its inhibitory effects on Hb 

S polymerization,132 which is one of the main pathogens and risk factors in patients with SCA.133 Importantly, 

comprehensive studies have indicated that a wide spectrum of genes is targeted by miR-34a, including the genes 

known as a repressor of gamma-globin, a variant of globulin chain used in hemoglobin F production, such as Yin Yang 
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1 (YY1), HDAC1, and STAT3.75,134, 135, 136, 137 Scientific related software predicted the binding site for miR-34a at 

the 3′ UTR of STAT3,131 and also studies have shown that miR-34a interacts with STAT3 in K562 CML cells.137 

Interestingly, reports have revealed that GATA1 (GATA binding protein 1) and STAT3 compete for binding to the 5′ 

UTR of the gamma globulin gene and an increase in GATA1 expression reverses gamma globulin gene silencing 

induced by STAT3.138 Besides, it has been shown that during the erythroid differentiation progresses, erythropoietin 

(EPO) can activate STAT3 through phosphorylation,139 leading to the inhibition of gamma globulin gene 

expression.138 Therefore, these data verify that STAT3 has a function in gamma globulin gene regulation. In a research, 

Ward et al performed a study to examine if miR-34a may control gamma-globin gene expression via targeting the 

negative gamma globulin regulator genes including STAT3. The results demonstrated a substantial reduction in total 

and phosphorylated STAT3 levels in miR-34a-transfected K562 cells,131 as well as an increase in gamma-globin mRNA 

and Hb F protein levels. WARD et al reports confirmed that there likely exist an indirect mechanism for gamma-globin 

regulation by miR-34a via STAT3 gene silencing.131 They demonstrated that miR-34a induced the production of Hb F 

in K562 cells by reducing total STAT3 and phosphorylated STAT3 levels, which play a role in silencing the gamma 

globulin gene. About 20,000 people in the United States are diagnosed with AML every year.140 It is the most frequent 

form of adult acute leukemia. 

The liver secretes thrombopoietin (TPO), which has a role in megakaryocyte proliferation and differentiation and is the 

primary regulator of megakaryopoiesis. Overexpression of miR-494-3P in HSPCs has been observed in patients with 

primary myelofibrosis (PMF), and this may contribute to the pathogenesis of this disease.141,142,143 Rontauroli et al. 

identified TPO as a pan-hematopoietic cytokine that is essential for the maintenance and survival of hematopoietic 

stem cells.141 Upon binding to its receptor, TPOR, on the surface of SOCS6 is an important factor in the negative 

regulation of the JAK/STAT signaling pathway,145 and also contributes to the mechanism of myeloproliferative 

neoplasms (MPN) pathogenesis144. Moreover, previous research has reported that SOCS6 is downregulated in HSPCs 

derived from PMF patients, with concomitant miR-494-3p upregulation.143 These findings provided further evidence 

that miR-494-3p plays a role in the etiology of PMF via regulating megakaryocyte differentiation. In addition, STAT3 

may have an effect on TPO signaling and megakaryocytopoiesis in HSPCs, as shown by the findings of a study by 

Rontauroli et al.,144 which showed that transfection of K562 and CB (cord blood-derived) CD34+ cells with miR-494-

3P reduced SOCS6 protein levels, which in turn increased STAT3 phosphorylation and led to the megakaryocyte 

hyperplasia seen Association between the JAK/STAT signaling pathway in acute erythroid leukemia (AEL) with the 

miR-23a, miR-27a, and miR-24 cluster. 

About 5% of all cases of acute myeloid leukemia (AML) are acute erythroid leukemia (AEL), also known as AML 

M6.147,148 The survival and prognosis of AEL patients are too worse than in other AML subtypes.149,150 As 

described, STAT3 plays an important role in the progression of erythroleukemia through suppression of erythroid 

differentiation.151 A study by Su et al. showed that miR-23 They also found that clusters of microRNAs miR-23a, miR-

27a, and miR-24 were all downregulated in people with AEL. Overexpression of miR-23a, -27a, and -24 can trigger 

apoptosis and inhibit the deregulated proliferation, so they hypothesized that these three miRNAs worked together to 

target the GP130/JAK1/STAT3 pathway in AEL cells and induce differentiation.152 Other studies have shown that the 

JAK1 binding to the GP130 transmembrane protein and subsequent activation of STAT3 enables signaling network 

formation among GP130, JAK1, and ST In addition, they found that these miRNAs work together to drive erythroid 

differentiation in human leukemic HEL and K562 cell lines and cord blood (CB)- CD34+ HSCs by decreasing GP130 

and suppressing JAK1-STAT3 phosphorylation.152 

Laboratory studies on leukemic cells, including HL60, show that STAT3 overexpression and leukemogenesis is 

depending on the phosphorylation of STAT3.153 While inhibition of STAT3 signaling leads to the induction of 

apoptosis in leukemic cells.154 The leukemia inhibitory factor (LIF), as known as one of the members of IL-6 family 

cytokines, has been reported that can induce differentiation of the M1 murine myeloid leukemic cell line. It is named 
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LIF due to its ability to induce differentiation M1 myeloid leukemic cells.155 This protein executes its biological activity 

through its receptor located on the cell surface and a membrane-associated transducer (termed LIFR-a).156 Former 

studies determined that STAT3 can be activated by IL-6 family cytokines,157 and also revealed that IL6 family/STAT3 

signaling may affect differentiation of stem and leukemic cells and other cells.158, 159, 160, 161 LIFRα has been 

determined that bind to the GP-130 on the surface of leukemic cells and form heterodimers, which are capable of STAT3 

activation.162 Similar to LIFRa, the fusion protein containing the cytoplasmic functional domain of LIFRa, like CT3 in 

TAT-CT3 fusion, a peptide domain vector, can induce STAT3 activation in HL60 cells.163 The LIFRa-CT3 fusion 

transfection in HL60 cells resulted in suppression of the proliferation and promoting the differentiation in HL60 

myeloid cells in vitro.163 Other studies have proposed that miR-155 is a primary transcript of the third exon of the B 

cell integration cluster (BIC) gene164 typically overexpressed in the BM of patients with special subtypes of AML.165, 

166, 167 Other examinations have represented that IL-10 suppresses miR-155 through STAT3 activation.168 Moreover, 

XU et al reported that the TAT-CT3 fusion protein inhibits miR-155 expression following targeting STAT3 in HL-60 

cells.155 They determined that the TAT-CT3 fusion protein negatively regulated miR-155 expression, which is 

overexpressed in some type of AML, through STAT3 direct binding to miRNA gene promoter.155 Also, miR-155 

negatively regulates SOCS-1 in AML cells, known as the main negative regulator for the JAK/STAT signaling 

pathway.169 XU and his colleagues showed that the TAT-CT3 fusion protein can induce differentiation in HL60 

myeloid cells. TAT-CT3 transfection was shown to reduce miR-155 expression, which in turn boosted SOCS-1 and 

decreased STAT3 phosphorylation, resulting in leukemia cell differentiation.155 

STAT3 and hypoxia-inducible factor 1 (HIF1) are linked to miR-17 and miR-20a. 

Hypoxia-inducible factor 1 (HIF1) is an important transcription factor in response to hypoxic conditions containing 

two subunits including, an alpha subunit (HIF-1a, oxygen-sensitive subunit) and a beta subunit (HIF-1b).170,171 It also 

has a role in cancer biologics such as tumor growth, metastasis, and angiogenesis.172 Consistent with the previous 

studies,173,174 He et al showed that hypoxia promoted cell cycle arrest and differentiation in myeloid leukemic 

cells.175 The HIF-1a protein translocates into the nucleus and forms a heterodimer with HIF-1b and then regulates the 

expression of target genes through binding to hypoxia-responsive elements (HREs) located on gene promoters.175 

These genes, which are targeted by HIF-1, support the cells for adaptation in hypoxic conditions by affecting processes 

covering, apoptosis, differentiation, angiogenesis, cell growth in concomitant with metabolism, and erythropoiesis.175 

HIF-1a in hypoxic conditions, known as a significant indicator of solid tumors, cooperates with tumor growth, 

metastasis, and angiogenesis.172 He et al have shown that the HIF-1a transcription factor can induce differentiation 

and inhibit AML development.173,175, 176, 177, 178, 179 They showed that HIF1a decreases miR-17 and miR-20a, two 

members of the miR-17-92 gene cluster, via directly targeting STAT3.175 It has already been found that miR-17 and 

miR-20a are overexpressed in solid tumors and hematological disorders such as mantle cell lymphoma (MCL), large 

B-cell lymphoma, and Burkitt's lymphoma.180, 181, 182 Besides, it has been shown that the miR-17-92 cluster target 

the HIF-1a protein.175,183, 184, 185 He et al also reported that miR-17 and miR-20a were downregulated in hypoxic 

conditions in AML cell lines. The results supported the hypothesis that HIF-1a suppresses miR-17 and miR-20a 

expression in AML cells in response to hypoxia. They also revealed that a reduction in miR-17 and miR-20a contributes 

in the differentiating process of AML cell lines driven by HIF-1a. He et al. concluded that miR-17 or miR-20a abrogated 

HIF-1a-induced growth arrest and differentiation in AML cells by binding to STAT3 trans-acting elements.186,187 On 

the other hand, they reported that exist two binding sites for miR-17/miR-20a at the wild-type 3′-UTR of STAT3, which 

enables suppressing of the STAT3 protein expression via directly targeting its 3′-UTR post-transcriptionally.175 

Association between STAT3 and the miR-21/miR-17-92 cluster 

Acute myeloid leukemia (AML) with t(8;16)(p11;p13) is a rare leukemia subtype with characteristic clinical features, 

such as presentation as a coagulation disorder and recurrent extramedullary involvement, as well as a poor 

prognosis.188,189 AML blast cells with t(8;16) also exhibit a high frequency of hemophagocytosis and a 
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myelomonocytic In this respect, examination of the expression levels of the known transcription factors of cluster miR-

17-92 and miR-21 genes, such as STAT3 in 7 t(8;16) AML patients and 36 patients with other AML cytogenetic subtypes 

approved STAT3 downregulation in the t(8;16) AML patients 191. Based on the findings of Beya et al. (2013), miR-21 

was transcriptionally regulated by STAT3 in patients with t(8;16) translocation, and a decrease in miR-21 and probably 

a decrease in the miR-17-92 cluster is associated with a decrease in STAT3 in AML with t(8;16) translocation.189 

Conclusion 

By binding to DNA and other stimulants, active STAT3 promotes tumor development (Figures 2 and 3), which is in 

turn facilitated by miRNAs, which control a wide range of cellular activities including inflammation, proliferation, 

survival, metastasis, invasion, and angiogenesis. In addition, miRNAs have been shown to play a crucial function in 

controlling the JAK/STAT3 signaling pathway. Figure 4 depicts the whole signaling pathways involved in the 

interaction between STAT3 and miRNAs in leukemic cells. We concentrated on research into the function of miRNAs 

in the control of the JAK/STAT3 signaling pathway in hematological illnesses to better understand the function of 

STAT3, one of the most essential transcription factors in many malignancies, including leukemia. We have reviewed 

the roles of microRNAs and STAT3 in various cancers and more extensively in blood malignancies in two tables (Table 

1, Table 2) for your convenience. Patients with a wide range of hematological disorders, including leukemia, may 

benefit from therapeutic approaches, particularly multimodal treatments aimed at modifying the STAT3 signaling 

pathway; however, it is important to complete extensive clinical trials before resorting to STATs inhibitors. 
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