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Abstract

Increasing climatic variability has resulted in an unprecedented surge in extreme events, pressing global ecosystems towards

systematic breakdown. Yet, the resilience of the soil-vegetation-atmosphere (SVA) system to revert to its natural state indi-

cates the existence of energetic barriers forbidding systems from tipping. Observational and theoretical constraints limit our

understanding of these energetic barriers which are crucial for assessing ecosystem sensitivity to atmospheric perturbations. We

provide a novel coherent theory on the dissipative energy barriers (?e) which decides the resilience potential of an ecosystem.

These barriers are manifestation of lower bounds of entropy produced ( Σ *) for unit anomaly transference from soil moisture

(SM) to evapotranspiration (ET). Using remote sensing data, we compute these global entropy bounds by introducing a new

metric (Wasserstein distance, dw) for SM-ET coupling. Quantifying these lower bounds from SM-ET coupling, places terrestrial

ecosystems in the hierarchy of dissipative energy states spanning from forested regions to barren lands. Furthermore, we show

that the optimization of SM-ET coupling translates to entanglement of water potential gradient ([?]ω) between land surface

and atmospheric boundary layer, and the resulting memory timescale or residence time (τ). This (τ.[?]o) entanglement propels

moisture-rich and moisture-deficit systems in complementary evolutionary pathways in responding to imposed anomalies. As a

result, we witness an emergence of coupling-aridity tradeoff with temperate climates operating as least efficient systems for unit

SM to ET anomaly transfer. Physical basis, and transferability across space and scale makes this theory a potential benchmark

for process improvement in the climate and earth system models.
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 24 

Abstract 25 

Increasing climatic variability has resulted in an unprecedented surge in extreme events, 26 

pressing global ecosystems towards systematic breakdown. Yet, the resilience of the soil-27 

vegetation-atmosphere (SVA) system to revert to its natural state indicates the existence of 28 

energetic barriers forbidding systems from tipping. Observational and theoretical constraints limit 29 

our understanding of these energetic barriers which are crucial for assessing ecosystem sensitivity 30 

to atmospheric perturbations. We provide a novel coherent theory on the dissipative energy 31 

barriers (𝛥e) which decides the resilience potential of an ecosystem. These barriers are 32 

manifestation of lower bounds of entropy produced (𝛴∗) for unit anomaly transference from soil 33 

moisture (SM) to evapotranspiration (ET). Using remote sensing data, we compute these global 34 

entropy bounds by introducing a new metric (Wasserstein distance, 𝑑𝑊) for SM-ET coupling. 35 

Quantifying these lower bounds from SM-ET coupling, places terrestrial ecosystems in the 36 

hierarchy of dissipative energy states spanning from forested regions to barren lands. Furthermore, 37 

we show that the optimization of SM-ET coupling translates to entanglement of water potential 38 

gradient (∆ω) between land surface and atmospheric boundary layer, and the resulting memory 39 

timescale or residence time (τ). This (τ.∆ω) entanglement propels moisture-rich and moisture-40 

deficit systems in complementary evolutionary pathways in responding to imposed anomalies. As 41 

a result, we witness an emergence of coupling-aridity tradeoff with temperate climates operating 42 

as least efficient systems for unit SM to ET anomaly transfer. Physical basis, and transferability 43 

across space and scale makes this theory a potential benchmark for process improvement in the 44 

climate and earth system models. 45 

 46 



Manuscript submitted to Water Resources Research 

3 

 

 47 

Plain Language Summary 48 

In recent years, extreme events have put a lot of pressure on the planet's ecosystems, but 49 

they seem to have a natural ability to bounce back. However, a fully developed mechanical 50 

understanding of these energy barriers that stop these systems from tipping is lacking. We argue 51 

that the effects of atmospheric disturbances on land surfaces can be comprehended from their 52 

interaction through signatures in soil moisture (SM) – evapotranspiration (ET) coupling. Hence, 53 

quantifying the entropy thresholds for unit anomaly transfer from SM to ET can provide new 54 

means for computing the resilience of ecosystems. Using an optimization framework, it is shown 55 

that the driving water potential (∆ω) and memory timescale (τ) of moisture anomalies are 56 

entangled. This has repercussions on how global hydroclimates cope up with varied level of 57 

atmospheric dryness. This theory could be a useful tool for improving climate and Earth system 58 

models because it's based on physical principles and can be applied to different places and scales. 59 

 60 

 61 

I. Introduction 62 

Recent years have witnessed a surge in weather-related extremes across the globe, boosting 63 

the “dry getting dryer, and wet getting wetter” paradigm over the majority of terrestrial landscapes 64 

(Dosio et al., 2018; Perkins-Kirkpatrick & Lewis, 2020). Comprehending the land surface 65 

responses to these atmospheric perturbations has thus become of increasing significance, for 66 

improving climate forecasts and predicting ecosystem resilience (Sehgal et al., 2021; Verbesselt 67 

et al., 2016). The coupled terrestrial water-energy system entails signatures from these continuous 68 

atmospheric perturbations, the imprints of which are registered in soil-vegetation response through 69 
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changes in soil moisture (SM) - evapotranspiration (ET) coupling (Dirmeyer, 2011; Koster et al., 70 

2004; Seneviratne et al., 2006). Intricately connected to SM-ET coupling is the concept of memory 71 

timescale (τ), defined as the time needed by a land unit to forget an imposed anomaly (Koster & 72 

Suarez, 2001; McColl et al., 2017). Conventionally, τ has been quantified using the autocorrelation 73 

of SM time series with previous literature observing similar timescales under spatially distinct 74 

regions of the world (Ghannam et al., 2016; McColl et al., 2019; Teuling et al., 2006). Given the 75 

importance τ plays in modulating land-atmospheric feedback, such overlapping results provokes a 76 

deeper question of whether a unifying governing principle underlies these empirically observed 77 

timescales, and if so, to what extent does the presence of such a principle impact the dynamics of 78 

terrestrial water-energy interactions?   79 

As soil moisture evaporation (and transpiration through plants) involves irreversible heat 80 

and mass transfer, thermodynamics serves as a universal means to declutter SM-ET coupling 81 

dynamism from an energy perspective. A continuous atmospheric circulation maintains water 82 

potential gradient and results in sustained entropy production through SM-ET conversion 83 

(Kleidon, 2008). The presence of water potential gradient also signifies non-equilibrium (NE) 84 

state, and the maximum entropy production (MEP) principle states that system in NE will adapt to 85 

steady states at which they dissipate energy and produce entropy at the maximum possible rate 86 

(Kleidon, 2010). Under such conditions, the rate of change in SM and ET approaches a nearly 87 

constant value inherent to the system (Kleidon, 2010), defined here as non-equilibrium steady state 88 

(NESS), and characterized by nonzero fluxes and nonzero potential gradients (Qian, 2006). Hence, 89 

entropy production quantifies how much a physical system is driven away from equilibrium by 90 

capturing a system’s evolution (in this case SM-ET coupling) in response to the environment.   91 
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From a systems perspective, a hydroclimate can be thought of as a particular configuration 92 

of soil-vegetation-atmosphere (SVA) characterized by long-term expected behavior in process 93 

interactions constrained upon energy fluxes in and out of the system. Responses of SVA systems 94 

to changes in atmospheric forcings are dependent on the nonlinear relationship between energy 95 

fluxes and soil moisture (Feldman et al., 2022). Nevertheless, when supported by soil hydrological 96 

processes (SHP) in modulating the impact of atmospheric perturbations, hydroclimates across the 97 

globe often demonstrate the tendency to return back pre-anomaly conditions - described as 98 

resilience of the system in previous literatures (Berdugo et al., 2020; Fu et al., 2022; Verbesselt et 99 

al., 2016). This is evident from responses displayed by most systems to frequent and seasonal 100 

atmospheric perturbations within meteorological (and often climatic) time scales through gradual 101 

recovery to optimum NESS. Hence, resilience can be considered the tendency of SVA to hold-on 102 

to NESS, unique to a SVA configuration. We hypothesize that the resilience of any SVA to 103 

maintain its configuration in a preferred NESS is compensated by paying through equivalent 104 

entropy production. Hence, any change in SVA will be induced through changes in entropy 105 

production and preferred NESS.  106 

However, with changing climate, the modulating capacity of SHP are severely impacted 107 

(Seneviratne et al., 2006; Vereecken et al., 2022) rendering a higher probability for the system's 108 

threshold to be crossed and making the system vulnerable to topple into a new stable state with 109 

different NESS (Berdugo et al., 2020). Therefore, it becomes critical to quantify these lower 110 

bounds of the entropy barrier which when crossed will alter the climate to a new stable state 111 

defining transitions between hydroclimates. Statistical physics literature has delved into the 112 

explainability of optimal control of stochastic thermodynamic systems using optimal transport 113 

(OT) theory (Benamou & Brenier, 2000; Dechant, 2022; Dechant & Sakurai, 2019; Nakazato & 114 
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Ito, 2021; Van Vu & Saito, 2022). OT concerns the means by which one can optimally transport a 115 

source distribution to a target distribution, characterized by a metric called the Wasserstein 116 

distance (𝑑𝑊) (Dechant & Sakurai, 2019; Van Vu & Saito, 2022). Studies have shown that for a 117 

stochastic process, the lower bound of entropy production could be expressed as a function of 𝑑𝑊 118 

between the initial and final states of the system’s distribution (Dechant, 2022). We adapt 𝑑𝑊 as 119 

the coupling metric and derive the expression for lower bound of entropy production in SM-ET 120 

transitioning, with water moving from soil to atmosphere or soil to plant to atmosphere. 121 

Furthermore, using equivalence between statistical and classical thermodynamics, we show that 122 

the optimization of SM-ET coupling transcends to the entanglement of the water potential gradient 123 

(∆𝜔) which drives the moisture out of the system and the resulting memory timescale (𝜏),  or 124 

residence time across root water uptake to stomatal expulsion. 125 

In this study, we aim to answer a key question: When there's an exchange of anomalies 126 

from soil moisture (SM) to evapotranspiration (ET), what is the minimum memory timescale and 127 

entropy production required for this process? To achieve this, the paper addresses three primary 128 

objectives: (1) determine the minimum levels of entropy production needed for various global 129 

hydroclimates for unit anomaly transference, (2) establish a fundamental relationship between the 130 

strength of the coupling between SM and ET and the memory timescale, and (3) investigate the 131 

evolutionary paths taken by climatic systems that adhere to these proposed optimization principles. 132 

Additionally, we develop a coherent theory concerning the resilience of ecosystems by introducing 133 

the concept of dissipative energy barriers (DEB), which are derived from entropic thresholds at 134 

which a system operates. 135 

2. Data Set  136 

2.1 Satellite SM and ET Datasets  137 
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Combined (active + passive) surface soil moisture (SSM) data (Lopez, 2018) provided by 138 

Copernicus Climate Change Service (C3S) for the period Jan 2010 – Dec 2019 was used for the 139 

analysis. The product is gridded at 0.25° x 0.25° spatial and 1 day temporal resolution, and captures 140 

the top few centimeters of the soil where the land-atmosphere mass exchanges and biological 141 

processes for plant growth are concentrated (Ouedraogo et al., 2013). Supplementary Table S1 142 

outlines the sensors used for producing the combined product. Recent studies have shown that 143 

surface moisture carries information about deeper profiles beyond the generally attested top 5cm 144 

(Short Gianotti et al., 2019) and can inform about evapotranspiration regime changes (Dong et al., 145 

2022). To avoid ambiguity, we will denote surface moisture as SM. 146 

For evapotranspiration (ET), the gap-filled product from Terra MODIS (i.e., 147 

MOD16A2GF) for the period 2010-2019 was used for the analysis (Running et al., 2019). It is 148 

based on the Penman-Monteith equation and is available at 500 m spatial resolution and temporally 149 

as 8-day composite i.e., pixel values are the sum of all eight days within the composite period.  150 

2.2 Ancillary Datasets 151 

Water - Energy clustering (WEC) classification proposed by  Pisarello & Jawitz (2021) 152 

were used for global hydroclimate reference owing to its inclusion of ET into the classification 153 

scheme. The 15 WEC zones were resampled into five primary groups based on increasing zone 154 

mean aridity index (φ = Potential Evapotranspiration (PET)/Precipitation (P)), namely Super 155 

Humid (φ = 0.39), Humid (φ = 0.58), Temperate (φ = 1.07), Arid (φ = 2.05), and Hyper Arid (φ = 156 

9.56). MODIS Annual International Geosphere-Biosphere Program (IGBP) classification (Sulla-157 

Menashe et al., 2019) was used for ecosystem classification. We broadly categorize them into 158 

forests (F), savannahs (SV), croplands (CRP), grasslands (GR), shrublands (SH), and barren land 159 

(B). Bias corrected ERA5 reanalysis meteorological and soil temperature datasets (supplementary 160 
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Table S2) were used for computation for near surface boundary layer chemical water potential and 161 

entropy production. van Genuchten soil water characteristics (SWC) and saturated hydraulic 162 

conductivity parameters provided in (Gupta et al., 2020, 2022) were used along with vegetation 163 

hydraulic parameters provided in Liu et al. (2021) for soil and vegetation matric potential 164 

calculation, respectively. MODIS NDVI (Didan, 2015) data was used for vegetation water content 165 

calculation. Canopy height derived from sentinel-2 images (Lang et al., 2022) were used as proxy 166 

for travel length for water particles. 167 

All datasets were linearly rescaled to 0.25° x 0.25° spatial resolution (hereon referred as 168 

footprint scale) through bilinear interpolation and spaced at 8-day temporal resolution in 169 

accordance with MODIS ET retrieval dates. Ancillary datasets were spatially resampled to match 170 

the extents of SM and ET raster’s and averaged over four seasons (MAM - March through May, 171 

JJA - June through July, SON - September through November, DJF - December through February). 172 

Data processing and analyses were done in the R environment (RStudio 2022.12.0+353), and 173 

optimal transport calculations were performed using the transport library (Schuhmacher et al., 174 

2022).  175 

3. Methodology 176 

3.1 Unit anomaly transference and Non-Equilibrium Steady State (NESS) 177 

A variety of micro-scale mechanisms govern flow transport and SM-ET coupling, and 178 

describing their footprint scale manifestation requires generalization of the representative 179 

dominant processes (also termed as “effective” processes) keeping the pore-scale physical 180 

description intact (Blöschl & Sivapalan, 1995; Crow et al., 2012; Mohanty, 2013; H. Vereecken 181 

et al., 2007). Utilizing the fundamental mass balance and phase change kinetics, Ouedraogo et al., 182 

(2013) described a non-equilibrium model for water transport (equation 1 and 2),  183 
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𝜕𝜌𝑙

𝜕𝑡
 + 𝛻. (𝜌𝑙 𝑣𝑙)  =  −𝜌𝑣̂                                                                                                                              (1)   184 

𝜕𝜌𝑣

𝜕𝑡
 + 𝛻. (𝐽𝑣)  =  𝜌𝑣̂                                                                                                                                      (2)   185 

where 𝜌𝑙 and 𝜌𝑣 (kg m−3) are the apparent density of soil water and its vapor respectively, 𝑣𝑙 (m 186 

s−1) is the soil water flux, 𝐽𝑣 (kg m-2 s−1) is the vapor diffusion flux, and 𝜌𝑣̂ (kg m−3 s−1) is the 187 

phase-change rate. Assuming a strong degree of coordination between liquid and vapor phase 188 

water transport (Katul et al., 2012), the soil-plant hydrodynamics for vertical water motion on a 189 

footprint scale, equation (1) and (2) can be combined to form a generalized continuity equation 190 

described in terms of effective diffusion flux, 191 

 
𝜕𝜌𝑒𝑓𝑓

𝜕𝑡
 + 𝛻. (𝐽𝑒𝑓𝑓) =  0                                                                                                                                (3)   192 

where 𝜌𝑒𝑓𝑓 (= 𝜌𝑙 + 𝜌𝑣) is the effective density of liquid water and vapor, and 𝐽𝑒𝑓𝑓 (= 𝜌𝑙 𝑣𝑙 + 𝐽𝑣) is 193 

the effective diffusion flux resulting from effective velocity field 𝑣𝑒𝑓𝑓(𝑥) which is a function of 194 

both time 𝑡 and position 𝑥 of the particle undergoing diffusion. Here, effective velocity describes 195 

the net directional movement of water molecules with which they are transported through soil-196 

vegetation continuum during ET. Many experimental studies on evaporation in porous media have 197 

suggested the dominance of vapor flow near the surface (~ 20 to 100 mm) (Brutsaert, 2014; 198 

Lehmann et al., 2008; Shokri et al., 2009). As such for footprint observations of surface retrievals, 199 

we assume SM-ET anomaly transference (water transport) to be dominated by diffusive fluxes and 200 

an instantaneous phase change. The rate of change of these transport fluxes can be described in 201 

terms of NESS, defined as the section of the dynamic regime where SVA spends most of its time, 202 

and mathematically represented as the mode of the distribution, 203 

𝑁𝐸𝑆𝑆𝑋 = 𝑙𝑖𝑚
𝛥(

𝑋𝑡𝑗
 − 𝑋𝑡𝑖

𝑡𝑗 − 𝑡𝑖
)→𝑐

𝑋𝑡𝑗
 − 𝑋𝑡𝑖

𝑡𝑗 − 𝑡𝑖
                                                                                                                  (4)   204 
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where 𝑋𝑡𝑖
 and 𝑋𝑡𝑗

 are successive observations at time 𝑡𝑖 and 𝑡𝑗. Here the limit reflects the slowing 205 

down in rate of change to a steadier value c in the neighborhood of 0 – function of soil and 206 

vegetation type. Thus, NESS represents the coherent macroscopic ensemble of the SM and ET at 207 

footprint scale. For application of OT, NESSSM and NESSET are expressed in the same 208 

configuration space using a dimensionless quantity called the Anomaly Impact Factor (AIF), 209 

defined as the ratio of rate of change of variable at incremental time steps divided by its long-term 210 

standard deviation σ, 211 

𝐴𝐼𝐹𝑋 =
(
𝑋𝑡𝑗

 − 𝑋𝑡𝑖

𝑡𝑗 − 𝑡𝑖
)

𝜎
(
𝑋𝑡𝑗

 − 𝑋𝑡𝑖
𝑡𝑗 − 𝑡𝑖

)

                                                                                                                                        (5)  212 

AIF configuration space (Fig. 1) displays the transformation of SM anomalies distribution to ET 213 

anomalies distribution through an OT framework and provides an advantage of envisioning SM-214 

ET coupling from a disturbance propagation point of view.  215 

3.2 Optimal Transport Framework for SM-ET coupling 216 

Evolution, when stated in terms of statistical physics, is probable motion (Kaila & Annila, 217 

2008). OT provides a linkage between time evolution of probability density of a diffusing particle 218 

and associated entropy production through an analogy to least work done (energy optimum) by the 219 

system. We consider the distance cost function c(x,y) of transporting a single water particle at the 220 

point x ∈ SMAIF to the point y ∈ ETAIF, both defined on AIF configuration space (Fig. 1). Our aim 221 

is to minimize c(x,y) subject to all possible paths of transferring the particle from SMAIF 222 

distribution (say s(x)) to ETAIF distribution (say e(y)). According to Monge-Kantrovich (MG) 223 

minimization problem, the optimal transport cost for c(x,y) between two probability distributions 224 

s(x) and e(y) is defined as 225 

𝐶(𝑠, 𝑒)  =  min
𝜋𝜖𝛿(𝑠,𝑒)

∫ 𝑐(𝑥, 𝑦)𝜋(𝑥, 𝑦)𝑑𝑥𝑑𝑦                                                                                              (6)   226 
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where the lower bound is taken over the entire set 𝛿(𝑠, 𝑒) of joint probability distributions π(x,y) 227 

whose marginal distributions are s(x) and e(y), i.e, 228 

𝛿(𝑠, 𝑒) =  {
𝜋|𝑠(𝑥) =  ∫ 𝜋(𝑥, 𝑦)𝑑𝑦, 

𝑒(𝑦) =  ∫ 𝜋(𝑥, 𝑦)𝑑𝑥
}                                                                                                    (7)   229 

s.t. 𝜋(𝑥, 𝑦) ≥ 0 230 

 231 

Hence, the optimal transport cost gives a minimum of the expected value of the cost c(x,y) 232 

for the joint distribution π(x,y), also referred to as the optimal transport plan (Nakazato & Ito, 233 

2021). Considering L2 norm as the optimal transport cost on the AIF space leads to the L2 - 𝑑𝑊. 234 

Explicitly, the L2 - 𝑑𝑊 between s and e is defined as 235 

𝑑𝑊(𝑠, 𝑒)2 = min
𝜋𝜖𝜔(𝑠,𝑒)

∫||𝑥 − 𝑦||
2
𝜋(𝑥, 𝑦)𝑑𝑥𝑑𝑦                                                                                                   (8)    236 

which is equivalent to optimal transport cost C(s,e)  for the cost function c(x,y) = ||𝑥 −  𝑦||
2
 . 237 

Thus, 𝑑𝑊 as an optimal coupling measure quantifies the Euclidean length-scale for transferring a 238 

unit anomaly from SMAIF to ETAIF. A low 𝑑𝑊 indicates immediate coupling, while a larger 𝑑𝑊 239 

indicates delayed coupling (Fig 1). Here on, 𝑑𝑊 will mean L2 - 𝑑𝑊 and 𝑑𝑊(𝑠, 𝑒)2 will be 240 

represented as 𝑑𝑊
2
 in short. 241 

3.3 A Comprehensive SM-ET coupling framework 242 

Owing to the critical role played by SM-ET coupling, the topic has received a lot of 243 

attention over the years with studies often suggesting contrasting results for similar regions (Koster 244 

et al., 2004; Seneviratne et al., 2010; Tuttle & Salvucci, 2016). The discrepancies in previous 245 

coupling studies stems primarily from the methodology applied (modeled versus observation 246 

based) and corresponding perception of terminologies (positive versus negative coupling, strong 247 

versus weak coupling). Here we propose a more comprehensive division of SM-ET coupling (Fig. 248 

1) starting with a broader segmentation into (a) instant (or immediate) coupling (𝑑𝑊 < 1), and (b) 249 

https://www.zotero.org/google-docs/?qdNITw
https://www.zotero.org/google-docs/?qdNITw
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delayed (or deferred) coupling (𝑑𝑊 > 1). The instant coupled systems are further branched into 250 

(a) dry-coupled (AIF < 0), and (b) wet-coupled (AIF > 0) systems. Dry-coupled systems are regions 251 

which preferentially stay in dry regime (and SM limited) for both SM and ET (for example, arid 252 

and hyper arid regions). These dry-coupled systems are predominantly demand-driven, i.e., a high 253 

vapor pressure deficit allows for quicker transference of anomalies referred to as pulse reserve 254 

mechanism in previous literature (Feldman et al., 2018). On the other extreme are wet-coupled 255 

systems demarcating regions with wet regime preferences (for example humid and super humid 256 

regions). These systems are primarily supply-driven, i.e., a relatively higher SM replenishment 257 

maintains continuous infusion of moisture into the atmosphere. These systems have higher moist 258 

static energy (Eltahir, 1998).   259 

In between the dry-coupled and wet-coupled systems, temperate regions may be featured, 260 

which are largely governed by delayed coupling. However, based on the lagging distribution limb 261 

these delays could be further classified into (i) dry-delay, and (ii) wet-delay. The regions where 262 

surface SM drying (or wetting) does not produce quicker imprints on ET, fall under the purview 263 

of dry (or wet) delayed systems. These can be inferred from spatial maps of fraction of time a pixel 264 

spends in dry or wet regime at any given season. The advantage of such a division is that it naturally 265 

advances the widely accepted ideas of preferential states of soil moisture (D’Odorico & Porporato, 266 

2004; Grayson et al., 1997; Sehgal & Mohanty, 2023) and Budyko framework (Budyko, 1974), 267 

while forgoing earlier terminology conflicts. Additionally, the division allows for quantification 268 

of SM-ET coupling using 𝑑𝑊 which has extensions to understand corresponding entropy 269 

production (described in section 3.4) in SM to ET anomaly transference. It is to be noted that the 270 

proposed division leverages on the fact that vertical forces are dominant over lateral forces and 271 

gravity drainage is seldom captured at footprint scale (Sehgal et al., 2021), hence, all SM anomalies 272 

https://www.zotero.org/google-docs/?9KrtF9
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retrieved are registered as ET anomalies. This simplification provides flexibility in application of 273 

mass continuity equation (and thus pdf conservation).  274 

 275 

Figure 1. Schematic describing the proposed SM-ET coupling from (a) hydro-mechanical 276 

perspective to corresponding (b) statistical physics perspective condensed in the form of SM (blue) 277 

and ET (green) anomaly impact factor (AIF) distributions. Grey arrow from a single SMAIF (blue 278 

circle) to most likely ETAIF (green circle) represents transport instance satisfying optimal cost 279 

function. Wasserstein distance (𝑑𝑊) is the mean value of the square of optimal transportation 280 

distance represented by the length of the arrows connecting all perturbation points from SMAIF to 281 

ETAIF. (c) Based on Anomaly Impact Factor (AIF) values, global SM-ET coupling schemes are 282 

divided broadly into dry coupled (AIF < 0) and wet-coupled (AIF > 0) systems. These can be 283 

further divided into immediate coupling represented by closely spaced AIF distributions with 284 

𝑑𝑊 < 1, and delayed coupling represented by distanced AIF distributions with high 𝑑𝑊 > 1. 285 

 286 
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3.4 Lower bound of Entropy production and Wasserstein Distance relationship 287 

Due to the open-system attributes of the land surface, both heat and mass flow across its 288 

boundaries producing entropy, with the transport of latent heat by vapor flux being the significant 289 

coupling process (Ouedraogo et al., 2013). Benamou & Brenier (2000) were able to prove that for 290 

a particle obeying diffusion equation of the form expressed in equation 3, the 𝑑𝑊 bears direct 291 

linkage to continuum mechanics formulation that states: (1) 𝑑𝑊 gives the lower bound on the 292 

expected value of the square of the effective velocity field 𝑣𝑒𝑓𝑓(𝑥), 293 

𝑑𝑊
2  ≤  𝜏 ∫ ∫ ||𝑣𝑒𝑓𝑓(𝑥)||

2

𝑝𝑡(𝑥)𝑑𝑥𝑑𝑡                                                                                                   (9)
𝜏

0
   294 

where 𝑝𝑡(𝑥) is the probability density of the particle’s position at any time t, and (2) the local mean 295 

velocity can be related to entropy production as 296 

𝛴𝑡 = 
1

𝜇𝑇
∫ ||𝑣𝑒𝑓𝑓(𝑥)||2𝑝𝑡(𝑥)𝑑𝑥                                                                                                             (10)   297 

where we consider the time integral from time 𝑡 = 0 to time 𝑡 = τ. Comparing equations (9) and 298 

(10), the minimum entropy production associated with changing the probability density from an 299 

initial state 𝑠 (in SM) to a final state 𝑒 (in ET) can be expressed in terms of 𝑑𝑊, 300 

𝛴𝑡 ≥
1

𝜇 𝑇𝑠𝑢𝑟𝑓 𝜏
𝑑𝑊(𝑠, 𝑒)2                       (11) 301 

where τ (s) is the duration of the anomaly transfer process or memory timescale, μ (s kg-1) is water 302 

particle mobility,  𝑇𝑠𝑢𝑟𝑓 (K) is temperature of the land (soil + vegetation) surface, and 𝛴𝑡 (J m-2 K-303 

1) is the entropy produced. Hence, for a stochastic process connecting the initial and final states, 304 

the right-hand side of equation 11 gives the lower bound on the entropy production, say 𝛴∗. An 305 

important consequence of equation 11 is the existence of a unique thermodynamic force which 306 

realizes minimal dissipation (Dechant & Sakurai, 2019).  307 

https://www.zotero.org/google-docs/?e6B49r
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Kinetic theory of gases defines mobility (𝜇) of a particle as the ratio of drift velocity and 308 

force field. From an analogous treatment, we consider the directional movement of water 309 

molecules as the “effective” velocity with which they are transported in the SVA continuum under 310 

an applied force field. So, the water particle mobility can be written as: 311 

𝜇 =  
𝑣𝑒𝑓𝑓

𝐹𝑒𝑓𝑓
                                                                                                                                                     (12) 312 

From Newton’s second law: 313 

𝐹𝑒𝑓𝑓 = 
𝑑(𝑚𝑣𝑒𝑓𝑓)

𝑑𝑡
= 𝑚 × (

𝑑𝑣𝑒𝑓𝑓

𝑑𝑡
) + 𝑣𝑒𝑓𝑓 × (

𝑑𝑚

𝑑𝑡
)                                                                        (13) 314 

The rate of change in effective velocity (first term) is order of magnitudes smaller than mass flux 315 

contribution (second term), and hence can be neglected, giving a first order approximation of 316 

equation (13): 317 

𝐹𝑒𝑓𝑓 ≡ 𝑣𝑒𝑓𝑓 × (
𝑑𝑚

𝑑𝑡
)                                                                                                                               (14) 318 

This mass flux on a footprint scale is the amount of water vapor leaving the surface, i.e., physically 319 

equivalent to ET (kg s-1),  320 

𝐹𝑒𝑓𝑓 ≡ 𝑣𝑒𝑓𝑓 × ET                                                                                                                                      (15) 321 

From equation (12) and (15) we obtain 322 

𝜇 =  
1

𝐸𝑇
                                                                                                                                                        (16) 323 

Here we note that the mass flux leaving the surface is dependent on external parameters 324 

such as temperature, vapor gradient, partitioning of net radiation, roughness of land surface, etc. 325 

but following the argument by (Brutsaert, 2014) that the moment-to-moment changes of these 326 

additional factors compensate each other, these are omitted for brevity. Hence, on a footprint scale, 327 
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this force and resulting field enables the effective water particle mobility which can be equivalently 328 

expressed as the inverse of ET expressed in kg s-1 (supplementary material), 329 

𝛴∗ =
𝐸𝑇

 𝑇𝑠𝑢𝑟𝑓 𝜏
𝑑𝑊(𝑠, 𝑒)2                                                                                                                              (17)   330 

3.5 Optimization entanglement and the physical significance of Wasserstein Distance 331 

Using classical formulations, earlier literatures (Kleidon, 2008; Porada et al., 2011) 332 

proposed entropy production for ET to be function of chemical potential gradient (∆𝜔) between 333 

atmospheric boundary layer and diffusing surface: 334 

𝛴 =
𝐸𝑇

 𝑇𝑠𝑢𝑟𝑓
∆𝜔                                                                                                                                             (18) 335 

The diffusing surface, here, denotes the surface from where water particle escapes to the 336 

atmosphere, for example, soil surface for a barren open land or leaf surface for a vegetated area. 337 

The chemical potential of water is defined as the free energy per mole of water and elaborates the 338 

potential for a substance to move, or in other words, to do work. The statistical formulation (Eqn. 339 

17) and classical formulation (Eqn. 18) are analogues in construction. By introducing a constant 340 

of proportionality, we can equate both the formulations to obtain:  341 

𝑑𝑊(𝑠, 𝑒)2 = 𝓀. 𝜏. ∆𝜔                                                                                                                                (19) 342 

where 𝓀 is proportionality constant (expressed in kg/J-s) which establishes a connection between 343 

the statistical and classical formulation. The product (𝜏. ∆𝜔) in eqn. (14) is equivalent to 344 

action (per unit mass) in classical mechanics which describes how a physical system evolves over 345 

time. Mathematically, action is a functional which takes the trajectory of the system as its argument 346 

and integrated over time span of state evolution. Hence, it is path dependent and the principle of 347 

least action (Sussman & Wisdom, 2001) postulates that the path followed by a physical system is 348 

that for which the action is minimized. In the context of SM-ET coupling, it means that the water 349 
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particle will always follow the path that minimizes the time-averaged ∆𝜔. Therefore, 𝜏 and ∆𝜔 are 350 

entangled such that the product (𝜏. ∆𝜔) will always be optimized. As such, the optimization of 351 

𝑑𝑊 from MG minimization problem can be rooted in terms of classical treatment as the 352 

optimization (minimization) of entangled space of values for (𝜏. ∆𝜔). Thus, 𝑑𝑊 as the Euclidean 353 

length-scale can be defined as the path equivalent that optimizes (𝜏. ∆𝜔) for a unit water potential 354 

gradient. In other words, optimization of SM-ET coupling leads to  (𝜏. ∆𝜔) entanglement giving 355 

the lower bound on the entropy production as the action measured by the path length of the 𝑑𝑊 356 

(Nakazato & Ito, 2021). 357 

3.6 Memory timescale formulation 358 

By virtue of this entanglement, the optimization formulation yields: 359 

𝜕(𝜏. ∆𝜔)

𝜕𝑑𝑊
2

= 0                                                                                                                                               (20) 360 

Expanding by chain rule, we obtain: 361 

∆𝜔 ×
𝜕(𝜏)

𝜕𝑑𝑊
2
+  𝜏 ×

𝜕(∆𝜔)

𝜕𝑑𝑊
2

= 0                                                                                                               (21) 362 

∆𝜔 ×
𝜕(𝜏)

𝜕𝑑𝑊
2
+  𝜏 ×

1

𝛾
= 0                                                                                                                         (22) 363 

where 𝛾 is the seasonal slope of 𝑑𝑊
2
versus ∆𝜔 plot and describes the sensitivity of SM-ET 364 

coupling to the induced potential gradients. Dividing (22) by ∆𝜔, we obtain: 365 

𝜕(𝜏)

𝜕𝑑𝑊
2
+ 

1

𝛾∆𝜔
× 𝜏 = 0                                                                                                                              (23) 366 

Equation (23) represents a first order homogeneous differential equation whose solution is: 367 

𝜏 = 𝜏0exp (
−𝑑𝑊

2

𝛾∆𝜔
)

 

                                                                                                                                  (24) 368 
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where 𝜏0 is the integral constant, hereon defined as the inherent timescale of anomaly transference. 369 

The dimensionless quantity (𝜏/𝜏0) can be used as a fundamental descriptor of water-energy 370 

coupling for a hydroclimate under induced potential gradients. To keep the problem tractable, we 371 

will consider a rudimentary approximation of 𝜏0 = 𝐿𝑑 𝐾𝑒𝑓𝑓⁄ , where 𝐿𝑑 is the traverse length for 372 

water particle, and 𝐾𝑒𝑓𝑓 is the effective conductivity of the land surface. We acknowledge that the 373 

solution for eqn. (24) is dependent on the initial value 𝜏0 whose approximation using rudimentary 374 

approach may not be appropriate for all cases but nevertheless, it provides a first order estimation 375 

of 𝜏 for testing our hypothesis and comparing it with results from earlier literatures.  376 

3.7 Chemical potential gradient as thermodynamic force 377 

To understand the functional form of the optimization entanglement, we compute chemical 378 

potential gradient (∆𝜔) which is the absolute difference between atmospheric boundary layer 379 

potential and diffusing surface potential: 380 

∆𝜔 =  |𝜔𝑏𝑙 − 𝜔𝑠𝑢𝑟𝑓|                                                                                                                                 (25) 381 

where 𝜔𝑠𝑢𝑟𝑓 = (𝜔𝑠𝑜𝑖𝑙 + 𝜔𝑣𝑒𝑔) is the diffusing surface potential. The potential of water vapor in 382 

the atmospheric boundary layer is computed as: 383 

𝜔𝑏𝑙 = 𝑅𝑣𝑎𝑝𝑇𝑎𝑖𝑟𝑙𝑛(𝑅𝐻) + 𝑔𝑧𝑎𝑖𝑟                                                                                                             (26) 384 

where 𝑅𝑣𝑎𝑝 is the specific gas constant of water vapor (= 461.5J kg-1 K-1), 𝑇𝑎𝑖𝑟 and RH are the 385 

mean temperature and relative humidity of the boundary layer, respectively, 𝑔 is the acceleration 386 

due to gravity, and 𝑧𝑎𝑖𝑟 is the height of measurement relative to mean sea level. Pixels with RH > 387 

1 (super saturated condition) were removed from the analysis. The water potential in the 388 

vegetation is computed using: 389 

𝜔𝑣𝑒𝑔 = (𝜃𝑣𝑒𝑔 − 1.0) × Ψ𝑃𝑊𝑃                                                                                                                 (27)  390 
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𝜃𝑣𝑒𝑔 is the relative vegetation water content and Ψ𝑃𝑊𝑃 is the permanent wilting point which is set 391 

to an upper threshold of 1471.5 J kg-1 (Porada et al., 2011). The vegetation water content (in kg m-392 

2) was derived from normalized difference vegetation index (NDVI) data using SMAP algorithm 393 

(Chan, 2013): 394 

𝜃∗
𝑣𝑒𝑔 = (1.9134 × 𝑁𝐷𝑉𝐼2 − 0.3215 × 𝑁𝐷𝑉𝐼) + 𝑠𝑡𝑒𝑚 𝑓𝑎𝑐𝑡𝑜𝑟 × (

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

1 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
)             (28) 395 

The soil water potential is a sum of matric (Ψ𝑚) and gravitational (𝑔𝑧𝑠𝑢𝑟𝑓) potential.  396 

𝜔𝑠𝑜𝑖𝑙 = Ψ𝑚 + 𝑔𝑧𝑠𝑢𝑟𝑓                                                                                                                               (29) 397 

where 𝑧𝑠𝑢𝑟𝑓 is the depth of water table from soil surface. Because we are concerned with the 398 

difference in potential ∆𝜔, the difference in gravitational potential (𝑧𝑎𝑖𝑟 − 𝑧𝑠𝑢𝑟𝑓)𝑔 is taken an 399 

average value of  2 × 𝑔 as the values of reanalysis meteorological variables are quantified for a 400 

height of 2m above the land surface. For Ψ𝑚, we used van Genuchten (vG) soil water retention 401 

curve (SWC) (van Genuchten, 1980) for computation, 402 

𝑆𝑒𝑓𝑓  =  
𝜃 − 𝜃𝑟

𝜃𝑠 − 𝜃𝑟
 =  

1

[1 + (𝛼|Ψ𝑚|𝑛)]1−1/𝑛                                                                                                       (30)             403 

where 𝑆𝑒𝑓𝑓(-) is the effective saturation, 𝜃 (m3 m-3) is the soil moisture reading,  𝜃𝑠 (m3 m-3) is 404 

saturated water content, 𝜃𝑟 (m3 m-3) is residual water content, 𝛼 (m-1) is inverse of the air entry 405 

pressure, 𝑛 (-) is measure of the pore-size distribution, and Ψ (m) is the soil matric potential. Gupta 406 

et al. (2022 and 2020) provide maps of global vG parameters values (𝛼, 𝑛, 𝜃𝑟 and 𝜃𝑠) and saturated 407 

hydraulic conductivity (𝐾𝑠) at field scale (i.e., 1 km spatial resolution). For converting these field-408 

scale parameters to footprint scale effective values, we employ the upscaling guidelines set by Zhu 409 

& Mohanty (2002) for heterogeneous soils with variable saturation: arithmetic means for 𝐾𝑠 and 410 

𝑛, a value between arithmetic and geometric means for 𝛼 when 𝐾𝑠 and 𝛼 are highly correlated, and 411 

a value between geometric and harmonic means for 𝛼 when 𝐾𝑠 and 𝛼 are poorly correlated. Note 412 
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that correlation here refers to the parameter correlation of the coherency spectrum. For 413 

computation of 𝜏0, 𝐿𝑑 was approximated to canopy height + top soil depth (= 0.05m), while 414 

effective hydraulic conductivity was computed using series formulation, i.e., 𝐾𝑒𝑓𝑓 =415 

 (𝐾𝑝𝑙𝑎𝑛𝑡 × 𝐾𝑠𝑜𝑖𝑙) (𝐾𝑝𝑙𝑎𝑛𝑡 + 𝐾𝑠𝑜𝑖𝑙)⁄  for vegetated surface and = 𝐾𝑠𝑜𝑖𝑙 for barren lands, expressed in 416 

m/s. Note that to reduce the artificial speckling effect introduced due to piecewise regression for 417 

computing 𝛾, we smooth out the resulting raster for 𝜏 using a focal aggregation of 7x7 window. 418 

 419 

4. Results and Discussion 420 

4.1 Global Non - Equilibrium Steady States of SM (NESSSM) and ET (NESSET) 421 

Fig. 2 and 3 showcase the seasonal variation in NESSSM and NESSET globally. The non-422 

equilibrium situation is caused by replacing the partially saturated air with relatively drier air 423 

parcels by continuous atmospheric circulation which results in a macroscopic thermodynamic non-424 

equilibrium between SM and ET. Soil drying (negative NESSSM) is dominantly prevalent across 425 

landscapes except when atmospheric forcings such as precipitation or melting of snow causes soil 426 

to predominantly wet. Whereas the spatial structuring for NESSET reflects seasonally dominant - 427 

latitudinal patterns with southward successive shifts in positive NESSET, starting from northern-428 

mid latitudes in MAM, to northern-tropical latitudes in JJA and to southern counterparts during 429 

SON and DJF seasons. 430 

During MAM, wet anomaly (positive NESSSM) is prevalent at higher latitudes, Sahel 431 

region of Africa, eastern Asia (Central and Northeastern China, North Korea, Laos, Cambodia, 432 

Thailand, and Vietnam), and parts of southern Australia. During JJA, the monsoonal rainfall in 433 

Sahel region, Indian subcontinent and the western Mexico intensifies the wetting of soil (Fig. 2). 434 

The dual availability of moisture and energy allows the monsoonal imprints observed in NESSSM 435 
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to be transferred to NESSET with increasing flux rates throughout JJA (Fig 3). However, these 436 

regions undergo a complete reversal in the following seasons of SON and DJF.  437 

Global arid and hyper-arid regions (western CONUS, Iberian Peninsula, central west 438 

Australia, southern Africa, and southern east South America) display a declining flux rate 439 

throughout all seasons. Interestingly, most of the CONUS spends more time drying soil than 440 

wetting except evergreen forest in northwestern coastline in SON (Fig. 2). One important attribute 441 

in case of Australian climate is the central deserted region which across all seasons remain in the 442 

desiccated state or nearly zero NESSSM which is a physical manifestation of low moisture leading 443 

to lower capacity to lose moisture further. The insets in Fig. 2 and 3 represent variations of NESSSM 444 

and NESSET observed across hydroclimates. These insets highlight two unique features about 445 

seasonal climatic distribution (i) compared to NESSSM, a higher in-class variance is observed in 446 

NESSET, a characteristic most likely attributed to atmospheric fluctuations, and (ii) across classes, 447 

the seasonal variability is higher in temperate climates followed by humid regions, while super 448 

humid and hyper arid regions display relatively stable cross-season distribution.   449 

 450 

Figure 2. Global maps of Non-Equilibrium Steady State (NESSSM) for four seasons - MAM, JJA, 451 

SON, and DJF. Insets show relative distribution of NESSSM amongst global hydroclimates (SH: 452 
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Super Humid, H: Humid, T: Temperate, A: Arid, HA: Hyper Arid). The vertical dashed line (black) 453 

in insets represent NESSSM of zero. The color sequential follows an approximate quantile division 454 

of data points. Missing/masked data are represented in white color. 455 

 456 

 457 

Figure 3. Global maps of Non-Equilibrium Steady State (NESSET) for four seasons - MAM, JJA, 458 

SON, and DJF. Insets show relative distribution of NESSET amongst global hydroclimates (SH: 459 

Super Humid, H: Humid, T: Temperate, A: Arid, HA: Hyper Arid). The vertical dashed line (black) 460 

in insets represents NESSET of zero. The color sequential follows an approximate quantile division 461 

of data points. Missing/masked data are represented in white color. 462 

 463 

4.2 Global Wasserstein Distance (𝒅𝑾) and the Coupling-Aridity Tradeoff  464 

Fig. 4 showcases the seasonal variation in global 𝑑𝑊. A clear east-west division across 465 

CONUS is apparent in most seasons, however, the difference peaks during summer (JJA) and 466 

autumn (SON) months, albeit their causes remain divergent (explained through supplementary Fig. 467 

S1). Specifically, during JJA, eastern CONUS exhibits a fluctuating SM trailed by ET with land 468 

surfaces adjusting to the scattered patterns with the wet-delay enhancing as SON approaches. 469 
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Interestingly western CONUS exhibits lower 𝑑𝑊 (i.e., immediate coupling) throughout summer 470 

(JJA) and autumn (SON) but the coupling shifts from preferentially dry to wet (insets in Fig. S1a). 471 

Similarly, the evergreen forests on the northwest corridor of CONUS showcase higher 𝑑𝑊 which 472 

could be attributed to the lower impact of surface moisture on ET, indicating the resilience to 473 

hydrological droughts. A unique characteristic of continental climates such as Kazakhstan and 474 

Mongolia were the oscillating behavior between dry-coupled state in JJA to wet-coupled state in 475 

SON (insets in Fig. S1b). Such a strong oscillation could be attributed to the effect of hot winds 476 

from Iranian deserts during summer and the effect of cold air front from polar regions in winter, 477 

conjoined with meager oceanic influence. The insets provide histograms with wider variance in 478 

JJA as larger numbers of pixel values are available/retrieved. Interestingly, regions located at 479 

higher latitudes of North America, Europe and Asia displayed high 𝑑𝑊 in JJA, however, we found 480 

a latitudinal partitioning (insets in Fig. S1a) existing between mid-northern latitudes (undergoing 481 

dry delay) and the northernmost corridor (undergoing a wet delay) preferably due to energy limited 482 

state.  483 

The spatial heterogeneity witnessed across seasons was captured in coupling-aridity 484 

tradeoff (Fig. 4b) with temperate climates generally showing higher mean 𝑑𝑊 (1.11 ± 0.25) while 485 

the coupling metric tapers out on either extreme (0.83 ± 0.15 for SH and 0.81 ± 0.18 for HA) 486 

(supplementary Table S3). This tradeoff bears implications on areas projected to witness stochastic 487 

changes in precipitation, and thereby, on atmospheric and soil aridity (Maestre et al., 2016). For 488 

instance, an increase in aridity would drag the SVA system into dry coupling state (lower 𝑑𝑊) 489 

making it vulnerable to atmospheric dryness (such as heat dome formation during sustained heat 490 

waves). Under such circumstances, surface moisture becomes crucial in guiding SM-ET coupling 491 

and frequent soil desiccation will significantly impact the microbial and organic load of topsoil 492 



Manuscript submitted to Water Resources Research 

24 

 

(Berdugo et al., 2020). Besides coupling, however, the resilience of SVA systems needs 493 

accounting for the absolute capacity of anomaly transference which necessitates changes in 494 

system’s entropy production.  495 

 496 

Figure 4. (a) Global maps of Wasserstein distance (𝑑𝑊) signifying SM-ET coupling strength for 497 

four seasons - MAM, JJA, SON, and DJF. Insets show seasonal histogram of 𝑑𝑊. The color 498 

sequential follows a quantile division of data points. Missing/masked data are represented in white 499 

color. (b) Boxplots represent the global average distribution of 𝑑𝑊 across hydroclimates (SH: 500 

Super Humid, H: Humid, T: Temperate, A: Arid, HA: Hyper Arid). 501 

 502 

4.3 Complimentary evolution pathways for climatic regimes 503 

During evolution, diverse paths of energy dispersal are explored in search of optimality 504 

(Feynman, 1948). This constrains the particles into obeying the entanglement (𝜏. ∆𝜔) obtained 505 

from principle of least action that couples the flow of energy with time. The memory timescale 𝜏 506 

is, hence, a natural outcome of entanglement with energy flowing down the potential gradient 507 

between the potential 𝜔𝑏𝑙 at the atmospheric boundary layer and 𝜔𝑠𝑢𝑟𝑓 at the land surface. These 508 
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flows of energy propel systems towards more probable NESS eventually acquiring quasi-509 

stationarity with respect to the surroundings (Tuisku et al., 2009).  510 

Figure 5a shows the joint density plot for 𝑑𝑊
2
 vs. ∆𝜔 matrix. The color gradient in grey 511 

scale reflects higher absolute values of slope factor 𝛾. The dashed ellipses encompass the 512 

interquartile range of values for all the hydroclimates. The orientation of the climatic ellipses 513 

provides information about the relationship between the shifting dominant modes of evolution with 514 

changing aridity. The Eigenvectors associated with the major axis of the ellipse correspond to the 515 

dominant modes of evolution and characterizes the behavior of the system’s state trajectory when 516 

subjected to the dynamics governed by the 𝑑𝑊
2
 vs. ∆𝜔 matrix. For instance, the eigen vectors (𝑋𝑆𝐻

⃗⃗⃗⃗ ⃗⃗  ⃗ 517 

& 𝑋𝐻𝐴
⃗⃗ ⃗⃗ ⃗⃗  ⃗ ) point towards the dominant direction of evolution for super humid (SH) and hyper arid 518 

(HA) climates. The arrows indicate the tendency of the systems to diminish the driving potential 519 

∆𝜔. The approximate orthogonality between 𝑋𝑆𝐻
⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑋𝐻𝐴

⃗⃗ ⃗⃗ ⃗⃗  ⃗ suggests the complimentary 520 

evolutionary pathways adapted by either extremes for mitigating driving potential ∆𝜔. Physically, 521 

this symbolizes the scarcity of resources (water limitation in case of arid climates and energy 522 

limitation in case of humid climates) that generates this bias for the diverse pathway emergence as 523 

means of effective evolution. This is substantiated through the zoning of water surplus versus 524 

energy surplus systems (Fig. 5a) delineated by the minor axis of temperate ellipse extended 525 

throughout the space. 526 

As evident from Fig. 5a, the system's state converges towards the global maxima for |𝛾| 527 

over time, where 𝛾 value presents the sensitivity of SM-ET coupling to the driving force field. The 528 

convergence for all hydroclimates around this global maximum implicitly indicates the existence 529 

of optimal combination of coupling metric (𝑑𝑊
2) and driving force (∆𝜔). The influence of 530 

different directions of the state-evolution is also suggestive of the fact that the cost paid by the 531 
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hydroclimates in terms of memory timescale 𝜏 will be different. The global seasonal maps of 532 

relative time (𝜏/𝜏0)  is provided in the supplementary Fig. S4. Although there is significant 533 

heterogeneity in global values of (𝜏/𝜏0), coherent regional patterns are also discernible. For 534 

instance, in United States with the advent of fall (SON) and winter (DJF) seasons, the atmospheric 535 

demand drops increasing 𝜏/𝜏0 for arid climates. Similarly, an increase in ∆𝜔 during spring (MAM) 536 

and summer months (JJA) reduces 𝜏/𝜏0 value in the higher latitudes. Furthermore, Fig. S2 and S3 537 

represent inversely correlated spatial distributions in regions with negative 𝛾 and vice-versa. 538 

Figure 5b substantiates the global maxima existence through the theoretical sensitivity 539 

plots for the relative time (𝜏/𝜏0) as a function 𝛾 and ∆𝜔 for a unit 𝑑𝑊
2
. 𝜏/𝜏0 indicates the deviation 540 

of actual memory timescale (𝜏) from inherent timescale (𝜏0) of a pixel due to external driving 541 

forces. An increase in absolute value of 𝛾 leads to stable values for relative time (𝜏/𝜏0 → 1), while 542 

a decreasing absolute value of 𝛾 leads to unstable values for relative time (𝜏/𝜏0 → 0 or ∞). A 543 

change in ∆𝜔 results in scaling of the 𝜏/𝜏0 without distorting the functional form. Figure 5c & 5d 544 

verifies this with variation seen in global hydroclimates for 𝜏/𝜏0 due to changes in ∆𝜔, i.e., the 545 

higher fluctuations of ∆𝜔 observed in arid climates creates extended diversions for the 𝜏/𝜏0, and 546 

the trend declines with increasing humidity.  547 

 548 
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 549 

Figure 5. (a) The optimum zone of confluence (global maximum) for hydroclimates (SH: Super 550 

Humid, H: Humid, T: Temperate, A: Arid, HA: Hyper Arid) for 𝑑𝑊
2
 vs. ∆𝜔 joint density plot with 551 

major Eigenvectors (𝑋𝑆𝐻
⃗⃗ ⃗⃗ ⃗⃗  ⃗ & 𝑋𝐻𝐴

⃗⃗ ⃗⃗ ⃗⃗  ⃗ ) indicating differences in evolutionary pathways for superhumid 552 

(SH) and hyper arid (HA) climates. Dashed ellipses represent inter-quartile domain occupied by 553 

respective hydroclimates, while the inclined dotted line represents minor axis of temperate climate 554 

ellipse, corresponding to zoning of energy limited and water limited systems. The arrows on the 555 

eigen vectors indicate the tendency of systems to diminish the potential gradient to attain quasi-556 

stationarity. (b) Sensitivity of 𝜏/𝜏0 to change in slope factor 𝛾 and potential gradient ∆𝜔 for a 557 

given coupling bound (dw
2 = 1.0). (c & d) Hydroclimate wise boxplots for relative time (𝜏/𝜏0) 558 

and potential gradient ∆𝜔. The observed variations in ∆𝜔 is reciprocated through variations in 559 

computed 𝜏/𝜏0. 560 

 561 

4.4 Memory timescale and time-gradient entanglement  562 
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Typically, literatures suggest that the time taken by landscapes to dissipate an anomaly 563 

may range from ~ 103 secs (molecular diffusion scale) to ~ 107 secs (seasonal scale) (Ghannam et 564 

al., 2016; Haghighi et al., 2013; Wang et al., 2004; Wu & Dickinson, 2004). This spectrum in 565 

memory timescale spanning across 4 orders of magnitude is suggestive of the diverse mechanisms 566 

at interplay in SM-ET coupling. The global map of median 𝜏 (denoted as 𝜏̂) across all seasons 567 

(MAM, JJA, SON, DJF) and its pdf is shown in Figure 6a (i) and (ii), while its seasonal map is 568 

provided in suppl. Fig. S4. The general observation in spatial median structure reflects a declining 569 

value of 𝜏̂ with an increase in landscape aridity. This can be profoundly observed for arid and 570 

hyperarid regions across all major continents which stems from higher atmospheric demand, 571 

leading to quicker moisture depletion compared to temperate and humid climates. Interestingly, 572 

the pdf structure is positively skewed with dashed vertical lines representing 2 days (1st quantile), 573 

9 days (median) and 30 (3rd quantile) days respectively. These values are in line with findings in 574 

earlier literatures that have reported timescales of 10.4 days for agricultural regions, < 20 days for 575 

grassland and > 30 days for regions with appreciable tree cover (Dardanelli et al., 2004; Teuling 576 

et al., 2006; McColl et al., 2017). The horizontal lines with arrows in Fig. 6a(ii) showcase the IQR 577 

spread of 𝜏̂ observed for different hydroclimates, with a general trend of longer moisture 578 

dissipation timescale with increasing humidity.  579 

Figure 6b showcases that the best fit for entanglement (𝜏. ∆𝜔) optimization takes the 580 

functional form of exponential decay, parameterized using limit factor (𝛼) and decay constant (λ). 581 

Two corollaries follow from this: 582 

a) The rate of change 𝑑𝜏 𝑑∆𝜔⁄  is proportional to its current value 𝜏, i.e., 𝑑𝜏 𝑑∆𝜔⁄ = − λ𝜏. 583 

Hence, the decay constant (λ) signifies the susceptibility of a system to change its response 584 

time (𝜏) for a unit shift in potential gradient. 585 
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b) When the potential gradient diminishes to zero, i.e., ∆𝜔 → 0, the anomaly timescale will 586 

tend to the limit factor, i.e., 𝜏 →  𝛼. 587 

The inset table in Fig. 6b provides median values for the 𝛼 and λ for different hydroclimates 588 

and the ensemble (all hydroclimates taken together). Global estimates of these parameters can be 589 

crucial for predicting memory timescales for projected potential gradients in climate models 590 

(Koster & Suarez, 2001). The ensemble fit gives a good efficiency of Kling-Gupta Efficiency 591 

(KGE) of 0.54 with a decay rate of 1.10 x 10-5 Kg J-1 which is close to the temperate (T) climate 592 

with reasonably good efficiency (KGE = 0.47). However, on either extreme on aridity scale, λ 593 

value gets larger (with the exception for SH climate).  594 

The faster decay of memory dissipation time for arid climates (Fig 6 (b)) can be ascribed 595 

to concomitant turbulent diffusivity whereby, the vapor transport in the top soil (~ 2 – 4 cm) is 596 

greatly enhanced by atmospheric turbulence (Brutsaert, 2014). This also suggests why a 597 

deterministic loss model works for arid conditions (McColl et al., 2019). On the other hand, larger 598 

λ values for humid climates can be attributed to the tendency of vegetation to lower their 599 

conductivity in order to evade cavitation (Katul et al., 2012; Manzoni et al., 2013). The 600 

incongruous behavior of SH model fit (KGE = - 0.34) is most likely due to significant 601 

observational uncertainties from SM and ET remote sensing and meteorological reanalysis data. 602 

Furthermore, the exponential decay model also implies the reasoning behind the emergence of 603 

coupling-aridity tradeoff, with the optimized product (𝜏. ∆𝜔) value higher for temperate climates 604 

relative to other climates. The non-linearity in time scale decay also signifies why usage of a linear 605 

correlation coefficient or variations thereof by prior studies (Koster et al., 2004; Seneviratne et al., 606 

2010; Tuttle & Salvucci, 2016) might be a useful tool but can give contradictory results based on 607 

the run time considered for the analysis. 608 
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 609 

 610 

Figure 6. (a-i) Global map of median memory timescale (𝜏̂) across all seasons. (a-ii) Probability 611 

Density Function (pdf) of spatial distribution 𝜏̂ values. The brown vertical dashed lines indicated 612 

1st quartile, median, and 3rd quartile while horizontal bars show the IQR for different 613 

hydroclimates. (b) Memory timescale as a function of potential gradient follows an exponential 614 

decay model. Inset table quantifies the median values for fitted model parameters: 𝛼 (limit factor) 615 

and λ (decay constant). 4.5 Lower Bound of Entropy Production and its seasonal variations 616 

Although the concept of thermodynamics and entropy was first extensively introduced 617 

back in 1943 (Edlefsen & Anderson, 1943), the theoretical understanding of how entropy 618 
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production is related to SM-ET coupling has been lacking. In practice, entropy production 619 

manifests itself in the form of dissipation (Kleidon, 2022) of energy that is irreversibly lost into 620 

the environment and hence, provides a quantitative characterization for investigating non-621 

equilibrium processes. For seasonal 𝛴∗ computation, we consider the entire tri-month period, i.e., 622 

𝜏 = 90 days. Figure 7 shows that 𝛴∗ varies greatly among regions, with predominant seasonal 623 

patterns in tandem with ET variability. Throughout all seasons, global arid and hyperarid regions 624 

produce lower amounts of entropy compared to vegetated and forested regions - primarily due to 625 

lower SM availability. This transcends to higher fluctuations prevalent in most parts of Europe, 626 

Russia, India, parts of Africa, and the northern borderline of Australia which mostly attribute to 627 

humid or temperate regions with stronger climatic influences. Both availability of moisture and 628 

energy drive entropy production, signifying the departure of the system from equilibrium 629 

conditions - NESSSM and NESSET away from zero. Wet soil surfaces enhance the total heat flux 630 

from the surface into the boundary layer (Eltahir, 1998), thus producing higher entropy. Boxplots 631 

(Fig. 7b) suggest higher entropy production in super humid (24.30 ± 5.25 x10-6 J m-2 K-1) and 632 

humid (21.10 ± 4.88 x10-6 J m-2 K-1) regions and consistent decline in entropy with increase in 633 

aridity (suppl. Table S4). These findings are similar to a previous simulation study (Kleidon, 2008) 634 

which showcased that higher entropy is produced in regions with higher ET. However, the 635 

inclusion of 𝑑𝑊 in our study differentiates systems based on their ability in utilization of available 636 

energy for unit anomaly transference. Thus, 𝑑𝑊 can also be interpreted as an efficiency factor. 637 

This is critical to understand how the variability in SM-ET coupling will affect the ability of 638 

ecosystems to produce entropy which is a direct indicator of the capacity of the system to work.  639 

Discrepancies in 𝑑𝑊 hint to the fact that although entropy production is always positive, 640 

different ways of performing the same operation may incur more or less dissipation (Dechant & 641 
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Sakurai, 2019). Another conjecture from the coupling-aridity tradeoff and entropy production 642 

capacity is that for a given amount of flux and land temperature, temperate climates bear the least 643 

efficiency compared to other hydroclimates for unit anomaly transference. This could be argued 644 

to be most likely due to their bistable nature for soil moisture subsidence (Sehgal & Mohanty, 645 

2023).  646 

 647 

Figure 7. (a) Global maps of Entropy production (lower bound, 𝛴∗) for four seasons - MAM, JJA, 648 

SON, and DJF. Insets show seasonal histogram of 𝛴∗. The color sequential follows a quantile 649 

division of data points. Missing/masked data are represented in white color. (b) Boxplots represent 650 

the global average distribution of 𝑑𝑊 across hydroclimates (SH: Super Humid, H: Humid, T: 651 

Temperate, A: Arid, HA: Hyper Arid). 652 

 653 

4.6 Dissipative Energy Barriers for Terrestrial Ecosystems  654 

Terrestrial biota substantially affects the exchange of fluxes rendering forests to be 655 

biologically the most productive ecosystem (Holdaway et al., 2010). However, maintenance of 656 

this productivity requires a continuous influx of solar energy and precipitation. Horowitz et al., 657 

(2017) argue that to maintain an arbitrary non-equilibrium state, a minimum rate of energy must 658 
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be supplied and dissipated by the system. Hence, the influx of energy to ecosystems is 659 

accompanied by higher entropy production (or higher dissipation), implying a one-to-one 660 

correspondence between productivity and dissipative energy state the system is in. Therefore, there 661 

exists energetic barriers amongst ecosystems and by quantifying the amount of entropy production 662 

from SM-ET coupling, we can place terrestrial ecosystems in the context of dissipative energy 663 

states. Fig. 8a showcases global entropy thresholds for terrestrial ecosystems. Broadly, ecosystems 664 

display a hierarchy of entropy thresholds (i.e., e1 through e5) with increasing median energy 665 

dissipation levels from barren to forested ecosystems. Croplands are highly regularized systems 666 

and hence are considered as a reference case with respect to other systems which are subject to 667 

less human intervention. The difference in median energy levels represent the dissipative energy 668 

barriers (𝛥e) between ecosystems. The quantitative values are provided in supplementary Tables 669 

S5 and S6, while emphasis is laid on qualitative understanding in subsequent explanations.  670 

One of the major imprints of climate change is projected to be global aridity shifts 671 

concurrently affecting multiple ecosystem functioning (Berdugo et al., 2020; Huang et al., 2016; 672 

Maestre et al., 2016). Earlier literatures have argued tropical forests and savannas to represent 673 

alternative stable states (Hirota et al., 2011), which align consecutively in the entropy hierarchy 674 

separated by an energy barrier 𝛥e45. Similarly, the lower we transcend in energy levels, the higher 675 

the dissipative energy barriers become between two ecosystems. For instance, the tipping of barren 676 

land ecosystems (with dissipative energy e1) into forest ecosystems (with dissipative energy e5) 677 

requires overcoming an energy barrier of 𝛥e15 which is ~ 3 x 𝛥e12 i.e., tipping of barren lands into 678 

grasslands. The lowest level of barren lands in entropy hierarchy is because of sparse vegetation 679 

cover (< 10% according to IGBP definition) and relatively infertile soil, while as the vegetation 680 

cover increases the dissipative capacity of the system improves. We argue that these energy 681 
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barriers prevent ecosystems from undergoing catastrophic shifts (van Nes et al., 2016; Scheffer et 682 

al., 2001).  683 

From the perspective of resilience, the ecosystem's response to perturbations could be 684 

understood as the entropy produced in adjusting to atmospheric conditions. Ecosystems with 685 

higher resilience will maintain their long-term seasonal behavior and gradually adapt or mitigate 686 

the effects of stochastic anomalies. We illustrate this by considering the Murray - Darling basin 687 

(MDB) in Australia for its diverse climate ranging from temperate in the south, subtropical in the 688 

north, to semi-arid in the west, and entails a variety of ecosystems (Fig. 8b). MDB has experienced 689 

a decline in rainfall, with area-average rainfall being lowest in the three years from Jan 2017 to 690 

Dec 2019 (Australian Bureau of Meteorology, 2020). Our results indicate that the resilience 691 

displayed to this dry period development, however, was different for different ecosystems (Fig. 8 692 

c - e). Highest resilience was witnessed in forested ecosystems where changes in SM and 𝛴∗ are 693 

asynchronous (Pearson r = -0.44) with 𝛴∗ often lagging SM (Fig. 8c (i)). Furthermore, an 694 

insignificant cross-correlation factor (CCF) between 𝑑𝑊 and 𝛴∗ at 0 months lag (Fig. 8c (ii)) 695 

represents deviation of SM-ET coupling effect on 𝛴∗. On the contrary, for ecosystems with lower 696 

dissipative energy levels (i.e., Savannas and Grasslands), we observe an increasing synchrony 697 

(Pearson r = 0.35, 0.54) between SM and 𝛴∗ (Fig. 8d-e (i)), most likely facilitated by increasing 698 

effect of surface SM-ET coupling (significant CCF at 0 months lag) on 𝛴∗ (Fig. 8d-e (ii)). This is 699 

evident from a sustained negative SM and 𝛴∗ anomaly throughout the dry period post 2017. In 700 

other words, such systems are vulnerable to climate anomalies and respond quickly (lower 701 

resilience). Hence, the results reflect upon two critical aspects (1) the variations in coping 702 

dynamics of systems subjected to prolonged state of perturbations are governed by dissipative 703 

energy levels at which the system can work, and (2) the tipping of a system will only be realized 704 
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when the corresponding energy barriers are crossed frequently enough when supported by changes 705 

in aridity and energy influx.  706 

707 

Figure 8. (a) Global entropic thresholds for different ecosystems (B: Barren, GR: Grassland, SH: 708 

Shrubland, CRP: Cropland, SV: Savanna, F: Forest). The length of vertical bars represents IQR 709 

and points represent the median 𝛴∗ values. The horizontal lines (red, dashed) represent the median 710 

entropy values or dissipative energy levels (e1, e2, e3, e4, e5), and the difference represents 711 

corresponding dissipative energy barriers (𝛥e). (b) Study area of Murray Darling Basin (MDB) in 712 

Australia. (c-e) (i) Time series plots of standardized anomalies of soil moisture (blue) and entropy 713 

production (black); the dashed line (orange) demarcates beginning of dry period in MDB, and (ii) 714 

Cross-correlation between mean monthly 𝑑𝑊 and 𝛴∗ computed for a lag of 12 months; the vertical 715 

blue lines represent 95% confidence interval.  716 
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 717 

5. Summary and Conclusion 718 

This study provides a global assessment of entropic thresholds across various 719 

hydroclimates and their relationship with ecosystem resilience. Existence of water potential 720 

gradient (∆ω) is utilized to formulate and define non-equilibrium steady states (NESS) as the state 721 

with nonzero fluxes and nonzero potential gradients (Qian, 2006) that hydroclimates hold-on to by 722 

dissipating energy to the environment. This dissipation physically manifests as entropy production 723 

when an imposed soil moisture (SM) anomaly is transferred to evapotranspiration (ET). For 724 

quantifying this SM-ET coupling and its relationship with entropy production, we introduce a new 725 

metric called the Wasserstein distance (𝑑𝑊). The metric 𝑑𝑊 is typically used in optimal transport 726 

(OT) discipline, and provides a measure of time evolution of probability density of a diffusing 727 

particle from one state to the other. Thus, 𝑑𝑊 gives a new paradigm in deciphering system 728 

evolution through SM-ET coupling as water particle transitions in SVA continuum from soil to 729 

atmosphere. The global seasonal analysis for SM-ET coupling using remote sensing surface SM 730 

and ET data, establishes a “coupling-aridity tradeoff” with temperate climates operating at lower 731 

efficiencies per unit of flux and given surface temperature. This tradeoff bears greater implications 732 

on areas projected to witness aridity shifts in the future.  733 

The optimization of SM-ET coupling transcends to (𝜏. ∆𝜔) entanglement, which is 734 

equivalent to action (per unit mass) in classical mechanics describing how a physical system 735 

evolves over time. Obeying principle of least action in the context of SM-ET coupling, ascertains 736 

that water particles follow the path that minimizes the time-averaged ∆ω. The memory timescale 737 

(𝜏) is, hence, a natural outcome of (𝜏. ∆𝜔) entanglement with energy flowing downhill. We apply 738 

this principle globally to compute τ which spans across four orders of magnitude, i.e., from 739 
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molecular diffusion scale (~ 103 s) to seasonal scale (~ 107 s). The wider spectrum of timescales 740 

observed could be attributed to the scarcity of resources (water limitation versus energy limitation) 741 

that generates an evolutionary preference for hydroclimates. Through eigenvalue analysis, we 742 

prove the existence of such complementary evolution routes for major hydroclimates which are in 743 

search for an optimal combination of coupling metric (𝑑𝑊) and driving potential (∆𝜔). Such an 744 

optimum is possible when both physical and physiological controls on terrestrial water-energy 745 

coupling work on a “similar strategy” to mitigate atmospheric perturbations.  746 

Extending the coupling formulation to compute lower bounds of entropy production (𝛴∗), 747 

we observe that global arid and hyperarid regions produce less entropy compared to vegetated and 748 

forested regions - primarily due to lower SM availability. The major terrestrial ecosystems arrange 749 

themselves in a hierarchy of median entropic thresholds, with barren lands occupying the lowest 750 

level. The difference in these median entropic values represent the dissipative energy barriers 751 

(DEB) which prevents tipping of one ecosystem into another. The emergence of hierarchical DEB 752 

answers (1) why an inertia exists for systems to return to pre-anomaly conditions, and (2) if a 753 

tipping occurs, to which state the transition might happen! These findings are crucial for predicting 754 

how global ecosystems will respond to changing climate and for imposing effective constraints for 755 

simulating land-surface fluxes under a range of atmospheric forcings. 756 

  757 
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 762 

7. Open Research 763 

C3S soil moisture is available at Copernicus climate data store (CCD): 764 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-soil-moisture?tab=overview. Terra 765 

MODIS Net Evapotranspiration product (MOD16A2GF) is available at NASA LPDAAC: 766 

https://lpdaac.usgs.gov/products/mod16a2gfv006/.  Bias-corrected near surface meteorological 767 

data is available at: https://cds.climate.copernicus.eu/cdsapp#!/dataset/derived-near-surface-768 

meteorological-variables?tab=overview. Soil physical properties can be downloaded from: 769 

https://files.isric.org/soilgrids/latest/. Soil water characteristic parameters are available at: 770 

https://zenodo.org/record/6348799#.ZBn-y3bMKUn. Terra MODIS GPP product (MOD17A2H) 771 

is available at: https://lpdaac.usgs.gov/products/mod17a2hv006/, NDVI (MOD13A1) product is 772 

available at: https://lpdaac.usgs.gov/products/mod13a1v006/, and LAI product (MOD15A2H) is 773 

available at: https://lpdaac.usgs.gov/products/mod15a2hv006/.  All MODIS data products were 774 

downloaded using Application for Extracting and Exploring Analysis Ready Samples 775 

(AρρEEARS). Global estimates of coupling metric (𝑑𝑊), entropy bounds (𝛴∗) and memory 776 

timescales (𝜏) can be found in supplemental material. 777 
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Table S1. Signal to Noise ratio (SNR) blending period for the combined Copernicus Climate 

Change Service (C3S) soil moisture product.  

Time Period Passive Sensors Active Sensors 

2010-01-15 to 2011-10-04 AMSR-E, WindSat, SMOS  ASCAT-A 

2011-10-05 to 2012-06-30  WindSat, SMOS ASCAT-A 

2012-07-01 to 2015-03-30 SMOS, AMSR2 ASCAT-A 

2015-03-31 to 2015-07-20 SMOS, AMSR2, SMAP ASCAT-A 

2015-07-21 to 2020-12-31 SMOS, AMSR2, SMAP ASCAT-A, ASCAT-B 
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Table S2. Description of surface meteorological (atmospheric), soil and vegetation variables used 

for quantification of dominant drivers controlling SM-ET coupling and entropy production. 

Variable Unit Description 

Near-surface air 

temperature (Tair) 

K The temperature of air at 2 meters above the surface of 

land.  

Near-surface specific 

humidity (q) 

kg kg-1 The amount of moisture in the air divided by the amount 

of air plus moisture at that location. 

Near-surface wind 

speed (usurf) 

m s-1 The horizontal wind speed at a height of 10 meters above 

the surface of the Earth.  

Surface air pressure 

(patm) 

Pa The pressure (force per unit area) of the atmosphere at 

the surface of land.  

Land Surface 

Temperature 

K Surface temperature of 0-5 cm depth soil profile. 
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Dry-Delayed vs Wet-delay Systems 

These systems are supported by moisture influx from deeper horizons, necessitating the decoupling 

of surface moisture with subsurface moisture dynamics. Such coupling is most likely to prevail in 

mixed forests and native prairies. On the contrary, wet-delayed systems incorporate regions with 

delayed transfer of increased SM to an increase in ET. These regions are most likely energy limited 

and are typically found at higher latitudes such as the cold deserts of Siberia. 

 

Figure S1. Global seasonal maps of (a) proportional duration spent by the pixel in SM drying 

(SMAIF < 0) or SM wetting (SMAIF > 0), and (b) proportional duration spent by the pixel in 



6 
 

atmosphere heating (ETAIF < 0) or cooling (ETAIF > 0) for four seasons, namely, March through 

May—MAM, June through August—JJA, September through November—SON, and December 

through February—DJF. The color sequential follows a quantile division of data points. 

Missing/masked data are represented in white color. 
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Table S3. Statistical summary for seasonal Wasserstein distance, WD (-) across hydroclimates 

(IQR - Interquartile Range, SD - Standard Deviation, SE - Standard Error). 

Climate WD Median WD IQR WD Mean WD SD WD SE 

Super Humid 0.806 0.172 0.834 0.147 0.002 

Humid 0.993 0.351 1.017 0.229 0.002 

Temperate 1.112 0.370 1.111 0.253 0.001 

Arid 0.983 0.427 1.025 0.281 0.002 

Hyper Arid 0.766 0.201 0.812 0.183 0.001 
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Seasonal Slope Factor (𝜸) 

To compute the seasonal slope factor (𝛾), we compared two different methods – (a) quantile 

regression, (b) piecewise linear regression. Quantile regression divided the time series of a location 

based on four quantiles (i.e., 25th, 50th, 75th, 100th percentile) while piecewise regression discretized 

the data based into chunks of 3 months. However, the resulting raster’s from both the methods did 

not have much difference, hence we selected piecewise linear regression for representing 𝛾 due to 

its conceptual proximity with the definition of “seasonality” (i.e., MAM, JJA, SON, DJF) used in 

the study. 

 

 

Figure S2. Global maps of seasonal slope factor, 𝛾 expressed in kg J-1 for four seasons, namely, 

March through May—MAM, June through August—JJA, September through November—SON, 

and December through February—DJF, computed using piecewise linear regression. 

Missing/masked data are represented in white color. 
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Relative time (𝝉/𝝉𝟎) 

Due to discretization of 𝛾, the resulting dimensionless quantity (𝜏/𝜏0) might have few outliers 

which needs to be removed from further analysis. For example, if  𝛾 → 0, 𝜏/𝜏0 → ∞; such large 

outliers are impractical and were discarded from further analysis. Hence, values beyond 95th 

percentile were flagged out (i.e., values > 10000 were set equal to NA). Furthermore, it is important 

to note that as 𝜏/𝜏0 approaches zero (i.e., 𝜏/𝜏0 ≈  0 or 𝜏0 ≫ 𝜏), it physically represents the case 

where effective conductivity (𝐾𝑒𝑓𝑓) is very low or effective resistance (𝑟𝑒𝑓𝑓) is very high. This is 

visible (Fig. S3) in energy limited regions of Northern Eurasia and North America in the season 

of JJA, while regions with highest perturbations in atmospheric conditions, reflect the most 

variations in 𝜏/𝜏0.   

 

 

Figure S3. Global maps of relative time (𝜏/𝜏0) for four seasons, namely, March through May—

MAM, June through August—JJA, September through November—SON, and December through 

February—DJF. The color sequential follows a quantile division of data points. Missing/masked 

data are represented in white color. 
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Memory timescale (𝝉) 

 

 

Figure S4. Global maps of memory timescale (𝜏), expressed in secs, for four seasons, namely, 

March through May—MAM, June through August—JJA, September through November—SON, 

and December through February—DJF. Missing/masked data are represented in white color. 
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Table S4. Statistical summary for seasonal entropy production, Σ* (10-6 J m-2 K-1) across 

hydroclimates (IQR - Interquartile Range, SD - Standard Deviation, SE - Standard Error). 

Climate Σ* Median Σ* IQR Σ* Mean Σ* SD Σ* SE 

Super Humid 24.200 6.670 24.300 5.250 0.0793 

Humid 20.800 6.490 21.100 4.880 0.0422 

Temperate 18.900 6.110 19.000 4.770 0.0212 

Arid 14.000 8.530 13.800 5.680 0.0256 

Hyper Arid 3.340 2.780 4.140 2.840 0.0186 
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Table S5. Statistical summary for seasonal entropy production, Σ* (10-6 J m-2 K-1) across terrestrial 

ecosystems (IQR - Interquartile Range, SD - Standard Deviation, SE - Standard Error). 

IGBP Σ* Median Σ* IQR Σ* Mean Σ* SD Σ* SE 

Forests 21.100 5.980 21.400 4.600 0.029 

Savannas 18.600 7.280 18.300 6.440 0.031 

Croplands 14.900 8.210 14.500 5.640 0.040 

Shrublands 14.100 15.000 12.400 7.950 0.047 

Grasslands 10.100 9.630 11.100 6.230 0.029 

Barren 4.240 13.000 8.4500 7.750 0.195 
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Table S6. Dissipative energy barriers (𝛥e, 10-6 J m-2 K-1) between terrestrial ecosystems computed 

as the difference between median entropy thresholds (Σ* Median from Table 5).  

 Forests Savannas Croplands Shrublands Grasslands Barren 

Forests 0.000      

Savannas 2.400 0.000     

Croplands 6.200 3.700 0.000    

Shrublands 7.000 4.500 0.800 0.000   

Grasslands 11.000 8.500 4.800 4.000 0.000  

Barren 16.860 14.360 10.660 9.860 5.860 0.000 

 

 

 

 

 

 

 

 

 


