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Abstract

As a non-destructive sensing technique, Raman spectroscopy is often combined with regression models for real-time detection
of key components in microbial cultivation processes. However, achieving accurate model predictions often requires a large
amount of offline measurement data for training, which is both time-consuming and labor-intensive. In order to overcome the
limitations of traditional models that rely on large datasets and complex spectral preprocessing, in addition to the difficulty of
training models with limited samples, we have explored a genetic algorithm-based semi-supervised convolutional neural network
(GA-SCNN). GA-SCNN integrates unsupervised process spectral labeling, feature extraction, regression prediction, and transfer
learning. Using only an extremely small number of offline samples of the target protein, this framework can accurately predict
protein concentration, which represents a significant challenge for other models. The effectiveness of the framework has been
validated in a system of Escherichia coli expressing recombinant ProA5M protein. By utilizing the labeling technique of this
framework, the available dataset for glucose, lactate, ammonium ions, and optical density at 600 nm (OD600) has been expanded
from 52 samples to 1302 samples. Furthermore, by introducing a small component of offline detection data for recombinant
proteins into the OD600 model through transfer learning, a model for target protein detection has been retrained, providing a
new direction for the development of associated models. Comparative analysis with traditional algorithms demonstrates that
the GA-SCNN framework exhibits good adaptability when there is no complex spectral preprocessing. Cross-validation results
confirm the robustness and high accuracy of the framework, with the predicted values of the model highly consistent with the

offline measurement results.
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Original Spectra of the Dataset

Spectra processed by Savitzky-Golay
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GA-SCNN Performance in 10-fold Cross Validation
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