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Abstract

Microbial communities are gaining ground in biotechnology, as they offer many advantages over single-organism monocultures.
To make microbial communities competitive as a biotechnological platform, it is essential that we develop strategies to engineer-
ing and optimizing their functionality. To this end, most efforts have focused on genetic manipulations. An alternative and also
very promising strategy is to optimize the function of microbial communities by rationally engineering their environment and
culture conditions. A major challenge is that the combinatorial space of environmental factors is enormous. Furthermore, envi-
ronmental factors such as temperature, pH, nutrient composition, etc., generally combine their effects in complex, non-additive
ways. In this piece, we overview the origins and consequences of these “interactions” between environmental factors, and discuss
how they have been built into statistical models of microbial community function to identify optimal environmental conditions.
We also overview alternative “top-down” approaches, such as genetic algorithms, to finding combinations of environmental
factors that optimize the function of microbial consortia. By providing a brief summary of the state of this field, we hope to
stimulate the development of novel methodologies to rationally manipulate and optimize microbial communities through their
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Abstract. Microbial communities are gaining ground in biotechnology, as they offer many advantages over
single-organism monocultures. To make microbial communities competitive as a biotechnological platform,
it is essential that we develop strategies to engineering and optimizing their functionality. To this end, most
efforts have focused on genetic manipulations. An alternative and also very promising strategy is to optimize
the function of microbial communities by rationally engineering their environment and culture conditions.
A major challenge is that the combinatorial space of environmental factors is enormous. Furthermore, en-
vironmental factors such as temperature, pH, nutrient composition, etc., generally combine their effects in
complex, non-additive ways. In this piece, we overview the origins and consequences of these “interactions”
between environmental factors, and discuss how they have been built into statistical models of microbial
community function to identify optimal environmental conditions. We also overview alternative “top-down”
approaches, such as genetic algorithms, to finding combinations of environmental factors that optimize the



function of microbial consortia. By providing a brief summary of the state of this field, we hope to stimu-
late the development of novel methodologies to rationally manipulate and optimize microbial communities
through their environment.

Introduction

Synthetic biology is gaining ground as a means to engineer and optimize microorganisms for desirable bio-
technological applications, from the production of high-value chemicals to bioremediation (Voigt, 2020).
A major focus of this field has been the genetic manipulation of microbial cells and the communities they
form, through the introduction of synthetic genetic circuits and metabolic pathways (McCarty and Ledesma-
Amaro, 2019; San Leén and Nogales, 2022). Somewhat less attention has been paid to the abiotic environment
on which microorganisms grow, yet the environment is a key element that controls the traits and properties of
microorganisms, and one that can be exploited to optimize microbial functions in a straightforward manner
(Eng and Borenstein, 2019).

A main challenge for engineering the abiotic environment is its highly multidimensional nature, which includes
physical (Temperature, volume, flow rate) and biochemical (pH, concentration of all molecular species)
factors. In general, the effect of these different environmental factors on the behavior of microbial cultures
is complex and non-additive. Microbiologists have long known that the fitness and phenotypic effects of
a particular environmental factor will differ in various environmental contexts. To provide just one iconic
example, Monod famously showed that the effect of lactose on the growth rate of E. coli is initially negligible
when glucose is also present, despite its strong growth-promoting effects when glucose is absent (Monod,
1942). Glucose and lactose do not combine additively, as the former masks the effect of the latter.

In situations like the one above, when the effect of a particular environmental axis on microbial function is
modulated by other environmental axes, we can say that environmental factors “interact”. This definition of
an “interaction” between two environmental factors may seem to be unusual. After all, glucose and lactose
do not chemically affect one another. Yet, it is in fact the same definition of interactions (epistasis) that is
used in genetics to describe the analogous situation where the fitness effect of a mutation is altered by the
presence of another (Sanchez, 2019).

Of course, these environmental interactions have their basis in concrete molecular mechanisms. Interactions
between two environmental factors may have a direct origin, for instance when an extracellular molecule
chemically modifies another (Fig. la). Alternatively, interactions between environmental factors may be
indirect and mediated by the changes they induce in the state of the genetic network of a cell, as was
the case for the glucose-lactose interaction described above (Fig. 1b). In the case of microbial consortia, an
environmental change may affect collective community functions through a variety of additional mechanisms.
For instance, the presence of an extracellular molecule may inhibit or stimulate the growth or the gene
expression patterns of one member species, thus influencing its ability to carry out the role it plays in the
community (Fig. 1c).
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Figure 1: Examples of interactions between environmental factors. We represent two factors as
two different environmental molecules, A and B. These two environmental factorsinteract if these have a non-



additive effect on the behavior of microbial cultures. Diverse mechanisms can give rise to interactions, for
instance,(a) they can be direct due to physico-chemical modifications, such as through a chemical reaction
between them. They may also have an indirect origin, for instance (b) when their combined effect on
population attributes is mediated by the genetic or metabolic network of an organism. Their origin may also
be ecological (c) mediated by ecological effects between member species of a community, such as when the
combination of two different nutrients leads to community compositions that differ from those of the sum of
the monocultures.

Given their potential complexity, interactions between environmental axes may substantially complicate the
task of identifying culture conditions that will optimize microbial functions, and thus may be seen as a
detriment to engineering the environment in a rational manner. Despite this complication, past work in
microbial biotechnology has found ways to deal with interactions and has met success at finding environ-
mental manipulations that will move a target function to more desirable values, both in monocultures and
in microbial consortia.

In the following, we will overview the current state of these efforts. We will begin by briefly overviewing
recent work on disentangling the effect of combinatorial interactions between environmental factors in both
monocultures and consortia. We will then overview the current state of the field in exploring combinatorial
spaces of environmental factors, in search for environments that optimize the function of monocultures and
consortia. We finish with an outlook where we propose potential future directions that may help move the
field forward.

Interactions between environmental factors shape the fitness and traits of individual microor-
ganisms

Environmental factors often combine non additively to shape the phenotypes and fitness of microorganisms
(Kaplan et al., 2008; Okano et al., 2020; Wood et al., 2012). Interactions between environmental factors
on microbial growth and phenotypes have been a major focus of microbiology since the early days of the
discipline (Blaiseau and Holmes, 2021). Among the most iconic examples we find diauxic growth, whereby
microorganisms consume nutrients in succession, rather than simultaneously. The effect of a nutrient on
the growth of a microorganism will thus be masked by the presence of another nutrient whose hierarchy
in the diauxic choice is higher (Aidelberg et al., 2014; Bajic and Sanchez, 2020). This interaction between
nutrients is akin to the phenomenon of dominance in genetics, an interaction whose result is the masking of
the phenotypic effect of an allele by the presence of another (dominant) allele in a diploid organism.

Diauxic growth is implemented by genetic networks that respond to the presence of more than one input
nutrient by activating the metabolic pathways required to metabolize just one of them, but not the others.
Beyond the specific example of diauxie, many microbial gene-regulatory networks integrate multiple environ-
mental inputs (Espinar et al., 2013; Kaplan et al., 2008), and bacterial promoters commonly contain binding
sites for multiple different transcription factors (Bintu et al., 2005; Rydenfelt et al., 2014). The combinatorial
nature of gene regulatory networks and their ability to integrate multiple environmental signals provides a
basis for the emergence of complex interactions between environmental factors.

Interactions between environmental factors do not need to have a gene regulatory basis. An example are
the well-characterized interactions between antibiotics. It has been shown that antibiotics targeting different
cellular processes often act synergistically (Cacace et al., 2023; Yeh et al., 2006), whereby the detrimental
effect of an antibiotic is higher than expected when a second antibiotic is present too (Yeh et al., 2009).
Systematic screens of interactions between antibiotics have found that they are pervasive in both Gram
positive and Gram negative bacterial species (Wood et al., 2012), and they can exhibit substantial complexity
(Lazér et al., 2022). Antibiotics can also interact with physical environmental factors, and their very presence
in the medium can alter the optimal growth temperature of bacteria, and modulate the effect of stressful
temperatures (Cruz-Loya et al., 2021). The idea that two or more stressors may act non-additively is an
old concept in microbial ecology (for a recent example see (Smith et al., 2023)), which in fact extends well
beyond the realm of microorganisms (Coté et al., 2016).



Interactions between environmental factors may affect biotechnologically significant traits. For instance, Sko-
nieczny & Yargeau examined the combined effect of the initial pH and initial glucose concentration on the
rate of Hy produced by populations of the bacterium Clostridium beijerinckii(Skonieczny and Yargeau, 2009).
At low initial glucose concentrations, Hy production peaked at pH=6.1. Yet, when higher initial concentrati-
ons of glucose were provided, the peak shifted to higher values of pH, close to 6.5. In other words, an increase
in glucose concentration changes the response of Hy production to pH, and this affects the optimal pH in
the culture. This particular case exemplifies the potential significance of interactions between environmental
factors in biotechnology, and we did not have to dig deeply to find it. Most environmental factors exhibit a
non-additive effect even when they are the only ones being changed. Take for instance the example of Tem-
perature. Microbial Temperature response curves are not only non-linear but also non-monotonic. A 2°C
increase in Temperature will have a positive effect in the carbon use efficiency of microorganisms below their
optimal temperature (Smith et al., 2021), but a detrimental effect when it takes place above that point. This
well-known example illustrates the many challenges of predicting the effect of the environment on organismal
traits, a challenge that extends to the community level.

Interactions between environmental factors shape the composition and function of microbial
communities

Environmental factors often combine non additively to shape the functions and taxonomic composition of
microbial communities and the traits and phenotypes of microbial populations (Dal Bello et al., 2021; Estrela
et al., 2021a, 2021b; Fonte et al., 2013; Lazdr et al., 2022; Pacheco et al., 2021; Pacheco and Segre, 2021;
Replansky and Bell, 2009; Smith et al., 2023; Wood et al., 2012). In what follows, we provide a few recent
examples of environmental interactions in the context of community composition and function, with the aim
of illustrating this point.

Nutrients interact non additively to determine community composition. Microbial communities assemble in
complex environments that contain multiple resources. These resources can have different effects in diffe-
rent members of the community: a molecule that is discarded by a microorganism is often useful for others
(D’Souza et al., 2018; Goldford et al., 2018; Mataigne et al., 2021). In a recent study (Estrela et al., 2021b),
we have systematically investigated how nutrients combine to shape the taxonomic composition of microbial
communities. Through an enrichment approach from soil and plant communities (described in detail else-
where (Estrela et al., 2021a)), we studied the taxonomic composition of stable, serially passaged communities
in media containing various sets of two growth limiting nutrients, and compared these with the community
compositions that formed in each nutrient separately. We found that interactions between nutrients were
often strong. Increasing the number of supplied resources from one to two or even three had no effect on
the total diversity of our enrichment communities (Estrela et al., 2021a), and this was often due to an effect
we termed “nutrient dominance”, where one of the two nutrients masked the ability of the other to recruit
taxa into the community (Estrela et al., 2021b). For example, the taxonomic composition of enrichment
communities where both glycerol and succinate were supplied externally as the only carbon sources were
nearly indistinguishable from the composition of the communities assembled in glycerol alone. The majority
of the taxa that were coexisting stably when succinate was the only supplied nutrient were excluded from
the community when glycerol was also supplied in the culture medium at the beginning of every passage
(Estrela et al., 2021b).

These results echo similar findings from other groups. Pacheco and Segre (Pacheco et al., 2021) found strong
non-additive interactions between nutrients in serially passaged, defined communities, and Dal Bello et al
(Dal Bello et al., 2021) found that community richness increased very weakly as we increase the number
of supplied resources, barely doubling as we went from 1 to 32. Together with older evidence (Replansky
and Bell, 2009) these studies support the idea that nutrients often interact non additively in their effect on
community composition. It stands to reason that such non-additivity will extend to function also.

Environmental variables interact non additively to determine community functions. In addition to their
non-additive effect on the taxonomic composition of a community, the effect of two or more environmental
variables on community functions is also often non additive. For instance, Jimenez et al studied the combined



effect of different environmental variables on the methanogenic output of an anaerobic digestor community
(Jiménez et al., 2014). Specifically, these authors examined the combined effect of three substrates (pig
manure, rice straw and clay residual) at different concentrations on the specific methanogenic activity of the
digester community, and employed a fractional factorial design followed by a linear regression with interaction
terms to predict out of sample. Their approach revealed the existence of strong pairwise interactions between
the substrates, particularly for clay residual and rice straw under mesophilic conditions. The interactions were
strong enough to change the sign effect of increasing clay concentration at high vs low manure concentrations:
increasing clay concentration had a positive effect on the methanogenic activity when manure concentration
was low, but a negative effect when manure concentration was high. Sign-effect interactions (akin to sign
epistasis in genetics) are common in microbial consortia (Sanchez et al., 2023).

In another study, Molina-Barahona et al sought to optimize the environmental conditions for diesel removal
in contaminated soils through biostimulation (Molina-Barahona et al., 2004). To this end, they investigated
the combinatorial effects of various environmental factors that are known to individually have an effect
on diesel removal rate: C:N ratio, moisture, and the amount and type of crop residue (CR). These factors
were individually toggled between two values and combinations were generated through a fractional factorial
design approach. The authors then found that interactions between moisture and CR type had a modest
but significant effect on the amount of diesel removed in microcosms, as the amount of diesel removed in
the presence of both factors at the same time was higher than expected by the product of each in isolation
(Molina-Barahona et al., 2004) .

On a similar vein, Zhou et al, studied the combined effect of three binary variables: glucose addition, sodium
dodecyl benzene sulfonate (SDBS) addition, and immobilization of the bacteria on biochar (or lack thereof)
on the biodegradation of polycyclic aromatic hydrocarbons (PAH) by a microbial consortium (Zhou et al.,
2023). While glucose alone stimulated PAH biodegradation, it had a negligible effect when combined with
SDBS unless the consortia was also immobilized. In this instance, glucose had a modest (but seemingly signi-
ficant) positive effect on the degradation of low molecular weight PAH. The authors propose a mechanistic
explanation for this three-way interaction: Glucose had been previously found to stimulate the metabolism
of PAHs and it is also known to promote microorganism to absorb more PAHs. In turn, SDBS is believed to
increase the bioavailability of PAHs by enhancing their mobility and bringing them closer to the immobilized
bacteria (Zhou et al., 2023).

All of these examples illustrate the potential effect of environmental interactions in the performance of single
and multi-strain microbial consortia. On the one hand, the functional response of microbial consortia to
environmental manipulations creates opportunities for their optimization. On the other hand, the combina-
torial complexity of these environmental interaction effects may appear to be dissuasive. While it is indeed
undoubtedly challenging, as we will see below there exists clear and convincing evidence that it is far from
impossible.

Engineering microbial consortia by manipulating the environment.

As the presented examples illustrate, interactions between environmental factors are common and can be
strong. These interactions may complicate the task of predicting optimal culture conditions. Despite this, as
we show below, there exist strategies (Fig. 2) to navigate this complexity and optimize the environment.
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Figure 2: Strategies used to find optimal environmental conditions. (a) Schematic showing five
environmental components that can be combined (1-present, 0-absent) to design an optimal environment
that maximizes a target microbial community function. (b) Map between environmental composition and
function. The diagram shows all 32 (2°) combinations that can be constructed from five environmental
components. Color gradient from white to purple indicates increasing function level.(c-f) We show different
strategies used to design the environment that maximizes a function of interest. (c) Genetic Algorithms
(GA) begin by empirically quantifying the function (‘fitness’) in a subset of environments selected at random.
Environments are then ranked by decreasing function. Environments mapping to highest function values
are used to design a new ‘population’ of environments. Top environments are carried over to the new
population and more variation is added by recombining and mutating those top environments. A new round
of function quantification and selection of top environments begins. The whole process can be repeated until
the function no longer increases or for a fixed number of predefined generations. (d)In fractional factorial
design, a carefully selected subset of environments is used to quantify function. The results are then used to
build regression models which allow predicting the function of out-of-sample environments. (e) Full factorial
design consists in quantifying function in every possible environmental combination, therefore revealing the
full composition-function map. This method is restricted to environments made up of few components as
the number of environments increases exponentially with the number of environmental components. (f)
Patterns of global epistasis observed in genetics allow predicting the effect a mutation has on organismal
fitness, knowing the fitness of the background where the mutation occurred (see (Diaz-Colunga et al., 2023;
Johnson et al., 2023) and references therein) and. An ecological parallel to global epistasis has also been
demonstrated, where the effect of a species addition on a community-level function is predictable from the



function of the original community without the species (Diaz-Colunga et al., 2023; Ruiz et al., 2023; Sanchez
et al., 2023). Here we propose that global patterns akin to global epistasis may also allow us to predict the
change in function induced by the addition of a new component to an environment. If these patterns did
exist, this would open up the opportunity for a new method for predicting function.

Genetic algorithms can find optimal environments that maximize desirable traits of clonal and multi-genotype
communities. One approach to identify optimal combinations of environmental factors is the use of genetic
algorithms (GA) to explore their combinatorial functional landscape (Fig. 2c) (Kucharzyk et al., 2012;
Pacheco et al., 2021; Vandecasteele et al., 2008). As an example, Kucharzyk et al demonstrated the utility of
a generational GA for identifying optimal environmental conditions for the degradation of perchlorate in both
enrichment communities and in pure cultures of Dechlorosoma sp. Strains (Kucharzyk et al., 2012). In this
study, the authors formed a multidimensional functional landscape including environmental variables such
as the pH, salinity ([KCl]), buffering capacity ([NaH2PO4] and [NaHCO3]), concentration of electron donor
(acetate) and electron acceptor (the perchlorate itself), and the concentrations of other microbial nutrients
such as vitamins and trace minerals. Environments were represented by a 9-string vector, containing in each
entry the concentration of each variable, and the fitness of each individual environment (i.e. its probability
to be selected for reproduction in the next generation) was given by the perchlorate degradation rate, which
was determined empirically. The strings that made up the next generation were derived by recombination
(via uniform crossover with probability 0.5) from those that were selected. In the daughter strings, each
environmental variable could also randomly “mutate”, i.e. increase or decrease by a magnitude equal to a pre-
determined step size. The mutation rate was set so that, on average, one variable would change per individual
per generation. The GA was applied for 11 generations, and its outcome was remarkably successful. The
authors found environmental conditions that increased perchlorate degradation by over 16-fold for individual
strains and over 5-fold for the consortia.

This work followed previous attempts to use genetic algorithms to optimize community functions through
environmental manipulations. In the earliest such study we are aware of, Vandecasteele et al used a microbial
community derived from human saliva as an inoculum, and built a genetic algorithm to optimize a collective
function consisting of azo dye decoloration (Vandecasteele et al., 2008). Rather than manipulating the
concentration of a set of resources, the environmental space that was explored in this work was the presence
or absence of 10 different chemical supplements, including nutrients (i.e. glucose or glycerol) as well as various
buffers, acids, and bases. Each combination of chemicals was added to an 12.5x dilution of a saliva sample
and the fitness of the environment was given by the amount of dye decoloration over 24hr of culture. Dye
decoloration increased after 15 optimization steps, and the authors convincingly demonstrated that besides
the average increase in the metapopulation, the function of the best environments in each generation also
responded to selection (an important benchmark in artificial community-level selection experiments (Chang
et al., 2021)). A strength of this study is that the authors examined the ability of their approach to find a
better ecosystem than the one they started with.

An exciting prospect for manipulating microbial community functions through their metabolic environment
consists of combining evolutionary algorithms with genome-scale metabolic models. In pioneering work
(Harcombe et al., 2014; Pacheco and Segre, 2021), Pacheco and Segre used dynamical flux balance analysis
(Dukovski et al., 2021) to model the growth and other metabolic properties of in silico microbial commu-
nities. Using this computational platform, they were able to combinatorially generate thousands of different
environments, each containing combinations of up to 20 different resources, which were then inoculated with
the same microbial consortium consisting of 13 microorganisms. The same approach was then expanded to
a larger combinatorial space of over 150 limiting carbon sources. Similar to previous work, the authors im-
plemented a genetic algorithm where a subset of environments were selected with a fitness score determined
by their proximity to a community-level objective function. The selected environments were then used to
generate the next generation through cross-over recombination and mutation (addition of new metabolites
or removal of existing ones). Among the objective functions, the authors included compositional metrics such
as community evenness, the abundance of target bacteria, as well as metabolic traits such as the secretion
of particular metabolites or the degree of metabolic exchange among coexisting species (Pacheco and Segre,



2021).

Altogether, these experiments support the feasibility and promise of evolutionary engineering approaches
to explore the combinatorial space of environmental factors, in search for optimal culture conditions for
microbial consortia. Importantly, these approaches do not require us to have a mechanistic understanding
of environmental interactions. As we will see, however, bottom-up models that are built up from these
interactions can be promising too.

Learning the landscape of environmental effects to infer optimal habitats (e.g. diets) for microbial com-
munities. An alternative approach to finding optimal environments is to statistically learn the relationship
between environment and community function for a given inoculum community. This is essentially the re-
verse problem to that of inferring the relationship between composition and function in a given environment
(Eng and Borenstein, 2019; Sanchez et al., 2023). Because both problems are so similar, they are plagued by
the same problems (chiefly, the presence of interactions between components, which we overview in previous
sections), and the approaches that have been followed to solve them are similar also (Eng and Borenstein,
2019). Due to their combinatorial nature, a full factorial assessment of environmental factors (Fig. 2d-e
) has been challenging to execute experimentally. Most studies have instead focused on fractional factorial
design (Fig. 2d ), where a subset of all possible environmental combinations is used to train a statistical
model (Chen et al., 2009; Jiménez et al., 2014; Kikot et al., 2010; Skonieczny and Yargeau, 2009; Zhou et al.,
2023). Typically, these models consisted of linear regression to either the presence/absence or the magnitude
of different environmental factors, with the occasional inclusion of interaction terms. Once a statistical model
of the community function landscape is available, it can be used to predict out of sample and thus locate
environments that optimize the target function.

This approach was employed successfully by various authors. In the aforementioned work by Jimenez et al, for
instance the authors were able to successfully predict the effect of the concentrations of three input substrates
in the methanogenic activity of an anaerobic digester, thus identifying an optimal operation point (Jiménez
et al., 2014). The other studies employing this strategy also focused on small combinatorial spaces with up
to six different variables. Ideally, one would like to extend the approach to larger combinatorial spaces, but
as the dimensionality increases so does the number of potential interactions, and therefore the number of
measurements one must make to estimate their effect. A potential approach to handle this combinatorial
explosion of interactions is to, once again, draw inspiration from genetics (Sanchez et al., 2023). In genetics,
it has been found that simple quantitative patterns often emerge from myriad microscopic interactions
between genes, allowing us to predict the fitness effect of a mutation without having to first parameterize
its pairwise and higher-order epistatic interactions (see (Diaz-Colunga et al., 2023; Johnson et al., 2023)
and references therein). We have recently shown that this idea extends as well to ecological communities, so
that the functional effect of a species often follows simple quantitative patterns that do not require one to
parameterize all possible interactions with every other member of the consortia (Diaz-Colunga et al., 2023;
Ruiz et al., 2023; Sanchez et al., 2023). Future work will have to determine whether these global epistasis -
like patterns also describe the effects of environmental factors in different contexts (Fig. 2f ).

Discussion and Outlook

The field of synthetic biology has grown remarkably in the past two decades, and it has made substantial
progress in engineering gene regulatory and metabolic networks in microorganisms. In recent years the field
has put a spotlight on engineering microbial consortia (Brenner et al., 2008), with a focus again on their
composition and genetic make up. Notwithstanding the many successful examples we cite above, and the
many others we have surely missed, there is much room to be explored in engineering the environment where
microorganisms grow. Among the most promising directions we would like to highlight is the development
of evolutionary engineering approaches. While the examples we discuss above were executed in parallel,
evolutionary engineering of the environment can also be implemented in time, where multiple environmental
changes are introduced serially and the best environment is retained. The development of highly controllable
milifluidic devices for continuous culture of microorganisms offer a promising platform for identifying optimal
culture conditions for organisms and communities (Mancuso et al., 2021; Wong et al., 2018).



After a slow start, the field of artificial community-level selection is experiencing growing attention (Blouin
et al., 2015; Chang et al., 2021; Doulcier et al., 2020, 2020; Panke-Buisse et al., 2015; Swenson et al., 2000;
Vessman et al., 2023; Williams and Lenton, 2007; Xie et al., 2019; Xie and Shou, 2021). There exist obvious
parallels between the process of optimizing the composition of an inoculum in a fixed environment, and that
of optimizing an environment for a fixed inoculant. These may lead to a dialog between both fields, allowing
the transfer of successful methodologies from one to another. Encouragingly, a wealth of novel evolutionary
algorithms are being developed for the directed evolution of microbial communities (Chang et al., 2021;
Vessman et al., 2023; Xie et al., 2019). These could be fruitful when applied to finding optimal combinations
of environmental factors.

In a bottom-up manner, genome-scale metabolic models have been used for some time to rationally ma-
nipulate microbial interactions and to predict environments where microorganisms may coexist (Harcombe
et al., 2014; Klitgord and Segre, 2010), and they have been used to find culture conditions that optimize
the growth of single strains or the production of target molecular products (e.g. (Swayambhu et al., 2020)).
Constraint based models are being developed to quantitatively predict the behavior of microbial consortia
(e.g. see (Heinken et al., 2021) and references therein), paving the way for their application to finding optimal
environments.

Rather than being two parallel pursuits, bottom-up and top-down approaches can actually benefit from one
another. By gaining a deeper understanding of the topology of the map (i.e. the response surface) between
environment and function, researchers will be better equipped to design evolutionary algorithms that are
capable of efficiently navigating those maps and finding optimal culture conditions. We hope that our review
will stimulate efforts on this front.
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