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Abstract

For the automated analysis of I/V -characteristics of solar cells and modules, descriptive parameters are essential. In particular

with the rise in machine-learning techniques and the related increase data volumes, there is a need for good, general purpose,

descriptive parameters. The most commonly used descriptive parameters for I/V are the standard solar cells parameters,

consisting of V oc , I sc , V mpp , and I mpp . Also other representations may be considered, such as one diode model parameters

corresponding to a particular I/V. However, these representations are very coarse and cannot distinguish or represent many

common (non-ideal) features of an I/V (e.g. an S-shape). In this work we propose an extended set of solar cell parameters, which

are well defined, and easy to determine. We evaluate the effectiveness of the extended solar cell parameters by reconstructing

the I/V from the extracted parameters. This allows one to “measure” information loss. We compare the accuracy of our

parameters with other commonly used curve models for I/V, namely the one diode model, and the Karmalkar-Haneefa model.

The models are applied to a large set of I/V (about 2.2 million curves), covering a wide range of technologies and conditions.

We demonstrate our extended solar cell parameters consistently provide an accurate description of nearly all I/V in these

datasets. Furthermore, we present our I/V analysis tool which we use to process these datasets. This tool is fast and capable of

extracting the extended solar cell parameters, as well as parameters for the one diode model and the Karmalka-Haneefa model.

Finally, we exemplary show how the extended solar cell parameters may be used to detect partial shading in outdoor data, by

training a simple random-forest classifier based on extended solar cell parameters.
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For the automated analysis of I/V -characteristics of solar cells and modules, descriptive parame-
ters are essential. In particular with the rise in machine-learning techniques and the related increase
data volumes, there is a need for good, general purpose, descriptive parameters. The most com-
monly used descriptive parameters for I/V are the standard solar cells parameters, consisting of
Voc, Isc, Vmpp, and Impp. Also other representations may be considered, such as one diode model
parameters corresponding to a particular I/V . However, these representations are very coarse and
cannot distinguish or represent many common (non-ideal) features of an I/V (e.g. an S-shape). In
this work we propose an extended set of solar cell parameters, which are well defined, and easy to
determine. We evaluate the effectiveness of the extended solar cell parameters by reconstructing the
I/V from the extracted parameters. This allows one to “measure” information loss. We compare
the accuracy of our parameters with other commonly used curve models for I/V , namely the one
diode model, and the Karmalkar-Haneefa model. The models are applied to a large set of I/V
(about 2.2 million curves), covering a wide range of technologies and conditions. We demonstrate
our extended solar cell parameters consistently provide an accurate description of nearly all I/V
in these datasets. Furthermore, we present our I/V analysis tool which we use to process these
datasets. This tool is fast and capable of extracting the extended solar cell parameters, as well as
parameters for the one diode model and the Karmalka-Haneefa model. Finally, we exemplary show
how the extended solar cell parameters may be used to detect partial shading in outdoor data, by
training a simple random-forest classifier based on extended solar cell parameters.

I. INTRODUCTION

Current-Voltage (I/V ) characteristics are commonly
used to evaluate Photo-Voltaic (PV) performance. With
rapid development of Machine Learning (ML) techniques,
and the ever increasing volumes of data available for anal-
ysis, the need arises to efficiently analyze I/V -curves.
The most widely used descriptive parameters for I/V -
characteristics are the Standard Solar Cell Parameters
(SSP), which consist of the open-circuit voltage (Voc),
the short-circuit current (Isc), the maximum-power-point
voltage (Vmpp), and the maximum-power-point current
(Impp). The SSP are simple to determine, standardized,
and convey direct information on the solar cell perfor-
mance. Such simple and standardized parameters allow
meaningful comparisons of different I/V -characteristics,
and thus serve many purposes. However, reducing an
I/V to its SSP is a (strong) reduction in dimensionality,
and therefore leads to information loss. For example, it
is not possible to distinguish an I/V with an S-shape
from one with high series resistance using only the SSP.
In this work we aim to extend the SSP to obtain solar cell
parameters which preserve more detailed shape informa-
tion, i.e. allow a better I/V feature extraction than the
SSP.

Many authors have worked on feature extraction from
I/V curves. Besides using the SSP, fitting a one diode
model is a common approach [1–5]. The one diode
model parametrization provides additional information
on the curve beyond the information provided by the
SSP (5 parameters instead of 4). Furthermore, because
the diode model is based on physics, its parameterisa-
tion provides directly physically meaningful information.

The parametrization of the diode model is the topic of a
vast number of papers. A quick overview of the proposed
methods can be obtained by looking at some review pa-
pers on the topic, see for example [2–5]. The large vol-
ume of literature on this topic is certainly an expression
of great interest in the parametrization of this equation.
However, it is also an expression of just how hard it is
to obtain a robust and efficient parametrization method.
This hampers the application of diode model parameters
as I/V curve features. An additional downside of di-
rectly using the diode parameters is that the correlated
nature of the diode parameters make the direct compar-
ison of extracted values difficult (e.g. caution is required
when comparing the saturation current density of solar
cells with different ideality factors). Furthermore, the
correlated nature of the parameters, in combination with
the complicated non-linear parametrization methods, can
easily lead to ill conditioned parametrization procedures,
where small differences in the I/V -characteristics lead to
large differences in obtained parameters.
The work by Ma et al. should be discussed in more

detail as the aims are fairly similar to our work and this
work also extends on the SSP [6]. In this paper the SSP
are extended with the slopes at short-circuit and open cir-
cuit [6]. Furthermore, the I/V -characteristics are classi-
fied into partially shaded (with steps) and non partially
shaded, and for the partially shaded curves additional
features are extracted [6]. In contrast to the work by
Ma et al., we propose to use a single, more extended, set
of standardized parameters for all curves, which simpli-
fies both the parameter extraction and the subsequent
analysis.
The here proposed Extended Solar cell Parameters

(ESP) aim to be general purpose I/V parameters. As
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such, we aim for a compact, standardized description of
the I/V -characteristics with meaningful and easy to un-
derstand parameters. Furthermore, the extraction of the
ESP should be straight forward and efficient, allowing the
processing of large data volumes. Naturally, one would
like the parameters to be always determinable in an un-
ambiguous manner. For this reason we restrict ourselves
for the ESP to parameters which, like the SSP, describe
voltages, currents, and slopes at several key points in the
curve. Here we try to strike a balance between the num-
ber of parameters and the level of detail we can describe,
i.e. the level of detail must suffice to accurately describe
the vast majority of I/V -characteristics whilst keeping
the number of parameters small.

The 4 parameters of the SSPs describe three key
coordinates (voltage,current) in the IV characteristics,
namely, the short circuit, open-circuit and maximum
power points. In addition, due to the nature of a
maximum power point, the SSP also describe the slope
in the maximum power point (∂I(V )/∂V |V=Vmpp

=
−Impp/Vmpp). Our proposed ESP extends this defini-
tion to entail 5 key points and include currents, voltages,
and slopes at all these key points. In total, this results
in 10 parameters, including the 4 SSP.

In order to asses and compare the SSP and ESP we first
determine solar cell parameters of an I/V -characteristics
and, subsequently, parameterize various curve models to
reconstruct the I/V , using only the determined solar cell
parameters. The difference between the reconstructed
I/V and the original measurement is a direct measure
for the amount of information which was lost for a given
set of parameters and the used curve model. Note that
the used curve model implicitly adds information. As
some curve models may be more suitable to describe solar
cell I/V for specific types of solar cell technologies, we,
in this paper, apply the I/V reconstruction models to
a wide variety of solar cell technologies and I/V under
various conditions.

For the curve models to reconstruct the solar cell IV,
a wide variety of models are available. The most widely
used model is certainly the one diode model (1D), which
has 5 parameters, namely the saturation current, I0, ther-
mal voltage, kT/q, ideality factor n, photo-current, Iph,
series resistance, Rs, and shunt resistance, Rsh (note that
we do not describe temperature dependencies, i.e., we
consider only a single I/V at a time). Another widely
used model is the Karmalkar-Haneefa (KH) formalism
[7, 8]. This model has 4 parameters, Voc, Isc, and two
“shape parameters” γ and m.

In addition we developed two curve models which are
both based on a smooth and monotonous interpolation
between the key points described by the ESP. The use of
interpolation models has the additional advantage that
interpolation techniques are gerenrally easy to apply, and
typically do not require a parametrization step to deter-
mine the model parameters. Unlike, for example, the
diode model, which requires the use of non-linear least
squares or other iterative optimization methods, to ex-

tract the model parameters. The here introduced inter-
polation methods are the “PV-Spline” and “PV-Bézier”
models. The models apply different interpolation meth-
ods, namely a cubic spline and a cubic Bézier, respec-
tively. Both interpolation methods are adapted such that
in case the ESP are monotonous, the resulting interpola-
tion curve is also monotonous.
We analyze a database of outdoor measured I/V with

9 different modules types in 5 different locations. The
module technologies include crystalline silicon (c-Si),
Cadmium Telluride (CdTe), Copper-Indium-Gallium di-
Selenice (CIGS), and hydrogenated amorphous/micro-
crystalline silicon (a-Si:H/µc-Si:H) tandem. This
database entails about 2.2 million I/V . We determine
the ESP for the entire dataset. Subsequently we pa-
rameterize 4 different curve models, namely the KH, 1D,
PV-Spline, and the PV-Bézier models. We compare the
fit errors for the different models to determine how ac-
curate the curve models and corresponding parameters
describe the I/V for the various module types. Further-
more, we demonstrate the use of the ESP as a feature
vector for machine learning applications by developing a
simple random-forest classifier to detect I/V affected by
partial shading. For many data-analysis methods it is
vital to be able to process a large volume of data. To
this end we developed an open source library, the Photo-
Voltaic CuRve AnalyZEr (PV-CRAZE), which provides
code to extract the ESP and provides a framework to fit
various curve models using the ESP. Our focus was on
robust and efficient methods, suitable for large datasets.
The paper is organized as follows. We first discuss the

ESP in Section II. Next, in Section III, we discuss the
curve models used in this paper, including the here de-
veloped monotonous interpolation methods. We breifly
introduce PV-CRAZE in Section IV. In Section V we first
demonstrate the curve models on several selected I/V ,
and subsequently analyze the large outdoor datasets to
asses the ESP and the performance of the various curve
models. Furthermore, we demonstrate the use of the ESP
as a feature vector to detect partial shading conditions
from the shape of an I/V using a random-forest classifier.
We conclude with a short note on the performance of the
PV-CRAZE library to extract the ESP and for the curve
model parametrization for the different curve models.

II. EXTENDED SOLAR CELL PARAMETERS

A. Definition of the ESP

In this section we discuss the here used descriptive pa-
rameters for an I/V . The ESP key points are optimally
chosen to provide information on the area under the I/V .
The parameters are illustrated in Fig. 1. The SSP de-
scribe 3 key points in the I/V , namely the short-circuit,
maximum-power, and open-circuit points. The short cir-
cuit point is described by Isc, open-circuit by the Voc and
the maximum-power point by both Impp and Vmpp. For
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a maximum power point we have that the derivative of
power to voltage is 0, i.e.

∂P (V )

∂V

∣∣∣∣
V=Vmpp

= 0. (1)

From this it follows

∂(I(V )V )

∂V

∣∣∣∣
V=Vmpp

= 0

Vmpp
∂I(V )

∂V

∣∣∣∣
V=Vmpp

+ Impp = 0

∂I(V )

∂V

∣∣∣∣
V=Vmpp

= − Impp

Vmpp
. (2)

Thus from the SSP we know both the current, voltage,
and, the slope of the I/V at the maximum power point.
In order to extend the SSP, we add the slopes at short-

circuit and open-circuit. To this end we define the pa-
rameters Gsc and Roc

Gsc =
∂I(V )

∂V

∣∣∣∣
V=0

(3)

Roc =
∂V (I)

∂I

∣∣∣∣
I=0

. (4)

In addition we propose two additional key points, the
“lower quasi maximum power point” (qmp-) and the “up-
per quasi maximum power point” (qmp+). These points
are defined using the power curve corresponding to the
I/V , see Fig. 1.b. The three SSP in the power curve
make a triangle from 0 power at short circuit to Pmpp at
the maximum power point, and back to 0 at open cir-
cuit. For any strictly monotonous I/V the the actual
power curve is above this triangle. We define the qmp-
point as the point between short circuit and Vmpp with
the maximum difference between the power curve and
the triangle. Likewise we define the qmp+ point between
Vmpp and Voc such that the difference between the power
curve and the power triangle is maximal. In Fig. 1.b
the differences between the power curve and the triangle
at the qmp’s, are indicated with red arrows. The qmp’s
thus provide additional information on the area under
the I/V .

For the qmp- point we derive

∂ (I(V )V − ImppV )

∂V

∣∣∣∣
V=Vqmp-

=0

∂I

∂V

∣∣∣∣
V=Vqmp-

=− Iqmp- − Impp

Vqmp-
. (5)

Here we use that I(V )V − ImppV is the difference be-
tween the power of the I/V minus the power triangle
from short-circuit up to the maximum power point. Note
that the qmp- point can also be regarded as the maxi-
mum power point of the I/V after the current is shifted
by -Impp.

FIG. 1: Extended Solar Cell Parameters

Similarly, for the qmp+ we find

∂I

∂V

∣∣∣∣
V=Vqmp+

= − Iqmp+

Vqmp+ − Vmpp
. (6)

The qmp+ point can also be regarded as the mpp of the
I/V after the voltage is shifted by -Vmpp.
Note that the definition of the qmp’s is somewhat re-

cursive. Thus, the same methods which are used to de-
termine the mpp can be used for the qmp’s with only
minor adaptions (i.e. shifting the I/V ). Especially for
more elaborate, noise-robust methods to determine the
mpp and qmp’s, this allows to an optimal reuse of imple-
mented methods. Furthermore, this recursive nature of
the qmp’s makes that it is generally easy to adapt soft-
ware to provide the extra points of the ESP in addition
to the SSP.
In Appendix A we discuss several algorithms for the

noise robust extraction of the ESP including the mpp
and qmp’s.

III. CURVE MODELS

In this section we present several models to describe an
I/V and their parametrization. Before we start with the
actual curve models, let us list several properties that we
expect to hold for most I/V .
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1. In general we expect I/V to be continuous and dif-
ferentiable. The physics based one diode model is
in fact infinitely differentiable [9].

2. Most I/V are monotonously decreasing (with the
Isc being positive). In our experience, most non-
monotonous I/V are the result of transients, e.g.
varying irradiation, capacitive effects, or (meta-
stable) changes in the solar cell. It is also pos-
sible for passive semiconductor devices to exhibit
non-monotonous behavior under steady state con-
ditions, for example Gunn and tunnel diodes ex-
hibit negative differential resistances. However, we
do not expect such effects to play a role in prac-
tical photovoltaic devices under normal operating
conditions.

3. Normally I/V are concave. There are, however,
many cases where an I/V may not be concave ev-
erywhere. Most notably due to S-shapes and par-
tial shading of series connected cells (when bypass
diodes are active of single cells are driven into junc-
tion breakdown).

In this work we will consider various models. How-
ever, in light of the expected properties of an I/V we will
constrain the models and their parametrization. In par-
ticular, all considered curve models are continuous and
differentiable. Furthermore, if the key points of the ESP
are monotonously decreasing, then we require the mod-
eled curve to also produce a monotonously decreasing
curve (either the model does this by itself or we perform
a constrained optimization such that we only consider
monotonous solutions).

A. One diode model

The 1D model is one of the most widely used models.
It is based on the Shockley diode equation which is rooted
in device physics [10]. The one diode model is given by

I(V ) = Iph−I0

[
exp

(
V + I(V )Rs

a

)
− 1

]
−V + I(V )Rs

Rsh
,

(7)
where Iph is the photo-current, I0 the saturation current,
a is constant, Rs the series resistance, and Rsh the shunt
resistance. The constant a has the unit volt and can be
written as a = NsnkT/q, where Ns is the number of se-
ries connected cells in a module, n is the ideality factor,
k is Bolzmann’s constant, T the temperature, and q the
elementary charge. As one can see, the equation is tran-
scendental and implicit with the current appearing on
both sides of the equation. Thus, to solve the equation,
iterative root finding algorithms are typically used, e.g.
Newton’s or Halley’s method. It is possible to write the
equation in an explicit form using the Lambert-W func-
tion [11]. In terms of solving the equation this does not
give a very big advantage as the numerical evaluation of

the Lambert-W function itself, relies on the same itera-
tive root finding algorithms [12]. However, you may be
able to avoid implementing your own iterative solver if
someone implemented the Lambert-W function for you.
As discussed before, the parametrization of the diode

model is the topic of a vast number of papers. An im-
pression of the multitude of methods can be obtained
from various review papers [1–5]. In this work, we use a
hybrid approach utilizing both local and global optimiza-
tion methods. For the local optimizer we use Levenberg-
Marquard and as a global optimizer we implemented the
Differential Evolution (DE) algorithm [13]. To obtain a
good initial guess we find the Oblique-Asymptote method
is quite effective [9].
The overall fitting procedure is to first use the Oblique-

Asymptote method and subsequently use the local opti-
mizer. Only if the local optimizer does not obtain a good
optimum, we resort to the DE algorithm. Following the
DE algorithm we again run the local optimizer with the
DE optimum as an intitial guess. A more detailed de-
scription of the fitting procedure and used methods can
be found in Appendix B.
The diode model has 5 parameters, whereas the ESP

provide 10. However, we consider it most important the
model accurately reproduces the SSP, which consist only
of 4 parameters. For this reason we opt to use the SSP
in combination with the Gsc value. This choice is some-
what arbitrary but does provide a practical advantage
as the Oblique-Asymptote method used for the initial
parametrization uses the Gsc. We would also note that
in case of an I/V with S-Shape, the choice for Gsc rather
than an ESP beyond the maximum power point, leads
diode parametrizations with a high series resistance to
account for the low Vmpp value w.r.t. Voc. This does not
make the 1D model reproducing S-shapes but at least the
curve may be somewhat reasonably reproduced up to the
mpp (see also Section VA and Fig. 2 therein).

B. Karmalkar-Haneefa

A phenomenological equation for describing I/V was
introduced by Karmalkar and Haneefa [7]

i(v) = 1− (1− γ)v − γvm, (8)

where γ and m are the “shape parameters”, and

i =I/Isc (9)

v =V/Voc. (10)

As Voc and Isc are direct parameters the only remaining
unknowns are γ and m. The KH model is commonly
parameterized using the slopes at short- and open-circuit.
This method is indeed convenient as simple analytical
expressions can be derived to solve γ and m from these
slopes. However, using these slopes will not make the
model most accurate in the maximum power point. We
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prefer to fit the equation to the SSP, such that the mpp
is accurate. To this end we need to solve

IKH(Vmpp) =Impp (11)

∂IKH

∂V

∣∣∣∣
Vmpp

=− Impp

Vmpp
(12)

Both approximate and accurate expressions exist, see
for example [14]. Compared to parameterizing the diode
equation, the parametrization of the KH model is gener-
ally fast and simple. However, in some cases the solution
is non-monotonous.

In order to establish whether a KH parametrization is
monotonous, we determine the derivative of Eq. (8)

∂i(v)

∂v
= γ(1−mvm−1)− 1. (13)

For a finite derivative at v = 0, we must have m ≥ 1.
Furthermore, for a negative or zero derivative at v = 0,
we must have γ ≤ 1. For a monotonous solution, Eq.
(13) must be negative or 0 on the interval 0 ≤ v ≤ 1.
Thus, we solve ∂i(v)/∂v = 0

γ − 1

γ
= mvm−1. (14)

Thus, a monotonous solution with finite derivatives (m ≥
1), is obtained when γ < 0 and 1 ≤ m ≤ (γ − 1)/γ, or,
for 0 ≤ γ ≤ 1 and m ≥ 1. A look at the second derivative

∂2i(v)

∂v2
= −γ(m− 1)mvm−2, (15)

reveals that we obtain concave solutions for γ ≥ 0 and
m ≥ 1, γ ≥ 0 and m ≤ 0, and, γ ≤ 0 and 0 ≤ m ≤ 1.
Thus, for normal I/V -characteristics, which are mono-
tonic decreasing and concave, it follows that 0 ≤ γ ≤ 1
and m ≥ 1.
We require that for monotonous decreasing SSP, the

curve must also be monotonous decreasing. In cases
where this requirement is not met we thus need to per-
form a constrained optimization. In our implementation
Eqs. (11) and (12) are solved initially using Levenberg-
Marquard. In case the solution is not monotonous de-
creasing and the SSP are, we perform a constrained op-
timization using DE.

C. PV-Spline

The diode and the KH models are functions we can fit
to a set of parameters. However, as all solar cell parame-
ters describe points on a curve we can also use interpola-
tion methods to approximate the curve. The advantage
of interpolation is that it is generally easy to parame-
terize an interpolation function. Furthermore, an inter-
polation will always reproduce the points on the curve
exactly, whereas the fitting models only approximate a
set of parameters.

Probably the most obvious interpolation model would
be to use a cubic spline. A cubic spline is simply a piece
wise cubic polynomial. As with the ESP we have a set of
5 points on the curve with derivatives, we can describe
the whole curve using 4 sections between the 5 points. In
the terminology of splines the 5 points on the I/V (i.e.,
sc, qmp- mpp, qmp+, oc) are referred to as knots. The
resulting spline is smooth and continuous up to the first
derivative.
A downside of a simple cubic spline, however, is that

also for a monotonous I/V , the resulting spline may be
non-monotonous. Thus, we need a monotone spline in-
terpolation method. Commonly, monotonous splines are
obtained by modifying the derivatives at the knots as de-
scribed by Fritsch and Carlson [15]. However, in our case
the knot derivatives are defined by the ESP, and thus we
do not want to modify them. However, alternatively one
can insert additional knots to provide the needed degrees
of freedom without changing the derivatives at the key
points of the I/V . There are, however, many ways to
insert additional knots to obtain a monotonous curve.
Thus, we developed a heuristic method to insert knots
such that the curve is guaranteed to be monotonous and
remains smooth (e.g. avoid sharp corners at the inserted
knots). We refer to the resulting ESP spline interpola-
tion method as a PV-Spline. A full description of PV-
Splines, including the monotone knot insertion heuristic
used here, can be found in Appendix C.
The procedure 2 from the IEC60891 norm provides

a method to translate an I/V to different irradiances
and temperatures [16]. A nice feature of the PV-Spline
model (and I/V interpolation models in general), is that
it can be combined with procedure 2, and thus a complete
I/V model as a function of temperature and irradiance
may be obtained. In Appendix D we detail how one
may use the IEC60891 norm to translate a PV-Spline to
different irradiances and temperatures. The PV-CRAZE
library also provides fitting and translation methods to
work with the IEC 60891 norm and PV-Splines.

D. PV-Bézier

Another interpolation method used here are Bézier
curves. We previously found cubic Béziers particularly
accurate in describing I/V [17]. A cubic Bézier curve is
a parametric curve commonly used in computer graph-
ics. Similar to splines, Bézier curves are used to create
smooth curves. Our PV-Bézier interpolation scheme uses
a cubic Bézier interpolation between the key points of
the ESP, i.e. from sc to qmp-, from qmp- to mpp, from
mpp to qmp+, and from qmp+ to oc. The total num-
ber of parameters for this Bézier curve is 18 (requiring
a smooth curve without corners), i.e. much more than
the 10 parameters from the ESP. However, we developed
a parametrization procedure which parameterizes these
18 parameters using the 10 ESP, whilst ensuring the re-
sulting curve is monotonous, if the ESP are monotonous.
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A complete description of the PV-Bézier interpolation is
given in Appendix E.

IV. PV-CRAZE

In this section we describe the previously mentioned
PV-CRAZE library. The source code for PV-CRAZE is
freely available from [18]. The main functionality of PV-
CRAZE is the analysis of I/V and extracting ESP. For
this we implemented noise-robust methods to extract the
key points form an I/V . Furthermore, in this step we do
some rudimentary checks on the I/V data and flag data
where no reliable ESP could be extracted. These flags
may be used as a first step in filtering large datasets.
The PV-CRAZE library is explicitly developed with large
datasets in mind. For this reason the library is imple-
mented in C, to achieve a fast analysis tool suitable to
process millions of I/V . We briefly discuss PV-CRAZE
performance in Section VD.

Optionally PV-CRAZE can also fit several I/V curve
models, namely:

• Karmalkar-Haneefa

• Pindado-Cubas IV model [19][? ]

• One diode model

• PV-Spline

• PV-Bézier

• Piece-Wise Linear

In addition the PV-CRAZE library provides routines
to compute an I/V from a model fit, translate a PV-
Spline to different temperatures and irradiances using
procedure 2 from the IEC 60891 norm, and fit procedure
2 parameters given a set of IV at different irradiances
and temperatures.

V. RESULTS

A. Selected IVs

As a first step in analyzing the various models we con-
sider three examplary I/V -characteristics, as shown in
Fig. 2. The I/V are selected specifically to demon-
strate some differences in the curve models. The the
I/V -characteristics consist of

• a crystalline silicon solar cell I/V . This I/V is
chosen as it represents a fairly close approximation
to the standard diode equation.

• a thin-film hydrogenated amorphous silicon (a-
Si:H) I/V . This I/V is chosen as the I/V of a-
Si:H solar cells deviates somewhat from the stan-
dard diode equation.
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FIG. 2: Examplary ESP and curve model results for
three different I/V . The measured I/V is indicated
with black dots, the ESP with large white dots, and

three lines for the Diode, KH, and PV-Spline models. a.
A crystalline silicon wafer based solar cell. b. an a-Si:H
solar cell. A perovskite solar cell specifically selected for
its severe S-shape (I/V data extracted from Fig. 1b in

[20]).

• a perovskite solar cell I/V . This specific perovskite
I/V is chosen as it exhibits a rather severe S-Shape.
The I/V data shown here was extracted from [20]
(Fig. 1b therein).

The results of the curve fits are shown in Fig. 2. The
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black dots represent the measured I/V curve under a
class A AM1.5g spectrum. The large white dots are the
extracted ESP. Furthermore, for each I/V we show three
curve fits, the diode model, the KH model and the PV-
Spline. In this figure we omit the PV-Bézier model as
in this figure its results are indistinguishable from the
PV-Spline. As a consequence, in the following discussion
of Fig. 2, all statements that apply to the PV-Spline
model, also apply to the PV-Bézier model. In Fig. 2a the
results are shown for a crystalline silicon wafer solar cell.
For this I/V all curve models fit well with the measured
curve. Figure 2b shows an a-Si:H solar cell I/V . Here we
see that in particular the KH model, but also the diode
model clearly deviate from the measured I/V . The PV-
Spline still matches perfectly with the measured I/V . In
Fig. 2c we show the I/V with S-shape. For this curve
both the diode model and the KH model show strong
deviations. The KH model maximum power point does
not agree with the measured mpp. Note that one can
parameterize the KH model to match the mpp exactly,
however, this results in a non monotonous curve. The
diode model matches well up to the mpp. Note that the
selection of ESP to use for fitting the diode equation (see
Section IIIA) was chosen such that the impact of the S-
shape is accounted for in a large series resistance value.
The PV-Spline reproduces the S-shape.

The results in Fig. 2 exemplify how well the different
models can describe various I/V . However, the results
are, with only 3 I/V , rather anecdotal. To test the ro-
bustness of the various models and the accurate extrac-
tion of the ESP, it is important to test things on large
datasets. In the following section we compare results for
large outdoor datasets.

B. Outdoor data

In this work we will use a subset of data previously
published in [21]. For this data set several industrial
modules were set up at 5 test locations in different cli-
mate zones around the world. The chosen test sites are
located in Cologne (Germany), Ancona (Italy), Phoenix
(United States of America), and Chennai (India). In this
work we also include data from a fifth test site, con-
structed and operated in Thuwal, Saudi Arabia (SA). [?
]. Some data on the test sites are summarized in Table
I. Each location was equipped with a set of modules of
the same types. Periodic measurements were performed
of both weather data and current/voltage sweeps of each
module. At all test locations the weather station and test
equipment were identical. From these data sets we use a
subset of 9 module types, one c-Si, one a-Si:H/µc-Si:H,
three CdTe, and four CIGS modules. More information
on the test sites and methodology can be found in [21].

The complete dataset used in the work consists of 2.24
million I/V . Some of these I/V , however, exhibit prob-
lems such as multiple maximum power points, insufficient
current or voltage ranges to determine Voc or Isc, etc. Of
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FIG. 3: Cumulative error distributions. For the
different curve models, this plot shows the percentage of
curves that have an RMS fit-error of less than the error
value on the x-axis, e.g. we can see that the fit error of
the PV-Bézier model is less than 0.1 % for about 88 %

of the I/V ’s in the database.

the 2.24 million, we could obtain reliable ESP for 2.19
million I/V , i.e. 2.2% of the data points were discarded.

In Fig. 3 cumulative fit error distributions are shown
for the four I/V models. The curves depict the percent-
age of curves for which the RMS fit error is less than the
fit error in the x-axis for all four models. The fit error
of the PV-Bézier model is generally smallest, followed by
the PV-Spline model. The PV-Spline model fit errors
are distributed in a remarkably narrow range w.r.t. the
other models. The Diode and KH models perform worst,
where the Diode model outperforms the KH model.

The cumulative plots in Fig. 3 give a good overall in-
dicator for the performance of the different models, how-
ever, it does not reveal whether there are sub classes of
I/V for which a particular model outperforms another.
In Table II we compare how often one model performs
better than another for the various curves in the dataset.
In the first row we see that the PV-Bézier model is the
best model in 93% of the cases, whereas the KH model
is the best only in 0.3% of the cases. Likewise, the sec-
ond row shows the frequency by which each model is the
worst model. The remaining rows in Table II each com-
pare the models in the columns with one of the models.
For example the last row shows how often the PV-Bézier
model is better then the model for each column. From
this table we can see that not only is the PV-Béziermodel
is the best model in the vast majority of cases, it is also
very rarely the worst model.

In a next step we examine whether the fit errors for
the different curve models depend on the PV technol-
ogy. In Fig. 4 we show a box plot for the fit error per
model and module technology. In Fig. 4.a the results for
the KH model are shown for all 9 module types in the
datasets. Overall the model performs best on the CdTe-
1 dataset, with a median fit error of 0.4%, and worst on
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TABLE I: Test site specifications. All values are in degrees.

Cologne, Germany Ancona, Italy Phoenix, USA Chennai, India Thuwal, SA
Latitue 50.922 813 43.474 195 33.424 04 12.984 217 22.312 602
Longitude 6.991 705 13.074 653 −111.910 036 79.987 987 39.110 47
Tilt angle 35.0 35.0 35.5 15.0 25.0
Azimuth 0.0 0.0 0.0 0.0 0.0

TABLE II: Comparison of the various models. The first
two rows indicate how often one particular model is
best or worst compared to the other 3 models. In the
remaining rows we show pairwise comparisons between
the models, where each row depicts the rate at which
one particular model outperforms the other models.

KH Diode PV-Spline PV-Bézier
Best 0.3 1.3 5.4 93.0

Worst 87.8 10.7 1.3 0.2
KH < - 11.3 2.6 0.7

Diode < 88.7 - 15.5 1.9
PV-Spline < 97.4 84.5 - 5.8
PV-Bézier < 99.3 98.1 94.2 -

the CIGS-4 data set with an error of 1%. Although the
KH model systematically fits better with some modules
than with others, there is no clear trend with technology
and the differences are not very big (0.4 % versus 1 %).
For the diode model in Fig. 4.b the fit errors are gener-
ally smaller than for the KH model. The fit errors show
a somewhat similar trend, e.g. like the KH model the
smallest and largest fit errors are obtained on the CdTe-
1, and the CIGS-4 data sets, respectively. The PV-Spline
model in Fig. 4.c poses a significant improvement for all
module technologies as compared to both the KH and
Diode models, with a fit error typically below 0.2 % for
all data sets. Furthermore, the fit errors for all data sets
are very similar. Finally, in Fig. 4.d, we show the results
for the PV-Bézier model. With the PV-Bézier we obtain
fit errors typically well below 0.1 %, outperforming all
other tested models.

Inspecting the curves where the interpolation models
exhibit a relatively large error, we find that most these
curves suffer from specific problems. In particular, we
find signs these curves are affected by partial shading,
unstable irradiance conditions, or various other issues of
unknown origin. In Fig. 5 we show several examples
of curves with such problems. Figure 5.a depicts an I/V
affacted by partial shading in a crystalline silicon module.
In general partial shading can be recognized by kinks and
partly convex curves. Figure 5.b is an example where
we suspect the irradiance conditions changed during the
measurement. Also unstable irradiance conditions may
lead to kinks and convex parts in the curve. Finally, an
example where the measurement equipment appears to
have malfunctioned is shown in Figure Fig. 5.b. Such
curves affected by some malfunction are fairly rare and
very heterogeneous in appearance. Figure 5 also shows

the various curve models for these particular I/V .
It may be desirable for an analysis to specifically re-

move or select data points such as those shown in Fig. 5.
In the following section we will demonstrate the ability
of the ESP to capture the shape of an I/V by developing
a filter for partial shading in silicon modules as shown in
Fig. 5.a.

C. An I/V shape classifier

In this section we develop a random forest classifier to
filter the I/V by some shape attributes. For the classi-
fier we define “class A” as a healthy I/V , and “class B”
as an I/V with problems (primarily due to partial shad-
ing). In this work we limit the scope of this filter to the
crystalline silicon modules. In order to train a random
forest classifier we created a labeled dataset by manually
inspecting I/V -characteristics. Here it should be noted
that there exists no ground truth for the labels A and B.
The manual labels are based on a somewhat subjective
opinion of the author as to whether an I/V is abnormal.
We decided to train the classifier with normalized so-

lar cell parameters, i.e. all currents divided by Isc and all
voltages by Voc. This way the classifier is provided only
with unit less information on the shape of the I/V , and
cannot implicitly learn other attributes in the data such
as possible correlations with irradiance level and temper-
ature.
Overall, class B I/V are underrepresented in the

dataset, i.e. the majority of I/V are of class A. We try to
obtain a somewhat balanced labeled dataset with about
equal numbers of class A and B I/V . To this end we used
an iterative labeling process where we first labeled only
a small dataset to train the classifier. Subsequently, we
use the trained model to randomly select I/V for man-
ual labeling such that we obtain a well balanced labeled
dataset. The resulting labeled dataset consists of 936
I/V of class A, and 917 of class B. The vast majority of
the class B I/V is affected by partial shading.
The final labeled dataset was split into a training and

testing set of 1499 and 354 data points, respectively.
We trained two random forest classifiers. The first was
trained using only the normalized Impp and Vmpp data.
This classifier was trained as a reference of the accuracy
that may be achieved using the SSP alone. The second
classifier was trained with the full set of normalized ESP.
The confusion matrices for both random forest classifiers
are shown in Table III. The precision in selecting a class
A I/V of the SSP classifier is 83 %, and the recall is
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FIG. 4: Fit error box plot for various module technologies and the four models. a. The Karmalka-Haneefa model. b.
The one diode model. c. The PV-Spline model. d. The PV-Bézier model

TABLE III: Confusion matrix for the random forest
I/V classifiers. (a) Classifier trained using only the

normalized Vmpp and Impp values. (b) Classifier trained
on the normalized ESPs.

predicted
A B

la
b
el A 154 40

B 31 129

(a)

predicted
A B

la
b
el A 185 8

B 9 169

(b)

79 %. The ESP classifier obtains a significantly higher
accuracy with a precision of 96% and a recall of 95%.

As mentioned before, the manual labeling is somewhat
subjective. Furthermore, during the manual labeling we
found is sometimes difficult to decide whether an I/V
should be considered class A or B. For this reason we
decided to determine baseline precision and recall values
by re-labeling some of the I/V in the labeled set. The re-
labeling was again performed by the author, but several
days after the labeled dataset was generated. For the
re-labeling we selected 300 data points from the labeled
set. The confusion matrix resulting from the re-labeling
is shown in Table IV. The precision in selecting a class
A data points is 96 % and the recall is 97 %. Note that
the precision and recall of the ESP classifier is nearly
identical, i.e., the author is only slightly less confused
than the ESP classifier.

Finally, we applied the classifier to all c-Si datasets. In
Fig. 6 we show for each location the percentage of curves
that are of class B. We find the number of detected class
B data points varies strongly for various locations. In

TABLE IV: Confusion matrix to test the accuracy of
the manual labeling process. Both the label and the
predicted label are the result of manual inspection of

the I/V by the author.

predicted
A B

la
b
el A 160 5
B 6 146

particular the c-Si module in India is strongly affected,
as almost 72% of the curves is labeled B. Inspection re-
veals that indeed this dataset exhibits many curves which
look partially shaded. Furthermore, from the timestamps
for these class B I/V ’s, we observe longer periods where
nearly all curves are labeled B (not shown). Thus, we
suspect these partial shading effects originate from soil-
ing.

D. PV-CRAZE Performance

The PV-CRAZE package is developed to aid the analy-
sis of large datasets, and thus performance is very impor-
tant. In this work the curve analysis with PV-CRAZE
consisted of several tasks:

• Curve Analysis (extended solar cell parameter ex-
traction)

• Evaluate the PV-Spline model

• Fit and evaluate the KH model

• Fit and evaluate the Diode model
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FIG. 5: Several examples of curves labeled as bad.
Black dots are the measured I/V , white dots the

extracted ESP, and the lines the various curve models.
a. Typical example of a partially shaded c-Si module.
b. I/V with maximum currents above Isc, presumably
the result of unstable irradiation conditions during the
measurement. c. Data acquisition problem of unknown

origin.

• Evaluate the PV-Bézier model

For the complete dataset we list the amount of time PV-
CRAZE spent on the various tasks in Table V. These
times were measured for a single thread on a consumer
grade laptop (CPU: dual core Intel i5-7200U at 2.50GHz,
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FIG. 6: Bar plot with the percentage of bad curves per
location.

TABLE V: PV-CRAZE performance on 2241539 curves
on a single core

task time [s] time/datum [µs]
Curve Analysis 79.2 35.3
PV-Spline 85.2 38.0
KH 152.7 68.1
Diode 2849.0 1271.0
PV-Bézier 72.3 32.2
Rest 13.5 6.0

total 3251.8 1450.7

and 20 GB DDR4 RAM). The times in Table V were
obtained with the octave extension of PV-CRAZE. The
total time used was 54:12 (min.:sec.). From Table V we
observe almost 87.6 % of the time is spent on the fitting
of the diode model, which translates to about 1.3 ms
per data point. Most time for fitting the diode model is
spent on a relatively small subset of I/V -characteristics
(approx 10 %) for which the initial Levenberg-Marquard
optimizer does not directly find a good optimum. The
KH model is comparatively efficient and uses only 64 µs
per data point. The curve analysis, and the evaluation
of both interpolation models are fastest and each take
between 30-40 µs per data point. If we only extract the
ESP, the complete dataset is processed in less than 100 s.
It is trivial to parallel process a large dataset by dividing
the dataset in chunks, thus, PV-CRAZE provides a fast
and salable means to analyze large I/V datasets.
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VI. CONCLUSIONS

In this paper we propose a set of Extended Solar
Cell Parameters. The ESP provide a general purpose
parametrization of I/V -characteristics, allowing a de-
tailed and accurate description of an I/V curve. We
have developed two methods to reconstruct an I/V -
characteristics from the ESP, namely the PV-Bézier
and PV-Spline models. By reconstructing the I/V -
characteristics we can obtain a measure of information
loss by computing the distance between the original and
reconstructed I/V . This way we demonstrate on a large
dataset of 2.2 million I/V , covering a wide range of PV
technologies, that the ESP provide an accurate descrip-
tion of the I/V . For the PV-Bézier model we find that
for 90% of the I/V curves we obtain an RMS error be-
low 0.1%. For comparison, with the PV-Spline model
this is 0.2%, for the diode model about 1% and for the
KH model 1.2%. This comparatively low fit error demon-
strates that the ESP capture much more detail than the
commonly used I/V parametrizations.

We argue that these general purpose, descriptive I/V
parameters are useful for analyzing large datasets. To
demonstrate this we developed a random forest classifier
to detect partial shading in the crystalline silicon mod-
ules in our outdoor dataset. The random forest classifier
obtains high precision and recall values (96%, and 95%,

respectively). These precision and recall values are more
or less identical to the precision and recall values ob-
tained by manually labeling the labeled dataset a second
time, i.e. the classifier is about as accurate as the labeled
dataset is. This random forest classifier can thus be used
to rapidly filter the complete dataset for partial shading
conditions.

Finally, we presented our open source analysis tool for
I/V -characteristics, PV-CRAZE. The tool implements
robust I/V curve analysis methods and was developed
with large datasets in mind. PV-CRAZE can extract the
ESP, and fit various I/V curve models (among others the
PV-Bézier, PV-Spline, One diode, and KH models). We
demonstrate PV-CRAZE can extract the ESP for a large
dataset of 2.2 million I/V in under 100 s, on a single
thread using a consumer grade laptop.
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Appendix A: Noise Robust Extraction of ESP

In this section we discuss the methods implemented in
PV-CRAZE to extract the ESP. To extract the ESP from
an I/V we first determine the mpp, then the two qmp’s
and finally the sc and oc points.

1. Determine the (q)mpp’s

The simplest method to obtain a mpp estimate is sim-
ply multiplying all voltage and current pairs and select
current-voltage pair with the highest power. This esti-
mate is, however, not always accurate, especially if there
is noise or the I/V is coarsely sampled. We refer to this
mpp estimate with m̃pp. To determine a more accurate
mpp estimate we generally fit a polynomial to the data
and compute the maximum from the polynomial. For the
fitting of a polynomial we apply Ordinary Least Squares
(OLS). For accurate results we only fit a certain range
of the curve. The range is specified with a start voltage,
Vstart, and an end current, Iend. The range is selected
with respect to the coarse mpp estimate m̃pp

Vstart =(1− fmpp,V )Vm̃pp (A1)

Istart =(1− fmpp,I)Im̃pp, (A2)

where fmpp,V , and Fmpp,I are both constants between 0
and 1.

For the polynomial fitting we have several approaches
implemented in PV-CRAZE:

• Fit a 3rd order polynomial to the power curve
(P (V )) and to the current curve (I(V )). Deter-
mine the Vmpp from the maximum of power fit and

substitute the found Vmpp in the current fit to ob-
tain Impp

• Same as above but now considering both the volt-
age and the current as functions of “time”, where
we assume voltages and currents are sampled at
equidistant time. In this case we fit three 3rd order
polynomials to the power curve (P (t)), the current
curve (I(t)), and the voltage curve (V (t)). From
the fit to the power, we obtain a time for the mpp
and we substitute this time value in the voltage and
current fits, thus obtaining Vmpp and Impp.

• A faster algorithm may be obtained using Savitzky-
Golay filters [22]. Savitzky-Golay filters provide
a method to obtain a polynomial fit, with the re-
quirement that the data is sampled equidistantly.
We cannot generally assume this to be the case for
the curve as a function of voltage. However, for
the parametric approach we do assume equidistant
sampling rates in time. In this work we use a sym-
metric 3rd order Savitzky-Golay filter with a ker-
nel length of 7. Here we still try to use the com-
plete I/V range between Vstart, and Iend. To this
end we place 3 points before m̃pp at approximately
equidistant voltages, and 3 points after m̃pp at ap-
proximately equidistant currents, i.e. this method
always considers only 7 points within the selected
range.

On the data we worked with we find that the Savitzky-
Golay method is most robust. In addition the Savitzky-
Golay method is always faster than the explicit appli-
cation of OLS, especially for I/V with many samples
around the mpp.
For the quasi-mpp’s we simply use the same algorithms

as above where we merely shift the I/V down by Impp,
to obtain the qmp- point, or left by Vmpp to obtain the
qmp+ point.

2. Extrapolation to short- and open-circuit

Laboratory cell I/V are typically measured with 4
quadrant measurement equipment, which allows the mea-
surement of the I/V from voltages below short circuit
and above open circuit. However, PV modules are often
measured with cheaper programmable loads. With such
equipment one can measure only the active range of the
solar cell and thus the short- and open-circuit points need
to be extrapolated.
In general I/V tend to be fairly flat near the short- and

open-circuit points. However this is not always the case.
Furthermore, we again need to make sure the extraction
procedure is noise robust. With a plain linear extrapola-
tion one quickly ends up with a a problem that one needs
to define a ”linear” range of the measured I/V , where the
linear function may be fitted to. If this linear range is

http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
https://webstore.iec.ch/publication/3821
https://webstore.iec.ch/publication/3821
https://www.sciencedirect.com/science/article/pii/B9780124605107500100
https://www.sciencedirect.com/science/article/pii/B9780124605107500100


13

chosen too large, the slope of the linear fit will not accu-
rately represent the slope one is after, and if the range is
too small noise may affect the fit. To mitigate this effect
we can again, like for the maximum power point, use can
us a higher order polynomial fit, which can adapt to the
curvature of the data whilst rejecting noise. However,
a polynomial extrapolation can easily become ill condi-
tioned, see for example Runge’s phenomenon [23].

In our approach we use a 3rd polynomial OLS fit to
obtain an approximation of the curve which is robust
to noise. In the second step we, however, avoid using
the polynomial directly for the extrapolation. Instead
we extrapolate with a line through two points on the
polynomial approximation. The procedure is exemplified
using the extrapolation of the short-circuit current.

We start with a 3rd order polynomial OLS fit to I(V ),
where we select points in the curve with voltages up to
Vqmp-. Then we consider two poinst in the fit. The first
point is the minimum voltage larger than 0, present in
the data, V1. The second point is defined as

V2 = V1 + fsc,V Vqmp-, (A3)

where fsc,V is a constant between 0 and 1. We use the
3rd order polynomial fit to determine the correspond-
ing currents I1 and I2. Subsequently, we parameterize a
straight line through these two points and determine the
intersection with the current axis. Thus, we assume we
have a linear range between V1, and V2. If the value of
fsc,V is chosen too small, the extrapolation may become
ill conditioned (Runge’s phenomenon [23]). If, on the
other hand, fsc,V is chosen too large, the range between
V1, and V2 is not well approximated with a straight line.
Per default PV-CRAZE uses fsc,V = 0.12.

For the open circuit we use an analogous approach.
However, for the open circuit point we swap the volt-
ages and currents, i.e. we select data with currents up to
Iqpm+, fit a polynomial to V (I), and make a linear ex-
trapolation through two points at I1 (minimum current
larger than 0 in the data) and I2 = I1 + foc,IIqmp+. The
default value in PV-CRAZE is again fsc,I = 0.12.

Appendix B: Diode Model Parametrization

Here we give a short description of the used
parametrization methods for the one diode model. How-
ever, we start with the disclaimer that, in the face of
the vast amount of literature of which we have barely
scratched the surface, we do not claim a particular ex-
pertise on fitting the diode equation. The here presented
method has not been bench-marked against any other
procedure, and thus, we make no claims about how this
procedure performs w.r.t. other methods. Our only claim
is that “it works for us” on large sets of I/V . We feel
the latter is an important aspect as in our experience it
is easy to develop a method that works well on any small
set of I/V . However, it is very hard to find a robust
method that works well on virtually all I/V .

In general, local optimizers, such as non-linear least
squares and Levenberg-Marquard, frequently get “stuck”
in local minima, making a good initial guess imperative.
In literature many methods exist for this purpose. We
found the oblique asymptote method to be of great value
[9]. In the following we first describe the oblique asymp-
tote method.

1. Initial Guess: The Oblique-Asymptote Method

For the Oblique Asymptote method the diode equation
is rewritten as

I = A−B(CV DI − 1)− EV (B1)

where

A :=
IphRsh

Rsh +Rs
(B2)

B :=
I0Rsh

Rsh +Rs
(B3)

C := exp

(
1

a

)
(B4)

D := exp

(
Rs

a

)
(B5)

E :=
1

Rsh +Rs
. (B6)

The line

I ′ = A+B − EV (B7)

is an oblique asymptote of Eq. (B1) in the limit for
V → −∞. If we now approximate this asymptote with
I ′ = Isc − V Gsc, we can reduce Eq. (B1) to

I − I ′ = BCV DI . (B8)

Thus it follows

ln(I − I ′) = ln(B) + V ln(C) + I ln(D). (B9)

It is trivial to solve ln(B), ln(C), and ln(D) using three
points on the I/V , after which we can substitute A and B
in Eq. (B7) to obtain E, and we have a full parametriza-
tion of the diode equation.
For the three points on the I/V , we cannot use the

short circuit point as there I − I ′ = 0 and the logarithm
is not finite. However, as we always determine the ESP,
we have the mpp, the oc and two qmp’s at our disposal to
obtain an initial parametrization. In some cases I−I ′ ≤ 0
also for other points on the curve apart form short circuit.
To deal with this situation we modify the assumption for
the oblique asymptote to I ′ = I ′sc−V Gsc, with I ′sc > Isc.

2. Diode Parameter Optimization

After using the oblique-asymptote method for the ini-
tial guess we found Levenberg-Marquard with geodesic
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acceleration, as implemented in the GNU Scientific Li-
brary [24] to be quite effective. In most cases this leads
to satisfactory results. However, in a small fraction, the
resulting fits are still not accurate. In these cases we
resort to Differential-Evolution (DE) [13].

The effectiveness of the DE optimizer depends strongly
on the initial population. In the diode equation, the
various parameters are strongly correlated. This needs
to be considered when initializing agents for DE. When
choosing parameters randomly without considering the
correlated nature of the diode parameters, many agents
are not even close to the actual curve. For this reason
we use the oblique asymptote method with random per-
turbations. This way one can effectively limit the used
parameter space to a region with reasonable solutions.

Our final diode model parametrization method is as
follows. We start with the initial guess using the oblique
asymptote method. Subsequently, we use Levenberg-
Marquard with geodesic acceleration. In case the fit error
is below a user defined threshold we are finished. Other-
wise, we switch to the DE algorithm to obtain a better
fit. This final fit from DE is used as the initial guess in
one final Levenberg-Marquard optimization.

Appendix C: A derivative preserving monotone spline
interpolation

Fritsch and Carlson developed a commonly used mono-
tone cubic spline interpolation method [15]. However, in
this method the derivatives at the given knots are mod-
ified to ensure the curve is monotonous. In our case we
do not want this as the derivatives at the given knots
should be fixed. For this reason, we resort to inserting
additional knots, for which we choose both the coordi-
nate and slope in such a way that the resulting curve
is monotonous. Before we go into the knot insertion al-
gorithm, we first discuss under which conditions a cubic
spline is monotonous. Fritsch and Carlson formulated
several criteria for a cubic spline to be monotonous [15].

mk =
Ik+1 − Ik
Vk+1 − Vk

(C1)

αk =
∂Ik/∂Vk

mk
(C2)

βk =
∂Ik+1/∂Vk+1

mk
, (C3)

where k refers to the knot index, i.e. index of the key
point on the I/V . We define k such that k increases

with voltage and k = 0 for short circuit and k = 4 for
open circuit. The first criterion is

sgn(∂Ik/∂Vk) = sgn(∂Ik+1/∂Vk+1) = sgn(Ik+1 − Ik),
(C4)

which must always be fulfilled for a monotonous curve.
In case we in addition have

αk + βk − 2 ≤ 0, (C5)
the curve is monotonous. For the case that Eq. (C5) is
not met, one of the following criteria must be met

αk − (2αk + βk − 3)2

3(αk + βk − 2)
≥0 (C6)

αk + 2βk − 3 ≤0 (C7)

2αk + βk − 3 ≤0. (C8)

In the following we describe our knot insertion heuris-
tics. As a first step we test whether a section is
monotonous. If this is not the case, we will insert one
or two knots. We define ∂I ′k

∂I ′k = 3mk − ∂Ik + ∂Ik+1

2
(C9)

We now consider two cases. In case both the following
criteria are true

∂I ′k >0 (C10)

(∂Ik −mk)(∂Ik+1 −mk) >0, (C11)

we insert two additional knots at

Ik+1/3 =
∂Ik+1Ik + ∂IkIk+1

∂Ik + ∂Ik+1
(C12)

Vk+1/3 =Vk + 3
Ik+1/3 − Ik

∂Ik
(C13)

∂Ik+1/3 =0, (C14)

and

Ik+2/3 =
∂Ik+1Ik + ∂IkIk+1

∂Ik + ∂Ik+1
(C15)

Vk+2/3 =Vk+1 + 3
Ik+2/3 − Ik+1

∂Ik+1
, (C16)

∂Ik+2/3 =0. (C17)

Otherwise we insert one knot. If (∂Ik − mk)(∂Ik+1 −
mk) < 0, we insert a knot at
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Ik+1/2 =
2[(m+ ∂Ik+1)Ik − (m+ ∂Ik)Ik+1] + (m+ ∂Ik)(m+ ∂Ik+1)(Vk+1 − Vk)

2(∂Ik+1 − ∂Ik)
(C18)

Vk+1/2 =
2(Ik − Ik+1) + (m+ ∂Ik+1)Vk+1 − (m+ ∂Ik)Vk

∂Ik+1 − ∂Ik
, (C19)

∂Ik+1/2 =m. (C20)

For (∂Ik −mk)(∂Ik+1 −mk) >= 0, we insert a knot at

Ik+1/2 =Ik +
(6m+ ∂Ik − ∂Ik+1)(Vk+1 − Vk)

12
(C21)

Vk+1/2 =(Vk + Vk+1)/2, (C22)

∂Ik+1/2 =∂Ik. (C23)

Appendix D: Using the IEC 60891 with PV-Splines

We can use the IEC 60891 in combination with PV-
Splines. To this end we need to translate the knots and

the derivatives. Various versions of the IEC 60891 exist.
The last two versions are version 2 and 3, which can be
found in [25] and [16], respectively. For simplicity we use
version 2 of the IEC 60891, as the translation equations
in version 3 are more complicated. However, a similar
derivation can be made for version 3 of the norm, and
PV-CRAZE implements PV-Spline translation routines
for both version 2 and version 3 of the IEC 60891.

The translation of knot coordinates is performed using
the two IEC 60891 v2 translation equations [25]

I2 = I1 (1 + α (T2 − T1)) G2/G1 (D1)

V2 = V1 + Voc1 (β (T2 − T1) + a ln (G2/G1 ))−R′
s (I2 − I1)− κI2 (T2 − T1) , (D2)

where a subscript 1 refers to values before- and 2 to af-
ter translation, e.g. (V1, I1) is a knot coordinate before
translation. The IEC 60891 v2 norm has 5 coefficients
describing the irradiance (G) and temperature dependen-
cies of the voltages and currents, namely α, β, a, R′

s, κ.
From Eqs. (D1) and (D2) we can also derive how the
derivatives change. The derivatives of Eqs. (D1) and
(D2) to I1 are

∂I2
∂I1

= (1 + α (T2 − T1)) G2/G1 (D3)

∂V2

∂I1
=

∂V1

∂I1
−R′

s

∂I2
∂I1

+R′
s − κ

∂I2
∂I1

(T2 − T1) . (D4)

By dividing Eq. (D4) by Eq. (D3) we obtain

∂V2

∂I2
=

G1

G2

∂V1

∂I1
+R′

s

(1 + α (T2 − T1))
−R′

s − κ (T2 − T1) . (D5)

Equation (D5) allows us to translate the derivatives.
By translating all knots and derivatives we obtain a

new spline. Note that the translated points do not corre-
spond exactly to the ESP of the translated curve. How-
ever, we can then simply determine the ESP from the
newly computed spline. Note that one may need to ex-
trapolate the new Voc or Isc values, for which we use a
linear extrapolation from the translated oc and sc points,
respectively.

Appendix E: PV-Bézier interpolation

A Bézier curve is defined by a set of control points.
The number of control points depend on the order of the
Bézier curve. In this work we will focus on cubic Bézier
curves, for which we need 4 points (coordinates), P0-P3.
The first and last points are the beginning and end of the
curve. The other two control points generally do not lie
on the curve. A cubic Bézier curve can be written as:

B(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3,
(E1)

where the time t ranges from 0 to 1, B(t) is the coor-
dinate at time t. At t = 0 we have B(t)|t=0 = P0 and
at t = 1 we have B(t)|t=1 = P3. The curve can be un-
derstood as a trajectory, where at each point the curve
has a derivative and a velocity w.r.t. the time variable.
The derivative of the Bézier curve with respect to time
is given by:

B′(t) =3(1− t)2(P1 − P0) + 6(1− t)t(P2 − P1)

+ 3t2(P3 − P2). (E2)

From Eq. (E2) we see that in the point P0, the vector
P0-P1 is a tangent vector. Furthermore, the velocity
(derivative w.r.t. time) is proportional to the length of
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this vector (|P0-P1|). Likewise the direction and velocity
in the point P3 is given by the vector P2-P3.
To parameterize an I/V we proceed along several

steps. In the first step we split the I/V in two sections,
one from short circuit to the maximum power point, and
one from the maximum power point to open-circuit, see
Fig. 7a. We then determine the control points for each
section such that the curve approximates the quasi-mpp’s
as well as possible, where we consider both the qmp co-
ordinate as well as slope. For a cubic Bézier section with
given slopes at the beginning and end knots, we have that
the two control points lie on the two respective tangential

lines at the beginning and end knots. Thus, we write

P1 =P0 + aP ′
0

P2 =P3 − bP ′
3, (E3)

where, a and b are constants to be determined, and P ′
0

and P ′
3 are the tangent vectors at the beginning and end

knot. If we now take any arbitrary point (Px) on the
desired Bézier section, and a specific time 0 < tx < 1, for
which the curve passes through this point, we can solve
a and b as:

a =
x′
3((2t

3
x − 3t2x)(y3 − y0) + (yx − y0))− y′3((2t

3
x − 3t2x)(x3 − x0) + (xx − x0))

3D(t3x − 2t2x + t)
(E4)

b =
x′
0((2t

3
x − 3t2x)(y0 − y3) + (y0 − yx)) + y′0((2t

3
x − 3t2x)(x3 − x0) + (xx − x0))

3D(t3x − t2x)
, (E5)

where, xi and yi are the coordinates of Pi, and x′
i and

y′i the elements of P ′
i (i equal to 0 or 3). The factor D

equals x′
3y

′
0−x′

0y
′
3, and is thus the magnitude of the cross

product of the tangential vectors (P ′
0 × P ′

3). Note that
if D = 0 we cannot solve a and b as the Bézier section is
a straight line (i.e. the tangential vectors have the same
direction and thus they do not span the 2D plane).

Using Eqs. (E4) and (E5) we can reduce the optimiza-
tion problem to find the two control points to a linear
search. To this end we substitute the qmp for Px, and
search for the time 0 < tqmp < 1 for which the result-
ing Bézier curve best matches the slope in the qmp. It
may happen that the solution for a or b is negative. This
would lead to a multi-valued curve and thus we do not
consider such solutions valid. If the optimization does
not produce a valid solution (i.e. all a and b are nega-
tive) we set tqmp = 0.5 and take the absolute values of a
and b.

In the second step we split the Bézier curve at the
approximate quasi-mpp’s using de Casteljau subdivision
[26], as illustrated in Fig. 7b. The qmp point itself and
the adjacent control points are then adapted to match
the exact qmp coordinate and derivative.

It may happen that the Bézier curve is not monotonous
but the ESP are. However, as our final Bézier represen-
tation, as shown in Fig. 7b, has more degrees of freedom
than the ESP provide, we do not need to insert addi-
tional knots as with the PV-Splines. It suffices to change
the control points such that the derivatives in the knots
are unaffected and the curve becomes monotonous. A
first step is, however, checking whether the Bézier curve
is monotonous.

A sufficient condition to guarantee a monotonic cubic
Bézier curve in 2 dimensions is if both x(t) and y(t) are
monotonic, where x and y are the elements of the vector

B(t) in Eq. (E1). Note that we only need to consider
the time interval 0 ≤ t ≤ 1. In the following we discuss
only x(t), however, the same arguments and derivations
hold for y(t). For a curve to be non-monotonic, there
must be at least one extrema on the the time interval
0 ≤ t ≤ 1. As we have a cubic equation we can have at
most two extrema. We can consider various cases.

• If for the derivative of x at t = 0 and t = 1, we can
write

∂x(t)

∂t

∣∣∣∣
t=0

· ∂x(t)
∂t

∣∣∣∣
t=1

< 0, (E6)

we must have exactly one extrema on the time in-
terval 0 ≤ t ≤ 1, and the curve is non-monotonic.

• If the condition in Eq. (E6) is not true, any curve
which is non-monotonic on 0 ≤ t ≤ 1 must have an
inflection point on 0 ≤ t ≤ 1. We rewrite Eq. (E1)
in terms of x

x(t) = (1−t)3x0+3(1−t)2tx1+3(1−t)t2x2+t3x3. (E7)

We can solve the inflection point for Eq. (E7) and
find

tinfl. =
x0 − 2x1 + x2

x0 − 3x1 + 3x2 − x3
(E8)

Having the inflection point we can immediately
conclude that if tinfl. < 0 or tinfl. > 1, the curve
must be monotonic on 0 ≤ t ≤ 1.

• If 0 ≤ tinfl. ≤ 1 the curve may still be monotonic.
In this case we can consider the derivative in the in-
flection point. If the following two conditions hold
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the curve is monotonic:

∂x(t)

∂t

∣∣∣∣
t=0

· ∂x(t)
∂t

∣∣∣∣
t=tinfl.

≥ 0 (E9)

∂x(t)

∂t

∣∣∣∣
t=1

· ∂x(t)
∂t

∣∣∣∣
t=tinfl.

≥ 0. (E10)

As it is sufficient if both x(t) and y(t) are monotonous,
we can consider the x and y coordinates separately. If the
x (y) coordinates of P0, P1, P2, and P3, are monotonous,
the resulting x(t) (y(t)) function is also monotonous.
Thus in order to make a section of our curve monotonous,
we compute two factors ax and ay:

ax =
x3 − x0

x3 − x0 + x1 − x2
(E11)

ay =
y3 − y0

y3 − y0 + y1 − y2
. (E12)

FIG. 7: Illustration of the PV-Bézier parametrization
steps. a. In the first step a reduced Bézier curve is

constructed with knots at sc, mpp, and oc. The control
points are fitted such that the qmp’s are best

approximated (both in coordinate as well as slope). b.
In the second step we split the two Bézier sections in

two at the approximate qmp’s points.

We take the minimum value of ax and ay, i.e. a =
min(ax, ay), and then compute new control points P ′

1

and P ′
2

P ′
1 =P0 + a(P1 − P0) (E13)

P ′
2 =P3 + a(P2 − P3). (E14)

Note that we only change controll point coordinates, and
both the coordinates and derivatives in the main knots
(e.g. the ESPs), are unaffected.
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