Insufficiency of Genomic Structure in Immunoglobulin Locus for Inducing High-Frequency Gene Conversion in Variable Regions

Jiadong Tao¹, Xiaoxing Guan², Jing Wang¹, Ye Yin¹, Di Yu¹, Jinwei Huang¹, Liming Ren¹, Haitang Han¹, and Yaofeng Zhao¹

¹China Agricultural University State Key Laboratory of Agrobiotechnology ²Beijing Children's Hospital Capital Medical University

September 25, 2023

Abstract

Mammals, including humans and mice, employ V(D)J recombination and somatic hypermutation (SHM) to diversify their immunoglobulin (Ig) variable region repertoires, while domestic poultry, such as chickens and ducks, rely heavily on gene conversion (GCV) to achieve this diversification. Given the differences in the arrangement of Ig gene loci between chickens/ducks and humans/mice, we posited that the structural arrangement of the Ig locus might play a pivotal role in driving the pronounced frequency of GCV in poultry. To test this hypothesis, we engineered a novel mouse model, $Ig\lambda^{-/-}Igx^{-/-}DIgL$, characterized by the incorporation of the entire duck IgL gene locus and the simultaneous absence of the mouse endogenous IgL locus. These transgenic mice produced chimeric antibodies comprising mouse heavy chains and duck light chains, thereby offering partial support for B cell development. However, when subjected to repeated immunization with a variety of antigens, the humoral immune response in Ig $\lambda^{-/-}Igx^{-/-}DIgL$ mice was notably diminished compared to that in wild-type mice. High-throughput sequencing of IgL repertoires unveiled distinct differences between Ig $\lambda^{-/-}Igx^{-/-}DIgL$ mice and ducks in terms of V gene utilization frequencies, characteristics of the CDR3 region (CDRL3), and nucleotide additions at junctions (NP nucleotides). Despite the increased expression of duck IgL due to the absence of endogenous mouse IgL, the level of GCV observed in duck IgL of Ig $\lambda^{-/-}Igx^{-/-}DIgL$ mice (2.01%) remained significantly lower than that in ducks (35.3%). These findings collectively indicate that the structural configuration of the Ig locus may not be a critical determinant of GCV and provide valuable insights into the mechanisms underpinning the high frequency of GCV observed in poultry species.

Hosted file

Manuscirpt.docx available at https://authorea.com/users/661552/articles/664595-insufficiencyof-genomic-structure-in-immunoglobulin-locus-for-inducing-high-frequency-geneconversion-in-variable-regions

elii
Id
ğ
nay
an
Dat
3
We
vie
r re
pee
an
p,
lot
as 1
Ë.
ane
int
epr
DI.
is a
P
27
26
922
940
14.4
376
4
100
au
41
225
0
10
i.o
ps:
htt
on.
Ď
out
ith
e N
eus
0 E
Z,
ved
Ser
S re
sht
Ĩ
All
er.
r/fund
thor/fund
- author/fund
the author/fund
is the author/fund
der is the author/fund
holder is the author/fund
ght holder is the author/fund
yright holder is the author/fund
copyright holder is the author/fund
he copyright holder is the author/fund
- The copyright holder is the author/fund
3 — The copyright holder is the author/fund
0.023 - The copyright holder is the author/fund
2023 - The copyright holder is the author/fund
5 Sep 2023 — The copyright holder is the author/fund
$_{1}$ 25 Sep 2023 — The copyright holder is the author/fund
d on 25 Sep $2023 - $ The copyright holder is the author/fund
sted on 25 Sep $2023 - $ The copyright holder is the author/fund

C to

C to A 6%

G to C 7% G to T

4%

SHM in duck

A to T 4%

> T to C 13%

C to G 12%

G to A 14%

В

Sample	Unique clones	% with GCV	Max GCV score	Avg Tract (nt)
$Ig\kappa^{-\prime} Ig\lambda^{-\prime} DIgL\text{-}V_\lambda 6$	125	1.6	9	37
$Ig\kappa^{\text{-/-}}Ig\lambda^{\text{-/-}}DIgL\text{-}V_{\lambda}9$	191	2.09	21	50±26
Igκ ^{-/-} Igλ ^{-/-} DIgL-V _λ 19	218	2.29	23	57
Igκ ^{-/-} Igλ ^{-/-} DIgL-total	534	2.01	23	49±23
DIgL-V $_{\lambda}6$	111	1.8	12	42±29
DIgL-V $_{\lambda}9$	172	2.33	18	64±38
DIgL-V $_{\lambda}19$	132	2.27	19	56
DIgL-total	415	2.25	19	52±32
duck-V $_{\lambda}6$	118	52.7	18	84±28
duck-V $_{\lambda}9$	102	4.9	6	72±58
duck- $V_{\lambda}19$	167	29.8	22	96±48
duck-total	387	35.3	22	88±51

Sample	Unique CDR3	Average length	CDR3 reads
Duck	13711	10.015±1.343	908195
Igκ ^{-/-} Igλ ^{-/-} DIgL	5401	10.932±0.525	1966937

Sample	Total reads	SHM reads	SHM Frequency
Duck	45998645	33947	0.000738
Igκ⁻′⁻Igλ⁻′⁻DIgL	49733258	22933	0.000461