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Spring freshet generation in southern Quebec

Abstract

Seasonal forecasting of spring floods in snow-covered basins is challenging due to the ambiguity in the
driving processes, uncertain estimations of antecedent catchment conditions and the choice of predictor
variables. In this study we attempt to improve the prediction of spring flow peaks in southern Quebec,
Canada, by studying the preconditioning mechanisms of runoff generation and their impact on inter-annual
variations in the timing and magnitude of spring peak flow. Historical observations and simulated data
from a hydrological and snowmelt model were used to study the antecedent conditions that control flood
characteristics in twelve snow-dominated catchments. Maximum snow accumulation (peak SWE), snowmelt
and rainfall volume, snowmelt and rainfall intensity, and soil moisture were estimated during the pre-flood
period. Stepwise multivariate linear regression analysis was used to identify the most relevant predictors
and assess their relative contribution to the interannual variability of flood characteristics. Results show
that interannual variations in spring peak flow are controlled differently between basins. Overall, interannual
variations in peak flow were mainly governed, in order of importance, by snowmelt intensity, rainfall intensity,
snowmelt volume, rainfall volume, peak SWE, and soil moisture. Variations in the timing of peak flow were
controlled in most basins by rainfall volume and rainfall and snowmelt intensity. In the northernmost, snow-
dominated basins, pre-flood rainfall amount and intensity mostly controlled peak flow variability, whereas
in the southern, rainier basins snowpack conditions and melt dynamics controlled this variability. Snowpack
interannual variations were found to be less important than variations in rainfall in forested basins, where
snowmelt is more gradual. Conversely, peak flow was more sensitive to snowpack conditions in agricultural
basins where snowmelt occurs faster. These results highlight the impact of land cover and use on spring flood
generation mechanism, and the limited predictability potential of spring floods using simple methods and
antecedent hydrological factors.

Introduction

The hydrology of cold regions is characterized by long winters dominated by snowfall and rapid spring
melting, which is the main cause of the high spring streamflow (Pomeroy et al., 2016). In the province of
Quebec, Canada, the amount of accumulated snow is very important, with a mean annual maximum of 200
to 300 mm of snow water equivalent (SWE) (Brown, 2010). As a result, the streamflow regime is nival to
nivo-pluvial and strongly influenced by the snowmelt contribution, which occurs between April and June
depending on the basin geographic location and the year. In the southern part of the province, snow begins
to accumulate in November and melting occurs between March and May. Peak flow typically occurs in the
spring following snowmelt while a second flood peak typically occurs in summer in response to convective
rainstorms, or in the fall caused by the advection of moist air masses with above-freezing temperatures.
In northern Quebec, snow accumulation begins earlier in October and melting occurs later, in June and
July, with a single streamflow peak mainly driven by snowmelt (Assani et al., 2010a; Buttle et al., 2016;
Saint-Laurent et al., 2009).

Knowledge of the SWE stored in the winter snowpack and of ablation dynamics in the spring is key for
accurate streamflow predictions and operational management of reservoirs in Quebec. As such, a reliable
seasonal forecast of spring freshet based on winter and early spring conditions is essential for reservoir ope-
rators to optimize two conflicting objectives, namely flood protection and hydropower production (Turcotte
et al., 2010), as well as for governmental agencies to prepare flood mitigation and disaster relief measures.
Nevertheless, the relation between snowpack conditions and the inter-annual variations in the magnitude
and timing of the spring peak flow is not straightforward, due to the complexity of spring runoff generation
mechanisms (Merz and Bloschl, 2003; Tarasova et al., 2019). In fact, the same annual snow accumulation
can induce more or less severe floods because of the multiplicity of antecedent hydrological conditions that
can control runoff in addition to snowpacks, such as meteorological conditions during the melt period, the



occurrence of rain-on-snow events, soil moisture and soil freezing. Therefore, a good understanding of the
flood generation mechanisms and of the relative contribution of the key driving factors involved is essential
to explain the interannual variability of the spring peak flow characteristics and guide future forecasting
efforts.

The variability in flood characteristics in North America has been linked with large-scale climatic indices,
and several previous studies have studied how these indices influence extreme floods (Assani et al., 2010a;
Assani et al., 2010b). Mazouz et al. (2012) studied the relationship between the interannual variations of high
spring flow characteristics in southern Quebec (magnitude, duration, period of occurrence, frequency, and
variability) and several global climatic indices using canonical correlation analysis. A significant correlation
between the Atlantic Multi-Decadal Oscillation (AMO) and North Atlantic Oscillation (NAO) indices and
four flood characteristics (duration, period of occurrence, frequency, and variability) was found, while no
relationship was found between these indices and the flow magnitude. This correlation was explained by the
low temperature during the negative phases of the AMO and the positive phases of the NAO, which causes
a later date of occurrence, a higher frequency, a longer duration and lower variability of heavy spring floods
(Mazouz et al., 2012).

Heavy rainfall events during spring can also contribute significantly to runoff while also accelerating snowmelt,
causing more devastating floods (Fang and Pomeroy, 2016; Pomeroy et al., 2016; Sui and Koehler, 2001)
depending on the antecedent conditions of the snowpack (Garvelmann et al., 2015). The relative contribution
of melting and rainfall to runoff and floods becomes more complicated during rain-on-snow events and
affects the results of forecasting studies. Rain-on-snow events in Canada have been addressed by several
studies (Dyer, 2008; Mccabe et al., 2007; Pomeroy et al., 2016; Wayand et al., 2015). In Quebec, many
devastating spring floods have been caused by a combination of heavy rainfall during melting and a deep
accumulated snowpack, such as for the Richelieu river floods in 2011 (Saad et al., 2015). Teufel et al. (2018)
studied the devastating spring floods that occurred in Montreal during May 2017, showing that heavy rainfall
events during April and May combined with snowmelt were the culprit of these extreme events. Likewise,
antecedent moisture conditions in catchments plays a key role in runoff generation during melt; the degree of
soil saturation below the snowpack determines the infiltration and runoff of snowmelt water in snow-covered
basins (Koster et al., 2010; Mahanama et al., 2012). These two studies quantified the contributions of snow
accumulated on January 1st and soil moisture to the skill of seasonal forecasts of spring snowmelt in 23 basins
of the eastern United States. They demonstrated that despite the important role of snow, the contribution
of soil moisture to the skill of streamflow forecast was significant. Several studies showed also the importance
of ’soil memory’, i.e. soil moisture conditions before soil freezing (Curry and Zwiers, 2018; Mahanama et
al., 2012; Webb et al., 2018; Wever et al., 2017) so that understanding the relationship between floods, soil
moisture and snow cover in these basins is necessary to understand the spring streamflow generation.

The main challenges in studying how antecedent hydrological variables control spring floods are the choice
of predictors, the possible interaction between them, the period over which these factors are calculated
and the unavailability of observations for some variable such as soil moisture and SWE (Coles et al., 2016;
Curry and Zwiers, 2018; Fang and Pomeroy, 2016; Nied et al., 2013; Nied et al., 2014). In western Canada,
Curry and Zwiers (2018) investigated the influence of hydroclimatic conditions on the variability of annual
maximum daily flow magnitude using multivariate linear regression models in a snow-dominated basin.
Potential predictors were ranked according to their degree of control on the maximum basin peak flow. The
maximum annual snowpack (SWE,,.x ) ranked first, followed by the snowpack melting rate calculated between
the date of SWE,ax and that of peak flow, the Pacific Decadal Oscillation (PDO) and El Nifio-Southern
Oscillation (ENSO), and finally the rate of air temperature warming between April 15*and the date of peak
flow. Some of the variables used were measured while others were simulated by a hydrological model, such as
the snowmelt rate and soil moisture. Coles et al. (2016) studied snowmelt runoff generation in the Canadian
prairies hillslopes using a decision tree learning approach to rank the processes responsible for the generation
of runoff. The impact of antecedent hydroclimate conditions on flow peaks were, in order of importance,
total snowfall, snow cover, fall soil surface water content, snowpack melt rate, melt season length, and fall
soil profile water content. A salient result was the importance of the degree of soil saturation during the



fall before the frost period, or ‘soil memory’, in controlling runoff. Fang and Pomeroy (2016) studied the
sensitivity of the June 2013 flood in Calgary to pre-flood conditions as simulated by the physically-based Cold
Region Hydrological Model (CRHM). They studied streamflow generation processes by varying the amount
of precipitation, the land cover and the soil storage capacity during the pre-flood period. They showed that
runoff increases rapidly in response to prior accumulation of snow and soil moisture and that antecedent soil
moisture in the basin is a better indicator of flood magnitude than the antecedent snowpack in this basin.
Using multiple linear regression, Maurer and Lettenmaier (2003) found that soil moisture dominates runoff
predictability in the Mississipi River basin for lead times of 1.5 months, except in summer in the western
part of the basin where snow dominates. In western Canada, Dibike et al. (2021) found that basin average
maximum SWE, April 13*SWE and spring precipitation were the most important predictors of both annual
maximum and mean springtime flow, with the proportion of explained variance averaging 51.7%, 44.0% and
33.5%, respectively.

Outside North America, Zhang et al. (2014) used path analysis to identify influential climatic factors on
spring floods in an alpine catchment in Xinjiang, China. They found that winter snowfall and mean thawing
degree days in spring had the most direct influence on flood peaks, while accumulated freezing degree days
in winter had an indirect influence on floods.

In Quebec basins, the hydroclimatic drivers, or ‘predictors’ of interannual variations in the magnitude and
timing of spring flow peaks are not well identified and have not been studied except in relation with global
climatic indices (Assani et al., 2010a; Assani et al., 2010b; Mazouz et al., 2012). Hence, the main objective
of this study is to identify and better understand the factors that control the interannual variability of
spring freshet characteristics in the tributary catchments of the St. Lawrence River in view of improving
seasonal flood forecasts. The limited availability of snow depth, SWE and soil moisture observations has
always been an obstacle when analyzing historical hydrological datasets. In this study, we use outputs of
simplified conceptual models to simulate snow accumulation and melt as well as soil moisture storage in the
basins. We seek to answer the following questions: (i) is the inter-annual variability of the spring freshet
magnitude mainly dependent on the antecedent snowpack, with higher flow peak occurring in years with
deep snowpack? (ii) Does the quantity and intensity of rainfall during the pre-flood period have a strong
influence on the characteristics of the spring freshet? (iii) How do the preconditioning factors vary between
basins, according to their latitude, physiographic region and predominant land cover?

Study area and data

This study was carried out on twelve tributary catchments of the St. Lawrence River located in the pro-
vince of Quebec, Canada with a natural hydrological regime (Fig. 1). Spring floods in the populated areas
of the St. Lawrence valley cause frequent damages. For example, the recent major flooding events in the
spring of 2017 and 2019 forced the evacuation of several thousands of people from flooded neighbourhoods
in the Province and resulted in significant psychosocial and material damages (Benoit et al., 2022; Lin et
al., 2019; Teufel et al., 2019) The area of the catchments varies between 367 and 4504 km?(Table 1). They
are spatially distributed between the north and south shore of the St. Lawrence River and within four
homogeneous hydrological regions used by the Quebec Expertise Center for Water Expertise (CEHQ) in
charge of streamflow monitoring and forecasting. The Northwest St. Lawrence region (Batiscan, Bras du
Nord and Matawin basins) is characterized by a continental climate; the Saint-Laurent Southwest region
(Nicolet, Acadie) is characterized by a maritime climate; the Saint-Laurent Southeast region (York, Beauri-
vage, Bécancour, Famine, Etchemin, Ouelle) is characterized by a mix of maritime and continental climate
and the Saint-Laurent Northeast region (Godbout) by a maritime climate (Assani et al., 2010a; Assani et
al., 2010b; Mazouz et al., 2012). The studied basins also encompass three different physiographic regions
(i) the St Lawrence Lowlands characterized by flat Proterozoic and Paleozoic sedimentary rocks covered
by glaciomarine deposits and mostly clayed soils (Acadie); (ii) the Canadian Shield on the north shore of
the St. Lawrence River, with its rugged Precambrian gneissic rocks and sandy soils concentrated in incised



glacial valleys (Batiscan, Matawin, Bras du Nord and Godbout); (iii) the Appalachians on the south shore
of the St. Lawrence, composed of tilted and folded Paleozoic sedimentary rocks, rolling hill topography, and
loamy soils (Ouelle, York, Etchemin, Bécancour, Famine, and Nicolet) (Table 1). In terms of land cover,
five basins (Batiscan, Godbout, Matawin, Ouelle, York and Bras du Nord) are nearly completely (>92%)
forested basins, with the remaining area covered by agriculture and lakes. The southernmost Acadie basin is
dominated by agriculture (72%) with only 25% forest cover, while the remaining basins (Nicolet, Etchemin,
Bécancour, Beaurivage and Famine) have mixed covers (agriculture 12-39%, forest: 61-87%) (Table 1).

Daily historical streamflow observations at the outlet of the 12 basins were obtained from the Quebec Center
for Water Expertise (CEHQ). The length of the observed flow data varies between basins, from 17 to 55
years (Table 1).

Having a good estimation of pre-flood snowpack conditions is one of the challenges to understand the contri-
bution of snowmelt to peak flow variability. The difficulty of measuring snow depth and snow water equivalent
(SWE) typically results in limited data being available both over time and space. While remote sensing can
be used to estimate SWE in low vegetation areas, problems remain in forested areas (Bergeron et al., 2014;
Brown, 2010; Larue et al., 2017; Sena et al., 2016). In Quebec, a network of snow survey sites has been in-
stalled in forested areas to measure snow depth and SWE every two weeks in the winter and spring seasons,
but the spatial distribution and density of these stations is low (Nemri and Kinnard, 2019). Consequently,
using outputs of snow and hydrological models seems the only solution to derive long and continuous SWE
and soil moisture records. In a previous study conducted in the same basins by Nemri and Kinnard (2019),
the GR4J hydrological model (Perrin et al., 2003) coupled to the Cemaneige snow model (Valéry et al.,
2014b) was calibrated and validated in order to properly simulate basin-wide SWE, soil moisture and daily
streamflow. The calibration methods and validation results are well described in Nemri and Kinnard (2019).
They found that a multi-objective calibration strategy gave the best simulation of both streamflow and
SWE, and the simulation results using this method were used in the present study. The GR4J-Cemaneige
model was forced by daily precipitation and temperature date extracted from daily grids produced by the
Atmospheric Environment Information Service (SIMAT) in collaboration with the CEHQ (Bergeron 2015).
Historical SWE measurements at 12 measuring points of the Quebec snow survey network located in or very
close to the selected basins were used in the calibration along with the observed streamflow (see Fig. 1 for
locations). The Cemaneige snow module simulates the accumulation and snowmelt in five altitude bands.
The precipitation phase (rain, snow) is determined using the mean temperature of each altitude band. The
snow /rain fraction is calculated according to the function used in the Hydrotel model (Fortin et al., 2001)
based on the minimum (Tp,;,) and maximum (Tpayx) daily temperature at each altitude band: when Tyax
[?] 0 degC, all precipitation fall as snow, while if Ty, [?] 0 degC all precipitation fall as rain, else the
snowfall fraction is estimated as 1-Tiin/(Tmax- Tmin). These functions are well described by Valery (2010)
and Valery et al. (2014b).

In addition, soil moisture measurements were not available for the study so that the soil moisture simulated
by the GR4J model was used. In GR4J, the hydrological processes in the basin are simplified into two
interconnected reservoirs. The soil reservoir has a maximum capacity (mm), which is a free parameter to be
calibrated, and determines the amount of water in the basin according to the degree of soil saturation, which
itself is a function of the ratio between the quantity of stored water and the maximum storage capacity. A
summary of the calibrated model parameters and Nash-Sutcliffe performance criteria is given in Table 2.

Methods

Spring flood identification

Two spring streamflow characteristics, the magnitude (Qmax) and timing of specific peak flow (Qmax, in day
of year or DOY) were selected to characterize the spring freshet, and their interannual variability calculated
from the daily flow historical records. A sufficiently large spring window of four months, from March 1st to



June 30th, was selected based on the observed seasonal cycle of the streamflow records and considering the
inter-annual and spatial variability of the spring freshet of all basins. The observed Quax and Quaxt values
within this time window were identified for every year. Then, the pre-flood period was defined to extend
between the flood onset point, defined here as the point that marks the beginning of the rise in streamflow,
and the peak flow date (Fig. 2). The onset point was identified as the first date having a flow value above
the 30% percentile of the annual flow distribution and followed by a continuous increase in flow over a
minimum of three consecutive days, before the peakflow date. This automatic procedure worked well for
most years and basins, but exceptions were noted upon visual inspection. Intermittent snowmelt occurred
during some years due to low air temperatures associated with the advection of cold polar air masses, which
interrupts snowmelt for several days and causes separate floods according to melting events (Mazouz et al.,
2012). This makes it difficult in some years to precisely pinpoint a general flood onset date and this decision
may subsequently influence the relation between the peak flow magnitude and the pre-event hydroclimate
conditions. Hence for some years the percentile threshold was either adjusted, or the point was chosen
manually when the automatic algorithm failed.

Antecedent factors and statistical analysis of spring freshet peak

In total, six antecedent factors related to snowmelt, rainfall and soil moisture were selected and calculated
during the pre-flood period as defined in section 3.1., except for the maximum (peak) SWE, which was
calculated between the beginnings of spring (March 1) and the peak flow date. The Cemaneige model
simulates snow accumulation and melt in five equal-area altitudinal bands based on the air temperature and
precipitation interpolated to the median altitude of each band. A basin-wide SWE value was derived by
averaging the SWE from all bands. The contribution of snowpack conditions to the variations in spring peak
flow characteristics (Qmax and QmaxT) was assessed by three variables. The maximum SWE, SWE,,,x(mm),
simulated by the model before the melt, represents the amount of snow accumulated and to be released
during the spring freshet. The cumulated amount of pre-flood snowmelt, there after ‘cumulative snowmelt’
(Meltsym, mm), and the snowmelt intensity, or average melting rate (Melt;,t, mm/d), were also calculated
over the pre-flood period to evaluate their contribution to interannual variability in peak flow characteristics.

Rainfall is used as another antecedent condition that can affect spring floods by changing snowpack char-
acteristics or directly contributing to runoff. The sum of daily rainfall, Raing,, (mm), accumulated during
the pre-flood period, was calculated after separating the solid and liquid fraction in the snow model. The
mean rainfall intensity, Rain;,; (mm/d), was also calculated during the pre-flood period. The mean soil
moisture saturation level during the pre-flood period, Sy,ean (unitless), was simulated by the model and used
as another antecedent factor. The selected antecedent factors are summarized in Table 3.

The time of transfer of the basin must be considered when deriving pre-flood hydroclimatic drivers. In
the GR4J, this is represented by the calibrated base time of the unit hydrograph, which varied between 2
and 4 days (see Table 2). However, this parameter (x4) was calibrated over the entire year and is likely to
overestimate the faster time of transfer in spring, when rainfall events falling on snow or frozen ground cause
rapid runoff. For this reason, a common value of one day was used instead for all basins, i.e., preconditioning
variables were calculated from the flood onset date up to 1 day before the flood peak date.

Multivariate linear regression analysis was first used to identify the relative contribution of rainfall and
snowmelt volumes to the interannual variability in flood volumes. The relative contributions were derived
from the standardized coefficients of the multivariate regression model. The relationship between the an-
tecedent hydroclimatic factors and peak streamflow characteristics was first assessed by linear univariate
correlation analysis using the Pearson correlation coefficient. Then, a stepwise multivariate regression anal-
ysis was performed to identify the best predictors of peak flow (Qumax) (Equation 1).

Y = B0 + BLX1 + B2X2+ ...+ AnXn +e (1)

where 30 is the intercept, B1...n are the regression slope coefficients and ¢ is a random error term (Draper
and Smith, 1998). The stepwise method consists in choosing the combination of pre-flood predictor variables



(X ) which together best explain the interannual variability of flood characteristics (response variable Y )
using an iterative procedure. The stepwise procedure requires two significance levels for adding and removing
predictors based on a variance ratio (F) test, for the improvement of the model. Starting with the initial
model, a p- value for the F-statistic is calculated at each step of adding or removing a variable in the model
(Draper and Smith, 1998). An entrance tolerance p- value of < 0.05 and an exit tolerance p- value < 0.10
were used.

Results

Interannual and spatial variability of peak streamflow and its timing

The variability of the spring specific streamflow magnitude (Qmax) observed in the twelve basins is shown
in Fig. 3a, while volumetric streamflow values are given in Table 4. The highest specific Quax values
are observed in the more agricultural basins (Acadie, Nicolet and Beaurivage), while the forested basins
(Batiscan, Matawin, York and Godbout) have lower specific flows, except Bras-du-Nord (#9) and Ouelle
(#8) (Fig. 3a). Qmax is also more variable in more agricultural compared to forested basins, again with the
exception of the Bras-du-Nord and Ouelle basins. The seasonality of the spring peak flow is shown in Table
4. For the two northernmost basins (Godbout and York), 90% of the spring flow peaks occurred the latest, in
May. For the two southernmost basins (Nicolet and Acadie), melting occurred earlier with 40% of peakflow
events occurring in March and 40% in April. For the remaining basins, 65% of the peakflow events occurred
during April. The peakflow timing shows pronounced interannual variability as well as spatial variability
between basins (Fig. 3b). The general increasing trend from south to north in the peakflow timing also
appears clearly. Also, for the three completely forested basins located on the Canadian Shield, i.e., Matawin
(#7), Bras du Nord (#9) and Batiscan (#10), and melting occurs later compared to basins at the same
latitude with less forested areas, such as Beaurivage (#5: 60% forest cover) and Etchemin (#6: 74% forest
cover). Therefore, the spatial distribution of the Qua.x timing appears to respond primarily to latitude and
secondarily to land cover.

Contribution of snowmelt and rain to flood volumes

The contribution of pre-flood water volumes (snowmelt and rainfall) available for runoff to the total flood
volume estimated from the multivariate regression method is illustrated in Fig. 4 for the twelve basins. The
rainfall contribution is high for the southernmost Acadie basin (#1) compared to the other basins. While
the median rainfall contribution in Acadie (0.25) is only slightly higher than that of the other basins, the
interannual variability is large, with the third quartile of the distribution reaching near 0.75, and in some
extreme years, rainfall was the sole contributor. For the other basins, the median rain contribution is around
0.20, but can be as high as 0.60, which shows that the rain contribution to the spring flood volume in all
basins can be important.

Annual variations in water volume (snowmelt + rainfall) available for runoff explain between 67% and 93%
of the interannual variability in flood volumes (Table 5). Rainfall and snowmelt volume variability had a
comparable effect on flood streamflow volume for five basins (Nicolet, Acadie, Batiscan, Matawin and Bras
du Nord), whereas for the other seven basins, the interannual variability in flood volume is more controlled
by snowmelt volume than rainfall (Table 5), without a clear relation with latitude or land cover.

Correlation between antecedent factors and spring flow peak and timing

Correlations between Qua.x and the six antecedent factors for the 12 basins are displayed on a correlogram
(Fig. 5). Snowmelt intensity (Melti,;) is positively correlated with peak flow in all basins (r = 0.23 to 0.64);
the correlation is significant (p < 0.05) in most basins, except for Ouelle, Batiscan and Bécancour. Peak
SWE (SWE,,ax) is also positively correlated with Quax in all basins; correlations are significant in all basins



but Ouelle, Bras du Nord, Beaurivage and Bécancour. Thus, years with higher snow accumulation and faster
melting rate (intensity) generally tended to result in higher peak flow. The pre-flood accumulated snowmelt
(Meltgum) is positively correlated with Qpax in all basins (r = 0.07 to 0.50) but only significant in five of
them. Pre-flood accumulated rainfall and its mean intensity do not show any significant univariate correlation
with Quax, except for the two basins Bras du Nord and Godbout, where Qp,.x is positively correlated with
rainfall intensity (Rainj,¢) and in Famine where Quax is positively correlated with Raing,m,. Soil moisture
(Smean) 1s significantly and positively correlated with Qmax in only four basins (Godbout, Batiscan, Famine
and Matawin) and negatively correlated in Bécancour.

The correlation coefficient for Melty,; is stronger than for SWE,,x in six basins, while SWE,,,«is a better
predictor in only two basins, Matawin and Batiscan. Overall, the correlation analysis shows that the pre-flood
melt rate (Meltiyg) is the best overall univariate predictor of the spring peakflow, followed by the maximum
SWE (SWEax) and accumulated snowmelt (Melts,m ), which is logical given the strongly nival character of
the hydrological regime of rivers in Quebec. On the other hand, the correlation coefficients are overall only
moderate, suggesting that a combination of several factors would be required to better explain the variability
in spring flow magnitude.

For the peakflow timing, the pre-flood accumulated rainfall (Raingum,) significantly controls Qmaxrin all
basins, except for the three basins Famine, York, and Godbout (Fig. 6). This means that spring flood
peaks occur later during years with high rainfall volumes during the pre-flood period. A larger amount of
accumulated snowmelt (Meltg,,) and a slower melt rate (Meltin;) also seem to favor a later occurrence
of flood peaks, however with varying levels of statistical significance (Fig. 6). The correlation with soil
moisture is not spatially coherent, being significantly anti-correlated with flow timing in two basins (Famine,
and Beaurivage) and positively correlated in Ouelle.

Multivariate prediction of spring flow peak and timing

The stepwise multivariate regression models explain 40 to 74% of the variation in Quax in all basins except
in Beaurivage and Batiscan, where the models only explain 20-28% of the variation (Table 6). The snowmelt
intensity (Melti,t) was the predictor most often retained in the regression models (7/12 basins). It has a
positive effect on Quax, i.e., more rapid melting led to higher peak flow, in all basins but York, where the
effect of Melt;,; was negative. Melt;, was notably the sole significant predictor of Qu.x in two basins, Acadie
and Beaurivage, where it explained 60% of the variability in Quax for the former but only 20% for the later.
Either SWE,.x or Meltgyn was retained in 7 basins, but never together, as these two variables are partly
collinear (r = 0.45-0.69), i.e., thicker snowpacks led to larger pre-flood snowmelt volumes, with a positive
effect on Quax in both instances, i.e., leading to higher flood peaks.

Among the rainfall-related variables, the rainfall intensity (Rainj,;) was the most frequent predictor (5/12
basins) and the one with the largest overall effect among all predictors. The accumulated rainfall amount
(Raing,m) contributed to Quax variability in four basins, with an overall lesser effect than Rain;,. Pre-flood
soil moisture was significant in only three basins, with a small and positive effect in Matawin and a counter-
intuitive, negative effect on Quax, (Bécancour and York), i.e., drier pre-flood soils leading to higher peak
flows in these two basins.

In order to try improving the prediction performance in basins where the initial predictor set led to a low R?
(e.g., Nicolet, Beaurivage, Ouelle, Batiscan), the maximum rainfall (Rainiygmax) and snowmelt (Meltintmax)
intensity during the pre-flood period were added as potential predictors, to see if these or any of the other
basins were sensitive to the most extreme pre-flood rainfall and snowmelt events. Meltiytmax Significantly
and positively contributed to explain Qu,ax in two basins only, Nicolet and Ouelle, while Rainjytmax also had
a large positive effect in Ouelle only. The Beaurivage and Batiscan models were not improved, remaining
with low R? values of 0.20 and 0.28, respectively.

Interannual variations in peakflow timing (QmaxT) Were comparatively well explained by a different combi-
nation of factors between basins, with adjusted R? varying between 0.27 and 0.65. (Table 7). Accumulated



rainfall and its mean intensity explain most of the variation in all the basins, however with opposites effects.
In southern basins, larger rainfall volumes led to earlier flood peaks, while the opposite occurred in more
northern basins. Inversely, more intense rainfall events tended to delay flood peaks in southern basins whi-
le the opposite occurred in northern basins. Accumulated snowmelt (Meltg,m) had a positive effect in five
basins across the latitudinal gradient, i.e., more snowmelt delayed flood peaks, except in Ouelle where the
effect was opposite. The snowmelt intensity Melt;,; had a noticeable negative influence on flood timing in
southern basins (5/12 basins), i.e., slower melt rates led to delayed flood peaks.

Discussion

The results found in this study using measured and simulated pre-flood hydroclimatic factors contribute to
improve our understanding of interannual variations in spring flood characteristics. Overall, the ranking of
preconditioning factors based on their frequency of appearance as significant predictors in the linear models
of Qmax across the twelve basins is as follow: (i) snowmelt intensity (mean and max), (ii) rainfall intensity
(mean and max), (iii) snowmelt volume, (iv) rainfall amount, (v) peak SWE and (vi) soil moisture. One note
of caution to be mentioned is that the stepwise approach finds the best combination of factors explaining the
most variations in Qumax, and as such can remove predictors that are still important on their own, but that are
redundant (collinear) in a multivariate context. Still, snowmelt intensity also appears as the most important
univariate predictor of Qmax as shown by the correlation analysis (Fig. 5), but peak SWE (SWE,,x), which
is the second-best univariate predictor of Quax (Fig. 5) was often excluded from the multivariate models.
A thicker snowpack is more likely to survive later into the spring season and be subjected to faster melt
rates (e.g. Aygiin et al., 2022; Musselman et al., 2017), which could explain the redundant predictive power
of these two variables, along with Meltgym, in the multivariate models. Still, SWE,.x by itself could only
explain 10 to 28% of the variability in Quax in 8 out of 12 basins as shown by the bivariate correlation
analysis (Fig. 5). This shows that the memory of the snowpack in early spring is not sufficient to accurately
forecast springtime flood magnitude in southern Quebec.

The pre-flood mean melt intensity (Melti,) emerged as a good predictor of the peakflow magnitude in seven
basins (Acadie, Famine, Beaurivage, Etchemin, Matawin, Bras du Nord and York) and was the most skillful
predictor for four of these basins (Acadie, Famine, Beaurivage, Etchemin). The maximum melt intensity
(Meltintmax) was also a good predictor but only in the Nicolet and Ouelle basins. So, overall, snowmelt
intensity appears to be the dominant control on peakflow magnitude for 9 of the 12 basins studied. SWE .«
on the other hand was only retained as a significant predictor of Quax in four basins (Nicolet, Bécancour,
Famine and Etchemin).

The sensitivity of peakflow magnitude to antecedent hydroclimatic conditions also varied according to land
cover and use. Overall, the interannual variability in peakflow magnitude was primarily controlled by the
snowmelt dynamics (initial snowpack SWE, snowmelt amount and intensity) in the more southerly and/or
more agricultural basins, while in the northern, snowier and more forested basins rainfall conditions, especial-
ly the rainfall intensity, were more important (Fig. 7). This can at first appears counter intuitive, that spring
floods in southerly basins with less snowfall and thinner snowpacks are controlled by snowmelt dynamics,
while rain events are the main trigger of floods in colder, snowier northern basins. However, snowmelt in
forested basins is slower due to shading by the canopy (Ellis et al., 2011; Gelfan et al., 2004), so that Qmax
variability is less dependant on SWE, .. Also, the more porous forested soils and reduced soil freezing under
thick snow covers have been found to favor snowmelt infiltration, which attenuates flood peaks (Aygiin et al.,
2022). On the other hand, SWE,,,, is more variable interannually in agricultural basins (Table 1); melting
in open fields is fast, and infiltration is restricted in the often clay-rich and compacted soils (Aygiin et al.,
2020), which all boost the influence of snowpacks and snowmelt rates on peakflow interannual variability.

Soil moisture was considered to be a key factor in controlling runoff in snow-dominated basin in previous
studies (Wever et al., 2017). In this study, no coherent correlation was found between the simulated degree of
soil saturation and peakflow variations. Even within the multivariate regression analysis this factor was found



to be a significant predictor of peakflow magnitude and timing only for three basins, and a counterintuitive
negative effect was found for two of these basins (Bécancour and York). The negative effect of soil moisture
on Quax could be an indirect effect reflecting the depletion of the soil reservoir during cold winters with
limited snowmelt and rainfall, which could then be associated with thicker snowpacks and higher flows in the
following spring. However, the lumped GR4J model does not consider soil freezing processes, which could be
important especially in agricultural basins with thinner snowpacks (Aygiin et al., 2020). Therefore, further
research is needed in Quebec basins using models that explicitly represents soil freezing and fall moisture
‘soil memory’ in order to better simulate pre-melt soil moisture and its effect on runoff partitioning. Soil
freezing is often assumed to play an important role on infiltration, but deep snowpacks can also inhibit soil
freezing and cancel its impact on infiltration (Aygiin et al., 2021; Aygiin et al., 2022).

As for the peakflow timing, a pattern emerged in which an increasing amount of low-intensity rainfall
combined with increased snowmelt amounts delayed flood peaks in the more northerly basins, while in the
more southerly basins, slower snowmelt and increased rainfall amounts to a lesser extent, led to later flood
peaks (Table 7).

Our results are different than those reported by Curry and Zwiers (2018) in the Fraser River basin in western
Canada, between the Coast Mountains and the Continental Divide, where the generation of spring runoff
was found to be controlled mainly by the maximum accumulated SWE and secondly by the melt rate, with
rainfall and soil moisture playing lesser roles. On the other hand, Coles et al. (2016) found that the processes
responsible for the generation of runoff in the Canadian prairies hillslopes were, in order of importance, the
total snowfall, snow cover amount, fall soil surface water content (0-15 cm) and melt rate. The more humid
climate of southern Quebec compared to the Canadian Prairies, and the lower elevation compared to the
mountainous basins of western Canada, could explain the fact that interannual variations in accumulated
SWE are generally less important than the melt rate and the quantity and intensity of rainfall events during
snowmelt. Our results showed that interannual variations in snowmelt volumes were either the prime driver,
or as equally important as rainfall, in controlling flood volume variability (Table 5 and Fig. 4). However, our
regression analysis showed that snowmelt variables were the most important drivers of peakflow interannual
variability in the more agricultural southern basins, even in the southernmost Acadie basin where snowmelt
contributes less water than rainfall to flood volumes. Conversely, in the more northerly, snowy and forested
basins flood volumes were primarily controlled by snowmelt volumes, whereas rainfall was more important
in controlling interannual variations in peakflow.

Initial basin conditions (snow storage, soil moisture) and their forecasting skill are very important for the
seasonal prediction of streamflow (Foster et al., 2018; Koster et al., 2010; Li et al., 2009; Mahanama et al.,
2012) but these variables are not well measured in most basins. Turcotte et al. (2010) discussed the difficulties
encountered by the prediction systems developed for Quebec basins due to errors in the snow observation
methods. Therefore, using satellite products of snow cover in conjunction with physically-based models might
be a good way forward to improve our understanding of the spring freshet generation mechanisms and the
independent role of snow cover, rain on snow events and the soil moisture status in future snow hydrology
studies in Quebec. Still, this study showed that knowledge of snow storage in early spring (SWEpax) gives
only limited forecasting capability for flood magnitude and timing in southern Quebec, and that synoptic
scale weather variability plays an important role in defining rainfall and snowmelt intensity, which contribute
largely to runoff processes and ensuing flood characteristics.

Conclusions

This study used observed streamflow records from 12 tributary catchments of the St. Lawrence River in
southern Quebec, Canada, combined with observed and simulated antecedent hydroclimate conditions during
the pre-flood period, to investigate their control on spring flood magnitude and timing. The following main
conclusions can be drawn from the study:
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e Interannual variations in the volume of meltwater available for runoff were usually more important,
or else equally important, than rainfall volumes to explain the interannual variability of spring flood
volumes.

e In contrast, the late winter snowpack (peak SWE) was not by itself a strong predictor of spring flood
magnitude and timing; as such, the ‘snowpack memory’ offered only a limited potential for seasonal
flood prediction.

e The ‘soil memory’ effect, represented here by the simulated soil moisture content, was poorly related
to flood characteristics; however, the effect of soil freezing was not considered and should be studied
further.

e The snowmelt rate during the pre-flood period was the most ubiquitous and skillful predictor of spring
flood magnitude.

e SWE and snowmelt dynamics dominated the interannual variability of flood magnitude in the more
southerly and agricultural basins, due to more variable snowpack conditions from year to year, faster
snowmelt and restricted infiltration. In the northern, snowier forested basins, rainfall variability was
instead more important in driving interannual variations in flood magnitude, which is attributed to
the documented slower melt rates under forest canopies and the buffering effect of the more porous
and less frozen forested soils.

e Seasonal to sub-seasonal (S2S) spring flood prediction in the humid-continental climate of southern
Quebec would require an accurate knowledge of pre-melt snowpack SWE, but also S2S predictions of
rainfall and temperature, a proxy for snowmelt rates, which is a more challenging requirement (White
et al., 2017). Using correlations with large scale climate indices (Mazouz et al., 2012) might represent
an option, while advances in the application of Machine Learning (ML) hydroclimate predictions tech-
niques (Bagagaoglu et al., 2022; Mosavi et al., 2018) might help to unravel more complex relationships
between potential hydroclimate predictors and flood conditions and help forecasting seasonal flood
characteristics.
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List of tables

Table 1. Characteristics of the twelve basins selected in this study ranked according to latitude, from South
to North. The coefficient of variation (CV) of SWE is calculated over the flow data period. Mean precipitation
and snowfall ratio are calculated over the common 1980-2015 period. Latitude and longitudes are for the
basin centroids.

Agri- Median CV Snowfall
ID Basin Lat. Lon. Area Forest, culture Elev. SWE Mean P ratio
() () (km?) (%) (%) (m) (%) (mm) )
1 Acadie 45.20 -73.43 367 25.7 72.1 31 48 1011 0.20
2 Nicolet 45.99 -71.88 1551 40 60 203 31 1142 0.26
3 Bécancour 46.19 -71.56 2165 74.1 25.7 273 26 1201 0.25
4 Famine 46.26 -70.45 698 87.4 12.3 377 21 1153 0.27
5 Beaurivage 46.47 -71.29 709 61.3 38.7 152 22 1194 0.27
6 Etchemin 46.53 -70.68 1155 74.5 25.5 382 21 1190 0.28
7 Matawin 46.63 -74.14 1386 96.9 0 481 23 1037 0.29
8 Ouelle 47.19 -69.92 789 97.4 2.1 348 20 1011 0.31
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Agri- Median CV Snowfall

1D Basin Lat. Lon. Area Forest culture Elev. SWE Mean P ratio
9 Bras 47.21 -71.83 646 100 0 597 22 1077 0.31

du

Nord
10 Batiscan 47.25 -72.25 4505 92.6 6.7 385 23 1142 0.29
11 York 48.90 -65.24 678 100 0 482 21 1201 0.39
12 Godbout  49.69 -67.74 1602 99.5 0 368 18 1153 0.37

Table 2. Results of GR4J-Cemaneige model using the AMALGAM multi-objective algorithm (Nemri and
Kinnard, 2019) for the six parameters x1: capacity of production store (mm); x2: water exchange coefficient
(mm); x3: capacity of routing store (mm); x4: unit hydrograph base time (days); x5: Cemaneige snowpack
thermal state (unitless); x6: Cemaneige degree-day melt coefficient (mm °C1). Nashqg, Nashgwg:Nash-
Sutcliffe efficiency criterion for the calibration/validation period for streamflow and SWE, respectively (%).

Basin x1 (mm) x2 (mm) x3 (mm) x4 (days) x5 () x6 (mm °C?') Nashq (%) Nashgye (%)

Acadie 200 -0.95 42 2 0.01 6.1 60/67 33/62

Nicolet 217 0.22 36 2 0.01 5.9 75/79 50/70

Bécancour 216 -0.6 87 2 029 55 74/76 84/76

Famine 25 0.27 97 2 0.3 3.2 84/82 84/76

Beaurivage 44 -0.7 66 2 0.62 4.1 72/79 72/79

Etchemin 24 -0.33 238 2 0 7.2 80/74 56/42

Matawin 117 -0.51 351 4 0.05 4.6 89/90 31/57

Ouelle 64 0.29 79 2 0.44 3.7 81/87 70/74

Bras du Nord 346 -0.59 112 2 0 4.8 84/82 65/70

Batiscan 436 0.5 134 3 0.03 44 89/89 49/36

York 78 -0.55 115 2 0.39 2.9 85/87 57/37

Godbout 265 5.1 305 2 0.03 7.1 82/79 49/20

Table 3. Selected antecedent hydroclimatic variables.

Predictors  Unit Description Source

SWE hax mm Maximum simulated SWE between March 1st and the peak flow date (Quaxt) Cemaneige model
Rainj, mm/d Mean rainfall intensity during the pre-flood period Gridded precipitatio
Raingym mm Accumulated rainfall during the pre-flood period Gridded precipitatio
Melting mm/d Mean snowmelt rate during the pre-flood period Cemaneige model
Meltsum mm Accumulated snowmelt during the pre-flood period Cemaneige model
Sinean 0 Mean of soil reservoir saturation level GR4J model

Table 4. Interannual variability of spring maximum flow and its date of occurrence.

ID Basin Min Quax (m?/8)  Max Quax (m3/s)  Mean Quax (m?/s)  Std Quax (m®/s)  Occurrence month |
Mar.

1 Acadie 12 219 71 42 15

2 Nicolet 161 762 390 130 15



ID Basin Min Qmax (mg/s)

Max Quax (m?/s)

Mean Quax (m?/s)

Std Quax (m3/s)

Occurrence month (

3 Bécancour 235
4 Famine 13
5 Beaurivage 50
6 Etchemin 158
7 Matawin 60
8 Ouelle 87
9 Bras du Nord 63
10 Batiscan 295
11  York 50
12 Godbout 108

814
299
325
369
240
427
277
837
280
856

446
163
180
253
153
218
156
563
141
310

134
o7
52
62
41
82
48
141
47
132
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Table 5. Linear regression of flood runoff volume against water available for runoff (snowmelt and rainfall
volumes) during the pre-flood period. Standardized regression coefficients () indicate the relative influence
of snowmelt and rainfall volumes to interannual variability in flood volume. The adjusted coefficient of
determination (R?) indicates the strength of the relationships.

S

Basin

B1: rainfall

B2 : snowmelt

Adjusted R?

Acadie
Nicolet
Bécancour
Famine
Beaurivage
Etchemin
Matawin
Ouelle

9 Bras du Nord
10 Batiscan
11 York

12 Godbout

00 O U= Wi+~

0.6
0.5
0.3
0.3
0.3
0.2
0.6
0.4
0.5
0.5
0.3
0.4

0.6
0.6
0.9
0.8
0.8
0.7
0.5
0.7
0.6
0.6
0.8
0.7

0.83
0.81
0.89
0.82
0.67
0.72
0.88
0.85
0.92
0.93
0.88
0.72

Table 6. Results of stepwise multivariate regression of spring flow peak magnitude@maz and the six
antecedent factors (predictors) for the twelve. All Adjusted R? are significant with p-value < 0.01. Frequency:
number of times a predictor is chosen in a model. Basins are ranked by latitude from south (Acadie) to
north (Godbout). The color scale for the standardized regression coefficients ranges from blue ([?] -1) to red

(1)

Standardized Standardized Standardized Standardized Standardized Standardized Standardized Standardized

regres- regres- regres- regres- regres- regres- regres- regres-
sion sion sion sion sion sion sion
Basin coefficients  coefficients coefficients coefficients coefficients coefficients coefficients coefficients R?
Raingym Rainj Meltsum Melting SWEnax Smean Rainj, Melting
max max
1) 0.75 0.¢
Acadie
2) 0.81 0.4

Nicolet



Standardized Standardized Standardized Standardized Standardized Standardized Standardized Standardized

regres- regres- regres- regres- regres- regres- regres- regres-
sion sion sion sion sion sion sion sion
Basin coefficients  coefficients coefficients coefficients coefficients coefficients coefficients coefficients R?
3) 0.42 0.51 -0.71 0.7
Bécancour
4) 0.39 0.43 0.31 0.4
Famine
5) 0.46 0.2
Beaurivage
6) 0.51 0.33 0.4
Etchemin
7) 0.33 0.51 0.28 0.24 0.5
Matawin
8) 0.52 1.16 0.44 0.f
Ouelle
9) Bras 0.59 0.41 0.4
du
Nord
10) 0.29 0.59 0.2
Batiscan
11) 0.49 -0.31 -0.31 0.f
York
12) 0.23 0.92 0.23 0.6
Godbout
Mean 0.39 0.52 0.44 0.45 0.39 0.42 1.16 0.63
abso-
lute
value
Frequency 4 5 3 7 4 3 1 2
Table 7. Results of stepwise multivariate regression of spring flow peak timing Q.7 (DOY) and the six
antecedent factors (predictors) for the twelve basins. All Adjusted R? are significant with p-value < 0.01.
Basins are ranked by latitude from south (Acadie) to north (Godbout). The color scale for the standardized
regression coefficients ranges from blue ([?] -1) to red ([?]1).
Basin Standardized regression coefficients ~ Standardized regression coefficients ~ Standardized regression
Raingym Rainjyg Meltsum
1) Acadie 0.61
2) Nicolet -0.5
3) Bécancour 1.17 0.72
4) Famine -0.14
5) Beaurivage -0.54 0.55 0.44
6) Etchemin 0.54
7) Matawin 0.52 -0.37 0.33
8) Ouelle -0.34 -0.34
9) Bras du Nord 0.28 0.52
10) Batiscan -0.49
11) York 0.28 0.61
12) Godbout 0.3 -0.65
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Basin Standardized regression coefficients ~ Standardized regression coefficients ~Standardized regression

Mean absolute value 0.43 0.55 0.49
Frequency 8 7 6

List of figures

Fig. 1. Studied basins (purple) and streamflow gauge (black dots) in southern Quebec province. 1: Acadie,
2: Nicolet, 3: Bécancour, 4: Famine, 5: Beaurivage, 6: Etchemin, 7: Matawin, 8: Ouelle, 9: Bras du Nord,
10: Batiscan, 11: York, 12: Godbout. Basins IDs are ranked from south to north according to the latitude
of basin centroids.

Fig. 2. Spring flood window from March to June and pre-event analysis period. The thick vertical stippled
lines indicate the automatically detected flood onset date the peakflow date. The pre-flood analysis period
extends from the onset date to one day before the peakflow date, to account for transfer times. Black curve:
streamflow; blue bars: rainfall (P); red line: snowmelt (M).

Fig. 3. Interannual variability of flood magnitude and timing observed in the 12 study basins. (a) Peak
streamflow (Qpas , mm/day); (b) peakflow timing (@t , in day of year) Basins are ranked by latitude,
from south (ID#1) to north (ID#12). 1: Acadie, 2: Nicolet, 3: Bécancour, 4: Famine, 5: Beaurivage, 6 :
Etchemin, 7: Matawin, 8: Ouelle, 9: Bras du Nord, 10: Batiscan, 11: York, 12: Godbout

Fig. 4. Boxplots showing the distribution of (a) the snowmelt volume (black) and rainfall volume (grey)
in the pre-flood period for each basin and (b) the relative contribution of these volumes to the total runoff
volume during this period. Basins are ranked by latitude, from south (ID#1) to north (ID#12).

Fig. 5. Correlogram showing Pearson’s linear correlation coefficient for all antecedent factors (columns) and
spring flow peak magnitude (@4 ) for the twelve basins (rows). Significant correlations (p < 0.05) are
highlighted in bold; blue colors indicate negative correlations and brown colors positive correlations.
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Fig. 6.Correlogram showing Pearson’s linear correlation coefficient for all antecedent factors (columns)
and day of occurrence (DOY) of peak spring streamflow @4, for the twelve basins (rows). Significant
correlations (p < 0.05) are highlighted in bold; blue colors indicate negative correlations and brown colors
positive correlations.

Fig. 7. Sensitivity of peak spring flow (@ ) to pre-flood rainfall (red symbols) and snowmelt (blue
symbols) volume and intensity as a function of (a) latitude, (b) annual snowfall ratio, (c) forest cover. The
sensitivity is equal to the standardized regression coeflicients in Table 6.
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