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Abstract

Coastal protection is of paramount importance because erosion and flooding affect millions of people living along the coast and

can largely influence countries’ economy. The implementation of nature-based solutions for coastal protection, such as sand

engines, has become more popular due to these interventions’ adaptability to climate change. This study explores synergies

between AI and hydro-morphodynamic models for the creation of efficient decision-making tools for the choice of optimal sand

engines configurations. Specifically, we investigate the use of long-short-term memory (LSTM) models as predictive tools for the

morphological evolution of sand engines. We developed different LSTM models to predict time series of bathymetric changes

across the sand engine as well as the time-decline in the sand engine volume as a function of external forces and intervention

size. Finally, a MATLAB framework was developed to return LSTM model results based on users’ inputs about sand engine

size and external forcings.
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Abstract: Coastal protection is of paramount importance because erosion and flooding affect 9 

millions of people living along the coast and can largely influence countries’ economy. The 10 

implementation of nature-based solutions for coastal protection, such as sand engines, has 11 

become more popular due to these interventions’ adaptability to climate change. This study 12 

explores synergies between AI and hydro-morphodynamic models for the creation of 13 

efficient decision-making tools for the choice of optimal sand engines configurations. 14 

Specifically, we investigate the use of long-short-term memory (LSTM) models as predictive 15 

tools for the morphological evolution of sand engines. We developed different LSTM models 16 

to predict time series of bathymetric changes across the sand engine as well as the time-17 

decline in the sand engine volume as a function of external forces and intervention size. 18 

Finally, a MATLAB framework was developed to return LSTM model results based on 19 

users’ inputs about sand engine size and external forcings.  20 

  21 

Plain Language Summary:  22 

Sand engines are a type of coastal protection where a large volume of sand is added to the 23 

coastline to protect low-lying areas from erosion and flooding. Sand engines, like other 24 

Nature-based solutions, are gaining popularity due to their potentially lower maintenance 25 

costs compared to other concrete-based coastal protection strategies and a number of co-26 

benefits. However, there are currently no design guidelines or decision-making tools for sand 27 

engines. Here we address this gap in the state of knowledge and use Artificial Intelligence 28 

(AI) techniques to analyze the evolution of sand engines under different waves and external 29 

forcings. AI models are also used to predict the volume of sand being transferred by the 30 

waves from the location of deposition to the surrounding areas. To facilitate the use of AI 31 

models, this study proposes a computer software, sand engine surface, which includes all the 32 
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AI models developed in this study, predicting the evolution of sand engine and volume of 33 

sand being transported.  34 

 35 

Key Points: 36 

• This study explores the use of LSTM models to predict time series of sand engines’ 37 

volumetric changes and morphological changes.   38 

• All our Long Short Term Memory models’ results are accessible through Sand Engine 39 

Surface 40 

• Sand Engine Surface is MATLAB framework providing results about time-dependent 41 

morphological changes of sand engines based on users’ inputs.  42 

1. Introduction 43 
Anthropization and climate change, including sea level rise and changes in storm 44 

activity, are expected to increasingly affect the world coastlines (Herman et al., 2021). 45 

Erosion and flooding pose a threat to human life and infrastructure along coastal areas. 46 

Protecting coastal regions is a top priority: millions of people live along the coast, and coastal 47 

systems and associated ecosystem services contribute billions of dollars to the economy each 48 

year (Deutz et al., 2018; UNCC, 2020). To mitigate these challenges and ensure effective 49 

coastal protection, conventional methods such as sea walls (Hosseinzadeh et al., 2022) and 50 

breakwaters (Zhao et al., 2019) have been traditionally employed with some success. 51 

However, these conventional approaches come with significant drawbacks, including high 52 

installation and maintenance costs, as well as their limited adaptability to sea level rise, which 53 

makes them economically unsustainable in the long term (van Rijn, 2011). As a result, 54 

alternative options for coastline protection through nature-based solutions, such as mega-55 

nourishment interventions and wetland restoration, have been gaining attention. These 56 

Nature-based approaches offer a more economically viable alternative, while also supporting 57 

efforts towards achieving net-zero carbon emissions and numerous ecosystem benefits 58 

(Moritsch et al., 2021).  59 

Mega-nourishments, often known as a sand engine, involve the deposition of large 60 

quantities of sand in the sea adjacent to a beach, either as an extension of the existing beach 61 

or as an artificial island. These sand engines act as localized beach nourishment measures, 62 

serving to prevent floods and erosion in low-lying areas (Stive et al., 2013) by effectively 63 

reducing wave energy and redistributing sediment along the coastline over several decades. 64 

The bathymetry of Sand engines evolves in time as natural forces such as waves and tides 65 
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assist in the distribution of sediments, as seen in the case of zandmotor in the Netherlands 66 

(Huisman et al., 2016).  67 

Understanding the behavior of sand engines, which is depended upon the 68 

configuration of the sand engine itself and its environmental settings is crucial for decision 69 

makers and coastal planning. However, there are significant uncertainties and challenges in 70 

relation to the morphological evolution of the coastline and evaluation of the effectiveness of 71 

different sand engines interventions. Artificial Intelligence (AI) can be an effective tool to 72 

address these challenges and offers promising solutions for comprehending and predicting 73 

complex coastlines dynamics (e.g., (Kumar & Leonardi, 2023a, 2023b)).  74 

The objective of this research is to explore synergies between the use of hydro-75 

morphodynamical models and AI techniques to create new tools providing stakeholders with 76 

baselines assessment about the suitability of different coastline interventions and aimed at 77 

optimizing both available and newly created datasets from numerical modelling. Specifically, 78 

this study focuses on the morphological changes of sand engines. Long Short-Term Memory 79 

(LSTM) models have been trained to predict time-dependent changes in bathymetry at 80 

various locations across a sand engine, as well as variations in sand engines’ volume 81 

depending on its features and external forcings. The main advantage of this methodology is 82 

that, once trained, the LSTM models can be utilized independently, have a running time of 83 

the order of minutes rather than hours and models can be thus packed within simpler 84 

frameworks and graphical Users Interfaces. Sand Engine Surface is a MATLAB framework 85 

developed for this purpose and enabling users to obtain predictions about sand engines 86 

behavior based on their specific coastal parameters inputs. 87 

2. Methodology 88 
2.1 Modellings setup and configuration 89 

LSTM is one of the Recurrent Neural Networks (RNNs) which is commonly used for 90 

modeling time series data. LSTM was designed to overcome the problems associated with 91 

RNN, which had difficulty learning the long-term dependencies in the data due to gradient 92 

explosion and gradient disappearance (Kumar et al., 2023; Lindemann et al., 2021; Sun et al., 93 

2022). RNN is different from Feed Forward Neural Network (FFNN) in the context of flow 94 

of data within the network. FFNN allows only one-way flow of data from input layer to 95 

output layer through hidden layers. However, RNN allows feedback of data back to the 96 

hidden layers to create time lag effect which helps in memorizing the previous time steps 97 

(Aslam et al., 2020). LSTMs are designed to memorize long term dependencies and has the 98 
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capability of selectively storing the important data and deleting not important data through 99 

different gates (Text S1 in Supplementary Information).  100 

LSTM models were trained utilizing numerical modelling outputs from the 101 

hydrodynamic and morphodynamic model Delft3D. Delft3D is a process based numerical 102 

modelling platform capable of computing the hydrodynamics, waves, sediment transport, 103 

water quality, morphology of coastal regions (Lesser et al., 2004). Its base model, Delft3D-104 

Flow (hydrodynamic module), solves the 3-D Navier-Stokes equations for incompressible 105 

free-surface flow under the shallow water approximation for unsteady, incompressible, and 106 

turbulent flow. For this study, the hydrodynamic and morphodynamic modules are fully 107 

coupled so that the flow field adjusts in real time as the bed topography changes. The module 108 

Delft3D-WAVE was used to simulate wave generation, propagation, and nonlinear wave-109 

wave interactions (Booij et al., 1999). 110 

For the idealized modelling setup, a circular sand engine with a 2 km radius was 111 

positioned within a flat seabed having -5 m depth relative to mean sea level (Table S1 in 112 

Supplementary Information). The grid size for the numerical model setup varied from 16×16 113 

m at the location of the sand engine to around 100×300 m near the boundary. The domain 114 

extends 12 km along shore with the sand engine placed at the center and 6 km cross-shore, 115 

providing sufficient space for sediment movement. Within the time scale explored in our 116 

study there is no or negligible amount of sediments exiting the model domain. Tidal levels 117 

and waves forcing were imposed at the sea boundary. Neumann boundary conditions were 118 

used at the lateral boundaries. A non-cohesive sediment type with a specific density of 2650 119 

kg/m3 and dry bed density as 1600 kg/m3 was used. The diameter of the sediment was 120 

120μm. The hydrodynamic model was run for 15 days and a morphological scale factor of 121 

30, to represent a time scale of the order of 15 months (following the method from Roelvink 122 

(2006) and Ranasinghe et al. (2011)). The sand engine center was located 1km from the 123 

coastline so that we could monitor differences in the morphological evolutions of points 124 

directly and indirectly exposed to wave forcings. Around 15% of the sand engine radius is 125 

located below MSL with a slope of around 1.5% as opposed to a vertical slope which was 126 

leading to hydrodynamic instability. The inner 85% of the radius of the sand engine is above 127 

MSL with a suitable slope depending on sand engine height. Different sand engines heights 128 

were considered (1m, 2m and 3m). Different tidal levels were tested (0.5m, 1m, and 2m) 129 

together with different uniform wave height conditions (0.5m, 1m and 2m) and waves 130 

directions (45°, 90° and 135° with respect to the boundary) (Figure 1A). Observation points 131 
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LSTM models are generally used to reproduce single time series, predicting one time 149 

step into the future. However, in this case we have multiple time series. Therefore, following 150 

Wang et al. (2019), the LSTM model was reconfigured and all the connections were managed 151 

manually. Specifically, inputs were received at feature input layer which was connected to 152 

fully connected layer with Exponential Linear Unit (ELU) activation layer. Output from the 153 

ELU activation layer was connected to 172 parallel LSTM cells (figure 1B). Given that each 154 

time series consisted of 172 time step, each LSTM cell is designed to produce output for each 155 

time step. Each LSTM cell received the input from ELU activation layer as well as output of 156 

previous 10 LSTM cell after concatenating them using a concatenation layer. Hence, each 157 

LSTM cell was providing prediction based on the feature input and output of previous 10 158 

times steps. The hidden state and cell state of each LSTM cell were connected to following 159 

cell in the sequence. The output of each LSTM cell was connected to a fully connected layer 160 

followed by a regression layer. The output of each regression layer represents the value of 161 

each time step in the time series.  162 

The entire network (figure 1B) was trained using a custom training loop in MATLAB 163 

where inputs were fed to the feature input layer and the output of the network was collected 164 

from each regression layer and arranged in a sequence to form a complete time series. To 165 

optimize the model's performance, the final time series output was used to calculate the loss 166 

value, which was measured by the mean squared error. This loss value was used to update the 167 

internal parameters, such as weights, biases, and state values, using the MATLAB function 168 

adamupdate (adaptive moment estimation). For the purpose of this study, we developed three 169 

models having a similar LSTM model structure: one for modeling the total volume of sand 170 

remaining (volume model) and a second and third model to track the bathymetric evolution 171 

above MSL and below MSL.  172 

The Volume model takes in 5 inputs (wave height (m), tide (m), height of sand engine 173 

(m), angle of the wave (radian) and the initial volume of sand at the sand engine) and predicts 174 

a time series representing the volume of sand left within the radius of the sand engine (Table 175 

S2 in Supplementary Information). The efficiency of the nourishment over time is also 176 

calculated using the following equation (Roest et al., 2021): 177                                                                  𝜂 = 1 − ∆𝑉𝑉                                                            (1) 

where, 𝜂 is nourishment efficiency, ∆𝑉  is change in volume of sand and 𝑉  is the 178 

total volume of sand placed. Results about the morphological evolution of the Sand Engine 179 

Efficacy are presented as part of the Sand Engine Surface MATLAB Framework.  180 
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 The LSTM models predicting the bathymetric evolution at each observation point 181 

(whether above or below MSL) require 6 inputs (wave height (m), tide (m), height of sand 182 

engine (m), angle of the wave (radian), the radial distance (km) and angle (radian) from the 183 

center) and predicts multiple time series representing the bathymetric evolution at each 184 

observation point. The performance of the LSTM models is measured based on regression 185 

(eq. 2) and mean absolute error (MAE) (eq. 3). 186                                               𝑟 = 𝑛(∑ 𝑥𝑦) − (∑ 𝑥)(∑ 𝑦)𝑛 ∑ 𝑥 − (∑ 𝑥) 𝑛 ∑ 𝑦 − (∑ 𝑦)                                        (2) 

                                                                    𝑀𝐴𝐸 = 1𝑛 |𝑥 − 𝑦|                                                         (3) 

where: n is the number of data points, x is target value, y is predicted value 187 

3. Results  188 
Table 1a represents the performance of all three LSTM models based on regression 189 

and MAE. The Volume model and the below MSL model perform well in training and testing 190 

with regression values around 0.9. However, for points above MSL the model has a testing 191 

regression of 0.69. Points near the center of the sand engine remain dry throughout the 192 

simulation and no bathymetric changes are observed there, leading to flat time-series, 193 

forming a straight line in the training dataset. These constant lines in the training dataset 194 

affect the overall learning capability of the model. The pie charts in Table 1 represent the 195 

summary testing regression for different time series in the testing dataset. Volume and below 196 

MSL models predicted 79% of their time series in the testing dataset with regression greater 197 

than or equal to 0.9. The above MSL model has 45% of the testing time series predicted with 198 

regression greater than or equal to 0.9.  199 

Table 1. Performance of LSTM models. A) regression and MAE values B) regression pie 200 
chart 201 
(A)    

Model Volume Above MSL Below MSL 

Regression Train 0.9 0.92 0.92 
Test 0.9 0.69 0.89 

MAE Train 0.89 0.03 0.04 
Test 1.02 0.19 0.16 

(B)  



202

203

204

205

206

207

208

209

210

211
212
213
214
215
216

217

218

219

220

221

 

Pie
(Test R

  

 

waves  

configu 

constan 

the sim 

engine.  

sand en 

because 

 
Fig. 2 S 
configu 
amplitu 
plotted  
  

 

Figure  

morpho 

orange  

reprodu 

e Chart 
Regression) 

 

The morph

and tidal 

uration of t

nt 2 m wave

mulation, sed

Additional

ngine. The 

e it remains 

Sand engin
urations: san
ude 1m. Poi
in figure 3c

Figure 3 pr

2. Results 

ological cha

line repres

uce Delft3D

ological evo

forcing. F

the interven

es, 1 m tida

diment is ob

lly, the com

central po

dry for the 

e bathymet
nd engine h
ints C, D an
c, d, and e, r

resents resu

are presen

anges. The b

sents result

D modelling 

olution of a

Figure 2 p

ntion for a

al amplitude

bserved mo

mbination of

ortion of th

simulation 

try at the en
height, 3 m
nd E repres
respectively

ults from th

nted in term

blue line re

ts from LT

outputs.  

a Sand Engin

provides an

sand engin

e and waves

oving towar

f waves and

he sand en

period.  

nd of the si
; wave dire
sent the loc
y. 

he Delft3D 

ms of total

epresents re

TSM mode

ne depends 

n example 

ne having 

s approachi

rd the coast

d tidal forci

gine remai

imulation pe
ection 90° a
cations whe

and LSTM

l Volume r

esults from 

l. The LST

on its conf

of the fi

a 3m heig

ng at a 90°

tline on bot

ing create c

ns instead 

eriod (15 m
angle; wave
ere time-var

model for 

remaining a

the Delft3D

TM model

figuration as

inal morph

ght and exp

 angle. Thr

th sides of t

channels wi

mostly un

months). Sim
e height, 2 
rying bathy

the sand en

and time s

D model, w

is able to

9

s well as 

hological 

posed to 

roughout 

the sand 

ithin the 

naffected 

 
mulation 
m; tidal 
metry is 

ngine of 

series of 

while the 

o clearly 



 10

As a reference, we have also included data from the Netherlands sand-motor (august 222 

2011 to august 2012). These were obtained from Luijendijk et al. (2017). While our 223 

simulations were not meant to replicate that specific sand engine, it is worth having a 224 

comparison with a real case scenario. The steeper decline in volume change for the 225 

Netherlands sand motor (encircled in the fig 3a) over the winter period is due to the increased 226 

wave activity during winter (Huisman et al., 2016; Luijendijk et al., 2017). However, in this 227 

study, constant wave height is applied at the sea boundary throughout the simulation period, 228 

and we thus register a more constant decline in Volume.  229 

Figure 3c, d, and e represent the simulated and predicted bathymetry evolution at 230 

points c, d, and e, respectively (location in figure 3). Point d is predicted using the below 231 

MSL LSTM model and other two points are predicted by above MSL model. Figure 3e is for 232 

the points near to the center which shows no bathymetry change because it remains dry 233 

throughout the simulation period. As the point moves towards the center of the sand engine 234 

and towards dry areas, the model struggles to predict the bathymetric evolution accurately. 235 

Results for all observation points and all simulations are presented as part of the Sand Engine 236 

Surface MATLAB framework as outlined in the next section.  237 

  238 

 239 
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3.1 Sand Engine Surface App  245 
 All the three developed LSTM models (Volume, Above MSL and Below MSL) along 246 

with the simulation results are packed into a MALTAB framework. The framework helps to 247 

better visualize the LSTM predicted results along with all simulation results. It accepts inputs 248 

(height of sand engine, wave height, tide, and angle of wave) in the configuration panel and 249 

provides the prediction results and simulation results (figure 4). To display the bathymetry 250 

evolution at different location on the sand engine, the framework displays all observation 251 

points on the sand engine (Prediction Points panel, left panel) for the user to click and view 252 

their bathymetric evolution in the Bathymetry Variation panel (right panel). The framework 253 

displays results from both LSTM models and Delft3D simulations (as a reference). While 254 

LSTM have been trained to predict and display configurations which haven’t been modelled 255 

in Delft3D but can be chosen by the user as part of the Configuration panel; the displayed 256 

Delft3D simulation results are those matching the best the provided input configuration. 257 

These generated results can be exported through the framework in different formats, image, 258 

screenshot, excel and MATLAB file. The Framework is available for download in the 259 

following link together with a video (“Installation” and “Usage” video in Supplementary 260 

Information) demonstrating its usage and README file: 261 

https://github.com/pavitra979/Sand_Engine_Surface.  262 

 All the simulation results, displaying the simulated sand engine evolution, can be 263 

viewed as part of the readme section of the framework, where results can be viewed in the 3D 264 

plot or in video format. The 3d plot of sand engine evolution can be exported in an image 265 

format at any time step, however for all time steps it can be exported in video, gif, or 266 

MATLAB file format (Text S2 in Supplementary Information).   267 
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MSL (black dots in figure 1A) on the sand engine based on feature inputs (sand engine 292 

configuration and coastal conditions). The timeline of volume of sand remaining can be used 293 

to get the efficiency of the sand engine. And the bathymetry evolution can be used to study 294 

pattern of sand engine evolution when subjected to different wave forcings. Simulation 295 

results and LSTM models are packed into a MATLAB framework (Sand Engine Surface app) 296 

for better usability of the LSTM models and visualization of results. The app provides the 297 

prediction based on user inputs of the sand engine configuration and wave forcings. For 298 

better comparison, app displays the simulated results that best matches with the input 299 

configuration. All the simulation and LSTM model results are provided in the app and can be 300 

exported in video, image, or MATLAB file format.   301 
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