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Abstract

For decades, molecular biologists have been uncovering the mechanics of biological systems. Efforts to bring their findings
together have led to the development of multiple databases and information systems that capture and present pathway infor-
mation in a computable network format. Concurrently, the advent of modern omics technologies has empowered researchers to
systematically profile cellular processes across different modalities. Numerous algorithms, methodologies, and tools have been
developed to use prior knowledge networks in the analysis of omics datasets. Interestingly, it has been repeatedly demonstrated
that the source of prior knowledge can greatly impact the results of a given analysis. For these methods to be successful it is
paramount that their selection of prior knowledge networks is amenable to the data type and the computational task they aim
to accomplish. Here we present a five-level framework that broadly describes network models in terms of their scope, level of
detail, and ability to inform causal predictions. To contextualize this framework, we review a handful of network-based omics
analysis methods at each level, while also describing the computational tasks they aim to accomplish.

Introduction

Francois Jacob concluded his Nobel lecture in 1965 (awarded for modeling Lac Operon with Monod and
Lwoff) with a vision: “We do not know how molecules find each other, recognize each other, and combine to
constitute the regulatory network . . . What is clear, however, is that the problems to be solved by cellular
biology and genetics in the years to come tend increasingly to merge with those in which biochemistry and
physical chemistry are involved.”. The idea of a network model, where genes and gene products are linked by
molecular processes, was present from the very first days of molecular biology. Due to the sheer complexity of
biological systems, biologists have traditionally employed reductionist approaches where different fragments
of cellular processes are isolated and identified. An implicit goal of this approach has been to assemble
a network model in a piecemeal fashion from these reductionist findings, which will eventually be able to
explain and predict the behavior of the biological system at large.

More than half a century later, tens of millions such reductionist findings have accumulated in the litera-
ture. Multiple databases and information systems have been developed to capture the pathway information
accumulated in scientific literature and present it in computable format1. Millions of interactions, molecular
processes and relationships are curated as networks, including metabolic pathways, signaling pathways, gene
regulatory networks, molecular interaction networks, and genetic-interaction networks.

In parallel, our ability to systematically profile cellular processes has grown with the development of modern
omics technologies. We now have a range of genomic, transcriptomic, metabolomic, and proteomic tech-
niques at our disposal. We can deeply profile a cellular system in a given context, with an increasing ability
to do so spatially and at the level of single cells. These technologies allow us to generate system-scale profiles
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without necessarily starting with a specific hypothesis or isolating a specific component—challenging the
traditional piecemeal method. In most cases, the data-driven approaches no longer seek explicit biological
grounding of their findings—clusters, subtypes and signatures replace mechanisms and pathways. The per-
ceived incompatibility between “hypothesis driven, reductionist” and “data-driven, system-scale” camps led
to one of the most polarizing epistemological debates in modern molecular biology2–4.

Is this truly a fundamental divide—maybe we can have our cake and eat it too? To bridge this gap, we
need to computationally combine these prior information fragments with -omics profiles to generate and test
mechanistic, falsifiable conjectures at scale. Over the last two decades, thousands of algorithms and methods
have been created in the field of network biology to address various sub-problems of this grand challenge,
using diverse types of -omic data and prior knowledge. Given multiple data modalities, prior information
sources, and tasks, it is often difficult to assess which algorithms are good for which biological questions and
how they are related to each other. Here we present a framework to organize these methodologies into broad
categories based on their use of prior information and the computational task they target. We also review
a few examples from each category. Our goal in this review is to give readers a foundational understanding
of the different types of networks, and a mental map to help match their needs with the available tools and
algorithms.

Networks are models of biological systems

A biological model is an idealistic construct, in simulacra , that allows us to understand, explain and predict
biological phenomena. A network, in the current context, is a graph model of a biological system which
depicts molecular entities and the interactions between them. Mathematically, a network is a graph G(V,E),
where a set of vertices or alternatively nodes (V) map to biological entities, connected by a set of ordered
pairs or edges E, which represent the relationships between nodes. Network models vary greatly in their
coverage of established biological knowledge, level of detail and interoperability with other networks. A
network model can be as simple as the interaction ”MDM2 binds to TP53” or can cover a system-level map
that encompasses all known cellular processes. In some models, a single node may represent one entity,
whereas others may have multiple nodes corresponding to the same entity but representing different states.
Similarly, edges may have directionality that indicates the flow of cause and effect from reactant to product
in an interaction or be undirected. They may also be signed, meaning they describe the nature of the
reaction (ex. activation/inhibition), or unsigned. Some highly complex network models even account for
stochiometric ratios and reaction dynamics equations in their construction.

Several domains of biology are modeled by networks, including: (i) Metabolic pathways (Figure 1A) are
usually characterized by the abstraction of enzymes, substrates, and products. Typically, these reactions
involve small molecules, and an enzyme, often a protein, catalyzes the reaction. Inhibitors and activators can
also modulate the catalysis event. (ii) Signaling pathways (Figure 1B), on the other hand, encompass a range
of biochemical reactions, including binding, transportation, and catalysis events involving molecules and
complexes. These pathways may describe molecular states such as cellular location, covalent and non-covalent
modifications, and sequence fragments. (iii) Gene regulatory networks (Figure 1C) involve transcription and
translation events, along with their control mechanisms. (iv)Molecular interactions (Figure 1D) are typically
represented as undirected graphs and cover non-covalent binding events. (v) Genetic interactions (Figure
1E) capture relationships between two genes when the observed phenotypic consequence of perturbing both
genes is different from what is expected given the phenotypes of each single gene perturbation, such as in
the case of epistasis.
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Figure 1. Domains of biological systems described by networksA. Metabolic pathways are typically
described as a series of sequential reactions involving small molecules and catalytic enzymes. B. Signaling
pathways describe the passage of signaling events, often triggered by a ligand/receptor combination. C.
Gene regulatory networks are directed graphs that describe the circuitry of regulatory effects exerted from
one gene to another. D. Molecular interaction networks are typically unsigned diagrams that represent
uncharacterized interactions between a suite of molecules, often proteins. E. Genetic interactions describe
the relationships between genes. Edges here describe the nature of the relationship, as opposed to the
mechanisms that are involved in the relationship.

Creating Networks

Network representations of biological systems have been around for decades. Reconstruction of metabolic
maps from early biochemical experiments started in the 1950s with Boehringer Mannheim charts. Modern
reconstruction efforts like Reactome 5 , SIGNOR6, KEGG7, RECON 8, and Disease Maps 9 encompass
hundreds of thousands of reactions, curated from scientific publications. Despite this herculean effort, these
manually curated databases cannot keep up with the rate of scientific production given the available re-
sources. To support manual curation efforts, multiple natural language processing (NLP) and crowd sourc-
ing approaches to extract computable models from scientific literature have been developed10, and recent
language learning models (LLMs) offer great promise in expanding these efforts11. Additionally, in the case
where there is very little existing literature about a system, networks can be inferred de novo or by expand-
ing existing models12. This approach was particularly popular in the early phases of COVID-19 pandemic,
wherein many researchers used network-based approaches grounded in SARS-CoV and MERS-CoV networks
to extrapolate the molecular processes governing SARS-CoV-2 biology13. When PKNs are incomplete or
nonexistent, interactions captured in the data can be used to infer a network structure. For example, in the
case of high throughput PPI assays the identified interactions are commonly quantified based on confidence,
then filtered using a cut-off score to lessen any noise introduced by the mode of collection. The filter chosen,
which may be empirically or statistically informed, can have a significant impact on the rate of false positives
and negatives in the resulting network14. Finally, some high-throughput modalities such as protein co-IP
experiments can be readily expressed as networks without referring to curated sources of prior knowledge.
Additional layers such as drug-target relationships can then be mapped to these interaction networks, as was
done during COVID-19 to nominate targets for drug repurposing15.

Networks and Context
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The fragments which make up a network often come from different biological contexts—here context is an
umbrella term that implies different models, diseases, conditions, observation modalities and perturbations.
For example, a group of researchers elucidates the phosphorylation event that drives a signaling cascade
using an array of molecular techniques. Another research group identifies an inhibitor of this phosphorylation
event. Another identifies a handful of transcription factors which assemble to produce this inhibitor, and so
on until a pathway model starts to take shape. An important consideration in the implementation of this
pathway is the context from which each of its components arose. If each of these groups were working with
cell lines derived from different tissues, treated with different perturbing agents, or grown under different
environmental conditions - could their results be stitched together into a common network? How to assemble
these fragments properly, and when and which type of context restrictions should be used for a particular
problem, are complicated questions with no clearcut answer. It is often necessary to join elements from
different contexts to create networks that appropriately match the scope of the high throughput data. For
datasets with a narrow scope within well-studied processes, such as a targeted metabolomics assay quantifying
components of glucose metabolism, it may be possible to find a manually assembled quantitative model which
combines fragments from a consistent context. However, for most -omics applications, which often involve
untargeted high-throughput datasets, we often need to use the context-insensitive network and derive the
context from the data.

Utility of Networks

Omics profiles offer a molecular snapshot of a biological system under a set of conditions16. Molecular struc-
tures commonly profiled by omics techniques include the genome (genomics), RNA (transcriptomics), pro-
teins and their post translational modifications (proteomics), metabolites (metabolomics), and the epigenome
(epigenomics)17. Some modalities can even be profiled at the level of a single cell, giving much deeper reso-
lution. These technologies and the interpretation of their results with network-based methods are a driving
force in the field of systems biology. Using networks, we can generate conjectures about the patterns in
these highly complex datasets and understand which observed relationships can be explained by existing
knowledge, and which relationships point to novel findings.

This “explainability” is key for the iterative process of scientific discovery. If an algorithm can make some-
what accurate predictions about the behavior of a system but cannot point to the components that are
likely to drive the observed behavior, then the predictions can only be tested phenomenologically and not
mechanistically. This is a limiting and inefficient way of analyzing a complex combinatorial system. There
is no better example for this claim than commercial drug discovery, which relies on very large phenomeno-
logical screens for clinical trials. Despite substantial efficiency gains, between 1950 and 2010 the costs of
research and development per approved drug approximately doubled every nine years18 as we try to tackle
increasingly complex diseases.

A related benefit of a grounded, mechanistic inference is the ability to “reason” about the system’s response
to a previously unknown perturbation such as a new drug combination or a mutation. This is an extension
of a biologist’s intuition - e.g., inhibiting the inhibitor of a target protein will activate it - but can be done
at-scale. Additionally, it enables us to identify the reasons behind the failure of our predictions.

A perhaps less appreciated aspect of network-based approaches is the use of networks as prior information
to restrict the search space of statistical algorithms. When evaluating potential network models in the
context of their ability to explain or fit a certain data de novo , the number of possible network models
grows exponentially,O(2n

2

), as a function of the number of nodes19. This leads to substantial problems
with model overfitting, multiple hypothesis testing correction and model degeneracy. Multiple hybrid meth-
ods were developed that use prior information probabilistically along with de novo inference to center the
inferred/evaluated models around known biology that can restrict the search space substantially12.

The combined effect of these advantages is an incremental, iterative discovery process that can be done
at-scale. This is crucial, given the rapid evolution of omics technologies and the ever-increasing volume of
omics data.
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Section 2: A framework for categorizing and classifying network biology approaches.

When conducting network-based omics analysis, the choice of prior knowledge network can impact the re-
sults of the analysis20. Given the multitude of network databases available, it is useful to have a framework
that can guide researchers to make informed decisions. Herein we define three ‘tasks’ which describe the
overarching goal(s) of network-based approaches to omics data analysis. These tasks include network infer-
ence, explanation extraction, and phenotype prediction. Additionally, we define a framework for classifying
network models into five levels of increasing level of detail: Gene Sets, Interaction Networks, Activity Flow,
Process Description, and Quantitative Models (Figure 2). Finally, we review a sampling of network-based
approaches at each of these five levels to contextualize the framework. Our classification of networks and the
approaches that use them is intentionally broad to provide a high-level organization allowing for nuances in
this rapidly evolving area of research.

Computational Tasks

Networks can be combined with -omics data to achieve a wide range of computational tasks. Below we
define some broad categories that describe these computational tasks. These categories are not mutually
exclusive, as many computational methods have the capacity to perform multiple tasks or hybrids of them.
For example, methods which “upscale networks”, meaning they output a higher-level network from a lower-
level PKN, typically do both network inference and explanation extraction, as they select a small subset of
the input PKN that can explain the correlations in the data and then will modify it to infer a new, higher-
level network. It is also common to use explanation extraction or network inference task as a precursor to
phenotype prediction, especially in clinical applications.

Explanation extraction aims to interpret patterns found within an omics profile and contextualize them using
prior information about the system. It addresses hypotheses around system changes, such as differential
expression or altered interaction strengths, to elucidate the mechanisms involved21. Common examples of
explanation extraction tasks include enrichment-analysis and algorithms that produce a relevant subgraph
of a larger network. Explanation extraction can also be thought of as emulating the literature search of a
molecular biologist to explain the data at hand. As a molecular biologist reads the literature they ask “Is
this information fragment compatible with my data? Does it explain it or contradict it? Is this applicable to
my experiment’s context?”. The same questions are interrogated by explanation extraction methods, but in
a quantitative manner that scales to high throughput data. Explanation extraction tools generate valuable
conjectures that can, for example, guide the selection of subsequent perturbing agents, or recognize parallel
mechanisms that unify multiple datasets in a novel way12,19.

Network inference tasks produce a network model based on the input -omics data. This can be achieved by
integrating prior networks or can be done de novo . Due to the combinatorial complexity of the model space
and the inherent stochasticity of biological systems, inference is always an underdetermined problem and
coherence of inferred networks and actual biological reality may be low, independent of the performance of
the model. Constraining inference to at least partially conform with known biology can help by “anchoring”
inferred networks. Another option is to use a large number of biological models in an ensemble learning
strategy to reduce bias.

Some network inference approaches construct an entirely new model while others expand on established
networks, in either case, the goal is to generate new mechanistic hypotheses. Upscaling algorithms are a
common example of network inference. These approaches infer a higher-level representation (e.g. Activity
Flow) from a lower-level prior network (e.g. protein-protein interactions) using -omics profiles. Upscaling
can also be used to assign weights, direction, sign and rate constants to edges on a graph.

Phenotype prediction aims to predict how an organism or system responds to disease states and perturba-
tions. These methods may be applied at a cellular level to project signaling events and transformations as
well as broad phenomena like cell proliferation and survival, but they can also be extended to a network
medicine approach, where predictions are made at a patient level to inform diagnosis, prognosis, or treatment
response22,23.
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Effective phenotype prediction is arguably more difficult than the prior two tasks. Phenotype is a function
of the whole system that often contains feedback loops and other non-linear response circuitry. It is also
inherently multimodal as at minimum, it requires one omic measurement and one phenotype measurement
modality –e.g. IC50, GR50 or disease free survival. Each of these factors can be confounding to phenotype
prediction tools.

Levels of Prior Knowledge Networks

There are many different ways of representing molecular processes in a graph model. The choice of repre-
sentation is often dictated by the volume of experimental data informing different parts of the model. As
models increase in their level of mechanistic detail, they also decrease in the scope of the biology that they
are able to cover. For example, a level 2 PPI network with hundreds of proteins may be constructed from
a single co-precipitation assay, while just one relationship in a level 4 or 5 model may synthesize the results
of many separate experiments. The 5 levels are expressed visually in Figure 2 and are explained in further
detail below.

Figure 2. The 5 levels of network models. Scope refers generally to the size of networks and the volume of
interactions recorded at that level. Mechanistic detail refers to whether the stepwise processes of a reaction
are explicitly given in the network model. Causality refers to whether the network model can be used to

6
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make causal inferences that can be statistically interrogated.

Gene Sets , as the name implies, are curated lists of genes grouped by association with a particular phe-
notypic outcome, molecular pathway, or cellular event. Gene sets, although not networks per se, are often
derived from network representations, such as boundaries of KEGG pathways. Pathway boundaries are
fiatboundaries24, induced primarily through human demarcation. For example, despite covering the same
biological processes, KEGG pathways contain 4 times more entities on average compared to BioCyc25 path-
ways, primarily due to differences in curation guidelines. They also provide substantially different results
when these fiat boundaries are used as input for gene set enrichment tasks 26. Although they encompass well
described biological mechanisms, gene sets do not contain mechanistic detail in the form of directed and/or
signed edges. Approaches at this level typically perform explanation/extraction. Typically, this involves test-
ing for statistical enrichment of gene sets or their components to propose explanations for observed cellular
behavior, e.g. highlighting the most dramatically enriched pathway in a cancer biopsy to determine possible
therapeutic targets. This can also be extended to a phenotype prediction task if the gene set describes a
particular phenotype, e.g. a gene set composed of markers for epithelial to mesenchymal transition in breast
cancer cells.

Interaction Networks represent interactions between biological entities by unsigned, undirected edges. These
edges don’t contain any cause/effect semantics and therefore can’t be used to make causal predictions. These
simple interactions can be detected in large quantities by through high-throughput methods, hence there
are millions of interactions present in existing data sources, an order of magnitude more than subsequent
levels. Additionally, interaction networks are simple to align and integrate with one another, as each entity
is typically represented by only one node in the graph. They are commonly used as a starting point in
untargeted high throughput assays where quantitative measurements are recorded for many entities and the
researcher wants to look broadly at their data without necessarily seeking causal explanations.

Activity Flow networks, like interaction networks, typically contain one node for a given entity, allowing for
easy integration of multiple networks so long as naming conventions for entities are consistent. In contrast,
activity flow networks add a layer of cause/effect semantics in the form of directed and, sometimes, signed
edges. For this reason, activity flow networks can be used for making causal predictions, and while these
networks are considerably smaller than level 2, they are expansive enough that they can still be used for
interrogating untargeted high-throughput datasets.

Process Description networks illustrate the mechanistic detail of how a reaction occurs. Because these
models describe the stepwise events in a reaction, it is not uncommon that one edge could be informed by
multiple sources, making them very well grounded in the literature. They are considerably smaller given that
most, if not all, of their curation must be done by hand. Unlike prior levels, these diagrams represent the
same entity with multiple nodes, corresponding to each of that entity’s states through a sequence of events,
including covalent modifications, cellular/subcellular locations, and/or complex memberships. This makes
the integration of multiple process description networks a considerably more intensive exercise relative to
levels 2 and 3.

Quantitative Models were originally derived from canonical chemical equations. These models are like process
description networks in that these representations explicitly model the stepwise process of a reaction, but
they are expanded to include quantitative factors like concentrations, stoichiometry, and rate constants. An
example of a quantitative model would be a metabolic pathway represented as a bipartite graph of substrates,
products, catalysts, and reactants. They are often used to describe systems which are very intensively studied
and are typically very small compared to the preceding levels, due to the volume of research required to
inform their curation.

Some networks and models fall into two consecutive categories. For example, the networks used in
PhosphositePlus27 and CausalPath28 are represented as activity flow networks, however both describe post-
translational modifications, which lends to the mechanistic detail in a process description network. Molecular
Interaction Maps (MIMs)29 are equivalent in semantic detail to process description but retain an activity

7
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flow-like visualization. Finally, some large process description databases curate quantitative values such as
enzymatic constants to allow for construction of quantitative models30.

Classifying Methods within the Framework

To contextualize the above framework, we conducted a limited survey of algorithms and software tools
which use networks as prior information in the analysis of omics data and categorized these methods based
on the level of network they employ and the computational task(s) they accomplish. Given that hundreds
of new algorithms and approaches are published every year, an exhaustive survey is not feasible for the
present review. Methods are extremely diverse in their input, operations, and output, but in any case, the
overarching goal of these approaches is to produce something that can be perceived and/or interpreted by a
human user. We do not include cross-method comparison of features and performance. For each method we
give a brief synopsis, discuss key aspects of the method, and finally summarize any real-world applications
or validation in a biological system that the authors describe in their manuscript.

Level 1: Gene Sets

ReactomeGSA 31

ReactomeGSA is an explanation extraction tool for comparative pathway-based gene set analysis. Reac-
tomeGSA defines its gene sets from the pathways curated in the Reactome5 database, then conducts a
comparative gene set analysis at a pathway level to explain and biologically ground the differences between
omics datasets, making it a quintessential explanation extraction tool with some phenotype prediction ap-
plications.

ReactomeGSA performs a differential expression analysis on a pathway scale for five quantitative omics data
types, including microarray intensities, transcriptomics counts (raw or normalized), proteomics (spectral
counts or intensity based quantitative data). ReactomeGSA is also capable of analyzing single-cell RNAseq
(scRNAseq) datasets by calculating the mean expression for genes in a cluster and using this as ‘pseudo-bulk’
RNAseq to describe the cluster. For the analysis the user selects an appropriate methodology depending on
their datatype and computational capacity. ReactomeGSA currently accommodates three gene set analysis
methodologies, PADOG32, Camera33, and ssGSEA via GSVA34. The results of the analysis are mapped
to the complete pathway browser database, where the user can view the pathway-level enrichment scores
in the hierarchical ‘tree-view’ which also descending into individual pathways to view the differential gene
expression values mapped to the corresponding genes in each pathway.

To demonstrate the clinical applications of ReactomeGSA the authors conducted a comparative pathway
analysis of tumor induced plasmablast-like B-cell (TIPB) signaling across five TCGA cancer cohorts. These
included melanoma, breast cancer, ovarian cancer, lung adenocarcinoma, and lung squamous cell carcinoma.
The authors compared TIPB-high vs -low in each cohort, in addition to some cross cohort comparisons.
They found that pathway-based gene sets describing B-cell receptor signaling and apoptosis were enriched
for TIPB-high melanoma and ovarian cancer samples, which they later correlated with improved survival
in these groups. When compared to melanoma, lung adenocarcinoma samples with high TIPB retained
a unique signaling phenotype. These samples exhibited downregulation of the pathway-based gene sets
describing B-cell receptor signaling, NF-kB signaling, p53 associated DNA damage repair, cell cycle, and
apoptosis.

Level 2: Interaction Networks

SWAN 35

SWAN incorporates prior knowledge network into the cutoff selection process for correlation networks. This
is a hybrid inference/extraction algorithm that redefines the inference task as defining a cutoff threshold
such that the agreement with prior information is maximized.

SWAN works by first constructing a correlation network from the data. The network is then filtered to
remove edges that are not statistically significant. The remaining edges are then ranked according to their
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strength. Prior interaction networks can be easily integrated with inferred correlation networks. SWAN
then selects a cutoff for the network based on prior knowledge. To calculate the correlation, SWAN uses
shrinkage partial correlation based on the GeneNet algorithm – although this approach can be generalized
to any correlation metric. The overlap is measured using Fisher’s exact test p-value, which indicates the
agreement between the calculated correlation network and prior knowledge. The optimal cutoff is defined as
the point where the overlap is maximal.

SWAN was tested on pan-cancer data of 26 cancer types extracted from The Cancer Genome Atlas (TCGA).
The network was able to identify enriched genes (OG) in the elevated pathways and suppressed genes (TSG)
within suppressed pathways with a p-value < 0.05. This result was compared with the Gene Set Enrichment
Analysis (GSEA) and revealed that SWAN outperformed GSEA. To check if SWAN can study race-specific
CNA patterns, ovarian cancer samples from an African American population were collected, and non-Hispanic
white patients were used as control. SWAN identified that the cytokine pathway was elevated in the former
population which can be mapped to the overall poor prognosis in these patients. Furthermore, SWAN was
also able to figure out the effect of the knockdown of metallothionein 2A which led to an increase in formation
of uH2AX foci.

GLRP 36

Graph Layer-wise Relevance Propagation (GLRP) is a novel method that extends the Layer-wise Relevance
Propagation (LRP) technique to Graph Convolutional Neural Networks (Graph-CNN). LRP is an existing
technique that explains the decisions made by deep learning models. The primary goal of GLRP is to
explain the classification results of various omics data and molecular networks which could facilitate the
decision-making processes in personalized medicine.

This is a unimodal, hybrid phenotype prediction and explanation/extraction algorithm that aims to ground
predicted graphs to known protein-protein interaction networks. GLRP interprets the classification output
by leveraging the molecular network and also produces patient-specific subnetworks that can be used to
explain clinical outcomes and therapeutic vulnerabilities.

GLRP was trained on gene expression datasets of breast cancer and human umbilical vein endothelial cells
(HUVECs). Their predictive performance was evaluated using the 10-fold cross-validation method. In the
breast cancer study, GLRP was used to classify patients into metastatic and non-metastatic groups. The
results were compared with the classification performance of random forest and glmgraph models as well as
weighted gene co-expression network analysis. GLRP outperformed the other models, and the developed
patient-specific subnetworks identified meaningful features in breast cancer samples.

Level 3: Activity Flow

CausalPath 28

CausalPath is an explanation extraction algorithm which uses causal relationships from Pathway Commons37
as priors to extract a mechanistic explanation for the patterns in proteomics, phospho-proteomics, and
transcriptomics datasets. CausalPath produces causal hypotheses about the differences between comparable
datasets, for example, biopsies from different conditions or timepoints, or the covariance across a cohort.
These explanations are presented as an activity flow sub-network, which can also be expanded as a more
detailed process description network. The method mimics a biologist’s traditional approach of explaining
changes in data using prior knowledge, but does this at the scale of hundreds of thousands of reactions.

CausalPath employs 12 pre-defined patterns that describe causal relationships between biological entities in
the network, for example, a kinase phosphorylating another protein implies an expected correlation between
the kinase’s abundance or activating phosphorylation with the phosphorylation of the target protein). Using
these pre-defined patterns, CausalPath assembles an activity flow network showing the causal relationships
supported by the proteomic, phosphoproteomic and transcriptomic data.

CausalPath was applied to several publicly available datasets covering a wide range of scenarios and biological
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questions. In a set of time-resolved epidermal growth factor (EGF) stimulation experiments, CausalPath
detected EGFR activation via downstream signaling of MAPKs, including feedback inhibition on EGFR.
From ligand-induced and drug-inhibited cell-line experiments, CausalPath estimated the precision of its
predictions. From CPTAC (Clinical Proteomic Tumor Analysis Consortium) protein mass spectrometry
datasets for ovarian and breast cancer, CausalPath elucidated general and subtype-specific signaling, as well
as regulators of well-known cancer proteins. In RPPA (Reverse Phase Protein Array) experimental datasets
of 32 TCGA (Cancer Genome Atlas) cancer studies, CausalPath found a core signaling network that is
recurrently identified across many cancer types.

CoPPNet 38CoPPNet is a phenotype prediction tool which uses level 3 networks to accomplish unsupervised
subtyping of cancer. CoPPNet first constructs a functional network of phosphorylation sites based on their
co-phosphorylation patterns, and then identifies relevant subnetworks that correlate to subtypes.

The method first constructs a PhosphoSite Functional Association (PSFA) Network that models poten-
tial functional relationships between phosphosite pairs. Edges are inferred using information from existing
databases: PTMCode is used for functional, structural and evolutionary associations, PhosphositePLUS for
kinase-substrate associations and inferring shared-kinase pairs, and BIOGRID PPI for protein-protein inter-
actions. Data from MS-based phospho-proteomics assays is then incorporated using bi-weight mi-correlation
to assess co-phosphorylation (Co-P) of phosphosite pairs connected in the PSFA network, resulting in a
weighted PSFA network. Finally, subnetworks enriched in highly co-phosphorylated phosphosite pairs are
extracted. To achieve this, the weighted PSFA network is searched for subnetworks using a greedy algorithm
to maximize Co-P score, resulting in a list of ranked subnetworks referred to as Co-P modules. Modules are
then assessed for statistical significance, subtype specificity, predictive ability, and reproducibility.

CoPPNet was applied to two independent breast cancer phospho-proteomic datasets. The phosphorylation
patterns of identified Co-P modules were found to strongly correlated with known subtypes (Luminal vs.
Basal), and Co-P modules were shown to be reproducible across datasets from different studies.

IntOMICS 39

IntOMICS is a Bayesian framework that reconstructs gene regulatory networks from integrated multi-omic
data including; gene expression, DNAmethylation, and copy number variation data as well as prior knowledge
from KEGG (regulatory relationships) and target gene-transcription factor associations from ENCODE. This
is a network inference algorithm for level 3 representation.

The IntOMICS framework is based on the Werhli and Husmeier (W&H) algorithm40, which encodes each
omics data source into separate energy functions. IntOMICS integrates the omics data by encoding the
energy functions into a Gibbs distribution. Effects of multiple upstream controllers are additive. The inverse
temperature hyperparameters for each source are tuned by sampling from the posterior distribution with
Markov chain Monte Carlo (MCMC). Unlike the original W&H algorithm, IntOMICS uses an adaptive
MCMC simulation and Markov blanked resampling to improve the MCMC convergence speed.

For validation and comparison, the authors used IntOMICS to understand the mechanism of chemoresistance
using primary colon cancer samples from a randomized Phase III clinical trial. Their goal was to identify
downstream mediators of ABCG2 , which has been shown to contribute to chemoresistance. They compared
the network generated from IntOMICS to those from an unaltered implementation of the W&H algorithm
as well as two other multi-omic integration frameworks, RACER and KiMONo. IntOMICS nominated more
downstream mediators of ABCG2 , which may be important for chemoresistance in colon cancer and survival.

Level 4: Process Description

ScFEA/FLUXestimator 41

Single cell flux estimation analysis (scFEA) is a prediction tool that infers metabolic flux from scRNAseq
data using hand-curated metabolic pathways from KEGG as well as some hand curated mechanisms as prior
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knowledge. In the web-application of scFEA, FLUXestimator, metabolic pathways from Recon3d are also
available.

scFEA constructs a reduced network based on the prior network topology, genes with significant non-zero
expression, and any preferred sub-network specifications from the user. This reduced network, termed a factor
graph, is composed of metabolic modules (variables), representing groups of connected reactions, linked by
intermediate metabolites (factors). For estimation, scFEA combines traditional flux-balance analysis with
an optimization goal of minimizing influx/outflux imbalances while also incorporating enzyme transcript
levels as a proxy for enzyme activity to further constrain the model search space.

scFEA was validated experimentally using matched scRNAseq and targeted metabolomics data collected
from cells exposed to hypoxia and/or APEX1 knockdown. The authors observed that the predicted flux
changes were consistent with the observed changes in the metabolomics data.

Fast-SL 42

Fast-SL uses iterative search space reduction for rapid identification of synthetic-lethal gene sets up to an
order of four. The overarching goal of this algorithm is to improve the computational efficiency and speed
of synthetic lethality prediction from large metabolic networks. Because of its improved computational
efficiency, Fast-SL is able to predict higher order synthetic lethal gene sets.

For the deletion of a gene/reaction to be considered lethal, the maximum growth calculated by flux balance
analysis (FBA) must be smaller than the specified cutoff (vco), typically 1% of the wild-type growth rate.
The algorithm calculates the lethality cutoff vco as 1% of the ‘minimum norm’, which corresponds to the
maximum wild-type growth rate. Beginning with single lethal (first order) reactions, the search space is
constrained to all reactions in the system with a nonzero flux in the distribution from the prior step. These
reactions are denoted Jnz. Reactions in Jnz are then exhaustively tested for single-lethality by setting the
flux of each individual reaction to zero, calculating the biomass flux, and comparing it to the cutoff, vco.
If the biomass flux is less than the cutoff, the reaction is considered lethal and added to the set of single
lethal reactions (Jsl). Reactions in Jsl are then pruned from the search space for double lethal (second order)
reactions (Jdb). When calculating third order lethal reactions, the search space would be further reduced
as reactions in Jdb are removed from Jnz. The result is an iteratively pruned search space which becomes
smaller with increasing order of lethal gene sets.

Using Fast-SL, the authors successfully identified lethal gene sets up to an order of four in E. coli,
S.Typhimurium, and M. tuberculosis . They validated these results with an exhaustive search for first,
second, and third order lethal gene sets. The authors reported an “exact match” between the number of
lethal sets identified in the exhaustive search and those identified by Fast-SL. The authors also compared
Fast-SL to another algorithm, SL Finder, which is also intended to reduce the computational intensity of
identifying synthetic lethal gene sets. Fast-SL identified 127 novel triplets in E. coli which were not found
by SL Finder. These novel triplets were predominantly involved in central carbon metabolism and amino
acid synthesis.

Level 5: Quantitative Models

INTEGRATE 43

INTEGRATE is a computational pipeline that integrates metabolomics and transcriptomics data to char-
acterize multi-level metabolic regulation. The pipeline first computes differential reaction expression from
transcriptomic data and uses constraint-based modeling to predict if the differential expression of metabolic
enzymes directly originates differences in metabolic fluxes. In parallel, the pipeline uses metabolomics to
predict how differences in substrate availability translate into differences in metabolic fluxes. It is an upscal-
ing/inference algorithm.

This algorithm uses level 4 stoichiometries as constraints for flux balance analysis, RNA levels as enzyme
abundance proxies to predict metabolomic fluxes then compare it with the observed data. The prior in-
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formation is a further curated subset of RECON3D metabolomic construction called ERGO2. Once the
metabolomic and transcriptomic data is mapped to the network intermediary scores are calculated for Fea-
sible Flux Distributions (based on static analysis), Reaction Activity Scores (based on RNA levels) and
Reaction Propensity Score (based on substrate levels). Agreement between these metrics, calculated by
Variation Concordance Analysis is the final output and can be used for both explanation/extraction and
upscaling.

The pipeline was applied to a set of immortalized normal and cancer breast cell lines. The results showed
that the pipeline was able to identify metabolic reactions that are regulated at both the metabolic and gene
expression levels. The pipeline was also able to identify metabolic reactions that are differentially regulated
in cancer cells compared to normal cells.

SUMMER 44

SUMMER (Shiny Utility for Metabolomics and Multiomics Exploratory Research) uses reaction rate poten-
tials to perform pathway enrichment analysis on metabolomic data. SUMMER uses level 4 metabolomic
networks from the KEGG database7. This is a network upscaling method from level 4 to level 5 as a first
step of quantitative modeling.

SUMMER uses reaction rate potentials to model the feedback effects between an enzyme, its substrate(s),
and its product(s). It also infers the catalytic activity of each enzyme using integrated transcriptomics or
proteomics data. The method then uses this integrated model to understand the change in reaction rate
potentials between a perturbed condition and a reference condition. The resulting ratio of the resulting
reaction rate potentials between a perturbed condition and a reference condition is then bootstrapped to
calculate a ranking score between each reaction. Using the rank scores, SUMMER identifies the “hotspot”
reactions in the network.

The authors applied SUMMER to re-analyze a metabolomic and transcriptomic dataset generated from a
mouse model of accelerated aging and dementia. They wanted to understand the pathways that were altered
by a neuroprotective compound. They found that treatment with this compound was associated with an
increase in acetyl-CoA activity and an enrichment of TCA cycle activity.

Discussion

Pathway or network analysis is often viewed as a one-size-fits-all approach that can be applied universally to
any dataset. However, as our review demonstrates, network analysis encompasses a broad range of approaches
with unique data requirements and diverse PKN sources. Any new project or program incorporating network
analysis should carefully define the task at hand, explore the available prior information sources, and consider
the integration and scalability challenges associated with each resource.

Networks and network-based methods are invaluable tools for the analysis of omics data. It is widely
recognized that the selection of prior knowledge network (PKN) can influence the outcome of analysis,
therefore selection of an appropriate PKN is key to producing reliable results. With such an enormous
suite of network resources available it can become overwhelming to select an appropriate model. To address
this challenge, we present a framework for classifying PKNs and network-based methods. This framework
characterizes PKNs in terms of their scope, mechanistic detail, and ability to inform causal predictions.
We also outline some common computational tasks to describe the aim of network-based analyses. To
contextualize the framework, we sampled a handful of published network-based methods and discussed
their PKN selection, the tasks they aim to accomplish, their approach to analysis and their real-world
applications. While this sampling is not exhaustive, it offers readers a practical glimpse into the application
of the framework.

Looking ahead, we anticipate network analysis to gain even greater prominence, shifting towards more
detailed approaches for two reasons. First, the rapid advancements in multi-modal, spatial, and single-cell
modalities have enabled the measurement of subcellular protein localization changes, post-translational mod-
ifications (PTMs), and molecular complexes at a single-cell scale using imaging modalities45.This wealth of
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information primarily resides in level 4 networks and, to a lesser extent, in level 3 networks. Effectively
harnessing these rich datasets will necessitate the utilization of more detailed PKNs. Second, recent break-
throughs in large language models46 have significantly enhanced our ability to extract knowledge from the
literature. Combining this capability with crowd-sourcing47 and human-in-the-loop systems48 holds the po-
tential to reduce curation costs by two orders of magnitude47 enabling near-complete curation of the entire
biomedical literature on biological molecular processes. The increased completeness of PKNs, along with
improved and larger datasets, will unlock extensive application areas for increasingly sophisticated network
models.
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