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Abstract

Decision-dependent (endogenous) uncertainties (DDUs), as a new type of uncertainties revealed recently, couple dispatch de-

cisions with uncertainty parameters and thus render power system dispatch more challenging. However, most previous works

handled various DDUs via stochastic programming (SP) or robust optimization (RO) in a two-stage framework, which undoubt-

edly introduces the drawbacks of SP and RO, and cannot meet the nonanticipativity requirements in power scheduling. In

this paper, we propose a multistage distributionally robust optimization (DRO) method for generation dispatch with demand

response (DR) considering the DDUs of deferrable loads and the decision-independent (exogenous) uncertainties (DIUs) of

wind power and regular loads. By analyzing the structure of decision-dependency parameters, a novel data-driven decision-

dependent ambiguity set is proposed, which provides a generic framework for formulating DDUs and DIUs simultaneously.

Then a multistage DRO model with nested max-min structure is developed to integrate the merits of DRO and nonanticipa-

tivity into generation dispatch. The proposed model is solved by tailored reformulation method and improved stochastic dual

dynamic integer programming (SDDiP). Case studies illustrate the effectiveness of the proposed approach by comparing with

the multistage SP, RO, and decision-independent DRO methods.
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Abstract: Decision-dependent (endogenous) uncertainties (DDUs), as a new type of uncertainties revealed recently, couple dis-
patch decisions with uncertainty parameters and thus render power system dispatch more challenging. However, most previous
works handled various DDUs via stochastic programming (SP) or robust optimization (RO) in a two-stage framework, which
undoubtedly introduces the drawbacks of SP and RO, and cannot meet the nonanticipativity requirements in power scheduling.
In this paper, we propose a multistage distributionally robust optimization (DRO) method for generation dispatch with demand
response (DR) considering the DDUs of deferrable loads and the decision-independent (exogenous) uncertainties (DIUs) of wind
power and regular loads. By analyzing the structure of decision-dependency parameters, a novel data-driven decision-dependent
ambiguity set is proposed, which provides a generic framework for formulating DDUs and DIUs simultaneously. Then a multi-
stage DRO model with nested max-min structure is developed to integrate the merits of DRO and nonanticipativity into generation
dispatch. The proposed model is solved by tailored reformulation method and improved stochastic dual dynamic integer program-
ming (SDDiP). Case studies illustrate the effectiveness of the proposed approach by comparing with the multistage SP, RO, and
decision-independent DRO methods.

Nomenclature

Abbreviations
SP Stochastic programming
RO Robust optimization
DRO Distributionally robust optimization
PDF Probability distribution function
DDU Decision-dependent uncertainty
DIU Decision-independent uncertainty
DR Demand response
SDDP Stochastic dual dynamic programming
SDDiP Stochastic dual dynamic integer programming
MILP Mixed integer linear programming
Indices and Sets
t, τ , T Index/set of time periods
i, G Index/set of thermal units
h,W Index/set of wind farms
m, Ds Index/set of deferrable loads
n, Dr Index/set of regular loads
l, L Index/set of transmission lines
k Index of segments in binary expansion
d, j, v, U Index/set of random variables, U = Ds ∪ Dr ∪W
Parameters
αi Generation cost coefficient of thermal unit i
β±i Upward/downward reserve cost coefficient of thermal

unit i
d±i Upward/downward regulation cost coefficient of thermal

unit i
Pu
i , P

l
i Maximum/minimum output of thermal unit i

Ru
i ,R

d
i Upward/downward ramping limits of thermal unit i

cls Penalty cost coefficient for load shedding
csm Cost coefficient for demand shifting of deferrable loadm
ccn Cost coefficient for demand curtailment of regular load n
Fl Power flow capacity of transmission l

wf
h,t Forecast output of wind farm h at time t

Ds,f
m,t Forecast demand of deferrable load m at time t

Dr,f
n,t Forecast demand of regular load n at time t

π(·)l Power transfer distribution factors
ds,um,t,τ Upper bound on the demand shifting of deferrable load

m from time t to τ
dc,un,t Upper bound on the demand curtailment of regular load

n at time t
λµd ,λcov

d Decision-dependency coefficients
Decision Variables
pi,t Pre-dispatched power of thermal unit i at time t
r±i,t Reserve capacity of thermal unit i at time t
ŵh,t Dispatched wind power of wind farm h at time t in pre-

dispatch stage
p±i,t Upward/downward regulation power of thermal unit i at

time t
wh,t Dispatched wind power of wind farm h at time t in re-

dispatch stage
dsm,t,τ Demand shifting of deferrable load m from time t to τ
dcn,t Demand curtailment of regular load n at time t
ds,lsm,t,d

r,ls
n,t Load shedding of deferrable load m and regular load n at

time t
γ,φ,ψ Dual variables corresponding to the constraints in ambi-

guity sets
z
(·),copy
t−1 Dummy variables

Random Variables
wo
h,t Actual output of wind farm h at time t

Ds
m,t Actual demand of deferrable load m at time t

Dr
n,t Actual demand of regular load n at time t
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1 Introduction

The modern power systems are undergoing the transformation
towards high renewable penetration. Nevertheless, the inherent vari-
ability and unpredictability of renewable energy and loads pose
great challenges to power systems scheduling. How to hedge against
uncertainties and increase the robustness and economic performance
of dispatch solutions have become widely studied problems for
decades.

In the existing works, three commonly used approaches to tackle
uncertainties are stochastic programming (SP) [1], [2], robust opti-
mization (RO) [3], [4], and distributionally robust optimization
(DRO) [5], [6]. Stochastic programming aims to minimize the
expected costs given representative scenarios with known probabil-
ity distribution functions (PDF), but the perfect information of PDF
is hard to obtain in practical scheduling. Robust optimization finds
the optimal solution under the worst-case scenario in the uncertainty
set. Since the worst-case scenario always occurs at the bound of
uncertainty set with low occurrence probability, the solutions of RO
may be over-conservative. To bridge the gap between SP and RO,
DRO assumes that ambiguously known PDF lies within a family
of candidate distributions, namely the ambiguity set, and the opti-
mal solution is sought for the worst-case probability distribution
within the ambiguity set. Since the DRO method neither requires
the full knowledge of PDF nor pessimistically seeks solutions under
the worst-case scenario, a satisfactory trade-off between robustness
and economics is obtained.

Although SP, RO and DRO have been applied to power system
scheduling, most of existing works adopted two-stage frameworks.
Specifically, the day-ahead scheduling determines unit commitment,
generation strategy or economic dispatch based on the forecast
renewable output and loads. And the intra-day re-dispatch uti-
lizes flexible resources to hedge against any uncertainties, where
the uncertainty realizations at all time periods are assumed to be
observed simultaneously. However, in practice, the uncertainty at
each time period is observed sequentially and the dispatch deci-
sions are made period-by-period based on the revealed uncertainties.
Such time logic and causality are called nonanticipativity [7]. In this
regard, the two-stage method does not respect the fact of sequential
decision-making in power scheduling.

To solve this issue, multistage scheduling is proposed recently,
where the current decision relies only on the uncertainties up to
now instead of future information. Thus, the multistage approach
can effectively meet the nonanticipativity requirements in power
scheduling. Reference [8] proposed a multistage stochastic energy
and reserve dispatch model based on stochastic dual dynamic pro-
gramming (SDDP). In [9], a multistage SP with stochastic dual
dynamic integer programming (SDDiP) was proposed for multi-
period active distribution network planning. For RO-based method,
reference [10] proposed a multistage robust network-constrained
unit commitment model with non-fixed recourse. In [11], a multi-
stage robust scheduling model is proposed for regional power grids
considering uncertain sequential outages and renewable-load power.
A multistage robust resilient scheduling model with binary recourses
is developed in [12] for regional power grids considering sequen-
tial realizations of uncertainties under tropical cyclone. Besides,
reference [13] developed a multistage DRO model for multiperiod
economic dispatch with virtual energy storage.

In the above literature, the involved uncertainties are exoge-
nous, i.e., the uncertainty parameters are predetermined and fixed
before the decision process. However, recent studies have revealed
another important type of uncertainty in power systems, referring to
endogenous uncertainty, also called decision-dependent uncertainty
(DDU). DDUs indicate that the dispatch decisions will affect the
property of uncertainties, including the timing when the uncertain-
ties are resolved (type-1) [14], or the distribution characteristics of
random variables (type-2) [15]. DDUs have got increasing atten-
tion in power systems in recent years. Reference [15] proposed a
stochastic wind farm expansion planning model where the decision-
dependency between wind power output prediction errors and wind
farm size caused by spatial smoothing effect is considered. In [16],

the impact of enhancement measures on the failure probability of
transmission lines is formulated, and a two-stage SP model was
developed for transmission defense hardening problem. Reference
[17] formulated the dependency between operation decisions and
device reliability parameters, with which a two-stage stochastic unit
commitment model is established to quantify the power system oper-
ational reliability. In [18], a robust scheduling model of virtual power
plant is proposed under the DDUs of real-time reserve deployment
requests and the decision-independent uncertainties (DIUs) of mar-
ket clearing prices and wind power. In [19], strategic day-ahead
renewable power curtailment is considered in robust generation dis-
patch, which affects the variation range of real-time wind power
output and thus forms a decision-dependent uncertainty set. Refer-
ence [20] developed a multistage robust dispatch model to cope with
the DDUs of deferrable loads.

The aforementioned works have significantly contributed to the
research on the DDUs in power systems. However, all of them almost
adopted SP or RO methods in a two-stage framework. Reference
[20] used a multistage dispatch method but it still belongs to the cat-
egory of RO. In this case, the mentioned drawbacks of SP, RO and
two-stage scheduling might be inherently introduced into dispatch
decisions. To fully integrate robustness, economics and nonanticipa-
tivity into power systems, it is necessary to develop a DRO-based
multistage scheduling method for handling both DDUs and DIUs.
However, the research that addresses DDUs and DIUs in power sys-
tems via a multistage DRO approach is limited. In [21], a multistage
distributionally robust model with three types decision-dependent
ambiguity sets was proposed. Nevertheless, only DDUs are con-
sidered in the ambiguity sets, which cannot be directly applied to
the case where both DDUs and DIUs need to be modeled by the
covariance matrix in ambiguity sets.

To fill the research gap, this paper proposes a multistage distri-
butionally robust generation dispatch model with demand response
(DR) considering the DDUs of deferrable loads and the DIUs of
wind power and regular loads. The contributions of this paper are
summarized as follows:

(1) By analyzing the structural characteristic of decision-
dependency parameters when DDUs and DIUs are combined, a
novel decision-dependent ambiguity set is proposed to formulate the
DDUs of deferrable loads and the DIUs of wind power and regular
loads simultaneously. Moreover, a data-driven approach is offered
based on real-world data to obtain decision-dependency parameters
in practical engineering.

(2) A multistage distributionally robust generation dispatch model
with DR is proposed considering both DDUs and DIUs, which fully
leverages the merits of DRO to enhance the robustness and economic
of dispatch solutions under DDUs and DIUs, while ensuring non-
anticipativity through the multistage scheduling process.

(3) The proposed multistage DRO model is computationally
intractable due to nested optimization structure and decision-
dependent ambiguity set. To this end, a tailored reformulation
method is developed to derive the original model into a tractable
mixed integer linear programming (MILP). Then an improved
SDDiP algorithm with introduced dummy variables to effectively
solve the model.

The rest of this paper is organized as follows. Section 2 for-
mulates the decision-dependent ambiguity set and the multistage
distributionally robust generation dispatch model. Section 3 provides
the reformulation of the multistage DRO model and the improved
SDDiP algorithm. Section 4 presents the numerical experiments.
Section 5 concludes this paper.

2 Mathematical Formulation

2.1 Problem Description and Scheduling Framework

In this paper, we consider a multistage generation dispatch prob-
lem for a power system with thermal generators, wind farms and
loads participating in DR programs. The pre-dispatch in day-ahead
determines the power output and reserve capacity of thermal units
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according to forecast wind power and loads. The re-dispatch in intra-
day is formulated as a sequential decision-making process with T
stages. At each stage, the optimal decision including up- and down-
regulation power of thermal units, dispatched wind power, demand
shifting of deferrable loads, demand curtailment of curtailable loads
and load shedding are determined based on observed uncertainties.

 0 0,Decision x y  1Observation ξ

 1 1,Decision x y

 1-Worst case 

 tObservation ξ

 ,t tDecision x y

 - ( )t tWorst case x

 TObservation ξ

 TDecision y

 1- ( )T tWorst case − x

Pre-Dispatch Re-Dispatch

Stage 1Stage 0 Stage t Stage T. . . . . . 

Fig. 1: Sequential decision-making process of the multistage DRO
model with decision-dependent ambiguity set.

The stated multistage decision-making process is shown in Fig.
1. With the pre-dispatch decisions obtained in day-ahead, the re-
dispatch decisions are determined dynamically at each stage. Specif-
ically, we make the decision {x1,y1} when the uncertainty ξ1 is
observed at stage 1. The dispatch decision x1 affects the worst-case
probability distribution ξ2 due to the decision-dependent ambiguity
set, under which the uncertainty ξ2 is observed and then the corre-
sponding decision {x2,y2} are made at stage 2. Such a dynamic
process continues until reaching stage T .

2.2 Modeling DDU and DIU via Data-Driven
Decision-Dependent Ambiguity Set

2.2.1 Constructing Decision-Dependent Ambiguity Set
In this subsection, the DDUs of deferrable loads and the DIUs

of wind power and regular loads are formulated via the data-driven
decision-dependent ambiguity set. Note that the regular loads in this
paper include the curtailable loads participating in DR and the con-
ventional loads not participating in DR. Since the two types of loads
are both belong to DIUs, they are uniformly called regular loads for
the sake of notion simplicity. The conventional loads can be distin-
guished with the curtailable loads by setting the parameter dc,un,t in
equation (6e) to be 0.

Baseline load level without demand shifting

Actual load level under shifting decision I

Actual load level under shifting decision II

Fig. 2: Illustration of decision-dependent distribution parameters of
deferrable load uncertainties.

The DDUs of deferrable loads are essentially caused by the accu-
mulation of demand shifting decisions at previous stages [20]. For
a real-time DR program in re-dispatch, the demands at current time
will be shifted to the future time. We denote the original baseline
level of deferrable load m at time t without demand shifting as
D̂s

m,t. With the transferred demands at previous time periods, the
actual load level at current time t is stated as

Ds
m,t = D̂s

m,t +

t−1∑
τ=1

dsm,τ,t, ∀m ∈ Ds (1)

Based on equation (1), the uncertain deferrable loads will fluctu-
ate up and down around the actual load level Ds

m,t. Thus, the uncer-
tainty parameters of deferrable loads are affected by the demand
shifting decisions at the previous stages. Fig. 2 intuitively illustrates
the decision-dependent distribution information of deferrable loads
under different demand shifting decisions.

In addition to the DDUs of deferrable loads, another impor-
tant uncertainties in power systems are wind power and regular
loads, which belong to DIUs. To enhance the robustness of power
systems under DDUs and DIUs, it is necessary to develop an ambi-
guity set that contains both types of uncertainties. To this end, a
moment-based decision-dependent ambiguity set is proposed in this
section, which can formulate the DDUs of deferrable loads and
the DIUs of wind power and regular loads simultaneously. The
decision-dependent ambiguity set is written as follows

Pt
(
ds[t−1],t

)
=

P

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr (ξt ∈ Ωt) = 1

EP (ξt) = µ
(
ds[t−1],t

)
EP

[(
ξt − µ

(
ds[t−1],t

))(
ξt − µ

(
ds[t−1],t

))T ]
= Σ

(
ds[t−1],t

)
(2)

where ξt =
{
Ds

m,t, w
o
h,t, D

r
n,t

}
represents random variables

including deferrable loads Ds
m,t, wind power wo

h,t and regular
loads Dr

n,t. d
s
[t−1],t =

{
ds1,t,d

s
2,t, ...,d

s
t−1,t

}
denotes transferred

demands from previous time 1, . . . , t− 1 to current time t, where
dsτ,t =

{
ds1,τ,t, ..., d

s
m,τ,t

}
.

The second and third lines of (2) couples the demand shifting
decisions dsd,τ,t with the mean vector µ

(
ds[t−1],t

)
and covariance

matrix Σ
(
ds[t−1],t

)
, which are formulated as follows


µd

(
ds[t−1],t

)
= µ̂d

(
1 +

t−1∑
τ=1

λµdd
s
d,τ,t

)
,∀d ∈ Ds

µj

(
ds[t−1],t

)
= µ̂j , ∀j ∈ Dr ∪W

(3a)

Σ
(
ds[t−1],t

)
= Σ̂ +

∑
d∈Ds

t−1∑
τ=1

λcov
d dsd,τ,t (3b)

where µ̂d and Σ̂ are the mean and covariance matrix calculated by
using the data of wind power, regular load and baseline deferrable
loads. The baseline loads refer to the deferrable loads without any
demand shifting, which can be estimated by the methods in exiting
literature [22], [23]. λµd is decision-dependency coefficient that mea-
sures the impact of demand shifting decision of deferrable load d on
its mean µd, reflecting DDU. λµj is 0 when j represents wind farms
or regular loads, reflecting DIU. λcov

d is the decision-dependency
coefficient matrix. Since both DDUs and DIUs are considered in
Σ
(
ds[t−1],t

)
but only the part that is related to DDUs will be

affected by demand shifting decisions, an analysis on the structure
of λcov

d should be conducted. We use the following example to
illustrate that.

Example 1. Suppose there are two deferrable loads, one wind
farm and one regular load. The random variable vector is stated as
ξ = (Ds

1, D
s
2, w

o
1, D

r
1)

T . Based on the calculation way of covari-
ance matrix Σ

(
ds[t−1],t

)
shown in (2), we can see that the demand

shifting decision dsd,τ,t only affects the rows and columns related to

deferrable load in covariance matrix Σ
(
ds[t−1],t

)
. In this exam-

ple, since the random variables of deferrable load (Ds
1, D

s
2) are

the first two elements of ξ, only the first and second row/column
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of Σ
(
ds[t−1],t

)
will be affected by demand shifting decisions. Thus,

the coefficient matrix λcov
d in (3b) has the following structure in this

example

λcov
1 =


λcov1,11 λcov1,12 λcov1,13 λcov1,14
λcov1,21 0 0 0
λcov1,31 0 0 0
λcov1,41 0 0 0



λcov
2 =


0 λcov2,12 0 0

λcov2,21 λcov2,22 λcov2,23 λcov2,24
0 λcov2,32 0 0
0 λcov2,42 0 0


(3c)

In Example 1, only the dth row and dth column of λcov
d are non-

zero. This structural characteristic of λcov
d is consistent with the

fact that the demand shifting decisions will only affect the uncer-
tainties of deferrable loads, while the uncertainties of wind power
and regular loads are independent to the demand shifting decisions.
Thus, such special structure of λcov

d can provide a generic frame-
work to formulate DDUs and DIUs simultaneously in the ambiguity
set while allowing us to distinguish them.

From this perspective, we can see the difference between our
ambiguity set and the decision-dependent ambiguity set in [21].
Specifically, the ambiguity set in [21] only considers the DDUs and
each elements of covariance matrix will be affected by decisions.
Thus, the decision-dependency coefficient λcovd in [21] is a con-
stant. However, the situation becomes different in our study when
DDUs and DIUs are combined. Since only part of Σ

(
ds[t−1],t

)
is

affected by dispatch decisions, the decision-dependency coefficient
λcov
d becomes a matrix with the special structure in (3c).

2.2.2 Data-Driven Method for Obtaining Decision-Dependent
Coefficients

The values of λµd and λcov
d are the most important in the decision-

dependent ambiguity sets since they directly determine how the
dispatch decisions affects the values of mean vector µ

(
ds[t−1],t

)
and covariance matrix Σ

(
ds[t−1],t

)
. In this subsection, a data-

driven approach is provided based on real-world data to obtain the
two parameters. Assuming there are N historical data samples, each
sample a = 1, ..., N contains the data of demand shifting dsd,τ,t,a
and uncertainty realization ξa. Since λµd and λcov

d in (3a)-(3b) can

be obtained once µ̂d, µd, Σ̂d, Σd and
t−1∑
τ=1

dsd,τ,t are known, the

following steps are offered to calculate λµd and λcov
d .

First, it should be noted that there are many different values of
t−1∑
τ=1

dsd,τ,t,a in sample data, but only one certain value is used in (3a)

to calculate λµd . To this end, the DBSCAN clustering method [24]
with given radius and number of minimal points is adopted to divide

the N samples into M clusters based on the value of
t−1∑
τ=1

dsd,τ,t,a.

Then the K-means clustering method is applied to find the cen-

ter point
t−1∑
τ=1

ds,cend,τ,t,b in each cluster b = 1, ...,M , which will be

regarded as the value of
t−1∑
τ=1

dsd,τ,t in cluster b. With that, each clus-

ter has a certain number of samples and a unique value of
t−1∑
τ=1

dsd,τ,t

(equal to
t−1∑
τ=1

ds,cend,τ,t,b). Then the four parameters µ̂d,b, µd,b, Σ̂d,b,

Σd,b and the value of λµd,b can be calculated by using the sample
data in cluster b. With these, the value of λµd is calculated by the

weighted average as

λud =

M∑
b=1

Nb

N
λud,b (3d)

where Nb is the number of samples in cluster b.
Similarly, the diagonal elements and a part of non-diagonal ele-

ments in λcov
d can be calculated by the same way of calculating λµd .

While for the rest part of non-diagonal elements (in Example 1, they
are λcov1,12, λcov1,21,λcov2,12, λcov2,21), we take Example 1 for explanation.
Specifically, the value of the element in first row and second column
of λcov

d in cluster b can be calculated by

(Σ)12,b =
(
Σ̂
)
12,b

+

t−1∑
τ=1

λcov1,12,bd
s
1,τ,t,b +

t−1∑
τ=1

λcov2,12,bd
s
2,τ,t,b

(3e)
where (Σ)12,b and

(
Σ̂
)
12,b

represents the element in first row and

second column of the two matrices.
Note that the equation (3e) has two unknowns λcov1,12,b and λcov2,12,b,

and thus the equation cannot be directly solved if only one cluster is
used. To this end, we adopt DBSCAN and K-means clusting meth-
ods again to divide the cluster b into several sub-clusters and find
the center points of these sub-clusters. The number of sub-clusters
is equal to the number of deferrable loads. In Example 1, we divide
cluster b into two sub-cluster as csubb,1 and csubb,2 . The two sub-clusters
are assumed to have the same values of λcov1,12,b and λcov2,12,b. Then
the equation (3e) becomes



(Σ)12,bsub
a,1

=
(
Σ̂
)
12,bsub

a,1

+

t−1∑
τ=1

λcov1,12,ad
s
1,τ,t,bsub

a,1

+

t−1∑
τ=1

λcov2,12,ad
s
2,τ,t,bsub

a,1

(Σ)12,bsub
a,2

=
(
Σ̂
)
12,bsub

a,2

+

t−1∑
τ=1

λcov1,12,ad
s
1,τ,t,bsub

a,2

+

t−1∑
τ=1

λcov2,12,ad
s
2,τ,t,bsub

a,2

(3f)

Equation (3f) contains two equations and two unknowns. By solv-
ing it, we can obtain the values of λcov1,12,b and λcov2,12,b in cluster
b. Other non-diagonal elements λcov1,21,b and λcov2,21,b are calculated
by the same way. After iterating through all clusters, the values of
these non-diagonal elements in λcov

d can be calculated by weighted
average like (3d).

2.3 Multistage Distributionally Robust Generation Dispatch
Model with Decision-Dependent Ambiguity Set

The proposed multistage distributionally robust generation dispatch
model sequentially makes decisions considering the worst-case
probability distribution lying in the decision-dependent ambiguity
set. Considering the dynamic decision-making process stated in
Fig. 1, the proposed multistage DRO model is written in a nested
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optimization structure as follows

min
(x0,y0)∈X0

{
f (x0,y0) + max

P1∈P1

EP1

[
min

(x1,y1)∈X1(x0,ξ1)
g1 (x1,y1)

+ max
P2∈P2(x[1])

EP2

[
min

(x2,y2)∈X2(x0,x1,ξ2)
g2 (x2,y2) + · · ·

+ max
Pt∈Pt(x[t−1])

EPt

[
min

(xt,yt)∈Xt(x0,x[t−1],ξt)
gt (xt,yt) + · · ·

+ max
PT∈PT (x[T−1])

EPT
min

yT∈XT (x0,x[T−1],ξT )
gT (yT )

]]]}
(4a)

where
x0 =

{
pi,t, r

±
i,t

}
,y0 =

{
ŵh,t

}
xt =

{
dsm,t,τ , ∀t ∈ T /{T} ,∀τ = t+ 1, ..., T

}
yt =

{
p±i,t, wh,t, d

c
n,t, d

s,ls
m,t, d

r,ls
n,t

} (4b)

f (x0,y0) =
∑
t∈T

∑
i∈G

(
αipi,t + β+i r

+
i,t + β−i r

−
i,t

)
(4c)

gt (xt,yt) =∑
t∈T

∑
i∈G

(
d+i p

+
i,t + d−i p

−
i,t

)
+
∑
t∈T

∑
n∈Dr

(
clsdr,lsn,t + ccnd

c
n,t

)

+
∑
t∈T

∑
m∈Ds

clsds,lsm,t +

T∑
τ=t+1

csmd
s
m,t,τ


(4d)

Equation (4a) presents the nested objective function of the mul-
tistage DRO model where the probability distribution of random
variables is dependent to the previous stages’ dispatch decisions. In
(4b), x0 and xt denote state variables connecting different stages,
y0 and yt are stage variables which only appear at the correspond-
ing stages. The pre-dispatch stage minimizes generation and reserve
cost of thermal generators (4c), and re-dispatch stage minimizes the
sum of up- and down-regulation cost, demand shifting cost, demand
curtailment cost, and load shedding penalty cost (4d).

The feasible region of pre-dispatch variables and re-dispatch
variables are given by

X0 = { (x0,y0)|

∑
i∈G

pi,t +
∑
h∈W

ŵh,t =
∑

m∈Ds

Ds,f
m,t +

∑
n∈Dr

Dr,f
n,t , ∀t ∈ T

(5a)

− Fl ≤
∑
i∈G

πilpi,t +
∑
h∈W

πhlŵh,t −
∑

m∈Ds

πmlD
s,f
m,t

−
∑

n∈Dr

πnlD
r,f
n,t ≤ Fl, ∀l ∈ L, ∀t ∈ T

(5b)

−Rd
i ≤

(
pi,t + r+i,t

)
−
(
pi,t−1 − r−i,t−1

)
≤ Ru

i ,∀i ∈ G, ∀t ∈ T
(5c)

−Rd
i ≤

(
pi,t − r−i,t

)
−
(
pi,t−1 + r+i,t−1

)
≤ Ru

i ,∀i ∈ G, ∀t ∈ T
(5d)

0 ≤ r−i,t ≤ R
d
i , 0 ≤ r

+
i,t ≤ R

u
i , ∀i ∈ G, ∀t ∈ T (5e)

P l
i ≤ pi,t − r

−
i,t, pi,t + r+i,t ≤ P

u
i , ∀i ∈ G, ∀t ∈ T (5f)

0 ≤ ŵh,t ≤ w
f
h,t, ∀h ∈ W, ∀t ∈ T

}
(5g)

and

Xt = { (xt,yt)|

0 ≤ p−i,t ≤ r
−
i,t, 0 ≤ p

+
i,t ≤ r

+
i,t, ∀i ∈ G, ∀t ∈ T (6a)

∑
i∈G

(
pi,t + p+i,t − p

−
i,t

)
+
∑
h∈W

wh,t

=
∑

m∈Ds

Ds
m,t − ds,lsm,t −

T∑
τ=t+1

dsm,t,τ


+
∑

n∈Dr

(
Dr

n,t − dr,lsm,t − d
c
m,t

)
, ∀t ∈ T

(6b)

− Fl ≤
∑
i∈G

πil

(
pi,t + p+i,t − p

−
i,t

)
+
∑
h∈W

πhlwh,t

−
∑

m∈Ds

πml

Ds
m,t − ds,lsm,t −

T∑
τ=t+1

dsm,t,τ


−
∑

n∈Dr

πnl

(
Dr

n,t − dr,lsm,t − d
c
m,t

)
≤ Fl,∀l ∈ L,∀t ∈ T

(6c)

0 ≤ ds,lsm,t + dsm,t,τ ≤ Ds
m,t, ∀m ∈ Ds, ∀t ∈ T

0 ≤ dsm,t,τ ≤ ds,um,t,τ ,∀m ∈ Ds,∀t ∈ T /{T}, ∀τ = t+ 1, ..., T

(6d)

0 ≤ dr,lsn,t + dcn,t ≤ Dr
n,t

0 ≤ dcn,t ≤ dc,un,t

, ∀n ∈ Dr, ∀t ∈ T (6e)

0 ≤ wh,t ≤ wo
h,t, ∀h ∈ W, ∀t ∈ T

}
(6f)

Constraints (5a) and (5b) state the power balance equation and
power flow limits. The ramping restrictions of generators when
offering the reserve capacities are given in (5c) and (5d). Con-
straints (5e) and (5f) limit the reserve capacities and the upper
and lower bounds of generator output considering reserve require-
ments, respectively. Constraint (5g) restricts the scheduled wind
power based on the forecast output. Load shedding is not allowed
in pre-dispatch stage.

Constraint (6a) restricts the up- and down-regulation power of
generators within reserve capacities. Power balance and power flow
limits are stated in (6b) and (6c). Constraint (6d) and (6e) present
the upper bounds of demand shifting, demand curtailment and
load shedding. Constraint (6f) allows wind power curtailment in
re-dispatch stage.
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3 Solution Methodology

The proposed multistage DRO model is difficult to solve due to the
nested optimization structure and decision-dependent ambiguity set.
In this section, the original model is first reformulated into a tractable
form, then an improved SDDiP algorithm is developed to handle the
model.

3.1 Model Reformulation

The proposed multistage DRO model can be written in a dynamic
programming form. The equivalent recursion of objective function
(4a) is written as the following Bellman equation.

For the pre-dispatch stage, one has

Q0 = min

{
f (x0,y0) + max

P1∈P1

EP1
[Q1 (x0, ξ1)]

}
s.t. x0,y0 ∈ X0

(7a)

where the ambiguity set P1 is decision-independent since there is no
demand shifting decision in the pre-dispatch stage.

For the re-dispatch stages, one has

Qt

(
x0,x[t−1], ξt

)
=

min


gt (xt,yt)+

max
Pt+1∈Pt+1(x[t])

EPt+1

[
Qt+1

(
x0,x[t], ξt+1

)]
s.t. xt,yt ∈ Xt

(
x0,x[t−1], ξt

)
(7b)

where we set Qt+1

(
x0,x[t], ξt+1

)
≡ 0

The continuous probability distribution in the ambiguity set is dis-
cretized byNt+1 realizations. Then the inner maximization problem
of Bellman equations is stated as follows

max
pr∈Pt+1(x[t])

Nt+1∑
r=1

prQr,t+1

(
x0,x[t], ξr,t+1

)
(8a)

s.t. Pt+1

(
x[t]

)
=

pr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Nt+1∑
r=1

pr = 1 : γ

Nt+1∑
r=1

prξr,t+1 = µ
(
x[t]

)
: φ

Nt+1∑
r=1

pr

[(
ξr,t+1 − µ

(
x[t]

))(
ξr,t+1 − µ

(
x[t]

))T
]

= Σ
(
x[t]

)
: ψ

(8b)

By dualizing the problem (8) and combining it with the outer mini-
mization problem of (7), the pre-dispatch and re-dispatch problems
are recast as

Q0 = min f (x0,y0) + γ +φTµ̂+
〈
Σ̂,ψ

〉
F

s.t. x0,y0 ∈ X0

γ +φTξr,1 +
〈(
ξr,1 − µ̂

) (
ξr,1 − µ̂

)T
,ψ
〉

F

≥ Qr,1, ∀r ∈ [N1]

(9a)

Qt = min gt (xt,yt) + γ +φTµ
(
x[t]

)
+
〈
Σ
(
x[t]

)
,ψ
〉

F

s.t. xt,yt ∈ Xt
(
x0,x[t−1], ξt

)
γ +φTξr,t+1

+

〈[(
ξr,t+1 − µ

(
x[t]

))(
ξr,t+1 − µ

(
x[t]

))T
]
,ψ

〉
F

≥ Qr,t+1,∀r ∈ [Nt+1]
(9b)

where ⟨A,B⟩F denotes the Frobenius inner product of matrixA and
B.

Problems (9a)-(9b) eliminate the variable pr while retains the
decision-dependent probability distribution information via dual
variables. However, the following bilinear terms and trilinear terms
occur in the objective function and constraints when substitute (3)
into (9b)

φTµ
(
x[t]

)
=

∑
j∈Dr∪W

µ̂jφj +
∑
d∈Ds

µ̂dφd

(
1 +

t∑
τ=1

λµdd
s
d,τ,t+1

)
(10a)〈

Σ
(
x[t]

)
,ψ
〉

F
=
〈
Σ̂,ψ

〉
F
+
∑
d∈Ds

t∑
τ=1

dsd,τ,t+1

〈
λcov
d ,ψ

〉
F

(10b)〈
ξr,t+1µ

(
x[t]

)T
,ψ

〉
F
=
∑
v∈U

∑
v′∈U

ξv,r,t+1µ̂v′ψv,v′

+
∑
v∈U

∑
d∈Ds

(
ξv,r,t+1µ̂dψv,d

t∑
τ=1

λµdd
s
d,τ,t+1

)
(10c)〈

µ
(
x[t]

)
µ
(
x[t]

)T
,ψ

〉
F
=
∑
v∈U

∑
v′∈U

µ̂vµ̂v′ψv,v′

+
∑
d∈Ds

∑
v∈U

(
µ̂dµ̂vψd,v

t∑
τ=1

λµdd
s
d,τ,t+1

)

+
∑
v∈U

∑
d∈Ds

(
µ̂vµ̂dψv,d

t∑
τ=1

λµdd
s
d,τ,t+1

)

+
∑
d∈Ds

∑
d′∈Ds

(
µ̂dµ̂d′ψd,d′

t∑
τ=1

λµdd
s
d,τ,t+1

t∑
τ ′=1

λµd′d
s
d′,τ ′,t+1

)
(10d)

These bilinear and trilinear terms are the multiplication of two and
three continuous variables. The basic idea of linearization is to
employ binary expansion to discretize state variables x0 and xt.
After that, the bilinear and trilinear terms contain one or two binary
variables and only one continuous variable, which can be further
transformed into linear terms by using McCormick envelopes. The
binary expansion is stated as follows

pit = P l
i +∆pi

K0∑
k=0

2kzpk,i,t, where ∆pi =
Pu
i − P

l
i

2K0
(11a)

r
+/−
it = ∆r

+/−
i

K0∑
k=0

2kz
ru/rd
k,i,t , where ∆r

+/−
i =

Ru/d
i

2K0
(11b)

dsd,t,τ = ∆dd,t,τ

K∑
k=0

2kzdk,d,t,τ , where ∆dd,t,τ =
ds,ud,t,τ

2K
(11c)
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γ +φTξr,t+1 +
〈
ξr,t+1ξ

T
r,t+1,ψ

〉
F
−
∑
v∈U

∑
v′∈U

ξv,r,t+1µ̂v′
(
ψv,v′ + ψv′,v

)

−
∑
d∈Ds

∑
v∈U

t∑
τ=1

K∑
k=0

2k∆dd,τ,t+1µ̂dξv,r,t+1λ
µ
d

(
δk,d,v,τ,t+1 + δ′k,v,d,τ,t+1

)

+
∑
v∈U

∑
v′∈U

µ̂vµ̂v′ψv,v′ +
∑
d∈Ds

∑
v∈U

t∑
τ=1

K∑
k=0

2k∆dd,τ,t+1µ̂dµ̂vλ
µ
d

(
δk,d,v,τ,t+1 + δ′k,v,d,τ,t+1

)

+
∑
d∈Ds

∑
d′∈Ds

t∑
τ=1

t∑
τ ′=1

K∑
k=0

K∑
k′=0

(
2k+k′

∆dd,τ,t+1∆dd′,τ ′,t+1µ̂dµ̂d′λµdλ
µ
d′ϖk,k′,d,d′,τ,τ ′,t+1

)
≥ Qr,t+1, ∀r ∈ [Nt+1]

(13d)

Then the bilinear and trilinear terms are represented as (12) by using
McCormick envelopesM

σk,d,τ,t+1 ∈M
(
φdz

d
k,d,τ,t+1

)
εk,d,v,v′,τ,t+1 ∈M

(
ψv,v′zdk,d,τ,t+1

)
δk,d,v,τ,t+1 ∈M

(
ψd,vz

d
k,d,τ,t+1

)
δ′k,v,d,τ,t+1 ∈M

(
ψv,dz

d
k,d,τ,t+1

)
ϖk,k′,d,d′,τ,τ ′,t+1 ∈M

(
ψd,d′zdk,d,τ,t+1z

d
k′,d′,τ ′,t+1

)
(12)

With (11a)-(11c) and (12), the Bellman equations are finally refor-
mulated as (13a)-(13d)

Qt = min gt (xt,yt) + γ +
∑
v∈U

µ̂vλv +
∑
v∈U

∑
v′∈U

Σ̂v,v′ψv,v′

+
∑
d∈Ds

t∑
τ=1

K∑
k=0

2k∆dd,τ,t+1µ̂dλ
µ
dσk,d,τ,t+1

+
∑
d∈Ds

∑
v∈U

∑
v′∈U

t∑
τ=1

K∑
k=0

2k∆dd,τ,t+1λ
cov
d,v,v′εk,d,v,v′,τ,t+1

(13a)

s.t. (11a)-(11c), (12) (13b)

xt,yt ∈ Xt
(
x0,x[t−1], ξt

)
(13c)

3.2 Improved SDDiP Algorithm

The standard SDDiP algorithm requires that the stage variables only
connect consecutive two stages [25]. That is, the Bellman equation at
stage t depends only on the stage variables at stage t− 1. However,
the proposed model at stage t depends on not only the pre-dispatch
variables x0, but also the demand shifting decisions x[t−1] at re-
dispatch stages 1, . . . , t− 1. Thus, the standard SDDiP cannot be
employed directly to handle the multistage DRO model with cross-
time state variables. In this section, we improved standard SDDiP by
introducing dummy variables into Bellman equations. The dummy
variables copy the stage variables that are not used at previous stages,
which will be passed to the subsequent stages until the stage vari-
ables are utilized. In other words, the dummy variables make the
unused stage variables at stages 1, . . . , t− 2 become the variables at
stage t− 1 by copying and passing them. In this way, the Bellman
equation at stage t depends only on the stage variables at stage t− 1,
which enables SDDiP to be employed.

Specifically, the re-dispatch problem with dummy variables for
stage 1 is formulated as

Q1 = min g1 (x1,y1) + γ +φTµ (x1) + ⟨Σ(x1) ,ψ⟩F
s.t. (11a)− (11c), (12), (13d)

x1,y1 ∈ X1
(
zg0 , ξ1

)
zg,copy1 =M1z

g
0

(14a)

where zg0 =
{
zpk,i,t, z

ru
k,i,t, z

rd
k,i,t

}
denotes the binary pre-dispatch

state variables in (11). M1 is the coefficient matrix that selects
certain variables of zg0 . zg,copy1 denotes the dummy stage vari-
ables that copy the pre-dispatch stage variables for stages 2, . . . , T .
That means only

{
zpk,i,1, z

ru
k,i,1, z

rd
k,i,1

}
are utilized in problem Q1,

while
{
zpk,i,t, z

ru
k,i,t, z

rd
k,i,t,∀t = 2, ..., T

}
are copied by zg,copy1

and passed to subsequent stages.
Similarly, the re-dispatch problems with dummy variables for

stage t = 2, ..., T − 1 and T are formulated as

Qt = min gt (xt,yt) + γ +φTµ
(
zd,copyt−1 ,zdt−1,xt

)
+
〈
Σ
(
zd,copyt−1 ,zdt−1,xt

)
,ψ
〉

F

s.t. (11a)− (11c), (12), (13d)

xt,yt ∈ Xt
(
zg,copyt−1 ,zd,copyt−1 ,zdt−1, ξt

)
zg,copyt =Mtz

g,copy
t−1

zd,copyt =

[
Gtz

d
t−1

Ltz
d,copy
t−1

]
(14b)

QT = min gT (yT )

s.t. (11a)− (11c)

yT ∈ XT
(
zg,copyT−1 ,zd,copyT−1 , ξT

) (14c)

where zdt =
{
zdk,d,t,τ , ∀τ = t+ 1, ..., T

}
denotes the binary

demand shifting variables at stage t. Since the problem Qt is
only affected by

{
zdk,d,τ,t, ∀τ = 1, ..., t− 1

}
, the unused variables{

zdk,d,τ1,τ2 ,∀τ1 = 1, ..., t− 1,∀τ2 = t+ 2, ..., T
}

are copied by

the dummy variable zd,copyt . Gt and Lt are coefficient matri-
ces. Gtz

d
t−1 =

{
zdk,d,t−1,τ , ∀τ = t+ 2, ..., T

}
and Ltz

d,copy
t−1 ={

zd,copyk,d,t−1,τ ,∀τ = t+ 2, ..., T
}

selects the unused part of variables

zdt−1 and zd,copyt−1 , respectively. Note that zd,copy1 does not exist in
Q1, thus the variable zd,copy2 in Q2 is expressed as Gtz

d
1 .

After replacing cross-time stage variables zg0 and zd[t−2] in

(13) with dummy variables zg,copyt−1 and zd,copyt−1 , the problem Qt
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depends only on the variables at stage t− 1. Thus, SDDiP can be
deployed with the following forward and backward steps.

(1) Forward Step
The forward step is to obtain the optimal solution under the

given uncertainty path, where the value function Qr,t+1 in (13d)
is replaced by its under-approximation cutting planes Vℓr,t. For the
problem Q0 and Qt, the cutting planes are

Vℓr,0 ≥ ϑℓr,1 + (ρg,ℓr,1)
T
zg0 , ∀ℓ ∈ [I − 1] (15a)

Vℓr,t ≥



ϑℓr,t+1 + (ρg,ℓ,copyr,t+1 )
T
zg,copyt + (ρd,ℓr,t+1)

T
zdt , if t = 1

ϑℓr,t+1 + (ρg,ℓ,copyr,t+1 )
T
zg,copyt + (ρd,ℓr,t+1)

T
zdt

+ (ρd,ℓ,copyr,t+1 )
T
zd,copyt , if t = 2, ..., T − 2

ϑℓr,t+1 + (ρg,ℓ,copyr,t+1 )
T
zg,copyt , if t = T − 1

∀ℓ ∈ [I − 1]
(15b)

where I is the current iteration counter. ϑℓr,t, ρ
g,ℓ,copy
r,t , ρd,ℓr,t and

ρd,ℓ,copyr,t are cut coefficients obtained by solving the Lagrangian
dual problems of (16) in the backward step.

(2) Backward Step
In the backward step, by adding redundant variables sg,copyt , sdt ,

sd,copyt and redundant constraints into (14), we obtain

Qt = min gt (xt,yt) + γ +φTµ
(
sd,copyt , sdt ,xt

)
+
〈
Σ
(
sd,copyt , sdt ,xt

)
,ψ
〉

F

s.t. (11a)− (11c), (12), (13d), (15)

xt,yt ∈ Xt
(
sg,copyt , sd,copyt , sdt , ξt

)
zg,copyt =Mts

g,copy
t

zd,copyt =

[
Gts

d
t

Lts
d,copy
t

]
sg,copyt = zg,copyt−1 : ρg,copyI,r,t

sdt = zdt−1 : ρdI,r,t

sd,copyt = zd,copyt−1 : ρd,copyI,r,t

0 ≤ sg,copyt , sdt , s
d,copy
t ≤ 1

(16)

By relaxing redundant constraints, the Lagrangian dual problem of
(16) is formulated as

Lt =

max
ρg,copy
I,r,t ,ρd

I,r,t,ρ
d,copy
I,r,t

min gt (xt,yt) + γ +φTµ
(
sd,copyt , sdt ,xt

)
+
〈
Σ
(
sd,copyt , sdt ,xt

)
,ψ
〉

F
−
(
ρd,copyI,r,t

)T (
sd,copyt − zd,copyt−1

)
−
(
ρdI,r,t

)T (
sdt − zdt−1

)
−
(
ρg,copyI,r,t

)T (
sg,copyt − zg,copyt−1

)
s.t. (11a)− (11c), (12), (13d), (15)

xt,yt ∈ Xt
(
sg,copyt , sd,copyt , sdt , ξt

)
zg,copyt =Mts

g,copy
t

zd,copyt =

[
Gts

d
t

Lts
d,copy
t

]
0 ≤ sg,copyt , sdt , s

d,copy
t ≤ 1

(17)

The outer problem of (17) is unbounded, which is generally
solved by sub-gradient method. However, the sub-gradient method
is time-consuming since it requires numerous iterations to obtain the
optimal Lagrange multipliers. Thus, we replace Lagrangian cut by
strengthened Benders cut [25]. The dual multipliers ρg,copyI,r,t , ρdI,r,t,

ρd,copyI,r,t in strengthened Benders cut are equal to the ones in Benders
cut, which are calculated by solving the dual problem of (16) where
all the binary variables are relaxed into continuous ones. Then cut
coefficient ϑI,r,t is computed as (18) by solving the inner problem
of (17) with obtained multipliers ρg,copyI,r,t , ρdI,r,t, ρ

d,copy
I,r,t .

ϑI,r,t = gt (xt,yt) + γ +φTµ
(
sd,copyt , sdt ,xt

)
+
〈
Σ
(
sd,copyt , sdt ,xt

)
,ψ
〉

F
−
(
ρdI,r,t

)T
sdt

−
(
ρg,copyI,r,t

)T
sg,copyt −

(
ρd,copyI,r,t

)T
sd,copyt

(18)

Based on the forward and backward steps with dummy variables,
the cross-time stage variables and corresponding cutting planes can
be passed stage by stage as Fig. 3 shows.
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Fig. 3: Passed state variables and cutting planes via dummy vari-
ables.

The solution procedure of the improved SDDiP is shown in
Algorithm 1. The algorithm converges theoretically until the lower
bound LB reaches the statistical confidence interval of upper bound
UB. The LB is the optimal objective value of the problem Q0. The
confidence interval representing UB is[

J − zα/2
Z√
S
, J + zα/2

Z√
S

]
(19)

where zα/2 is the 1− α quantile of the standard normal distribution,
S is the number of uncertainty paths, J and Z are the mean and the
variance of UB, which are calculated by

J = f (x0,y0) +
1

S

S∑
s=1

∑
t∈T

gt (xs,t,ys,t) (20a)

Z =

√√√√√ 1

S − 1

S∑
s=1

f (x0,y0) +∑
t∈T

gt (xs,t,ys,t)− J

2
(20b)

To achieve a better optimality gap, the iteration stops when the
gap between the supremum of the confidence interval and the LB
is small enough. By implementing Algorithm 1 in day-ahead stage,
the optimal power output and reserve capacity of thermal units and
under-approximation cutting planes can be obtained. With these,
the multistage scheduling of power systems can be implemented
period-by-period. Specifically, when observing the uncertainty at
current time period, the optimal intra-day dispatch decision can be
calculated at once by solving the re-dispatch problems (14) with
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Algorithm 1: Improved SDDiP with Dummy Variables

1 Initialize: Iteration account I ← 1, LB ← 0, UB ← +∞
2 while the stopping criterion is not satisfied do
3 Sample S uncertainty paths ξs,t from the scenario tree
4 *Forward step*
5 for s = 1 : S do
6 Solve the pre-dispatch problem Q0; save the optimal

solution
{
zg0 ,y0

}
7 for t = 1 : T do
8 Solve the re-dispatch problem Qt; save the

optimal solution
{
zds,t,ys,t,z

g,copy
s,t ,zd,copys,t

}
9 end

10 end
11 Update UB by (19)-(20)
12 *Backward step*
13 for t = T : 1 do
14 for s = 1 : S do
15 for r = 1 : Nt do
16 Solve the Lagrangian dual problem (17);

collect cut coefficients and generate new
cutting planes by (15) for Qt−1

17 end
18 end
19 end
20 Solve the pre-dispatch problem Q0 and update LB
21 I ← I + 1
22 end

Qr,t+1 replaced by its under-approximation cutting planes. Thus,
we only need to conduct Algorithm 1 one time in day-ahead (i.e.,
offline training) to obtain the optimal day-ahead decisions and cut-
ting planes, which can be directly used for the real-time re-dispatch
in intra-day without re-calculating them (i.e., online application).

4 Case Study

In this section, the proposed method is verified via numerical exper-
iments on the IEEE 5-bus system and 118-bus system. All simu-
lations are carried out by Julia language with JuMP package and
Gurobi 10.1 on a computer with Intel(R) Xeon(R) Platinum 8338C
CPU @ 2.60GHz and 256 GB RAM.

To show the advantage of the proposed multistage DRO method
with decision-dependent ambiguity set, the following models are set
for comparison.

Model 1: Multistage stochastic programming with fixed scenario
probability distribution, solved by SDDP [8].

Model 2: Multistage robust optimization with decision-dependent
uncertainty set, solved by linear affine policy and adaptive column-
and-constraint generation algorithm [20].

Model 3: Traditional multistage distributionally robust optimiza-
tion with decision-independent ambiguity set (i.e., set λµd and λcov

d
to be 0), solved by improved SDDiP.

Model 4: Proposed multistage distributionally robust optimization
with decision-dependent ambiguity set, solved by improved SDDiP.

4.1 IEEE 5-bus system

The IEEE 5-bus system contains 2 thermal generators, 1 wind farm,
1 deferrable load and 4 regular loads where 1 regular load is allowed
to be curtailed. The parameters are given in Table 1. In the SDDiP
algorithm, the size of discrete support Nt is chosen as 10 and the
number of uncertainty path is 1. The dispatch period is 24 hours
with 1 hour resolution.

Due to lack of real-world data, we generate sample data to cal-
culate the coefficients λµd and λcov

d . Specifically, the sample data of

Table 1 Parameters in IEEE 5-bus system.

Parameter Value Parameter Value

Pu
i [155, 80] MW αi [17.26, 16.60] $/MW

P l
i [70, 40] MW β±i [1.73, 1.66] $/MW

Ru
i [120, 60] MW d±i [1.73, 1.66] $/MW

Rd
i [120, 60] MW csm 3 $/MWh

cls 500 $/MWh ccn 1 $/MWh

wind power and baseline load comes from [26], and we modify the

equation (1) as Ds
m,t = D̂s

m,t + fm,t

t−1∑
τ=1

dsm,τ,t, ∀m ∈ Ds where

fm,t is a random number used to characterize randomness, which
follows a normal distribution with mean as 1 and standard devia-
tion as 0.05. Note that there is no random coefficient before D̂s

m,t
since its randomness has been considered by different realizations

in the sample data. Then the sample data of fm,t and
t−1∑
τ=1

dsm,τ,t

(follows uniform distribution) is generated by Monte Carlo Simula-
tion. After that, we can calculate λµd and λcov

d via the data-driven
approach given in Section 2.2.

(1) Convergence Performance
Fig. 4 shows the iteration process of the improved SDDiP

algorithm. The algorithm converges after 24 iterations. With the iter-
ation, the supremum and infimum of confidence interval gradually
close. The gap between LB and the supremum of confidence inter-
val reaches 0.82%. Thus, the improved SDDiP algorithm provides
satisfactory convergence performance for the proposed multistage
DRO model.

Fig. 4: Iteration process of improved SDDiP algorithm.

(2) Comparative Studies
(i) In-sample Performance Analysis
In-sample evaluation is conducted for model 1-4, which is the

expected performance of total costs before uncertainty realizations.
Table 2 presents the in-sample test results. Model 1 has the low-
est in-sample expectation cost since it considers fixed probability
distribution instead of the worst case. For model 2, the optimal deci-
sion distributes at the bound of uncertainty set. Thus, the solution is
over-conservative and the expected total cost is highest among the
four models. For model 3 and model 4, the total costs are between
model 1 and mode 2. This is because the DRO method considers
the worst-case probability distribution rather than the fixed one in
SO or the worst-case scenario in RO, a trade-off between economics
and robustness is obtained. Besides, model 4 has lower cost than
model 3. This is because the demand shifting decisions can change
the probability distribution parameters of random variables via the
decision-dependent ambiguity set. Therefore, the probability of cer-
tain in-sample scenarios with lower cost increases, leading to lower
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expected cost.

Table 2 In-sample test results of model 1-4 on the IEEE 5-bus system.

Model 1 Model 2 Model 3 Model 4

Times (s) 34.81 2.49 45.46 47.22
Generation

cost ($) 76326.0 76333.2 76317.9 76320.6

Reserve cost
($) 354.5 1154.4 353.4 253.9

Expected
re-dispatch

cost ($)
784.8 13019.2 3037.0 2183.3

Total cost ($) 77465.3 90506.8 79708.3 78757.8

(ii) Out-of-sample Performance Analysis
For evaluating the real-world performance of model 1-4 under

different uncertainty realizations, out-of-sample test is conducted in
this subsection. Since our model is implemented in a multistage
framework and the decisions at each stage will affect the uncer-
tainty realizations of subsequent stages due to DDUs, the scenarios
used for out-of-sample test are generated independently at each stage
according to equations (3a)-(3b). Specifically, with obtained pre-
dispatch strategies, the scenarios at stage 1 are generated by Monte
Carlo simulation according to the mean and covariance matrix at
stage 1. Under the generated scenarios, the demand shifting deci-
sions at stage 1 are obtained by solving the problem Q1. Then, the
mean and covariance matrix at stage 2 can be calculated based on
the decisions at stage 1 and equations (3a)-(3b), which are used to
generate the test scenarios for stage 2. The out-of-sample test will
be done by implementing the above steps until stage T . Because the
under-approximation cutting planes of Qr,t+1 are obtained by day-
ahead offline training, the re-dispatch problem Qt can be calculated
directly and quickly in real-time re-dispatch.

Model 1 Model 2 Model 3 Model 4

Fig. 5: The result of out-of-sample test for model 1-4.

Fig. 5 shows the economic performance of model 1-4 in the out-
of-sample test. As expected, model 3 and model 4 have lower total
cost than model 1 and 2 due to the advantages of DRO over SP and
RO. For model 2, the solution is derived under the worst-case sce-
narios, which is conservative. More importantly, affine policy over
simplifies the model. The re-dispatch decisions are directly deter-
mined by the linear product of affine coefficients and uncertainty
realizations. The feasible region of decision variables is greatly lim-
ited by the linear mapping structure and is not equal equivalent to
that of original multistage model. Thus, the solution quality of model
2 reduces, resulting in highest cost among the four models. Model
1 and model 3 has similar cost distribution because they are both
formulated based on decision-independent probability distribution,

where one is under the fixed PDF while one is under the worst-
case PDF. For model 4, the demand shifting cost is obviously higher
than the other models. This is because the probability distribution of
future scenarios is coupled with demand shifting decisions. There-
fore, more demand shift are implemented to increase the occurrence
probability of scenarios with lower cost, thus reducing total cost.

(iii) Sensitivity Analysis
In the following, the impacts of three factors are investigated: the

decision-dependency coefficients λµd and λcov
d , the size of discrete

support Nt, the number of uncertainty paths in SDDiP algorithm.
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Fig. 6: Expected dispatch cost and demand shifting of model 4 under
different decision-dependency coefficients λµd and λcov

d .

First, the decision-dependency coefficients λµd and λcov
d are set as

10%, 50%, 100%, 150%, and 200% of their default values in Section
4.1. The simulation results of model 4 are shown in Fig. 6. The single
line in the figure represents the result under a certain value of λµd ,
and the point in a single line is the result under different λcov

d . It
can be found that the expected cost decreases and the demand shift
increases with the parameter λµd increases. Since the total cost can
be reduced by implementing demand shift as Fig. 4 shows and the
higher λµd represents greater impacts of demand shifting decision
on the uncertainty parameters of deferrable loads in (3a)-(3b), more
demands are shifted when λµd is large to decrease total cost. Besides,
λcov
d has not a linear impact on the expected cost and demand shift

as the curves fluctuate with λcov
d increases.
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Then we investigate the impact of the size of discrete support Nt

and the number of uncertainty paths. Here, model 2 is excluded since
it is not affected by the two factors. As Fig. 7 shows, the total costs
of model 3 and 4 increases when the size of support becomes larger.
Because the probability distribution is strictly limited by the three
constraints in (3a)-(3b), larger support allows greater fluctuations in
the probability of a single scenario. Thus, the scenario probability
tends to a worse distribution, resulting in higher cost. The compu-
tational time increases with larger support due to more calculation
in the backward step. In Fig. 8, the expected cost remains almost
stable with negligible fluctuation. However, the computational time
increases significantly with larger number of uncertainty path, which
is because more calculations are needed in the forward and backward
steps of the SDDiP algorithm.

4.2 IEEE 118-bus system

To show the scalability of the proposed method, the IEEE 118-
bus system is used for the test. The whole system has 54 thermal
generators, 10 wind farms, 186 transmission lines, 5 deferrable
loads and 5 curtailable loads. The data of the system is at
http://motor.ece.iit.edu/data/JEAS_IEEE118.doc.

Table 3 In-sample and out-of-sample tests on the IEEE 118-bus system.

Model 1 Model 2 Model 3 Model 4

Times (min) 12.58 3.78 14.37 13.75

In-sample cost
($) 1,438,860 1,639,593 1,502,017 1,477,425

Out-of-sample
cost ($) 1,485,562 1,503,754 1,473,902 1,462,214

Table 3 shows the simulation results. With the increase of prob-
lem scale, the computation time of all models increases. However,
since the SDDiP algorithm is conducted in day-ahead and the well
trained cutting planes can be directly used in intra-day real-time
scheduling, the computational time is acceptable. In term of eco-
nomic performance, as what is expected, model 4 still performs best
with the lowest out-of-sample cost among the four models. Thus, the
proposed method has good scalability for large-scale power systems.

5 Conclusion

This paper proposes a multistage DRO method for generation dis-
patch with DR, where the DDUs of deferrable loads and the DIUs
of wind power and regular loads are considered. A novel decision-
dependency ambiguity set with a data-driven approach is developed
to formulate both DDUs and DIUs and obtain decision-dependency
coefficients, with which a multistage DRO model is established for
the generation dispatch problem. The strong duality theory, binary
expansion and McCormick envelope are adopted to transform the
model into a tractable MILP. Then an improved SDDiP algorithm
is designed to effectively solve the model. Case studies compare
the proposed multistage DRO model with multistage SP, RO and
decision-independent DRO methods. The results show that the pro-
posed method can obtain lower dispatch cost than the other three
methods. Besides, the tests on the IEEE 118-bus system illustrates
that the proposed approach has good scalability for large-scale power
systems.
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