Impact of AlphaFold on Structure Prediction of Protein Complexes: The CASP15-CAPRI Experiment Marc Lensink¹, Guillaume Brysbaert¹, Nessim Raouraoua¹, Paul Bates², Marco Giulini³. Rodrigo Vargas Honorato³, Charlotte van Noort³, João Teixeira³, Alexandre M.J.J. Bonvin³, Ren Kong⁴, Hang Shi⁴, Xufeng Lu⁴, Shan Chang⁴, Jian Liu⁵, Zhiye Guo⁵, Xiao Chen⁵, Alex Morehead⁵, Raj Roy⁵, Tiangi Wu⁵, Nabin Giri⁵, Farhan Quadir⁵, Chen Chen⁵, Jianlin Cheng⁵, Carlos Del Carpio⁶, Eichiro Ichiishi⁷, Luis Rodriguez-Lumbreras A⁸, Juan Fernández-Recio⁸, Ameya Harmalkar⁹, Lee-Shin Chu⁹, Sam Canner¹⁰, Rituparna Smanta⁹, Jeffrey Gray⁹, Hao Li¹¹, Peicong Lin¹¹, Jiahua He¹¹, Huanyu Tao¹¹, Shengyou Huang¹¹, Jorge Roel¹², Brian Jimenez-Garcia¹³, Charles Christoffer¹⁴, Anika Jain J¹⁵, Yuki Kagaya¹⁵, Harini Kannan¹⁵, Tsukasa Nakamura¹⁵, Genki Terashi¹⁵, Jacob Verburgt¹⁵, Yuanyuan Zhang¹⁴, Zicong Zhang¹⁴, Hayato Fujuta¹⁶, Masakazu Sekijima¹⁶, Daisuke Kihara¹⁴, Omeir Khan¹⁷, Sergei Kotelnikov¹⁸, Usman Ghani¹⁷, Dzmitry Padhorny¹⁸, Dmitri Beglov¹⁷, Sandor Vajda¹⁷, Dima Kozakov¹⁸, Surendra Negi S¹⁹, Tiziana Ricciardelli²⁰, Didier Barradas-Bautista²⁰, Zhen Cao²⁰, Mohit Chawla²⁰, Luigi Cavallo²⁰, Romina Oliva²¹, Rui Yin²², Melyssa Cheung²², Johnathan Guest²², Jessica Lee²², Brian Pierce²², Ben Shor²³, Tomer Cohen²³, Matan Halfon²³, Dina Schneidman-Duhovny²³, Shaowen Zhu²⁴, Rujie Yin²⁴, Yuanfei Sun²⁴, Yang Shen²⁴, Martyna Maszota-Zieleniak²⁵, Krzysztof Bojarski K²⁶, Emilia Lubecka²⁶, Mateusz Marcisz²⁵, Annemarie Danielsson²⁵, Lukasz Dziadek²⁵, Margrethe Gaardlos²⁵, Artur Gieldoń²⁵, Jozef Liwo²⁵, Sergey Samsonov²⁵, Rafal Slusarz²⁵, Karolina Zieba²⁵, Adam Sieradzan²⁵, Cezary Czaplewski ²⁵, Shinpei Kobayashi²⁷, Yuta Miyakawa²⁷, Yasuomi Kiyota²⁷, Mayuko Takeda-Shitaka²⁷, Kliment Olechnovič²⁸, Lukas Valančauskas²⁸, Justas Dapkūnas²⁸, Ceslovas Venclovas²⁸, Björn Wallner²⁹, Lin Yang³⁰, Chengyu Hou³¹, Xiaodong He³⁰, Shuai Guo³⁰, Shenda Jiang³⁰, Xiaoliang Ma³⁰, Rui Duan³², Liming Qiu³², Xianjin Xu³², Xiaoqin Zou³², Sameer Velankar³³, and Shoshana Wodak J³⁴ ¹Unite de Glycobiologie Structurale et Fonctionnelle ²The Francis Crick Institute ³Universiteit Utrecht Departement Scheikunde ⁴Jiangsu University School of Electrical and Information Engineering ⁵University of Missouri ⁶Fukushimuta Hospital ⁷International University of Health and Welfare (IUHV Hospital ⁸Universidad Internacional de la Rioja - Campus de Logrono ⁹Johns Hopkins University Department of Chemical and Biomolecular Engineering ¹⁰Johns Hopkins University ¹¹Huazhong University of Science and Technology School of Physics $^{^{12}\}mathrm{Zymvol}$ Biomodeling Pau Claris 95 3B 08010 Barcelona Spain ¹³Institut de Biologia Molecular de Barcelona ¹⁴Purdue University - ¹⁵Purdue University Department of Biological Sciences - ¹⁶Tokyo Institute of Technology - ¹⁷Boston University - ¹⁸Stony Brook University - ¹⁹The University of Texas Medical Branch at Galveston Sealy Center for Structural Biology and Molecular Biophysics - ²⁰The KAUST School - ²¹Universita degli Studi di Napoli Parthenope - ²²Institute for Bioscience and Biotechnology Research Shady Grove - ²³Hebrew University of Jeruslaem Rachel and Selim Benin School of Computer Science and Engineering - ²⁴Texas A&M University Department of Electrical and Computer Engineering - ²⁵Uniwersytet Gdanski Wydzial Chemii - ²⁶Technical University of Gdansk - ²⁷Kitasato University - ²⁸Vilnius University - ²⁹Linkopings universitet Institutionen for fysik kemi och biologi - ³⁰Harbin Institute of Technology National Key Laboratory of Science and Technology on Advanced Composites in Special Environments - ³¹Harbin Institute of Technology School of Electronics and Information Engineering - ³²University of Missouri Dalton Cardiovascular Research Center - ³³European Bioinformatics Institute - ³⁴Structural Biology Research Center July 9, 2023 #### Abstract We present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homo-dimers, 3 homo-trimers, 13 hetero-dimers including 3 antibody-antigen complexes, and 7 large assemblies. On average ~70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21941 models submitted by these groups and by 15 CAPRI scorer groups were evaluated using the CAPRI model quality measures and the DockQ score consolidating these measures. The prediction performance was quantified by a weighted score based on the number of models of acceptable quality or higher submitted by each group among their 5 best models. Results show substantial progress achieved across a significant fraction of the 60+ participating groups. High-quality models were produced for about 40% for the targets compared to 8% two years earlier, a remarkable improvement resulting from the wide use of the AlphaFold2 and AlphaFold-Multimer software. Creative use was made of the deep learning inference engines affording the sampling of a much larger number of models and enriching the multiple sequence alignments with sequences from various sources. Wide use was also made of the AlphaFold confidence metrics to rank models, permitting top performing groups to exceed the results of the public AlphaFold-Multimer version used as a yard stick. This notwithstanding, performance remained poor for complexes with antibodies and nanobodies, where evolutionary relationships between the binding partners are lacking, and for complexes featuring conformational flexibility, clearly indicating that the prediction of protein complexes remains a challenging problem. ## Hosted file CASP15-CAPRI-assessment-main-Jul03-2023-MFL-SW.docx available at https://authorea.com/users/ 415498/articles/653671-impact-of-alpha fold-on-structure-prediction-of-protein-complexes-the-casp 15-capri-experiment #### Hosted file $figure 1. eps \quad available \quad at \quad \texttt{https://authorea.com/users/415498/articles/653671-impact-of-alphafold-on-structure-prediction-of-protein-complexes-the-casp15-capri-experiment}$ #### Hosted file figure2.eps available at https://authorea.com/users/415498/articles/653671-impact-of-alphafold-on-structure-prediction-of-protein-complexes-the-casp15-capri-experiment ## Hosted file figure3.eps available at https://authorea.com/users/415498/articles/653671-impact-of-alphafold-on-structure-prediction-of-protein-complexes-the-casp15-capri-experiment #### Hosted file $figure 4. eps \quad available \quad at \quad \texttt{https://authorea.com/users/415498/articles/653671-impact-of-alphafold-on-structure-prediction-of-protein-complexes-the-casp15-capri-experiment}$ #### Hosted file $figure 5. eps \quad available \quad at \quad \text{https://authorea.com/users/415498/articles/653671-impact-of-alphafold-on-structure-prediction-of-protein-complexes-the-casp15-capri-experiment}$ ### Hosted file $figure 6. eps \quad available \quad at \quad \texttt{https://authorea.com/users/415498/articles/653671-impact-of-alphafold-on-structure-prediction-of-protein-complexes-the-casp15-capri-experiment}$ | figures/figure7/figure7-eps-converted-to.pdf | | |--|--| | | | ## Hosted file $figure 10.eps \quad available \quad at \quad https://authorea.com/users/415498/articles/653671-impact-of-alphafold-on-structure-prediction-of-protein-complexes-the-casp15-capri-experiment$ ## Hosted file $table 1.tex \quad available \quad at \quad \texttt{https://authorea.com/users/415498/articles/653671-impact-of-alphafold-on-structure-prediction-of-protein-complexes-the-casp15-capri-experiment}$