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Abstract

Service desk systems have a vast and rich base of information, consisting of the history of calls made, which can and should be

used as a reference base for subsequent calls. Common search tools, such as keyword searches, prove to be unfeasible in large

datasets, in addition to being able to bring results not necessarily related to the problem. “State-of-the-art” techniques exist,

but they require high computational and operational costs for their training and use. In this sense, the purpose of this work

is to investigate the sensitivity of machine learning algorithms in finding the characteristic defined here as “relevance”: the

characteristic of texts with knowledge that can be reused. The motivation is that non-relevant texts can be removed in advance

from the database, allowing complex algorithms to be employed in a more condensed database, reducing computational costs.

Tests were performed with several combinations between the TF-IDF vectorizer and the word embedding Doc2Vec and the

classic classifiers Naive-Bayes, Adaptive Boosting, Random Forest, Stochastic Gradient Descent, Logistic Regression, Support

Vector Machine and Light Gradient Boosting Machine, and the classifier TextConvoNet, an architecture based on Convolutional

Neural Networks. The TextConvoNet classifier presented the best results, with metrics close to 0.93, showing that the concept

is detectable and that the technique is viable for removing non-relevant texts from a database.
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Summary
Service desk systems have a vast and rich base of information, consisting of the his-
tory of calls made, which can and should be used as a reference base for subsequent
calls. Common search tools, such as keyword searches, prove to be unfeasible in
large datasets, in addition to being able to bring results not necessarily related to the
problem. "State-of-the-art" techniques exist, but they require high computational and
operational costs for their training and use. In this sense, the purpose of this work
is to investigate the sensitivity of machine learning algorithms in finding the char-
acteristic defined here as "relevance": the characteristic of texts with knowledge that
can be reused. The motivation is that non-relevant texts can be removed in advance
from the database, allowing complex algorithms to be employed in a more con-
densed database, reducing computational costs. Tests were performed with several
combinations between the TF-IDF vectorizer and the word embedding Doc2Vec and
the classic classifiers Naive-Bayes, Adaptive Boosting, Random Forest, Stochastic
Gradient Descent, Logistic Regression, Support Vector Machine and Light Gradient
Boosting Machine, and the classifier TextConvoNet, an architecture based on Con-
volutional Neural Networks. The TextConvoNet classifier presented the best results,
with metrics close to 0.93, showing that the concept is detectable and that the tech-
nique is viable for removing non-relevant texts from a database.
KEYWORDS:
Classification, Natural Language Processing, Service Desk.

1 INTRODUCTION

The concern with customer satisfaction is a constant for companies to remain competitive. This satisfaction occurs through the
evaluation that the consumer makes in relation to the product or service offered. Failure to meet the needs and expectations of
the customer generates dissatisfaction with the services and, consequently, with the company1. In order to stand out from the
rest and generate credibility, it is essential that organizations have the ability to promptly respond to requests, suggestions or
complaints2.

Service Desk is a term that designates the customer support service for support and resolution of technical problems3. Service
Desk systems play an important role as intermediaries between companies and their customers. They offer an efficient system
that allows the collection and quick resolution of problems, as well as registering the solutions presented and correlating them
with other situations4.
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In a typical Service Desk system, the flow starts with a service ticket (ticket) created by a user, detailing the problems encoun-
tered. Each ticket is manually associated with a category, which is linked to one or more knowledge bases. Finally, a solution is
retrieved from a knowledge base related to the problem. This cycle can be repeated until the user has his request answered or
his problem solved5.

Service desk systems act as a link between companies and customers through a system that enables the compilation and
resolution of problems, as well as records of the solution presented and correlation with other situations4. With this, an extensive
database is created for the company, managing problems, solving them at their root, and reducing operational costs. Thus,
service desk systems can centralize various information for several service areas, becoming a pivotal point in administration and
problem solving6.

With the growth of the service base over time, the search for information becomes complex. A simple way to get a set of
responses to a user query is to determine which documents in a collection contain a particular set of query keywords. However,
this may not be enough to satisfy the user, as the presence of non-relevant documents among the documents returned by a query
is practically inevitable. In this scenario, the main objective of these systems should be to retrieve as many relevant documents
as possible and as few non-relevant documents as possible7. In this scenario, there is a need to use support tools to analyze
attendances to help classify and recover information in the dataset. As these data are basically composed of descriptive texts,
there is a need to propose and implement computational systems based on natural language processing.

Service Desk systems generate a rich but sparse knowledge base. The services provided may not contain knowledge that can
be reused in the future. For example, a report of a one-off problem that was corrected immediately, a call regarding an overdue
charge, or a call opened in error. A characteristic of this type of system is that not all the calls made have information that can
be reused to assist in handling new calls. This data harms search algorithms, whether a simple keyword search algorithm or
complex algorithms with neural networks.

This work aims to examine the feasibility of existing classification algorithms in the literature for the task of identifying
services that possess reusable knowledge, referred to as “relevant” in this context. By obtaining these results, it becomes possible
to compile a new, more condensed dataset, allowing for the optimal application of other knowledge extraction strategies.

The concept of relevance is a widely debated topic in Information Science. For7, relevance is defined as a quality metric,
linked to the satisfaction of a document meeting a given request. The notion of relevance is human and not technical, composed
of a range of variables and, therefore, fragile and difficult to define.

The concept of relevance explored in this work is broader and abstract. In this study, relevance was defined as the characteristic
of texts that have any reusable knowledge. In other words, a text is defined as “relevant” if a reader can learn something from
reading it and reuse this knowledge in the future, regardless of the area of knowledge correlated to the text. A person reading
a text on any subject can say with some ease “I learned something from reading this” or “There is nothing important in this
document”, although it is difficult for a person to describe what textual elements were used for this statement.

In this study, the concept of relevance takes on a broader and more abstract interpretation. Here, relevance is defined as the
characteristic of texts containing any form of reusable knowledge. In other words, a text is considered "relevant" if a reader can
acquire new knowledge from reading it and subsequently apply that knowledge in the future, regardless of the specific domain
associated with the text. When reading a text on any subject, an individual can easily determine whether they have learned
something valuable or if the document lacks important information. However, articulating the specific textual elements used to
make such judgments can be difficult for the individual to express.

2 LITERATURE REVIEW

In this section we will present a brief literature review of the concepts used in this research.

2.1 Natural Language Processing
Natural Language Processing (NLP) is an important area of interest in Artificial Intelligence and Computer Science. The im-
portance of this field of study grows in parallel with the unprecedented amount of textual information digitized in history. As a
scientific field of study, NLP encompasses concepts from computer science, linguistics and mathematics with the main objective
of translating human language into commands that can be executed by computers. While there are several well-established NLP
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techniques, natural language remains difficult to process. As an example, it is possible that omitted words and bad grammar do
not interfere with communication between two people. For computers, however, this is a big obstacle8.

NLP can be divided into four stages: pre-processing, vectorization, model training and model evaluation. Text pre-processing
aims to obtain “clean” text, removing symbols and other elements that may generate noise in subsequent analysis. After pre-
processing the text, an algorithm is selected that converts words into a numerical representation, such as vectors. Based on these
word vectors, algorithms can be applied to train a model that can solve the real problem. Finally, after training the model, it is
necessary to evaluate its quality and its applicability in other scenarios8.

2.2 Numerical representation of textual content
Although computers possess the ability to handle various multimedia tasks, they fundamentally operate as machines that execute
instructions based on binary numbers. Therefore, in order to utilize computational resources for text classification, it becomes
necessary to employ strategies that can represent sets of words in a numerical format while preserving their essential charac-
teristics9. Two significant techniques in machine learning, namely vectorization and word embedding, play a crucial role in
enhancing the performance and efficiency of natural language processing tasks.

Vectorization involves the conversion of textual data into numerical representations that can be easily manipulated by algo-
rithms. Word embedding, on the other hand, is a specific type of vectorization that assigns high-dimensional vectors to words,
capturing both their semantic and syntactic similarities. Through the utilization of vectorization and word embedding, we can ef-
fectively reduce the dimensionality and sparsity of the data, allowing models to learn from the contextual information embedded
within the words.

2.2.1 Term Frequency times Inverse Document Frequency (TF-IDF)
A common way of categorizing texts is by identifying the occurrence of keywords that characterize documents on a specific
topic. For example, baseball articles would tend to have many occurrences of words like “ball”, “bat”, “throw”, “run”, and so
on. The algorithm Term Frequency times Inverse Document Frequency (TF-IDF) is a vectoring algorithm used to calculate the
importance of a word in a document relative to a set of documents10. Thus, it is possible to replace each word of a text with a
number that indicates its importance in the document context.

The algorithm uses two measures: the term frequency (TF) and the inverse document frequency (IDF). Term frequency (TF)
is the measure of how many times a term appears in a document, defined by Equation 1:

𝑇𝐹𝑖𝑗 =
𝑓𝑖𝑗

𝑚𝑎𝑥𝑘(𝑓𝑘𝑗)
(1)

where
• 𝑓𝑖𝑗 : Number of occurrences of the term 𝑖 in the text 𝑗;
• 𝑚𝑎𝑥𝑘(𝑓𝑘𝑗): Largest index 𝑘 of the words in the text 𝑗, that is, the total number of words in the text 𝑗.

The inverse document frequency (IDF) is the measure of how rare a term is in relation to a set of documents, defined by
Equation 2:

𝐼𝐷𝐹𝑖 = log2
𝑁
𝑛𝑖

(2)
where

• 𝑁 : Total number of documents;
• 𝑛𝑖: Number of documents containing the term 𝑖.

The importance of a term in a document is given by multiplying the TF and IDF measures10. Therefore, the TF-IDF value for
each word 𝑖 of the document 𝑗 is given by Equation 3:

𝑇𝐹 -𝐼𝐷𝐹𝑖𝑗 = 𝑇𝐹𝑖𝑗 ⋅ 𝐼𝐷𝐹𝑖 (3)
A term’s importance to a document increases if it appears frequently in the document and rarely appears in other documents.

This allows the TD-IDF algorithm to be able to highlight relevant keywords in a document, which is useful in information
retrieval and document indexing tasks10.
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2.2.2 Word2Vec
Word2Vec (Word to Vector) is an word embedding algorithm for generating vector representations of words, or embeddings. It
was developed in 2013 and is widely used in natural language processing tasks such as text classification, machine translation
and semantic analysis. During training, the algorithm generates these vectors so that similar words have similar vectors. Since
vectors are numerical representations of words, it is possible to perform mathematical operations with them, such as addition
and subtraction. For example, if “man” - “woman” + “king” = “queen”, we can infer that the word “queen” is related to “king”
in the same way that “woman” is related to “man”11.

Word2Vec is an algorithm composed of two learning models: the Continuous Bag of Words (CBOW), which predicts the word
given its context, and the Skip-gram, which predicts the context given a word. When feeding body text into a learning model,
Word2Vec generates word vectors. In this process, Word2Vec first builds a vocabulary from the training text and learns the
vector representations of each word. Furthermore, Word2Vec has the ability to calculate the distance between each word. With
this, similar words are grouped together based on their distances. By grouping similar words, the original feature dimension is
projected to a new reduced dimension12.

2.2.3 Doc2Vec
Doc2vec (Document to Vector) is an extension of the Word2Vec algorithm that allows vector representation of entire documents
and not just individual words. The goal of the Doc2Vec network is to learn a representation of each document such that similar
documents have nearby representation vectors in vector space. Doc2Vec training is carried out using a large amount of labeled
documents, where the label indicates what the main topic of the document is. Once trained, the Doc2Vec network can be used
to produce vector representations of new text documents, and then can be used in various tasks such as document classification,
document grouping and information retrieval13.

2.2.4 GloVe
GloVe (Global Vectors for Word Representation) is an embedding model that uses algebraic techniques to associate each word
with a vector of numeric features. The aim is to capture the semantic and syntactic relationships between words from the context
in which they appear in a large text corpus. As in Word2Vec, the vectors obtained by GloVe have the property of having semantic
and syntactic similarity, for example, similar words tend to have similar vectors, and mathematical operations with the vectors
can result in words related to them.

The property of semantic and syntactic similarity of the vectors obtained by GloVe is obtained from the cost function and
the definition of the expected frequency of co-occurrence, which takes into account the similarity between the words. GloVe is
a word embedding model widely used in natural language processing tasks such as sentiment analysis, classification and text
generation14.

2.3 Classification Algorithms
Classification algorithms are methods used to identify new classes of observations based on training data. Algorithms learn
from datasets or observations and then classify new observations into various classes or groups15. We present a brief review on
the classification algorithms used in this manuscript below.

2.3.1 Naive-Bayes
In probability and statistics, Bayes’ theorem describes the probability of an event based on a priori knowledge that may be related
to the event. Naive-Bayes classifier is a direct application of Bayes’ Theorem. The term “naive” refers to the central premise of
the algorithm that the considered attributes are uncorrelated with each other16.

Bayes’ Theorem expresses a relationship between new data and preexisting and known data. This algorithmic relationship
between the new and the known has intuitive support in learning, since previous experience helps to interpret new acquired
experiences. In line with modern philosophy, linguistics and psychology, we call this learning activity “constructivist”. Bayes’
Theorem offers a plausible model of this constructivist worldview, making it an important modeling tool for much of modern
AI, including algorithms for natural language understanding, robotics, and machine learning17.
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The Naive-Bayes classifier is a probabilistic classification algorithm that relies on Bayes’ Theorem to make predictions. It is
called “naive” because it assumes that all data characteristics are independent of each other, which is not always true. However,
even with this simplifying assumption, the Naive-Bayes classifier generally performs well in many classification tasks18.

In text classification, the Naive-Bayes classifier is a popular method due to its computational efficiency and good performance
in prediction18. In this classifier, each document is seen as a collection of words, where the occurrence position of each word is
not considered. Because it is very simple and fast, it has a relatively higher performance than other classifiers. Also, Naive-Bayes
only needs a small number of test data to complete classifications with reasonable accuracy19.

2.3.2 Adaptive Boosting
“Boosting” is a technique proposed in the 90’s. The central strategy of the algorithm is to combine several inaccurate classifiers,
in order to produce a new algorithm with greater precision20.

The general concept of boosting may be comparated to “getting wisdom from the advice of fools”21. The “fools” in this case
are the simple classifiers, who sort only slightly better than a coin toss. These simple classifiers by themselves are not sufficient
to provide an accurate answer, but they do contain some valid information about the structure of the problem. The task of the
algorithm is therefore to learn from the iterative application of a simple classifier and use that information to combine it with
an accurate classification. However, calling the simple classifier multiple times on the same training data does not affect its per-
formance. The concept of reinforcement is not manipulating the classifier itself, but rather manipulating the underlying training
data by iteratively reweighting the observations. As a result, the base classifier will find a new solution on each iteration20.

Among the various existing boosting implementations, Adaptive Boosting, or AdaBoost is the most commonly used22. The
basic concept behind AdaBoost is to define the weights of the classifiers and train the data sample on each iteration in a way that
guarantees accurate predictions of unusual observations. In each iteration, it tries to provide an optimal fit for these examples,
minimizing the training error so that the next iteration makes a more accurate classification15. AdaBoost implementations typi-
cally use a Decision Tree as the base classifier, and it usually results in significantly better performance when compared to the
Decision Tree alone20.

2.3.3 Random Forest
A Decision Tree is a sequential model that logically combines a sequence of simple tests. Each test compares a numerical
attribute with a threshold value or a nominal attribute with a set of possible values23. With this, the algorithm is able to predict
the class associated with an object traveling from the root of the tree to a leaf. At each node on the path from root to leaf, the
successor child is chosen based on the division of the input space. Usually the division is based on one of the characteristics or
on a predefined set of24 rules. Decision Trees can be used to discover features and extract patterns in large databases that are
important for discrimination and predictive modeling. These characteristics, along with their intuitive interpretation, are some
of the reasons why decision trees are used extensively for exploratory data analysis25.

The Decision Tree algorithm is accompanied by certain well-known limitations. These encompass the issues of instability,
overfitting, reduced performance on extensive datasets, and difficulties in handling non-linear relationships. Instability refers
to the sensitivity of the algorithm to even slight modifications in the training data, resulting in substantial variations in the
generated decision trees and thereby compromising the overall stability of the model. Overfitting denotes a situation where the
decision tree achieves a high degree of accuracy in fitting the training data but fails to effectively generalize the underlying
problem to unseen data. The algorithm’s performance tends to diminish when confronted with large datasets, potentially leading
to computational inefficiencies. Lastly, Decision Trees encounter challenges in effectively capturing and representing non-linear
relationships, posing limitations in scenarios where such relationships are prevalent26.

In order to minimize the known limitations in the Decision Tree, the Random Forest was proposed. It is a combination of
decision trees, totally independent, in such a way that each tree is built in a random subspace of the feature space. Trees in
different subspaces generalize their classification in a complementary way, and their combined classification has better accuracy
than the individual classification. The end result is the average or poll of predictions for every tree in the forest27.

2.3.4 Stochastic Gradient Descent
In mathematics, “Gradient Descent” is a first-order iterative optimization algorithm for finding a local minimum of a differen-
tiable function. The idea is to take repeated steps in the opposite direction of the function’s gradient at the current point, as this
is the steepest descent direction11.
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Stochastic Gradient Descent (SGD) can be considered as a stochastic approximation of gradient descent optimization, since
it replaces the real gradient, calculated from the entire dataset, by an estimate of it, calculated from from a randomly selected
subset of data, thus reducing the computational load28. The SGD updates its parameters frequently and with a high variance,
which causes the objective function to fluctuate strongly. This fluctuation allows it to eventually jump to new and potentially
better local minima29.

The SGD has the advantage of being computationally efficient, as it updates the weights after each sample, and therefore does
not need to store the entire dataset in memory. In addition, it is also capable of handling large-scale datasets and can be used
to train online models, i.e. models that continuously learn over time. The downside is that the SGD is prone to getting stuck in
local minima, which can be mitigated through techniques like momentum, or using an adaptive learning rate30.

2.3.5 Logistic Regression
Linear models are composed of one or more independent variables that describe a relationship with a dependent response
variable. One of the most commonly used linear statistical models for discriminant analysis is logistic regression31.

Logistic regression is a statistical technique that aims to produce, from a data set, a model that allows the prediction of values
taken by a categorical variable from a series of explanatory variables32 In a problem classification, the output variable can
assume only discrete values for a given set of inputs. The logistic regression model builds a regression model to predict the
probability that a given data entry belongs to a category. Just as linear regression assumes that the data follows a linear function,
logistic regression models the data using the sigmoid function33.

The simplicity and interoperability of logistic regression can occasionally lead to it outperforming other sophisticated non-
linear models. However, in case the response variable is extracted from a small sample, logistic regression models become
insufficient and perform poorly for binary responses. In addition, logistic regression makes several assumptions, such as in-
dependence between variables and normal distribution and constant variance of responses at all levels of the explanatory
variable31.

2.3.6 Support Vector Machine
The Support Vector Machine classifier (SVM) takes as input a set of data and predicts, for each given input, which of two
possible classes the input belongs to. Given a set of training examples, each marked as belonging to one of two categories, an
SVM training algorithm builds a model that assigns new examples to one category or another34.

An SVM model is a representation of examples as points in space, mapped so that examples in each category are divided by
a clear space that is as wide as possible. The new examples are then mapped into the same space and predicted to belong to a
category based on which side of the space they are placed24.

SVM can use different kernel functions to map the data to a higher dimensional space, where it may be easier to find an optimal
separating hyperplane. Different kernel functions also make the SVM capable of handling non-linearly separable data35. Some
examples of common kernel functions include linear, polynomial and gaussian. Linear is the simplest kernel function, which can
be used when the data is linearly separable. This kernel function performs an inner product between two input vectors, turning
them into a single scalar value. Polynomial is used when the data is not linearly separable. This kernel function maps the data to
a higher dimensional space by raising each feature to a specific degree. The degree of the polynomial is a model parameter that
must be adjusted according to the data set. Lastly, Gaussian, also known as RBF (Radial Basis Function), is a widely used kernel
function. This kernel function maps data into an infinite-dimensional space by using an exponential function that measures the
distance between two input vectors. The sigma parameter controls the width of the exponential function and must be adjusted
according to the dataset36.

The SVM classifier is a highly effective machine learning algorithm for classification and regression problems, especially
when samples cannot be linearly separated. It works by finding the separating hyperplane that maximizes the margin between
samples of different classes and using support vectors to define the hyperplane. However, it can be sensitive to noise and
unbalanced data, in addition to having a high computational complexity37.

2.3.7 Light Gradient Boosting Machine
Gradient Boosting Decision Tree is a boosting algorithm that sequentially combines multiple decision trees. Each new tree is
tweaked to focus on the mistakes made by previous trees, creating a strong final model. Gradient Boosting Decision Tree is
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a popular machine learning algorithm and has some effective implementations, however its efficiency and scalability are still
unsatisfactory for large datasets38.

The Light Gradient Boosting Machine (LightGBM) algorithm was developed with the proposal to overcome the limitations
of the Gradient Boosting Decision Tree. The objective of the Light Gradient Boosting Machine is to reduce the number of data
instances and the number of resources, thus accelerating the training process. For this, two techniques were created: Gradient-
based One-Side Sampling (GOSS), which proposes to reduce the data volume by performing random sampling on instances
with small gradients, while keeping all instances with large gradients, and the Exclusive Feature Bundling (EFB), which bundles
unique features. With these approaches, LightGBM achieves results up to 20 times faster than its predecessor, with virtually the
same accuracy38.

LightGBM is a highly efficient machine learning algorithm designed to handle large data sets and classification and regression
problems. LightGBM also supports categorical data and is capable of handling unbalanced data. It also has support for distributed
parallel computing to speed up training on large datasets39.

2.4 Convolutional Neural Networks
A Convolutional Neural Network (CNN) is a deep learning architecture originally built for image processing but effective for
text classification. CNN’s are based on traditional neural networks, but include additional processing layers, called convolution
layers, which are designed to identify patterns and features in the input data, followed by pooling layers, which take each output
from the map of features of the convolutional layer and prepare a map of condensed features15.

A potential problem that arises when using CNN for text classification is the number of “channels” (feature space size). While
image classification applications usually have few channels (generally only 3 RGB channels), for text classification applications
this number can be very large, resulting in very high dimensionality15.

2.4.1 TextConvoNet
TextConvoNet is an architecture proposed by Soni, Chouhan and Rathore (2022) based on CNN for text classification. Unlike
other architectures generally used for natural language processing, the TextConvoNet network takes a bidirectional matrix as
input, generated by the GloVe vectorizer, and applies a multiscale convolutional operation. Figure 1 shows the architecture of
the network TextConvoNet.

TextConvoNet was selected for this work because, according to the authors, it outperforms state-of-the-art machine learning
and deep learning models for text classification purposes40.

2.5 Evaluation Metrics
Classifiers are generally trained to minimize errors. This error is evaluated using one or several metrics, the choice of which has
been an ongoing debate in research and the industry for several decades41.

Among the metrics used in evaluating classifiers, we can mention Accuracy, Precision, Recall, F1-score, ROC, and AUC.
Accuracy is defined as the proportion of true instances retrieved, both positive and negative, among all retrieved instances. Pre-
cision measures the number of correct instances retrieved divided by all instances retrieved. The Recall measures the number
of correct instances retrieved divided by all correct instances. The F1-score is the harmonic mean between precision and re-
call42. ROC (Receiver Operating Characteristics Curve) plots are two-dimensional plots that display the relationship between
true positive and false positive instances. Finally, the AUC (Area Under Curve) is the area under the ROC curve, a numerical
representation of the same indicator43.

2.6 Cross-Validation
When deploying a predictive model, it is vital to understand its prediction accuracy in future tests. Therefore, the results must
reflect reasonable estimates and accurate confidence intervals. Cross-validation is a widely used approach for these two tasks44.

Cross-validation operates by splitting the dataset into two segments: one used to train and the other used to validate the
model. The training and validation sets must be crossed over in successive rounds so that each data point has a chance to be
validated. The basic form of cross-validation is k-fold cross-validation. First, the data is partitioned into 𝑘 segments or similarly
sized folds. Then 𝑘 training and validation iterations are performed such that within each iteration a different fold of the data
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Figure 1 TextConvoNet architecture

Source: Soni, Chouhan and Rathore40

is kept for validation. At the same time, the remaining 𝑘 − 1 folds are used for learning. Upon completion, 𝑘 samples of the
performance metric will be available for each algorithm. Different methodologies, such as averaging, can be used to obtain an
aggregate measure of these samples, or these samples can be used in a statistical hypothesis test to show that one algorithm is
superior to another45.

3 METHODOLOGY

Initially, data was extracted from the Service Desk system. The system uses an Oracle relational database, and the extraction
was performed using SQL commands. Sensitive data such as customer names, companies, users and personal information were
manually removed in the extraction process. In this way, data were collected from the consultations carried out between the
years 2019 and 2020, totaling 11449 tickets. Once extracted, the data were converted into a spreadsheet to allow import into the
Colab development environment.

Then, a brief exploratory analysis of the data was carried out. With the visual support of a word cloud and some counters
applied to the dataset, some features became evident and guided the next pre-processing step.

In the next step, data pre-processing was performed. Special characters and accents were removed and the text, originally all
uppercase, was converted to lowercase. Recurrent terms with no semantic value were removed, such as greetings and closing
terms (“good morning”, “yours truly” etc), in addition to the so-called “stopwords”, a set of prepositions and articles . Some
recurring synonyms have also been replaced by a single term. A new analysis of dataset showed a significant improvement in
word distribution.
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Next, the database content was converted into numeric correspondents. First, each text was converted into a vector of words.
Then, the algorithms TF-IDF and Doc2Vec were applied separately to the original dataset, generating two distinct sets of nu-
merical data representing the documents. A preprocessed word vector database, GloVe, was also used as a requirement of the
TextConvoNet architecture.

Finally, the next step consists of testing the classification algorithms. The tests were carried out in four steps: TF-IDF Vector-
izer x Classic Classifiers, word embedding Doc2Vec x Classic Classifiers, TextConvoNet classifier and a proposed modification
in TextConvoNet, applying as input the result of word embedding Doc2Vec. Several performance metrics were applied and
summarized in graphs and tables for better comparison of results.

3.1 Development Tools
For data processing, the Python programming language was used in the Google Collaboratory (Colab) development environment.
Colab is a development platform created by Google, which allows the use of Python codes with free access to high-performance
GPUs and TPUs.

Several libraries were used to implement the tests, the main ones listed below:
• lightgbm, which provides the LightGBM classifier,
• sklearn, which provides the other classic classifiers,
• gensim, with word embedding algorithms, and
• tensorflow, for the implementation of Convolutional Neural Networks.

3.2 Dataset
The database to be used, entirely in Portuguese, was collected from a relational database of the Conexos Help Desk system,
internal software of the company Conexos Consultoria e Sistemas LTDA. This system has been operating since 2004, containing
a considerable collection of services the company provides to these customers. The flow of interactions in this system is similar
to the flow of online forums: from a customer request, which can be a question, a problem report, or a request for an increase
in the system, there may be several responses from the provider of services, as well as several replicas and rejoinders until the
customer has the request resolved, at which time the service is completed. This format allows the generation of calls with complex
flows, where oscillations between different subjects often occur, making their classification difficult. Thus, for tests, only calls
were selected where the flow of care is composed of a question from the customer, a response from the service provider, and
the end of the service. Given these conditions, data were collected from the consultations carried out between 2019 and 2020,
totaling 11449 consultations. Following the Brazilian guidelines of the General Data Protection Law (Lei Geral de Proteção de
Dados - LGPD46), the database was anonymized to make it impossible to identify confidential data.

Table 1 brings some statistical data on the words that make up the dataset. Among the notable characteristics, there is a strong
occurrence of repetition of words in the texts.

Table 1 Dataset metrics

Indicator Value
Total of Calls 11449
Total of Words 953728
Average of Words per Call 83.30
Distinct Words 29408
Average of Distinct Words per Call 28.90
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Word Cloud is an intuitive tool that allows a quick analysis of word occurrences in a document. A Word Cloud is a visual
representation of the frequency of words, so the more commonly the term appears within the text being analyzed, the larger the
word will appear in the generated image47. Figure 2 shows the Word Cloud for the dataset.

Figure 2 Dataset Word Cloud.

This Word Cloud displays an important characteristic of the dataset: the expressive presence of greetings and common terms
of presentation and closing, such as “boa tarde” (“good afternoon”), “bom dia” (“good morning”) and “qualquer dúvida” (some
like "in case of doubts..."). These terms, despite representing a respectful gesture in human communication, become noise for text
processing algorithms, affecting their performance48. Therefore, it seems reasonable to say that such terms should be removed
from the dataset before classification, in order to concentrate the information and avoid possible biases in the training of the
classifiers. This removal will be detailed in the next topic.

3.3 Text Preprocessing
Text preprocessing, as an essential step in any Natural Language Processing System, involves techniques of text transformation
before its analysis. It includes strategies such as removing irrelevant content for the task, clustering semantically related terms,
and increasing the amount of semantic information captured49.

In Figure 3, the Word Cloud is represented after the removal of greetings and standard introductory and closing terms. We
can notice a better distribution of occurrences in terms with contextual meaning, such as the words “processo” (“process”),
“sistema” (“system”), “tela” (“window”), and others.

3.4 Training dataset
For training the classification algorithms, a portion of data must be previously classified, so the algorithms can be based during
training and validate the obtained results. For this, a subset of 1868 attendances was classified to compose the training dataset.
The unbalanced distribution between classes in the dataset makes the classifier models tend towards classes with many training
samples50. This way, the calls were selected to compose a perfectly balanced dataset.

Table 2 shows statistical information about the subset for training. A notable feature is that, on average, relevant calls have a
more significant number of words than non-relevant calls.
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Figure 3 Dataset Word Cloud after data pre-processing.

Table 2 Descriptive information of the training dataset.

Indicator Total Relevants Non-relevants
Number of Calls 1868 934 934
Total Words 88244 52347 35897
Words/Call 81.41 96.58 66.23
Distinct Words 8355 6167 5194
Distinct Words/Call 28.92 29.88 27.97

4 RESULTS

A set of tests was carried out in an attempt to identify the concept of “relevance” of the dataset texts, divided into four scenarios:
• In the first scenario, we used TF-IDF vectorizer and Adaptive Boosting, LightGBM, Logistic Regression, Naive-Bayes,

Random Forest, SGD and SVM classifiers classifiers.
• In the second scenario, we used Doc2Vec word embedding and Adaptive Boosting, LightGBM, Logistic Regression,

Naive-Bayes, Random Forest, SGD and SVM classifiers.
• In the third scenario, the TextConvoNet algorithm was used, which uses the GloVe algorithm as a vectorizer, and a

architecture based on CNN as a classifier.
• Finally, in the fourth scenario, a modification in the TextConvoNet algorithm was proposed, providing the vectors

generated by Doc2Vec as input.
All classifiers’ metrics values are obtained through cross-validation experiments with 𝑘 = 10, performed on the training

dataset.
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4.1 TF-IDF with Classical Classifiers
Next, the results using the TF-IDF algorithm and a series of classic classifiers were used in the tests, further detailed in the Table
3.

Table 3 Classic classifiers with TF-IDF when applied to the dataset.

Classifier Accuracy Precision Recall F1-Score AUC
AdaBoost 0.750 ± 0.028 0.743 ± 0.039 0.770 ± 0.049 0.755 ± 0.029 0.831 ± 0.030
LightGBM 0.795 ± 0.031 0.781 ± 0.037 0.823 ± 0.031 0.801 ± 0.029 0.876 ± 0.028
Logistic Regression 0.795 ± 0.029 0.780 ± 0.027 0.824 ± 0.045 0.801 ± 0.030 0.880 ± 0.028
Naive-Bayes 0.792 ± 0.030 0.764 ± 0.029 0.846 ± 0.041 0.803 ± 0.030 0.871 ± 0.024
Random Forest 0.804 ± 0.028 0.778 ± 0.032 0.851 ± 0.027 0.813 ± 0.026 0.885 ± 0.021
SGD 0.761 ± 0.029 0.752 ± 0.027 0.779 ± 0.045 0.765 ± 0.031 0.868 ± 0.030
SVM 0.798 ± 0.024 0.779 ± 0.029 0.835 ± 0.038 0.805 ± 0.024 0.868 ± 0.028

The experiment’s classifiers presented similar metrics, emphasizing the Random Forest classifier that obtained the best results,
reaching values of recall and F1-Score of 0.85 and 0.81, respectively.

4.2 Doc2Vec with Classical Classifiers
Next, the results using the Doc2Vec algorithm and a series of classic classifiers were used in the tests, further detailed in the
Table 4.

Table 4 Classic classifiers with Doc2Vec when applied to the dataset.

Classifier Accuracy Precision Recall F1-Score AUC
AdaBoost 0.862 ± 0.040 0.870 ± 0.043 0.852 ± 0.070 0.859 ± 0.045 0.935 ± 0.031
LightGBM 0.922 ± 0.039 0.928 ± 0.027 0.914 ± 0.056 0.921 ± 0.042 0.966 ± 0.018
Logistic Regression 0.858 ± 0.042 0.865 ± 0.037 0.848 ± 0.065 0.855 ± 0.045 0.938 ± 0.032
Naive-Bayes 0.860 ± 0.040 0.873 ± 0.065 0.850 ± 0.031 0.860 ± 0.035 0.947 ± 0.020
Random Forest 0.920 ± 0.027 0.916 ± 0.028 0.925 ± 0.033 0.920 ± 0.027 0.961 ± 0.023
SGD 0.822 ± 0.065 0.830 ± 0.086 0.839 ± 0.156 0.819 ± 0.087 0.934 ± 0.035
SVM 0.862 ± 0.046 0.869 ± 0.048 0.852 ± 0.057 0.860 ± 0.048 0.935 ± 0.037

A significant improvement can be seen in most indicators of all classifiers, where the classifier LightGBM and Random Forest
reached metrics around 0.92. Using vectorization with Doc2Vec, the LightGBM classifier presented the best results among the
used classification algorithms.

4.3 TextConvoNet
In Table 5 we present the results of the TextConvoNet algorithm applied to the training dataset.

The results were slightly higher than the results presented by the best classical classifiers with word embedding Doc2Vec.
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Table 5 TextConvoNet when applied to the dataset.

Classifier Accuracy Precision Recall F1-Score AUC
TextConvoNet 0.928 ± 0.017 0.925 ± 0.026 0.931 ± 0.020 0.928 ± 0.018 0.964 ± 0.013

4.4 TextConvoNet modified
Finally, in Table 6 we present the results of a proposed modification of the TextConvoNet algorithm, providing the vectors
generated by Doc2Vec as input. The motivation for this modification was to test only its core classification with the same
vectorized data that were used in previous tests, for a better comparison of results. Some adjustments were necessary in the
structure of the algorithm so that it received the data format provided by Doc2Vec as input.

Table 6 TextConvoNet modified when applied to the dataset.

Classifier Accuracy Precision Recall F1-Score AUC
TextConvoNet modified 0.925 ± 0.024 0.931 ± 0.036 0.922 ± 0.037 0.925 ± 0.024 0.967 ± 0.014

The results of the proposed modification were very close to the original implementation of TextConvoNet, and to the best
classic classifiers with the word embedding Doc2Vec.

4.5 Results summary
In this topic, the main results of the tests are displayed, in order to have a better visualization of the progress in the results. Table
7 presents the metrics of the algorithms with the best results.

Table 7 Metrics of the best classifiers in this study

Classificador Acurácia Precisão Recall F1-Score AUC
TD-IDF x LightGBM 0.795 ± 0.031 0.781 ± 0.037 0.823 ± 0.031 0.801 ± 0.029 0.876 ± 0.028
TD-IDF x Random Forest 0.804 ± 0.028 0.778 ± 0.032 0.851 ± 0.027 0.813 ± 0.026 0.885 ± 0.021
Doc2Vec x LightGBM 0.922 ± 0.039 0.928 ± 0.027 0.914 ± 0.056 0.921 ± 0.042 0.966 ± 0.018
Doc2Vec x Random Forest 0.920 ± 0.027 0.916 ± 0.028 0.925 ± 0.033 0.920 ± 0.027 0.961 ± 0.023
TextConvoNet 0.928 ± 0.017 0.925 ± 0.026 0.931 ± 0.020 0.928 ± 0.018 0.964 ± 0.013
TextConvoNet modified 0.925 ± 0.024 0.931 ± 0.036 0.922 ± 0.037 0.925 ± 0.024 0.967 ± 0.014

With these results, we can arrive at some definitions:
1. The word embedding algorithms produced better results than the TF-IDF vectorization algorithm. In other words, the

word embedding strategies were able to maintain the relevance characteristics contained in the text during its conversion to
numerical representation in a better way than the TF-IDF algorithm strategy. In fact, Exploratory Data Analysis suggested
that word frequency was not a significant criterion for identifying relevance, a characteristic that is exploited by the TF-IDF
algorithm.

2. The classic classifiers with the best results, regardless of the numerical representation strategy of the texts used, were
LightGBM and Random Forest, both boosting algorithms based on decision trees. Decision trees are known to perform
well in non-linear and/or binary classification models.
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3. The best classic classifiers showed good results, with lower values, but close to the TextConvoNet network, an architecture
based on Convolutional Networks.

4. The word embedding algorithms GloVe and Word2Vec presented very close results applied to algorithms based on Con-
volutional Networks, despite the fact that the TextConvoNet algorithm originally used a two-dimensional GloVe vector
as input for multiscale analysis. This is due to the fact that Doc2Vec synthesizes the multidimensionality of Word2Vec in
a unidimensional result, without major semantic losses.

5 CONCLUSION

The definition of “relevance” of content, despite the apparent simplicity behind the binary classification, is an abstract concept.
The initial exploratory analysis of the dataset showed that the characteristics that identify relevance are subtle, and involve more
than just the presence or absence of words in the text.

Due to operational limitations, the training dataset was classified by only one person. The classification of relevance of the
training dataset may present biases as it represents the personal opinion of those who carried out the classification. Despite this,
it is important to highlight that these dataset biases do not invalidate the classification results, which proved to be effective in
detecting opinion. Although a more diverse classification might be more desirable for future analyses, the results achieved in
this study still provide valuable insights into the detection of opinions in limited datasets.

Several tests were carried out in an attempt to identify the concept of “relevance” of the texts in the dataset, divided into four
scenarios:

• In the first scenario, the TF-IDF algorithm and Adaptive Boosting, LightGBM, Logistic Regression, Naive-Bayes, Ran-
dom Forest, SGD and SVM classifiers were used as vectorizers. All classifiers presented similar metrics, close to 0.8,
with emphasis on the Random Forest classifier.

• In the second scenario, the Doc2Vec vectorizer and Adaptive Boosting, LightGBM, Logistic Regression, Naive-Bayes,
Random Forest, SGD and SVM classifiers were used. There was an improvement in all metrics, with emphasis on the
LightGBM classifier, which presented metrics above 0.91.

• In the third scenario, the TextConvoNet algorithm was used, which uses the GloVe algorithm as a vectorizer, and a
proprietary architecture based on CNN as a classifier. The metrics in this scenario fluctuated close to the value of 0.93.

• Finally, in the fourth scenario, a modification in the TextConvoNet algorithm was proposed, providing the vectors gen-
erated by Doc2Vec as input. The motivation for this modification was to test only its core classification with the same
vectorized data that were used in previous tests, for a better comparison of results. Some adjustments were necessary in
the structure of the algorithm so that it received the data format provided by Doc2Vec as input. The results of this mod-
ification were very close to the original implementation, close to 0.93. It is noteworthy that the objective of this work is
not to validate the performance of TextConvoNet, but its applicability in the context of proposed relevance detection.

It is concluded from these results that the concept of “relevance”, although abstract, is detectable both by classifiers and by
complex neural networks.

The classic classifiers showed discrete results when used in conjunction with the TF-IDF vectorizer, but showed better results
using the Doc2Vec embedding. That is, the Doc2Vec algorithm was able to preserve the relevance characteristic of the texts
more assertively than the TF-IDF vectorizer. It is concluded that the frequency of specific words, a strategy addressed by the TF-
IDF vectorizer, is not an adequate criterion for identifying relevance, a characteristic already conjectured during the Exploratory
Data Analysis stage.

Additionally, these results show that the choice of a vectorizer or word embedding suitable for the problem is essential to
obtain good results in classification tasks. Finally, the presented technique proved to be viable in classifying services as relevant
and non-relevant in the Help Desk dataset.

As future works, a greater effort is needed in the creation of the dataset, using more human classifiers and some markup
validation technique, in order to reinforce the representativeness of the concept of “relevance” by the training dataset.
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