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Article Highlights: 3 

Perennial grains would reduce the environmental impact of food production. 4 

Perennial grains can improve soil health and sequester atmospheric carbon. 5 

Success in perennial rice shows feasibility of developing high yield perennials. 6 

Progress in new crop development is severely limited by small research investment. 7 

Genomic tools will accelerate perennial grain development for near-term feasibility. 8 
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Abstract  53 

Perennial grains have potential to contribute to ecological intensification of food production by enabling 54 

the direct harvest of human-edible crops without requiring annual cycles of disturbance and replanting. 55 

Studies of prototype perennial grains and other herbaceous perennials point to the ability of 56 

agroecosystems including these crops to protect water quality, enhance wildlife habitat, build soil quality, 57 

and sequester soil carbon. However, genetic improvement of perennial grain candidates has been hindered 58 

by limited investment due to uncertainty about whether the approach is viable. As efforts to develop 59 

perennial grain crops have expanded in past decades, critiques of the approach have arisen. With a recent 60 

report of perennial rice producing yields equivalent to those of annual rice over eight consecutive harvests, 61 

many theoretical concerns have been alleviated. Some valid questions remain over the timeline for new 62 

crop development, but these may be mitigated by implementation of new technologies such as low-cost 63 

genotyping, genomic selection, and genome editing. 64 

Keywords: soil quality, climate change, carbon sequestration, genome editing, genomic selection 65 

1. Introduction 66 

The abundant potential of perennial grains, if developed, to address a wide array of global sustainability 67 

challenges to agricultural production has long been recognized. In 1990, Wagoner published the first 68 

extensive review of past efforts to develop perennial grains using species in the grass family (Wagoner, 69 

1990). The review listed numerous reasons for perennial grain development, including reducing soil 70 

erosion, reducing inputs, conserving soil nutrients, building soil health, and improving farmer incomes by 71 

reducing costs of inputs and field operations while preserving grain productivity. Although humans have 72 

consumed the seeds of perennial grasses for millennia, domestic perennial grains were not developed. As 73 

Wagoner described, efforts to develop perennial wheat through wide hybridization between annual cereals 74 

and perennial relatives were conducted in the Soviet Union beginning in the 1930s. Efforts later spread to 75 

other regions and attempts were made to create perennial versions of other crops by cross-pollination with 76 

perennial relatives. These programs generally produced short-lived perennials with yields inferior to 77 

annual grains, and there was never a clear commercial opportunity.  78 
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In 2002, an exhaustive review of past and potential efforts to breed successful perennial grains was 79 

published (Cox et al., 2002). Again, the authors concluded that decades of work had failed to produce 80 

yields on par with comparable annual grains. However, they also asserted that important avenues to high 81 

grain yield from perennials may have been overlooked. For instance, perennials can often use resources 82 

such as water, nutrients and sunlight that are unavailable to many annual crops due to their brief summer 83 

lifespans. The authors also described the potential of ongoing efforts to develop perennial rice and 84 

perennial sorghum by hybridizing the annual crops with their perennial relatives and suggested that 85 

repeated rounds of selection over many generations would enable simultaneous improvement in longevity 86 

and seed production traits by combining favourable alleles in new high-yielding perennial grains. 87 

 In the 20 years following the 2002 review article (Cox et al., 2002), perennial grain development efforts 88 

have grown in number and have attracted expanding attention as an approach to address urgent issues in 89 

agriculture. Reports are continuing to show the effectiveness of perennial crops in stabilizing production 90 

(Sanford et al., 2021), improving soil quality (Daigh, 2011; DeHaan and Van Tassel, 2022; Emmerling et 91 

al., 2017; McGowan et al., 2019), mitigating climate change (Crews and Rumsey, 2017; Jacot et al., 2021), 92 

improving wildlife habitat (Graham et al., 2017; Helms et al., 2020; Robertson et al., 2011) and protecting 93 

water quality (Cacho et al., 2018; Culman et al., 2013; Jungers et al., 2019; Moore et al., 2019). Evidence 94 

of rapid expansion in perennial grain research is seen in a Google Scholar search, where only 5 articles 95 

containing the search term “perennial wheat” are returned from the year 2001, compared to 463 articles 96 

from 2021. Although the increase is substantial, perennial grain efforts remain insignificant compared with 97 

annual crops, as a search for “winter wheat” from 2021 provides more than 24,000 results.  98 

Although efforts to develop new perennial grains remain slight, they have been sufficient to attract critique 99 

from authors who regard the vision as being unlikely to succeed and unworthy of expanded investment 100 

(Cassman and Connor, 2022; Loomis, 2022; Smaje, 2015). These critiques are helpful, to some extent, as 101 

they allow a careful examination of the available evidence for and against greater investment in programs 102 

that will require sustained effort over longer time frames than might typically be embraced by funders. 103 

Herein we will support our thesis that recent research progress, theoretical considerations, and advances in 104 
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breeding and genetic technologies have combined to provide justification for an aggressive expansion in 105 

perennial grain research in the current decade. 106 

2. Recent progress in perennial rice 107 

Perennial rice currently provides the clearest example of what can be achieved through sustained 108 

investment in a perennial grain breeding program. An initial successful cross between annual rice (Oryza 109 

sativa) and the perennial relative Oryza longistaminata was obtained in 1996, and work was invigorated 110 

when the first promising F2 progeny with good seed set and moderately strong rhizome production was 111 

identified in 2007 (Zhang et al., 2022). What followed were generations of selfing and selection for plants 112 

with increased pollen viability and short rhizomes. As generations advanced, plants were identified that 113 

had traits similar to annual rice (height, seed size, and grain set). However, the selected lines retained the 114 

ability to regrow vigorously after harvest. Subsequent rounds of backcrossing to various elite rice types 115 

have demonstrated the potential to introduce the perennial trait into different genetic backgrounds (Zhang 116 

et al., 2022). 117 

In 2018, the first perennial rice variety, PR23, was released to farmers in China. While other rice varieties 118 

may have weak “ratooning” (regrowth after harvest), allowing a small second crop, PR23 has capacity for 119 

strong regrowth and sustained yield. Evaluated over eight consecutive harvests across four years, the 120 

perennial rice produced an average of 6.8 Mg harvest-1, similar to the yield of replanted annual rice (Zhang 121 

et al., 2022). After the first season, perennial rice resulted in substantial savings on labour and other inputs, 122 

which boosted farmer incomes (Zhang et al., 2022), consistent with earlier predictions made by advocates 123 

for perennial grain development (Wagoner, 1990; Cox et al, 2002). Additionally, reduced soil disturbance 124 

in perennial rice production provided measurable improvements in soil, as expected. For example, in four 125 

years of paddy perennial rice production, soil organic carbon content increased by a substantial 0.95 Mg 126 

ha-1 (Zhang et al., 2022). 127 

Although the total planted area of perennial rice is still small relative to the global area of rice production, 128 

farmer acceptance has been strong, and perennial rice cultivation is increasing rapidly. In 2021, the area 129 

planted to perennial rice increased fourfold to 15,522 ha on 44,752 smallholder farms (Zhang et al., 2022. 130 
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Perennial rice is a clear example of how readily a new perennial grain can be developed, requiring an 131 

investment of less than US$20 million over 15 years (Glover, 2022). As the authors reporting the progress 132 

concluded, “perennial rice is a step change with potential to improve livelihoods, enhance soil quality and 133 

inspire research on other perennial grains” (Zhang et al., 2022). 134 

3. Responses to concerns about perennial grains 135 

Perennial grain crops have been proposed as a strategy to achieve expanded ecosystem services such as 136 

reduced erosion, greater resource use efficiency, reduced nutrient leaching, reduced watershed 137 

contamination, improved soil carbon content, and reduced dependence on fertilizer, herbicide, and tillage 138 

(Broussard and Turner, 2009; Glover et al., 2010). Although various perennial crops and cropping systems 139 

are expected to have a range of impacts on these ecosystem services, there has been little disagreement 140 

over the claim that perennial grains producing yields as large as their annual counterparts would have 141 

environmental and sustainability benefits. Divergent viewpoints have more frequently arisen concerning 142 

whether breeding perennial crops with yields similar to annual crops is a feasible goal. If clear evidence 143 

exists that perennial grain crops would be impossible to breed or that the cost of their development would 144 

exceed the benefits, then we would agree that research would be better focused elsewhere. Instead, we find 145 

compelling recent results that provide multiple lines of support for prioritizing perennial grain breeding.  146 

3.1 Perennials can yield similarly to annuals 147 

Understandably, the feasibility of breeding herbaceous perennial plants with high grain yield has been 148 

questioned, since on average both wild and domestic herbaceous perennial plants tend to have lower yields 149 

than their annual relatives (Vico et al., 2016). In Wagoner’s 1990 review, forage crops that had been 150 

selected for good seed production were found to have yields that might, in ideal circumstances, approach 151 

those of annual grains grown in the same region (Wagoner, 1990), but the general trend is clear that 152 

herbaceous perennials tend to be lower seed producers than annuals.  153 

However, it would be unscientific conjecture to say that just because something does not currently exist, it 154 

can never exist in the future. For instance, maize yields in the USA have increased more than five-fold 155 

since the 1920s (Duvick, 2005). How was it possible to dramatically increase the grain production of 156 
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maize when human-driven selection should have been favouring the highest seed producers for millennia? 157 

The answer likely lies in a multi-pronged approach including transitioning from open-pollinated 158 

populations to F1 hybrids, modifying the agricultural environment for optimal growth, and enhancing 159 

selection methodology to favor plants that are less competitive while being more stress tolerant, thereby 160 

avoiding wasteful competitive responses while growing in high population densities (DeHaan et al., 2005; 161 

Denison, 2015; Duvick, 2005). Perennial grain breeders have argued that modern selective breeding, 162 

which has reduced competitive waste in annual grain fields, should similarly enable yield increases in 163 

perennials (DeHaan et al., 2005). While critics have suggested that the competitive nature of perennials 164 

means that they will inherently have lower seed yield (Smaje, 2015), the large competitive structures (e.g., 165 

large roots, tall stems) of wild perennials may simply provide a larger pool of resources to reallocate from 166 

competitive tissues into harvestable grain (DeHaan et al., 2005). Just because wild perennials allocate 167 

more resources on average to competition than seed production, there is no reason to believe that the same 168 

must hold true for domesticated perennials (Crews and DeHaan, 2015). The important unanswered 169 

question is to what extent can the benefits of perennial cropping be retained while selecting for increased 170 

yield, but thus far results are promising (Emmerling et al., 2017; McGowan et al., 2019).   171 

 The clearest arguments against investment in perennial grain breeding have focused on theories of 172 

resource allocation. One critic has summarized the position, stating, “For seed yields to approach those of 173 

annuals, however, plants would have to pull all available resources into seed production at the end of the 174 

growing season, as annuals do, making death almost certain” (Denison, 2012). We would suggest that this 175 

argument is only valid if “all things are equal” in comparing annuals to perennials. However, all things are 176 

not equal. Perennials often have more rapid spring growth and a longer growing season, allowing access to 177 

more sunlight (Dohleman and Long, 2009); they may also have longer roots, allowing access to more 178 

water and nutrients (Duchene et al., 2020). Indeed, the success described above with perennial rice 179 

illustrates that perennial survival with high grain yield has now been achieved, clearly contradicting the 180 

claim that high yielding perennials would be faced with “almost certain” death (Denison, 2012) due to a 181 

strict trade-off between survival and yield. Further evidence is seen in the perennial grass crop Miscanthus, 182 

which can yield more aboveground biomass than maize in the Midwest US corn belt (Dohleman, 2009; 183 

Heaton et al., 2008), showing that winter survival need not come at the cost of aboveground production. 184 
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3.2 High yielding perennials are evidence of what is possible 185 

Smaje has argued that the lack of any successful perennial grain crops arising over the 10,000 years of 186 

agriculture suggests that such crops may be impossible (Smaje, 2015). But he then goes on to state that 187 

“Nevertheless if sophisticated modern plant breeding techniques can overcome the obstacles hitherto 188 

obstructing a perennial grain agriculture, past impediments may lack future relevance” (Smaje, 2015). We 189 

agree with this assessment and observe that concerns about the feasibility of high-yielding perennial grains 190 

is quickly becoming a historical artifact rather than a contestable hypothesis, as evidenced by the breeding 191 

technologies that produced high yielding perennial rice (Zhang et al., 2022) and are now advancing other 192 

perennial grains in development. 193 

While perennial rice provides a recent example of a high-yielding perennial, advocates of perennial grains 194 

have previously argued that trees with higher reproductive allocation than modern annual grains are 195 

evidence that perenniality need not preclude high yields (Van Tassel et al., 2010). However, critics have 196 

discounted the high productivity of woody perennials as a “special case” where the yield of trees is 197 

irrelevant to high-yield perennial herbs because trees have unique “ecological and biogeographical 198 

characteristics” (Smaje, 2015). Since all individual species have unique ecological and biogeographical 199 

characteristics, a similar statement could be applied to dismiss the relevance of perennial rice. Indeed, 200 

Kenneth Cassman stated in an interview that perennial rice is a special case, since annual rice already 201 

ratoons, and rice production has a high labour requirement (Charles, 2022). Ironically, while some 202 

detractors have argued that breeding perennial rice developed for the high-yield paddy system took the 203 

easy route (Loomis, 2022) and is therefore a less important achievement, other critics have said that 204 

breeding perennials for more stressful, lower-yielding environments would be the easiest approach 205 

(Cassman and Connor, 2022). Although critics may continue attempting to dismiss the existence of high-206 

yielding fruit trees or perennial rice as irrelevant to the debate, we maintain that these achievements 207 

demonstrate that artificial selection can generate perennial crops with high reproductive outputs and are 208 

justification for expanding efforts to develop additional highly productive perennial crops (Van Tassel et 209 

al., 2010).  210 

3.3 Breeding is increasing yields of intermediate wheatgrass 211 
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Efforts to improve the grain yield of perennial intermediate wheatgrass have been ongoing since the 1980s 212 

(DeHaan et al., 2018), although until 2010, the project had a small investment, with less than half the effort 213 

of a single plant breeder provided each year. Since this is likely the longest-running effort to directly 214 

domesticate a wild perennial herbaceous species for use as a grain crop, it is worth asking whether 215 

progress is being made. Cassman and Connor (2022) claim to answer this question in the negative. 216 

Unfortunately, the methods they used to evaluate progress were unsuitable, leaving their conclusions 217 

without merit. Cassman and Connor (2022) compiled a summary in table form of yields obtained in six 218 

agronomic trials of intermediate wheatgrass conducted between 2009 and 2018. The trials were performed 219 

in four different northern USA states using seed from four different breeding cycles from a program in 220 

Kansas. From this assembled data, they concluded, “Based on analysis of these results, there is no 221 

evidence of progress towards higher grain yields” (Cassman and Connor, 2022).  222 

There are three primary reasons that the table presented by Cassman and Connor (2022) is insufficient to 223 

quantify genetic progress. First, the concept of randomization, which is fundamental to statistical analysis, 224 

was ignored. Fisher, a founder of the field of statistics, stressed that “as is the randomization, so is the 225 

analysis” (Street, 1990). In this case, because breeding cycles were not randomized across locations, years, 226 

or management approaches, there would be no way of evaluating breeding progress without accounting for 227 

a host of unknown confounding variables. Secondly, one cannot hope to draw meaningful conclusions 228 

about breeding progress from such a small sample size. Before concluding that no evidence of an effect 229 

exists in an experiment, the scientist must be cognizant of the risk of Type II error (wrongfully failing to 230 

reject the null hypothesis). Failing to account for the sample size necessary to obtain relevant statistical 231 

power has been described as a “fatal” error in statistical analysis (Kuzon et al., 1996). Third, the reality of 232 

genotype X environment interactions (GXE) has been neglected. The agronomic trials cited were situated 233 

between 800 and 1700 km distant from the location of the breeding program that developed the genetic 234 

materials used. Complex traits such as grain yield usually have high GXE, so meaningful evaluation of 235 

progress for this trait requires experimentation within the target environment. Testing for progress in a 236 

non-target environment ignores what is known about the substantial magnitude of GXE in related crops 237 

such as wheat (Peterson, 1992). 238 
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Intermediate wheatgrass has a history of rapid response to selection, and new genetic and genomic 239 

technologies now present opportunities for accelerated grains. Although Cassman and Connor stated that 240 

“there is no evidence of progress toward higher [intermediate wheatgrass] grain yields,” one of the papers 241 

they cited contains strong evidence of breeding progress in intermediate wheatgrass (Bajgain et al., 2020; 242 

Cassman and Connor, 2022). The intermediate wheatgrass variety MN-Clearwater was developed in 243 

Minnesota, USA for improved grain production by selecting out of the third breeding cycle from The Land 244 

Institute. Evaluated across five locations and two years, this single round of selection in the Minnesota 245 

environment increased yield by 230 kg ha-1, or 49% (Bajgain et al., 2020). Other studies of breeding 246 

progress conducted in Kansas as part of The Land Institute’s breeding program have shown increases of 247 

150 kg ha-1 over two cycles (DeHaan et al., 2014) and 68 kg ha-1 cycle-1 over five cycles (Tyl et al., 2020). 248 

In Canada, breeding produced a steady yield increase of 79 kg ha-1 cycle-1 over five cycles (Knowles, 249 

1977). When evaluated with a proper statistical design, intermediate wheatgrass breeding programs have 250 

consistently produced substantial yield increases, surpassing progress in modern wheat breeding on an 251 

annual basis (Rife et al., 2019).  252 

While traditional breeding is producing substantial yield increases in intermediate wheatgrass, new 253 

techniques and knowledge of genes controlling domestication traits paired with genome editing are 254 

opening doors to breakthroughs in rapid domestication (Lemmon et al., 2018; Li et al., 2018; Yu and Li, 255 

2022; Zhu and Zhu, 2021). In recent years, development of genetic resources has made genome editing 256 

(Chapman et al., 2022; DeHaan et al., 2020) for rapid domestication of intermediate wheatgrass feasible. 257 

Genomic selection can accelerate breeding in perennials by accurately predicting performance of plants 258 

using DNA collected at the seedling stage (McClure et al., 2014; Seyum et al., 2022). This technique is 259 

being used to accelerate progress in the domestication of intermediate wheatgrass (Crain et al., 2021) and 260 

holds promise for many perennial species. These new methods have potential to accelerate domestication 261 

and produce viable new crops in just a decade or two, opening fresh doors of opportunity for developing 262 

transformative new crops (Runck et al., 2014). 263 

3.4 New approaches to perennial wheat  264 
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As efforts to develop perennial wheat by hybridizing annual wheat with perennial relatives have been 265 

attempted on and off for nearly a century, it is worth asking whether this approach to perennial grain 266 

development still has merit. Cassman and Connor (2022) summarized work on perennial wheat in 267 

Australia, and correctly concluded that “Progress in conducting agronomic research with perennial wheat 268 

derivatives in Australia is hindered because no commercial cultivars are yet available…” What was left 269 

unmentioned was that virtually no breeding efforts have been undertaken in Australia to develop adapted 270 

cultivars (Hayes et al., 2017). This is consistent with a fundamental conclusion of Cassman and Connor: 271 

perennial grains have yet to succeed due to “inadequate investment in R&D relative to the magnitude of 272 

the challenge” (Cassman and Connor, 2022).  273 

As a wide hybridization effort in an allopolyploid crop, perennial wheat is expected to have a different 274 

development trajectory in comparison to simpler introgression projects with diploids such as rice or 275 

domestication projects such as intermediate wheatgrass. While breeding is producing steady increases in 276 

yield of intermediate wheatgrass, wide hybridization may not produce similar stepwise improvements if 277 

the wide hybrids require breakthrough solutions to make them viable.  278 

Perennial rice and now perennial sorghum breeding programs (Cox et al., 2018) have the benefit of 279 

recombination between corresponding chromosomes originating from the annual and perennial parents. In 280 

wheat, the annual and perennial parents have diverged to the point where chromosomes do not readily pair 281 

(Banks et al., 1993). Presumably, chromosomes originating from wheat carry genes that are detrimental to 282 

perenniality, while chromosomes from the perennial parent harbor genes limiting critical traits such as 283 

seed size (Cox et al., 2002, 2010). Thus, past programs may have been able to obtain plants with moderate 284 

perenniality and moderate yield, but without recombination, they have been unable to make much 285 

additional progress. 286 

In their 2002 review, Cox et al. suggested that the task of developing perennial wheat could be nearly 287 

impossible until new molecular techniques were available (Cox et al., 2002). This idea is proving 288 

prophetic, as the necessary tools may now be available for the first time. For example, tracking individual 289 

chromosomes and chromosome fragments by cytology was once cost- and time-prohibitive for use in 290 

breeding. Now, sequence-based methods can track chromosome presence and absence in wide hybrids at 291 



 

13 

 

low cost (Adhikari et al., 2022). A reference genome is now available for the perennial parent currently 292 

used in perennial wheat hybrids, and with this resource, genome editing could be used to knock out or 293 

otherwise edit genes impacting important traits in the hybrids, eliminating the need for genetic 294 

recombination (DeHaan et al., 2020; Soto- Gómez et al., 2022). Alternatively, mutagenesis followed by 295 

genotyping to search for mutations in critical target genes could be effective (Knudsen et al., 2022). With 296 

aggressive application of these tools, a breakthrough in perennial wheat may be imminent. 297 

4. Breeding grain crops for a sustainable future 298 

Perennial grains have been long recognized as having the potential to produce directly edible calories from 299 

plants that could be grown without regular soil disturbance and replanting, enabling a trajectory change in 300 

sustainable intensification (Pimentel et al., 2012). However, the idea has struggled to gain traction as small 301 

efforts with various species have come and gone. Lack of a clear success story and lingering theoretical 302 

questions about the biological feasibility of plants with longer lifespans and high seed yields has led some 303 

to question the wisdom of continued investment of resources in the effort to develop perennial grains. 304 

Recent successes in breeding and genetics have now demonstrated the feasibility of perennial grain 305 

development. Perennial rice, which has produced yields equivalent to annual rice over eight harvests while 306 

improving ecosystem services and producer livelihoods, has shown how a perennial grain can create the 307 

triple win of food production, profitability, and sustainability. Theoretical concerns about the potential for 308 

perennials to produce competitive yields have begun to fade in the face of this clear achievement. 309 

Similarly, the application of modern genetic tools including genome sequencing, genomic selection, and 310 

genome editing to the domestication of perennial crops is demonstrating transformative the ability to 311 

rapidly develop and introduce new perennial crops (Runck et al., 2014). If these and other revolutionary 312 

technologies are applied aggressively to the basic biology of perenniality (Chapman et al., 2022; Li et al., 313 

2022) and the creation of new crops, they will be available in time to provide meaningful benefits to such 314 

grand challenges as soil quality and carbon sequestration to combat climate change and its impacts on food 315 

production (Crews and Rumsey, 2017). The critical need for the ecosystem services of new perennial crops 316 

grown in multifunctional landscapes (Jordan et al., 2007) has converged with the technological capacity to 317 

develop these crops, so now is the ideal moment to aggressively expand perennial grain research. 318 
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