
P
os
te
d
on

27
J
u
n
20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
78
69
85
.5
35
38
60
1/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Time-of-Use Period Partition Based on Improved Fuzzy C-Means

and Abnormal Period Correction

Peng Wang1, Yiwei Ma1, Zhiqi Ling1, and Gen-hong Luo1

1Chongqing University of Posts and Telecommunications

June 27, 2023

Abstract

In time-of-use tariff period partition, clustering algorithms are commonly used. However, as load demands become more diverse

in this big data era, large amount of non-linear data makes conventional clustering algorithms methods no longer be applicable

in this field alone. Facing high-time-resolution daily load data with strong non-linearity, we propose a new method to partition

periods. It consists of an improved fuzzy c-means clustering algorithm and a correction method for abnormal periods. Firstly,

we propose modified fuzzy membership functions to improve the initialization of clustering for operation efficiency. Secondly,

the method for calculating the fuzzy parameters based on the loss function is given. Thirdly, the initial period partition is

obtained by the improved clustering. Next, the recognition model and fuzzy subsethood-based correction model for abnormal

periods are structed, then the corrected period partition is confirmed. Finally, the effectiveness of the proposed methods is

verified by two daily load data with a time resolution of 5 minutes.
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Abstract—In time-of-use tariff period partition, clustering 

algorithms are commonly used. However, as load demands 

become more diverse in this big data era, large amount of non-

linear data makes conventional clustering algorithms methods no 

longer be applicable in this field alone. Facing high-time-

resolution daily load data with strong non-linearity, we propose a 

new method to partition periods. It consists of an improved fuzzy 

c-means clustering algorithm and a correction method for 

abnormal periods. Firstly, we propose modified fuzzy 

membership functions to improve the initialization of clustering 

for operation efficiency. Secondly, the method for calculating the 

fuzzy parameters based on the loss function is given. Thirdly, the 

initial period partition is obtained by the improved clustering. 

Next, the recognition model and fuzzy subsethood-based 

correction model for abnormal periods are structed, then the 

corrected period partition is confirmed. Finally, the effectiveness 

of the proposed methods is verified by two daily load data with a 

time resolution of 5 minutes. 

 
Index Terms—time-of-use tariff period partition, loss function, 

fuzzy membership functions, fuzzy c-means clustering algorithm, 

fuzzy subsethood, abnormal period correction. 

 

I. INTRODUCTION 

HIS the gradual deepening of electricity market 

reform, demand response based on price, an 

important interactive resource of the power system, 

can effectively guide customers to use electricity and improve 

system economy and reliability, and its role in the competitive 

market is becoming more and more obvious [1-4]. Time-of-

use (TOU) tariff is a price-based demand response method 

which can solve the problems like rapid growth of electric 

load, supply that does not meet demand during the peak of 
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electricity consumption and overgeneration during the valley 

period [5,6]. After the TOU implementation, the price 

differences between peak and valley periods make customers 

move some electricity consumption to the valley for reducing 

their electricity costs. Classical TOU based on the price 

elasticity matrix is studied in Literature [7,8], which provide 

many benefits, including promoting energy consumption, 

increasing load rate, and improving utilization efficiency [8]. So, 

it is necessary to make a reasonable period partition for customers 

to develop a feasible power consumption plan [9]. 

As a static electricity tariff mechanism, TOU is divided into 

various types [9]. For customers with time-of-day meters, the 24-

hour day can be further divided into two prices for peak and off-

peak [10-15], three prices for peak, flat, and valley [16-19]. 

Currently, various methods for partitioning TOU periods can be 

classified into two types: (i) load value-oriented, (ii) optimization 

objective-oriented.  

(i) The load value-oriented methods can analyze the magnitude 

of the load, clustering algorithms like fuzzy c-means (FCM) and 

k-medoids are widely used. Fuzzy membership functions are used 

in Literature [20] to extract the relationship between the load 

magnitude at each moment to obtain the peak and valley periods. 

For practical implementation with minimal policy adjustment in 

Literature [21], the levels of TOU price remain unchanged, and 

the daily periods are divided into three clusters using FCM. 

Literature [22] also proposes a new FCM to partition daily 

periods. K-medoids is used in Literature [23] to build a peak-flat-

valley (PFV) period partition model. In addition, the period 

partition model combined with probability distribution is also 

feasible in Literature [24].  

(ii) On the other hand, the optimization objective-oriented 

methods allow for the allocation of periods to achieve the 

interests of policy maker. To reflect the connection between 

period partition and demand response, and maximize the utility of 

TOU, Literature [25] proposes the index of demand response to 

modify the period partition obtained only based on the 

membership functions. Literature [26] identifies valley periods 

by analyzing the redundancy of new energy generation, which 

can give full play to the demand response resources and 

promote renewable energy consumption. To fully consider the 

relationship between period partition and user behavior, and 

further expand the benefits, period partition is directly 

incorporated into the planning stage in Literature [27]. 

However, in some practical scenarios, we only have 

demand-side power data to support the period partition, 

without the support like historical period partition, prices of 

different periods and other related user information. Therefore, 

the role of the load value-oriented methods is not negligible. 

W 
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The application of clustering algorithms in load values-based 

methods is extensive. But, the clustering effect is pretty 

sensitive to the initialization and iteration process. How to 

improve the algorithms has attracted widespread attention. 

Generally speaking, improvement methods can be divided into 

two classes: (i) improve the iterative approach, (ii) improve 

the initialization. (i): Literature [28] proposes an FCM with 

discriminative embedding to solve the problems including 

suboptimal results because of the influence of noises and 

redundant features. Literature [29] combines k-means and 

spectral clustering, then establishes a clustering method that 

can directly minimize the sum of the distances between points 

in the same cluster, the trouble of measuring the similarity 

between points is avoided. (ii): To deal with the random 

initialization, Literature [22] makes use of an improved 

particle swarm optimization based on support vector machine 

regression to find the initial cluster centers, makes it out of the 

local optimal, and thus classifies more accurate peak and 

valley periods. Literature [23] employs the maximum distance 

method to determine the initial center of each period. In this 

paper, we improve FCM based on initialization. 

In terms of the time resolution of already researched power 

data, it is worth noting that all above discussed studies ranged 

from 15 minutes to 1 hour, as they make TOU policies based 

on different benefits or targets. However, we know that with 

the higher penetration of renewable energy sources and more 

diverse user demands, the load curve will become more 

complex and nonlinear. Studying more complex data can help 

us determine a more accurate distribution of PFV periods to 

improve overall benefits. The load data with different time 

resolutions are shown in Fig. 1. 
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Fig. 1. Load with different time resolutions. 

It is clear that lower time resolution means more 

information on demand response during any time interval will 

be blurred and thus difficult to be collected by the power 

supply side, which ultimately leads to lower user satisfaction 

as well as grid stability [11]. 

According to the above analysis, considering TOU with 

higher time resolution is meaningful. Therefore, we conduct a 

period partition study based on improved FCM (IFCM) and 

abnormal periods (AP) correction for load data with a time 

resolution of 5 minutes.  

The contributions of this paper are described as follows: 

(i) This paper proposes modified membership functions 

(MMF) which fully consider the characteristic of load curves. 

They can identify the period type of the load in specific 

intervals without the aid of clustering algorithms and prior 

knowledge. And the method for calculating fuzzy function 

parameters based on the loss function is given. This method 

ensures the maximum availability of MMF and is easy to 

explain and understand. 

(ii) This paper establishes the AP correction method, which 

includes a recognition model and a correction model based on 

fuzzy subsethood (FSS). The correction is designed to address 

the problem that FCM clustering process cannot consider the 

scheduling rules in which the load period type remains 

unchanged over a longer period.  

The remainder of the paper is organized as follows. Section Ⅱ 

proposes the structure of MMF, and the calculation method of 

fuzzy parameters. Section Ⅲ introduces the initial TOU period 

partition based on IFCM, and AP from clustering results. 

Section Ⅳ builds models for AP correction. Section Ⅴ carries 

out the case study. The paper is summarized in Section Ⅵ. 

II. IMPROVED INITIALIZATION OF FCM 

Providing a reasonable initial membership degree in 

advance can overcome the randomness of FCM. Based on this, 

this paper aims to modify conventional membership functions 

(CMF) for improving the efficiency of clustering.  

A. Conventional Membership Functions 

Membership functions in general can be divided into three 

types: big-scale, small-scale, and middle-scale. In TOU period 

partition, CMF are usually used to describe the correlation 

between load and peak-flat-valley (PFV) periods [30]. The 

membership degree under CMF can make FCM clustering 

stable. The structure of CMF is shown in Fig. 2. 

1

Pt

u

ba c0
 

Fig. 2. CMF structure for PFV periods. 
where, a, b and c are the minimum value, the mean value and 
the maximum value of the load, respectively.  

Although CMF can calculate the PFV membership degree 

of any load curve easily and quickly. However, the uniform 

setting of their parameters ignores the variability of load curve 

features, resulting in CMF only stabilizing the clustering effect 

but not optimizing the clustering efficiency. And this is 

exactly what we are aiming at improving. 

A. Modified Membership Functions 

Unlike the structure and parameter setting of the CMF, 
modified membership functions (MMF) we proposed fully 
consider the characteristic of load curves. 

This paper adopts the semi-trapezoid membership function 

to calculate the membership degree of peak period, as shown 

in Fig. 3 and (1). As the membership degree within [a , b] is 

not high, the calculation of this part is not considered. 
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Fig. 3. MMF structure for peak period. 
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where, p
tu  is the membership degree of load point t to peak.  

Similarly, MMF for valley period is shown in Fig. 4 and (2). 

The membership degree within [ b , c ] is not high, the 

calculation of this part is also not considered.  
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Fig. 4. MMF structure for valley period. 
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where, v
tu  is the membership degree of load point t to valley.   

Here, MMF for flat period adopts a triangular shape which 

is shown in Fig. 5 and (3), and only the membership degree 

within [a , c] is considered. 

1

Pt

u

a b c0

uf (Pt)  

d

 

d

 
Fig. 5. MMF structure for flat period. 
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where, f
tu  is the membership degree of load point t to flat. 

Compared to CMF, which fuzzes the entire load curve, some 

intervals of MMF are clear. In practical engineering, the fuzzy 

values of a and c can be confirmed based on the experience of 

TOU policy makers or a priori knowledge, but this still brings 

some risk. Therefore, MMF must be established with reasonable 

conservativeness. The fuzzy parameters: a, b and c are 

calculated by (4)-(6). 

( ) ( ) ( )( )min Load (1 ) max Load min Loada = + − −        (4) 

( ) ( ) ( )( )max Load (1 ) max Load min Loadc = − − −        (5) 

( ) 2b a c= +                                    (6) 

where,  0,1   is the level of conservativeness. 

C. Confirmation of Fuzzy Parameters 

Since CMF are applicable to any load curves, and the load 

points under these functions are correlated with each period 

(peak-flat-valley) at any time, we suppose that CMF are the 

most conservative. In this paper, the loss function (LF) based 

on mean square error is used to quantify the conservative 

difference between MMF and CMF. And  is confirmed by 

the variation of this difference to maximize the feasibility of 

MMF. The key calculation models are shown below. 
T

mod mod mod mod
p, f , v,, ,t t t tu u u =  u                         (7) 

T
con con con con

p, f , v,, ,t t t tu u u =  u                           (8) 

                    ( )
2

mod con
mod con

1

1
LF

T

t t
tT =

= −u u u u，                 (9) 

1

0 1

LF LF LF LF
lim

i i

i i

d

d    

+

 → +

 −
= =

 −
                 (10) 

where, mod
tu and con

tu are the membership degree vectors of the 

load under MMF and CMF, respectively.  

The specific confirmation process of fuzzy parameters is 

shown in Fig. 6. 

Build CMF according to Fig. 2  

Calculate conservativeness difference 

LF by (7)-(9)
   

 

is equal to        ? min

Build MMF by (1)-(6)  

Calculate the slope of LF sequence by (10)

   Find the first local maximum slope

Find the corresponding      to obtain a, b, c

  = − N

Y

 Set conservativeness level 


 

Fig. 6. Flow of fuzzy parameter confirmation. 

Clearly, a lower  leads a larger value of LF. It is easy to 

understand that a larger value of LF means higher risk, the 

feasibility and conservativeness of MMF are more difficult to 

be guaranteed, and the selection of a and c is more 

unreasonable. So, the level of conservativeness  should be as 

high as possible. Besides, the local maximum slope means that 

the current variation of LF is the most noticeable in its 

neighborhood, indicating that the level   has a significant 

impact on the conservativeness of MMF. This is why we 

believe that the first local maximum slope is worth being 

chosen. 



4 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

III. INITIAL TOU PERIOD PARTITION 

The initial membership degree from MMF help FCM to 

overcome the randomness, and optimize the rationality of 

initialization. Combining the above analysis, we then use 

FCM clustering to partition the initial TOU periods. 

A. Flow of Period Partition Based on IFCM 

From MMF, we can get PFV membership degree matrix U. 

It is expressed as follows. 
p p p
1 2

f f f
1 2

v v v
1 2

T

T

T

u u u

u u u

u u u

 
 
 
 
 

U =                            (11) 

The membership degree must meet constraint (12). 

1

s.t. 1,     0 1t

c

k

k k
tu u

=

=                      (12) 

So, U must be normalized to be applicable in clustering. 

During the algorithm operation, the cluster centers and the 

membership degree update each other iteratively and finally 

converge. The calculation methods are shown below. 

2
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                            (13) 

2

1
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k

c t
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u
vP

vP=
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−
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−

                        (14) 

When objective function (15) is satisfied, we stop clustering 

1

2
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2
m n (i )

k

k
tt

c T

k

t

vPuJ
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−=               (15) 

The flow chart is shown in Fig. 7. 

Obtain initial membership degree from MMF  

Normalize membership degree matrix U  

 Update membership degree  by (14)

 Calculate cluster centers by (13)  

Objective function (15) is met ? N

Output initial TOU period partition

Y

 
Fig. 7. Flow of initial period partition. 

B. Abnormal Period Description 

Based on experience and practical engineering, we need to 

ensure that the period type does not change frequently within a 

short period of time to support the formulation of TOU. 

However, from initial TOU period partition above, we can see 

that high-time-resolution load data with strong non-linearity 

leads excessively rapid changes of period type, which are not 

conducive to the decisions of actual scheduling plans.  

For convenience, we name the rapidly changing periods as 

abnormal periods (AP) and the remaining periods as normal 

periods (NP). We select typical period partition to analyze the 

structure of AP and NP in Fig. 8. 

40 60 80 100
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P
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W
)
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Fig. 8. Typical structure of AP and NP. 

It can be seen that in a short period, the valley-flat period 

types in the first AP changes multiple times, while the peak-

flat period types in the second AP also changes. This feature 

also exists in other periods. Extract this structure and obtain 

the distribution diagram as shown in Fig. 9. 

P1 P2 ... Pi
... Pj

NPs

Pj+1 ... Pk Pk+1

AP(s,s+1)

... Pl
... PT

NPs+1

j-i+1 k-j l-k

 
Fig. 9. AP and NP abstract distribution diagram. 

The interval lengths (time lengths) of the first NP and the 

second NP are j-i+1 and l-k, respectively, and there is only one 

period type within them. The AP (length is k-j), contains at 

least two period types within it. 

IV. CORRECTED TOU PERIOD PARTITION 

To correct AP, this paper firstly proposes the recognition 

model to filter the clustering results. After obtaining AP, the 

correction model is then constructed to optimize the clustering 

results and make them usable. 

A. AP Recognition Model 

The clustering results show that AP is distributed between 

different NP. Due to the complex period types within AP, it is 

difficult to build a universal model to directly find all different 

AP. But NP only has three types: peak, flat, and valley, 

therefore, filtering AP based on NP recognition is feasible. 

We first provide some symbols to describe the model. 

The clustering results of IFCM are represented as X. 

1 2 1
[ , ... , ... ]Ti if pv v v+

=X                          (16) 

Then, perform attribute value integer processing on X. We 

set peak-flat-valley as 3-2-1, then obtain the integer period 

partition Y. 

[1,1...2,3...1]=Y                                (17) 

If Y has n subsequences and T numbers, then they are 

represented as Ys1, Ys2,…, Ysn and y
1
, y

2
,…, y

T
, respectively; 

Len{.} is the length of a sequence; First{.} represents the first 

element of a sequence. 

The flow of AP recognition model is shown in Fig. 10. 
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j=1, i=1  
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Ergodic Y from yi  

 

Ysj       yi  

N

Y

Determine the NP length threshold  

N

i<T ?Yi=i+1

j=j+1

N

Y

Ysj is AP

Output AP recognition results

Len{Ysj}<   ?

Ergodic Ys1,Ys2, ,Ysn 

Input period partition by 

IFCM clustering

Ysj is NP

 
Fig. 10. The flow of AP recognition model. 

B. AP Correction Rules 

We clarify that there is only one period type in any NP, 

while there are at least two types in AP, which come from 

adjacent NP. This is related to the load data structure and 

algorithm iteration process, the reasons for this phenomenon 

are not be elaborated here. We view each AP and its adjacent 

NP as one single correction unit, and correct AP one by one. 

So, constraint (18) should be met. 

 , 1 , { , 1}NP AP s s w w s s+  = +                     (18) 

It is worth mentioning that (18) can effectively ensure the 

maximum continuity of period types, preventing valley 

periods from being corrected to peak periods, or peak periods 

to valley periods. 

The correction rules for AP are shown in Table Ⅰ. 

TABLE Ⅰ 

CORRECTION RULES FOR AP 
Correction rules Adjacent NP types AP correction 

Rule 1 1NP NPs s+=  Partitioned as type of NPw  

Rule 2 1peak  flatNP NPs s+= =  AP is partitioned as 

Rule 3 1flat  valleyNP NPs s+= =  type of NP s or 1NP s+  

Rule 4 1flat  peakNP NPs s+= =  by correction model 

Rule 5 1valley  flatNP NPs s+= =   

C. AP Correction Model 

From the correction rules, the correction model needs to be 

designed to choose the optimal period type for AP based on 

the distribution of load data. So, we propose the model based 

on fuzzy subsethood (FSS).  

FSS values represent the degree to which a fuzzy set is a 

subset of another fuzzy set [31-33]. For example, for two 

fuzzy sets A and B, the FSS value of A to B can be denoted as 

S(A, B).  

A B A B

A A1 1

( ) min{ ( ), ( )}1 1
(A,B)

( ) ( )

n n
i i i

i ii i

u u u
S

n nu u

  

 



= =

= =     (19) 

where, (A, B) [0,1]S  , ( )A iu  and ( )B iu   are the membership 

degree of 
i  to A and B, respectively. 

Here, we give two possible situations in this paper [34]: 

SIT 1 if S(A, B)=1 and S(A, B)=0. It is evident that A B , 

while B is not a subset of A. 

SIT 2 if 0<S(A, B)<S(B, A)≤1. Neither A B nor B A , 

but FSS indicates that B is more a subset of A than conversely. 

Doing so is good for AP correction, on the one hand, 

dividing AP(s,s+1) into NPs or NPs+1 can be equivalent to 

comparing the FSS of two NP. On the other hand, each AP 

having two possible correction results is helpful for the 

construction of FSS. 

Specifically, the correction model is as follows: calculate 

S(us
NP, us+1

NP )  and S(us+1
NP , us

NP)  by (20)-(21), then correct the 

period type of AP based on their values. 
NP

( , 1)AP s ss sfu +=                               (20) 

NP
( , 1)1 1 AP s ss sfu ++ +

=                             (21) 

where, us
NP  is the fuzzy set mapped by the load points in 

AP(s,s+1) according to f
s
. As only two different fuzzy subsets 

need to be considered here, f
s
 can applied as (22)-(23). 

,                                          

(2 )

1 ,                                    

( )
,    

  

t

t t

ts

t

P

P P
f P

P











 
 

 






− −
= 






− −
 

−

− 

         (22) 

1
            1

s sf f+
= −                        (23) 

where, ( , 1)APt s sP + ,  is the function switching coefficient. In 

rules 2 and 3, the period type level of NPs is higher than that 

of NPs+1, so we set 0 = . Similarly, in rules 4 and 5, the type 

level of NPs is lower than that of NPs+1, we set 1 = .  and 

are fuzzy parameters, which are confirmed by the period types 

of NPs and NPs+1. The two values should reflect the load 

feature of NP. We set (24)-(25) and (26)-(27) to calculate 

and  , respectively. 

min
Rule 2

min
=0

min  
Rule 3

min

c

b

b

a










 −


−  


 − 
 

−  

                 (24) 

1

NP

     NP

s.t. s

s



+




                                  (25) 

          

min
Rule 4

min
=1

min  
Rule 5

min

b

c

a

b










 −


−  


 − 
 

−  

                 (26) 

1

NP

        NP

  s.t. s

s



 +




                                   (27) 

The flow of the correction model is shown as follows. 
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Algorithm 1 AP Correction Model  

Input: AP recognition results 

Output: Period partition without AP 

1: Ergodic each AP(s,s+1)  

2: if AP(s,s+1) is in accordance with rule 1 do 

3: NPw←AP(s,s+1) 

4: else if AP(s,s+1) is in accordance with rule 2 or rule 3 do 

5: Calculate  and  by (24)-(25) then 

6: Set =0  

7: else if AP(s,s+1) is in accordance with schemes 4 or 5 do 

8:  Calculate  and  by (26)-(27) then 

9:          Set =1  

10: end if 

11: Calculate S(uNP
s ,uNP

s+1) and S(uNP
s+1,uNP

s ) by (19)-(23) 

12: if S(us
NP, us+1

NP ) > S(us+1
NP , us

NP) then 

13: NPs+1←AP(s,s+1) 

14: else if S(us
NP, us+1

NP ) < S(us+1
NP , us

NP) then 
15: NPs←AP(s,s+1) 

16: end if 

 

V. CASE STUDY 

In order to highlight the superiority of modified membership 

functions (MMF) and compare the clustering effect before and 

after the abnormal periods (AP) correction, the following 

methods are used to evaluate the results.  

Partition coefficient (PC) and partition entropy (PE) based 

on membership degree can be used as feasible evaluation 

indexes in this paper [35-37]. PC and PE can be expressed as 

( )
2

1 1

1
PC

c n

k i

k
iu

n = =

=                                (28) 

1 1

1
PE log

c n

k

k k
i i

i
u u

n = =

= −                           (29) 

where, the largest PC and the smallest PE mean the best effect. 

Silhouette coefficient (SC) is employed for clustering effect 

evaluation in this paper. Assume that the average distance 

from i  to other data samples in the same cluster is noted as 

a(i). The average distance from i to all samples in different 

clusters is bk,i, and b(i)=min{b1,i,...,bk,i}. 

1

( ) ( )

max{ ( ), ( )}
SC

n

i

b i a i

a i b i

n

=

−

=


                        (30) 

where, the bigger the SC is, the better the clustering quality is. 

To avoid the contingency of algorithm to data set, and enhance 

the effectiveness and reproducibility of the method proposed in 

this paper. We select two daily load curves in Fig. 1 to carry out 

study case. In parameter settings, the NP length threshold  is set 

as 0.5 hours, and step length  is 0.01. 

A. Fuzzy Parameter Confirmation 

According to (1)-(10), we can obtain the relationship 

between the risk and conservativeness level . They are given 

in Fig. 11. 

0.95 0.90 0.85 0.80 0.75 0.70
0

5

10
Load 1

LF

Slope

0.95 0.90 0.85 0.80 0.75 0.70
0

2

4

6

Load 2



  
Fig. 11. LF, slope- . 

It is clear that lower conservativeness levels mean larger risk in 

MMF construction. From the above figure, we can see that the 

value of LF increases monotonically, for power dispatchers, 

selecting the appropriate  requires sufficient work experience. 

When 0.21 = , the slope reaches its first local maximum value 

in both daily load curves, indicating that the conservativeness 

change is the most obvious within the confidence level 

neighborhood. The values of fuzzy parameters: a, b and c of two 

daily load curves are shown in Table Ⅱ. 

TABLE Ⅱ 

FUZZY PARAMETERS OF MMF 
Load curves Fuzzy parameters Values(kW) 

Load 1 

a 4086.62 

b 3110.53 

c 2134.44 

Load 2 

a 3688.95 

b 2762.67 

c 1836.39 

 

B. Initialization Based on MMF 

It is necessary to evaluate the membership degree to prove 

the effectiveness of MMF. The PFV membership degree of 

two daily load curves after normalization is given in Fig. 12 

and Fig. 13. 

 
Fig. 12. PFV membership degree of Load 1. 
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Fig. 13. PFV membership degree of Load 2. 

We can see that the membership degree under MMF is able 

to maintain 0 or 1 in a continuous interval, which is clear, not 

fuzzy. And it is worth noting that only two period types (flat 

and valley) need to be considered in early morning and late 

night (about 23:00~04:00). This surely follows the work and 

rest patterns of people. While, for CMF, we need to calculate 

the possibility of three different period types, which 

undoubtedly makes FCM harder.  

PC and PE evaluation results for two membership functions 

are shown in Table Ⅲ. 

TABLE Ⅲ 

EVALUATION FOR MMF AND CMF 

Load curves Functions PC PE 

Load 1 
MMF 0.7904 0.1315 

CMF 0.4900 0.3773 

Load 2 
MMF 0.7172 0.1770 

CMF 0.4519 0.4013 

 

As can be seen from Table Ⅲ, for Load 1 and Load 2, PC of 

MMF are both higher than those of CMF, and PE of MMF are 

both lower. The evaluation results show that MMF can more 

accurately describe the PFV membership degree.  

In addition, according to (13), the initial membership degree 

is able to generate initial cluster centers, which are also 

applicable to the initialization of other clustering algorithms 

like k-means clustering algorithm. They give us another view 

to verify MMF. To expand the use of MMF, we do the case 

study again using k-means and put the results in Fig. 20 and 

Fig. 21 in Appendix. 

C. Evaluation of Clustering Process 

After the initialization, the initial periods can be partitioned, 

and the iteration process of J is given in Fig. 14.  

 
Fig. 14. The iterations of FCM based on random initialization, 

MMF and CMF. 

Multiple runs of FCM with randomly initializing 

membership degree clearly show that they have a worse 

operation performance. The convergence speed is slower 

while the instability of their iterations is also noticeable, which 

can greatly affect the partition efficiency and effect.  

The specific comparison of iteration processes initialized by 

MMF and CMF is shown in Fig. 15. 

 
Fig. 15. Iteration processes initialized by MMF and CMF. 

As seen above, despite the approximate convergence speed, 

the clustering process initialized by MMF is more efficient, 

the mean value and variance of J are shown in Table Ⅳ. 

TABLE Ⅳ 

EVALUATION OF ITERATIONS 

Load curves Functions Mean values(kW) Variance(kW) 

Load 1 
MMF 17024234.10 53340.64 

CMF 17074093.63 170384.50 

Load 2 
MMF 17454938.62 71620.08 

CMF 17496146.57 179206.94 
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The iterations of cluster centers are given in Fig. 16 and Fig. 

17. 

 
Fig. 16. Iteration of cluster centers of Load 1. 

 
Fig. 17. Iteration of cluster centers of Load 2. 

It can be seen that the cluster centers converge to the same 

value for all period types regardless of which membership 

functions are used. However, just like the iteration process of 

objective function, the iterations of cluster centers are faster 

and more stable. 

D. Correction of Initial TOU Period Partition 

Since objective function value J and cluster centers converge 

to the same value, the final clustering results are same. So, 

period partitions no longer distinguish between CMF and 

MMF here. The initial period partitions and their correction of 

two daily load curves are shown in Fig. 18 and Fig. 19. 
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Fig. 18. Initial period partition and correction of Load 1. 
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Fig. 19. Initial period partition and correction of Load 2. 

Compared to Load 1, the Load 2 curve is much smoother, 

there is only one AP that needs to be corrected here. The 

specific time and period types of each AP in Load 1 and Load 

2 are shown in Table Ⅴ and Table Ⅵ, respectively. 

TABLE Ⅴ 

THE SPECIFIC PERIOD PARTITION OF LOAD 1 

 Initial TOU period partition Corrected TOU period partition 

Period types NP time nodes AP time nodes Total time NP time nodes Total time 

Peak 

08:05~12:00 

13:05~16:20 

16:25~17:40 

07:40~07:50 

17:45~17:50 

17:55~18:00 

8h 45min 
08:05~12:00 

13:05~17:40 
8h 30min 

Flat 

06:00~07:40 

12:00~13:05 

18:00~22:50 

05:00~05:05 

05:10~05:15 

05:30~05:45 

05:50~05:55 

07:50~08:05 

16:20~16:25 

17:40~17:45 

17:50~17:55 

22:55~23:00 

8h 40min 

06:00~08:05 

12:00~13:05 

17:40~22:50 

8h 20min 

Valley 
00:00~05:00 

23:00~24:00 

05:05~05:10 

05:15~05:30 

05:45~05:50 

05:55~06:00 

22:50~22:55 

6h 35min 
00:00~06:00 

22:50~24:00 
7h 10min 
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TABLE Ⅵ 

THE SPECIFIC PERIOD PARTITION OF LOAD 2 

 Initial TOU period partition Corrected TOU period partition 

Period types NP time nodes AP time nodes Total time NP time nodes Total time 

Peak 
09:20~14:15 

18:55~20:25 / 6h 25min  
09:20~14:15 

18:55~20:25 
6h 25min 

Flat 

05:15~09:20 

14:15~18:55 

20:25~22:50 

22:55~23:05 11h 20min 

05:15~09:20 

14:15~18:55 

20:25~22:50 

11h 10min 

Valley 
00:00~05:15 

23:05~24:00 
22:50~22:55 6h 15min 

00:00~05:15 

22:50~24:00 
6h 25min 

 

From the above tables, it can be seen that in Load 1, the 

total time of peak and valley becomes less, while the time of 

valley period increases. The change of Load 2 is not obvious, 

the time of peak period does not change, while the time of flat 

period is slightly shortened. The correction for each AP is 

shown in Table Ⅶ. 

TABLE Ⅶ 

PERIOD TYPES INCLUDED IN AP 

Load curves AP location Before correction After correction 

Load 1 

AP1 flat-valley valley 

AP2 peak-flat flat 

AP3 peak-flat peak 

AP4 peak-flat flat 

AP5 flat-valley valley 

Load 2 AP1 flat-valley valley 

 

The effectiveness of the correction model can be proved by 

SC index evaluating for the quality of the period partition. It is 

shown in Table Ⅷ. 

TABLE Ⅷ 

SC INDEX EVALUATION   

Load curves Period partition SC 

Load 1 
Initial 0.7248 

Corrected 0.7284 

Load 2 
Initial 0.6486 

Corrected 0.6379 

 

The evaluating results change slightly after the AP 

correction (0.4967% for Load 1 and 1.649% for Load 2, 

respectively). This is acceptable, because the correction model 

changes the initial clustering results, which necessarily leads 

to better or worse clustering quality, but this change is within 

tolerable limits. Generally speaking, the slight clustering effect 

loss ensures the feasibility of corrected TOU period partition 

and proves the effectiveness of the correction strategy.  

VI. CONCLUSION 

In the field of time-of-use (TOU) tariff period partition, to 

deal with high-time-resolution load data with strong non-

linearity, this paper proposes an improved FCM (IFCM) and 

the abnormal periods (AP) correction method to form a new 

partition method.  

The modified membership functions (MMF) can effectively 

describe the correlation of load with each period. Based on the 

membership degree initialized by MMF, the clustering 

efficiency is obviously improved. 

The selection of fuzzy parameters for MMF is risky. It is 

feasible to quantify conservativeness difference using loss 

function, and the parameters chosen by finding the first local 

maximum slope can make MMF applicable mostly. 

The correction method can effectively correct AP from 

clustering, producing feasible TOU period partition. The 

additional study in the Appendix shows that the cluster centers 

initialized by MMF are also applicable to k-means. 

Based on the study above, replacing FCM and using k-

medoids for clustering is worth investigating. In addition, the 

AP correction method can be developed based on maximizing 

the clustering quality. 

APPENDIX 

The initial cluster centers based on MMF and CMF are 

applied to k-means clustering algorithms. Then, the clustering 

results are corrected. The following iteration processes are 

obtained to prove the effectiveness of MMF and AP correction 

method. Here, we simply describe the principle of k-means as 

follows. 

Step 1: Generate initial cluster centers. 

Step 2: For each sample, its distance to all initial cluster 

centers is calculated respectively. Then they are divided into 

the cluster with the shortest distance. 

Step 3: The mean value of cluster is taken as a new center. 

Step 4: Repeat Step 2-Step 3 until the cluster centers no 

longer change. 

 
Fig. 20. The iterations of k-means based on random 
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initialization, MMF and CMF. 

 
Fig. 21. The iterations of k-means based on MMF and CMF. 
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Fig. 22. Initial period partition and correction of Load 1. 
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Fig. 23. Initial period partition and correction of Load 2. 

TABLE Ⅸ 

SC INDEX EVALUATION   

Load Correction SC 

Load 1 
Initial 0.7184 

Corrected 0.7079 

Load 2 
Initial 0.6486 

Corrected 0.6379 
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