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Abstract

In the study of fatigue fracture in metals, fatigue indicator parameters (FIPs) are nonlocal quantities that are used to model

and predict the driving force needed to incubate fatigue cracks. These FIP values can be used to design materials with

microstructural features less prone to fatigue failure. However, the nonlocal nature of fatigue indicator parameters introduces

another unknown variable that must be determined for accurate predictions: the volume over which nonlocal averages are

performed. Many studies use nonlocal volumes that enclose a predetermined number of finite elements in a polygranular crystal

plasticity simulation. To encapsulate the entire microstructure, these nonlocal volumes must be conformal to the microstructure

(i.e., they do not overlap or have gaps between them). Some studies base the length scale of these nonlocal volumes on constant

values or on the size of relevant microstructural features. It has been shown that if the length scale is too small, the nonlocal

FIP predictions are mesh dependent. But, if the length scale is too large, the experimentally observed statistical spread in

fatigue life is not captured. This work introduces a nonconformal nonlocal volume (i.e., a volume that surrounds each element

and overlaps nonlocal volumes). Averaging FIP over this nonlocal volume both captures the spread in fatigue data and is

mesh independent. It also allows for weighted nonlocal averages that would have excluded some of the microstructure using

the conformal approach. While this approach is more accurate than the previous approaches, it does require a large amount

of computational resources to determine each nonlocal volume, so a parallelized algorithm that is scalable across multiple

computing nodes is employed. The example polycrystalline material for this work is Ti-6Al-4V, a common titanium alloy with

a hexagonal closed-packed crystal structure.
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Abstract
In the study of fatigue fracture in metals, fatigue indicator parameters (FIPs) are nonlocal quantities that are
used to model and predict the driving force needed to incubate fatigue cracks. These FIP values can be used
to design materials with microstructural features less prone to fatigue failure. However, the nonlocal nature
of fatigue indicator parameters introduces another unknown variable that must be determined for accurate
predictions: the volume over which nonlocal averages are performed. Many studies use nonlocal volumes
that enclose a predetermined number of finite elements in a polygranular crystal plasticity simulation. To
encapsulate the entire microstructure, these nonlocal volumes must be conformal to the microstructure
(i.e., they do not overlap or have gaps between them). Some studies base the length scale of these nonlocal
volumes on constant values or on the size of relevant microstructural features. It has been shown that if the
length scale is too small, the nonlocal FIP predictions are mesh dependent. But, if the length scale is too
large, the experimentally observed statistical spread in fatigue life is not captured. This work introduces a
nonconformal nonlocal volume (i.e., a volume that surrounds each element and overlaps nonlocal volumes).
Averaging FIP over this nonlocal volume both captures the spread in fatigue data and is mesh independent. It
also allows for weighted nonlocal averages that would have excluded some of the microstructure using the
conformal approach. While this approach is more accurate than the previous approaches, it does require a
large amount of computational resources to determine each nonlocal volume, so a parallelized algorithm that
is scalable across multiple computing nodes is employed. The example polycrystalline material for this work
is Ti-6Al-4V, a common titanium alloy with a hexagonal closed-packed crystal structure.

K E Y W O R D S

Crystal Plasticity, Nonlocal Model, Probability and Statistics, Fatigue, Materials Design

1 INTRODUCTION

1.1 Overview

In the study of fatigue fracture in metals, fatigue indicator
parameters (FIPs) are nonlocal quantities that represent the
driving force to incubate fatigue cracks1,2 and correlate well to
crack tip opening displacement3. These FIP values can be used
to design materials with microstructural features less prone to
fatigue failure.1,4,5,6,7. However, the nonlocal nature of FIPs in-
troduces another variables that must be determined for accurate
predictions. Many studies use nonlocal volumes that enclose

Abbreviations: FIP, fatigue indicator parameter, HCP, hexagonal close-packed, IP, in-
plane direction, TT, through-thickness direction

a predetermined number of finite elements4,8,2,6,9. To encap-
sulate the entire microstructure these nonlocal volumes must
be conformal to the microstructure (i.e., they do not overlap
or have gaps between them). These nonlocal volumes intrin-
sically have a length scale; some studies set a constant length
scale4,8,10 while others determine the length scale relative to
the size of characteristic microstructural features2,11,6,9. It has
been shown that if the length scale is too small, the nonlo-
cal FIP data is mesh dependent. But, if the length scale is too
large, the experimentally observed spread in fatigue life is not
captured11. This work introduces a nonlocal nonconformal vol-
ume (i.e., a volume that surrounds each element, and overlaps
nonlocal volumes). Averaging FIP over this nonlocal volume
both captures the spread in fatigue data and is mesh indepen-
dent. It also allows for weighted nonlocal averages that would
have excluded some of the microstructure using the confor-
mal approach. While this approach is more accurate than the

Fatigue & Fracture of Engineering Materials & Structures 2023;00:1–8 wileyonlinelibrary.com/journal/ c© 2023 Copyright Holder Name 1
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previous approaches it does require a large amount of com-
putational resources to determine each nonlocal volume, so a
parallelized algorithm that is scalable across multiple comput-
ing nodes is employed. The example polycrystalline material
for this work is Ti-6Al-4V, a common titanium alloy with a
hexagonal closed-packed crystal structure.

1.2 Background

It is common to use S–N or ∆εp–N data (∆εp/2 is plastic strain
amplitude and S is stress amplitude) to determine the number
of mechanical load cycles until failure N of a material9. This
is called the fatigue life of the material9. To fit a curve to the
data, a power law is often used (for example, ∆εp = ANB ,
where A and B are parameters specific to a given material). To
address different types of load states such as torsion or tension,
different data sets and different curves are needed12 . However,
if fatigue life is not related directly to plastic strain or stress, but
to a FIP then this load dependence is reduced. The relationship
between FIPs and fatigue life often takes a power low form

FIP = ANb, (1)

where A and b are calibration parameters and the value of FIP
is generally calculated based on the stress and strain state in the
material.

Fatigue cracks nucleate, incubate, and the grow to small then
large cracks; However the amount of cycles is not equal for
each of these phases. Short or long crack growth has been
observed to amount to a small percentage of the total fatigue
life of a material13,1. The FIP determined here relates only to
the crack life (N) prior to short or long crack growth (but should
generally address a large percentage of the total life). Similar to
the work in6, this study will address incubation of cracks only,
but this should be representative of the total life of the material.

For alloys, larger inclusions, defects, or grains that are oriented
to favor plasticity tend to lower the fatigue life of the material.
However, when calculating a FIP at the microscale using com-
putational crystal plasticity and finite element models there is
no intrinsic length scale associated with the model; and thus,
FIPs do not automatically account for the size effect. Thus,
McDowell et al.14,15 introduced a length scale resulting in a
non-local Fatemi-Socie FIP. Here a crystallographic version of
the Fatemi-Socie FIP16,11 is used and defined by

FIP(α) =
∆γ(α)

p

2

(
1 + κ

σ(α)
n

σy

)
, (2)

where, ∆γ(α)
p is the range of plastic shear strains over a cycle1 ,

σ(α)
n is the stress perpendicular (i.e., normal) to a slip plane, all

for a slip system α, σy is the yield strength. Fatemi and Socie17

corrected for discrepancies between results from uniaxial and
torsional loaded fatigue specimen via the constant κ. As shown
by Eq. 2, the FIP value is determined for each slip system. In
the work here, only the maximum FIP value over all the slip
systems (at a given material point) is stored. In the work here κ
is 0.55 (as used in9) and σy is 900 MPa (the average bulk yield
strength given for Ti-6Al-4V in18). The plastic strain tensor
εεεp is projecting the “onto the slip direction sss(α) and slip plane
normal nnn(α) respectively” to determine the plastic shear strain
γ(α)

p
9

γ(α)
p = sss(α) · εεεp · nnn(α). (3)

Similarly, Cauchy stress σσσ is projected onto a slip plane to
determine the normal stress σ(α)

n

σ(α)
n = nnn(α) · σσσ · nnn(α). (4)

To account for the size dependent relationship of of fatigue
life on microstructure feature size, the FIP value in Eq. 2 is
nonlocal. In the work here, every material point (integration
point in finite element) is assigned a FIP and these are averaged
over a nonlocal region similar to the average volume of the
crystallographic grains (as in11).

Yet the shape of this region and how this nonlocal volume
averaging is performed can take several forms. Castelluccio
et al.11 show that neglecting this nonlocal volume average—
in a finite element simulation—results in a mesh dependent
FIP value. They also consider averaging over crystallographic
grains; this eliminates mesh dependence but reduces the spread
in FIP values to an extent where it no longer represents fatigue
statistics observed experimentally. This approach also does not
hold the nonlocal volume constant, so microstructures with a
wide distribution of grain sizes could result in very high FIPs
in a few small grains.

Castelluccio et al. show that nonlocal volumes based on crys-
tallographic slip planes result in both a realistic distribution of
FIP and minimal mesh sensitivity. However, using as slip plane-
based nonlocal volume requires predetermining the shape of
a slip plane, which may become difficult for hexagonal close-
packed (HCP) materials such as titanium where several slip
planes carry the majority of the shear stress.

In Castelluccio et al.’s study, they show that nonlocal volumes
that contain more than one crystallographic grain have advan-
tages; they state that their “results demonstrate the limitation
of using an apparent Schmid factor (considering only grain ori-
entation and ignoring intergranular interactions) as a predictor
of fatigue crack formation”11.

Another disadvantage of nonlocal averaging over grains is that
it does not address size effect; the model would produce the
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same result with large or small grains (unless a size dependent
constitutive law is implemented). Conversely, using a geometric
nonlocal volume like a sphere or cube that is not based on the
microstructure morphology allows the nonlocal volume to stay
constant in size for large and small grains which in turn results
in size effect.

Several studies use nonlocal volumes that contain more than
one crystallographic grain; the studies in4,8,2,6,9 predefine static
nonlocal volumes for calculating FIP that are static (i.e., they
do not move in the microstructure). This approach requires that
all nonlocal volumes be conforming, such that there is no space
in the microstructure where FIP is not averaged. It also does
not allow for overlapping volumes.

Leblond, et al.19,20 pose a nonlocal ductile fracture model that
addresses unlimited localization in porous solids—where the
microstructural defects are pores. They propose an averaging
method for porosity that that is not uniform over a nonlocal
volume and that “considerably improves numerical predictions”.
Reframing this approach in terms of FIP rather than porosity
evolution rate gives

FIPnl(xxx) =
1

A(xxx)

∫
Ω

φ(xxx – yyy)FIPloc(yyy)dΩ, (5)

where FIPloc and FIPnl are the local and nonlocal FIP values
respectively. The position where the nonlocal FIP is calculated
is xxx and yyy is positions around xxx over which FIPloc is integrated.
The nonlocal volume is Ω, and φ is a Gaussian distributed
weighting function. The normalizing value of A is given by

A(xxx) =
∫
Ω

φ(xxx – yyy)dΩ, (6)

and
φ(xxx) = exp (–||xxx||2/l2), (7)

where l is the nonlocal length scale. For the work here, l
is 13.37% of the length of the unit cell (which is based
on achieving a nonlocal volume equal to the average grain
volume).

If static conformal nonlocal volumes are used with the approach
in Eq. 5, then regions near the edge of each volume carry a
much lower weight than regions near the volume’s centroid.
However, there is no reason that some regions of the microstruc-
ture should be excluded in this way when calculating nonlocal
FIP. To remedy this issue, the work here uses dynamic nonlocal
volumes (i.e., that move with the location at which FIPloc is cal-
culated) and are nonconformal (i.e., each volume can overlap
with other volumes). This means that unique spherical volumes
surround each point xxx at which FIPloc is calculated. So, ev-
ery finite element has its own nonlocal volume. An illustration
of these conformal and nonconformal nonlocal volumes are
shown in Fig.1.

F I G U R E 1 a) An illustration of a static conformal non-
local volume (red boxes) around several finite elements in a
polygranular microstructure b) An illustration of a three non-
conformal nonlocal volumes (colored boxes corresponding to
the element colors), notice that the nonlocal volumes overlap
and are centered around each element c) Conformal nonlocal
volumes in the 48× 48× 48 element mesh d) Three example
nonconformal nonlocal volumes in the 48× 48× 48 element
mesh (green, red, cyan circles), notice that the nonlocal volume
can now be spherical as they do not need to be conformal and
that they may overlap.

While these dynamic nonconformal nonlocal volumes reduce
mesh dependence while maintaining the statistical spread in
FIP seen experimentally and account for FIPs across grain
boundaries, they require the determination of a large number
of nonlocal volumes. For example, if a microstructural mesh
has 100,000 elements then 100,000 nonlocal volumes are deter-
mined. For regular meshes, an algorithm can be formulated to
efficiently determine these nonlocal volumes, but for irregular
meshes these nonlocal volumes need formulated by systemati-
cally searching the mesh. For that reason, an approach based
on Python parallel processing is proposed here. This approach
is scalable across many processors and computing nodes.

Determining each nonlocal volume is an embarrassingly paral-
lel task, so it can scale (nearly) linearly across a large number of
computing cores and computing nodes on a high-performance
computing cluster. Since Python’s multiprocessing mod-
ule21, does not easily scale across several computing nodes,
the work here uses the open-source Python library Dask22

for parallelization of pre-processing scripts (specifically the
dask.distributed library).
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2 MATERIALS & METHODS

2.1 Micromechanics Model

The micromechanics model follows the derivation of23 used
in6, only the key details of which are reproduced here. The
deformation gradient of the material FFF is decomposed into an
elastic FFFe and plastic FFFp part as

FFF = FFFe ·FFFp. (8)

This decomposition results in an intermediate configuration
where the material has only partially deformed (i.e., plas-
tic deformation but not elastic deformation). In this partially
deformed configuration, the plastic velocity gradient L̃LL

p
is

determined by

L̃LL
p

=
Nslip∑
α=1

γ̇(α) (̃sss(α) ⊗ m̃mm(α)), (9)

where Nslip is the number of slip systems, ⊗ is the tensor prod-
uct, γ̇(α) is a shear strain rate at which slip occurs, s̃ss(α) is the
direction of slip, and m̃mm(α) is the normal to the plane on which
slip occurs, all for a crystal slip system (α). To determine the
shear strain rate at which slip occurs, a rate dependent power-
law approximates the relationship between stress and strain rate
as

γ̇(α) = γ̇0

∣∣∣∣∣τ (α) – a(α)

τ (α)
0

∣∣∣∣∣
m

sign(τ (α)), (10)

where m is a material parameter, τ0 is a reference shear stress,
γ̇0 is a reference shear strain rate, a(α) is a backstress that
describes kinematic hardening, and τ (α) is the resolved shear
stress. The reference shear stress in each system is a weighting
factor of a constant reference shear stress τ (α)

0 = wτ0 where w is
a weighting factor and τ0 is the constant reference shear stress.
To determine the resolved shear stress τ (α), the Cauchy stress
σσσ is projected onto sss(α) and mmm(α) which are the slip direction
and slip plane normal respectively using

τ (α) = σσσ : (sss(α) ⊗mmm(α)), (11)

where (:) is a double tensor contraction. Non-Schmid stresses
that occur in titanium ,as shown in24, are not addressed in the
model. The reference shear stress τ0 is a constant. The evolution
of backstress a(α) is determined by

ȧ(α) = hγ̇(α) – ra|γ̇(α)|, (12)

where the direct and dynamic hardening factors are h and r
respectively.

Four families of slip systems in the HCP α phase are consid-
ered. These families are: basal, prismatic, pyramidal 〈aaa〉 and
pyramidal 〈ccc + aaa〉. The weighting factors w for the basal, pris-
matic, pyramidal 〈aaa〉 and pyramidal 〈ccc + aaa〉 families are 1.0,
1.0, 1.13, and 2.12 respectively. The first three weights are used
in25 and the pyramidal 〈ccc + aaa〉 weight is determined to match
the anisotropy of the material shown in26. The 〈ccc〉 to 〈aaa〉 ratio
is 1.599.

Only the α phase is modeled, rather than the α and β phase
together24,25. While this is an approximation,25 shows that the
main effect of the β is on the elasto-plastic transient regime be-
tween full elasticity and full plasticity, so the error in predicting
stress–strain response is minimal using this assumption.

2.2 Finite Element Model

The finite element model uses four different meshes ranging
from coarse to fine based on the mesh sizes used in11. These
meshes are 11 × 11 × 11, 19 × 19 × 19, 32 × 32 × 32, and
48× 48× 48 elements respectively and are shown in Fig.2. Re-
duced integration hexahedral finite elements with eight nodes
per element are used exclusively for implicit simulations using
Abaqus (2018) finite element software. Displacement boundary
conditions are applied on faces with normals in the negative
directions. Faces with normals in the x-, y-, and, z-directions re-
ceive only displacement constraints parallel to each face normal.
Constraint equations are used to enforce periodicity by holding
each free face flat. A displacement is applied to the microstruc-
ture in the x-direction; subsequently, the displacement in the
y- and z-directions contracts or extends based on the apparent
Poisson’s ratio of the material. Each microstructure mesh is
loaded cyclically for three full cycles and a strain amplitude of
0.5% and an R ratio of –1. This amounts to a maximum and
minimum average stress of approximately ±600 MPa.

Fifty different realizations of microstructures are used for
each mesh. Each realization has 100 randomly distributed
equiaxed crystallographic grains with a constant Euler angle
for each grain. The crystallographic texture is random. So,
each realization has both a unique random texture and random
grain structure. The grain morphology for each microstruc-
ture realization is created using tessellation in the software
Neper27,28,29.

The elastic parameters in Voigt notation are C11 = 162400 MPa,
C12 = 92000 MPa, C44 = 69000 MPa. The material parameters
used in the simulations are shown in Tab.1. These parameters
are calibrated to data from26 and the resulting comparison to
the anisotropic Ti-6Al-4V data from26 is shown in Fig.3.
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F I G U R E 2 Three mesh resolutions with grains represented by different colors. Each mesh has a) 11×11×11; b) 19×19×19;
c) 32× 32× 32; d) 48× 48× 48 elements respectively.

Parameter Value Parameter Value
γ̇0, 1/s 0.001 r, MPa 0
m, (-) 50 atime=0, MPa 0

τ0, Mpa 334 h, MPa 500
T A B L E 1 Parameters used in crystal plasticity model

0.000 0.005 0.010 0.015 0.020 0.025
Strain, -/-

0

250

500

750

1000

1250

St
re
ss
, M

Pa

model-IP
model-TT
data-IP
data-TT

F I G U R E 3 Predicted stress–strain curve as compared to
the wrought Ti-6Al-4V data in26 for the in-plane direction
(IP) which is parallel to the rolling direction and the through-
thickness direction (TT) which is perpendicular to the rolling
direction.

3 RESULTS

3.1 Comparison to Experiments

Before presenting the statistical spread predictions from the
model, the spread observed in Ti-6Al-4V fatigue data is ad-
dressed. Since fatigue life is measured experimentally while
FIP is calculated by the model, each measured fatigue life is
converted to FIP via Eq. 1. To do this, FIP values from all four

meshes and all four nonlocal volume average procedures is fit
to life data.

For this fitting, a single realization of the microstructure from
Fig.6 is simulated for a maximum stress of 586, 600, and 655
MPa and R = –1. This realization is chosen to give FIP val-
ues in the middle of each of the lowest histogram bin in Fig.6
and is considered to represent the expected FIP value. The
simulated FIPs are fit to the best fit line for the fatigue life of
a solution treated and aged Ti-6-Al-4V plate (from the MM-
PDS handbook18) in Fig.4. The fitting procedure uses Matlab’s
fminsearch to fit the parameters A and b in FIP = ANb to
the equivalent stress‡ best-fit line equation from MMPDS. In
Fig.4, the difference between the fit fatigue life (N) values for
each mesh size and nonlocal volume is negligible even though
each A and b value is different. The parameters A and b for

104 105 106 107
Fatigue Life (N), Cycles

600

800

1000

1200

Eq
ui
va
le
nt
 S
tre

ss
, M

Pa MMPDS Data
MMPDS Best Fit Line
Fitting Range
Fit Model

F I G U R E 4 Equivalent stress and fatigue life for a Ti-6Al-
4V plate cycled at various R ratios: -1 ( ), -0.4(N),0 (+),0.1
(×), 0.3 (�). The simulated FIP values (in a given fitting stress
range) are converted to fatigue life via fitting parameters.

‡ Equivalent stress as defined by MMPDS is stress “that consolidates data for all stress
ratios into a single curve”, it is not the von Mises stress.
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each mesh size and nonlocal volume are then used to convert
the histogram of fatigue life from Fig.4 to FIP values.

The probability density function for FIP values converted from
fatigue life using the fitting parameters discussed above are
shown in Fig.5. Each fatigue life in the fitting range shown in
Fig.4 is converted to FIP to give an estimate of the experientially
observed statistical spread in FIP values. For each case, a three
parameter Weibull distribution is fit to the probability density
function using Python’s scipy.stats.exponweib func-
tion. These Weibull distributions are compared to simulations
in Fig.6.
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0.0025
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0.00
0.05

F I G U R E 5 The probability density function (i.e., density)
for each mesh size and nonlocal volume is shown (by the dashed
line) based on the fatigue life in the fitting range in Fig.4. The
density is determined from the normalized histograms based
on the data.

3.2 Fatigue Indicator Parameter

Fig.6 shows FIP results using four types of nonlocal volume
averages for each of the four mesh sizes (i.e., 11 × 11 × 11,
19 × 19 × 19, 32 × 32 × 32, and 48 × 48 × 48 elements).
The local FIP values for each mesh size are the same, but the
volume over which these FIPs are averaged and the averaging
procedure differs.

FIP values denoted as element are not averaged (i.e., the non-
local volume is only one element). The FIP values denoted as
conformal use cubic nonlocal volumes that do not overlap (as
shown in Fig.1c). The FIP values denoted as nonconformal use
spherical overlapping nonlocal volumes centered at every ele-
ment (as shown in Fig.1d); for the nonconformal average, every

FIP is weighted equally. The FIP values denoted as weighted
use the same nonlocal volumes as the nonconformal average
but weight each element’s FIP values using Eq. 5.

The error shown in Fig.6 is calculated using

e = 100%
max

(
FIPnl

model

)
– max

(
FIPnl

exp.

)
max

(
FIPnl

exp.

) , (13)

where e is the error in the model as a percentage (which
is negative if the model under-predicts and positive if the
model over-predicts FIP values) and FIPnl

model and FIPnl
exp. are

the nonlocal FIP values from the model and experiments,
respectively.

4 DISCUSSION

As shown in Fig.6, the local element value of FIP has a large
spread but also a large mesh dependence. For the conformal
nonlocal volumes, the mesh dependence is minimal but the
spread is limited. For the nonconformal nonlocal volumes,
the mesh dependence is also minimal but the spread is wider
than the conformal nonlocal volume; albeit not as wide as the
element local FIP.

The 48 × 48 × 48 element mesh with the element nonlocal
volume average is the only to over-predict the data. All other
predictions under-predict the data. For the 32 × 32 × 32 and
48 × 48 × 48 elements meshes the effect of nonconformal
nonlocal volumes is the most clear. While the mesh dependent
element averages for the 32 × 32 × 32 and 48 × 48 × 48
element meshes show -8% and 25% error respectively, the mesh
independent conformal element averages show -76% and -75%
respectively. This error is reduced for the mesh independent
nonconformal element averages, where for the 32× 32× 32
and 48× 48× 48 element meshes the error ranged from -16%
to -52%. The weighted average shows between 3% and 27%
less error than for the nonconformal average; thus, the weighted
nonconformal average is considered more accurate than the
nonconformal average without weighting.

5 CONCLUSIONS

A new nonconformal nonlocal volume averaging approach
is proposed for FIP and fatigue life calculations based on a
similar approach previously used to predict ductile fracture and
porosity. Of these nonlocal approaches, the local element value
of FIP has a large spread but also a large mesh dependence.
For the conformal nonlocal volumes, the mesh dependence
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F I G U R E 6 FIP for 50 realizations, using a local element volume, a conformal nonlocal volume, a nonconformal nonlocal
volume, and a weighted nonconformal nonlocal volume. The coarse to fine meshes are top to bottom respectively. The probability
density functions from Fig.5 are scaled to the maximum histogram value and shown with dashed lines. The error e is also given
(where negative values indicate that the simulation underestimates the data in the probability density functions).

is minimal but the spread is limited. For the nonconformal
nonlocal volumes, the mesh dependence is also minimal but
the spread is wider than the conformal nonlocal volume; albeit
not as wide as the element local FIP.

The error in the spread in FIP values is greatly reduced us-
ing the nonconformal approach (as compared to the conformal
approach). The error is the smallest for the nonconformal non-
local volume where the FIP values are weighted when averaged.
The two nonconformal approaches better capture the statistical
spread in fatigue life seen in Ti-6Al-4V. The spread from the
weighed nonlocal volume is larger than for the non-weighted
nonlocal volume and more representative of fatigue statistics.

While the MMPDS data are limited both in terms of fatigue
life and stress range, the spread in the data from MMPDS is
typical of fatigue tests. Also, while there is some overhead
to calculating the larger number of nonconformal nonlocal
volumes (as compared to the smaller number of conformal
nonlocal volumes), this calculation is only for post-processing;

it does not need recomputed for each microstructure—only for
each mesh—so these volumes are determined once and then
are used repeatedly.

Therefore, a weighted nonconformal nonlocal average is com-
putationally tractable and predicts a more accurate statistical
spread in FIP values than the other mesh independent nonlocal
approaches considered.
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