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Abstract

In the era of cyber-physical-social systems, research lacks a comprehensive framework to optimize dynamic coordination strate-

gies for electric vehicles (EVs) to enhance modern power distribution networks (MPDNs) resilience. Public studies have not

comprehensively addressed the impact of intelligent transportation systems (ITS) and smart charging systems (SCS) on MPDN

resilience strategies after rare events. To bridge this gap, a two-stage EVs coordination framework is proposed to consider

MPDN smart restoration. The first stage involves a novel proactive EV prepositioning model to optimize EV prepositioning

plans before a rare event in order to enhance MPDN survivability during the immediate aftermath of the event. The second

stage involves an advanced spatial-temporal EV dispatching model to maximize the number of available EVs for discharge,

thereby improving MPDN recovery after a rare event. The proposed framework includes an information system facilitating

dynamic data exchange between EVs and ITS/SCS automated systems and introduces a novel geographic graph to optimize

EV routes between charging points. Effectiveness of the framework is assessed on a modified IEEE 123 node test feeder in-

corporating real-world transportation and charging infrastructure. The results suggest that significant enhancement in MPDN

resilience is possible with smart restoration strategies. Sensitivity analysis specifically demonstrates that integrating recently

invented technologies of the smart charging systems and automated systems potentially provides significant benefits if dynamic

coordination strategies are employed in MPDNs.
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Abstract: In the era of cyber-physical-social systems, research lacks a comprehensive framework to optimize dynamic coordi-
nation strategies for electric vehicles (EVs) to enhance modern power distribution networks (MPDNs) resilience. Public studies
have not comprehensively addressed the impact of intelligent transportation systems (ITS) and smart charging systems (SCS) on
MPDN resilience strategies after rare events. To bridge this gap, a two-stage EVs coordination framework is proposed to consider
MPDN smart restoration. The first stage involves a novel proactive EV prepositioning model to optimize EV prepositioning plans
before a rare event in order to enhance MPDN survivability during the immediate aftermath of the event. The second stage involves
an advanced spatial-temporal EV dispatching model to maximize the number of available EVs for discharge, thereby improving
MPDN recovery after a rare event. The proposed framework includes an information system facilitating dynamic data exchange
between EVs and ITS/SCS automated systems and introduces a novel geographic graph to optimize EV routes between charging
points. Effectiveness of the framework is assessed on a modified IEEE 123 node test feeder incorporating real-world transporta-
tion and charging infrastructure. The results suggest that significant enhancement in MPDN resilience is possible with smart
restoration strategies. Sensitivity analysis specifically demonstrates that integrating recently invented technologies of the smart
charging systems and automated systems potentially provides significant benefits if dynamic coordination strategies are employed
in MPDNs.

Nomenclature

Indices
β, ζ Indices for longitude
γ, δ Indices for latitude
ϕ Index for phase number
ρ, ϱ Indices for two end of the proposed graph segments
av, tr Indices for the availability and travelling status
B,N Indices for line and node
C,O Indices for capacitor and lines in a loop
ch Index for the charging status
CP, cp Indices for charging point
D,U Indices for diversified and undiversified load
disch Index for the discharging status
E, e Indices for electric vehicle
F, S Indices for faulty, and switchable component
i, j, ij Indices for two end nodes and line
R, r Indices for road
RCS Index for remotely-switchable component
t, l Indices for time and load
V,L Indices for components associated with voltage regulators

and loads
Sets
Y̆ Set of vertices indicate electric vehicle coordinates
Ŷ Set of vertices indicate charging point coordinates
H Set of the proposed graph including intersections and edges
K, E Set of intersections and edges of the proposed graph
N ,B Set of nodes and lines
R,Y Set of segments and vertices in a road map
T ,G Set of time intervals and electric vehicles
V, C Set of voltage regulators and capacitors
Z Set of road map including segments and vertices
Φ,L Set of phases and loads
Decision Variables
CRR

r,t Congestion rate of road r at time t

De,cp,r,tSum of travelling distance on road r between electric
vehicle e and cp

Dkϱ,kρ,e,tSum of travelled distance for electric vehicle e at time t

P
ch/disch
e,t The charging/discharging active power for electric vehi-

cle e at time t
Q/Pi,ϕ,tThe three phase reactive/active power for node i at time t
Q/Pl,ϕ,tThe three phase reactive/active power for load l at time t

Q/PD
l,ϕ,tThe three phase diversified reactive/active power for load l

at time t
Q/PU

l,ϕ,tThe three phase undiversified reactive/active power for load
l at time t

S/Q/Pij,ϕ,tThe three phase apparent/reactive/active power from
node i to node j at time t

SOCav
e,tAvailable stat-of-charge level for electric vehicle e at time t

SOCtr
e,tConsumed stat-of-charge during travelling for electric vehi-

cle e at time t
ttre,r Total travelling time of electric vehicle e on road r
Vi,ϕ,t The three phase voltage magnitude for node i at time t
xcp,t Binary variable equals 1 if charging point cp is operational

at time t
xe,cp,t Binary variable equals 1 if electric vehicle ev is connected

to a charging point cp at time t
xe,t Binary variable equals 1 if electric vehicle ev is connected

at time t
x
ch/disch
e,t Binary variable equals 1 if electric vehicle e at time t

xi,ϕ,t Binary variable equals 1 if phase ϕ in node i is connected at
time t

xij,ϕ,t Binary variable equals 1 if phase ϕ in line ij is connected at
time t

xkϱ,kρ,e,tBinary variable equals 1 if electric vehicle e travels
between kϱ and kρ at time t

xl,t Binary variable equals 1 if load l is connected at time t
xv,ϕ,t Binary variable equals 1 if phase ϕ in line with voltage

regulator v is connected at time t
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1 Introduction

Electric vehicles (EVs) play a crucial role in enhancing modern
power distribution networks (MPDNs) resilience as mobile power
sources due to their ability to move over transportation systems
and use distributed smart charging points [1, 2]; particularly, in
areas with a high penetration of EVs and sufficient charging points
[2, 3]. The utilization of different types of emergency mobile power
sources (EMPSs) have been studied in the literature for resiliency-
oriented restoration strategies to support MPDN outage load. The
authors propose a two-stage restoration scheme for enhancing distri-
bution system resilience during emergencies, like seismic disasters.
It involves optimizing MPS routing and scheduling, along with
dynamic network reconfiguration. In [4], a two-stage restoration
scheme is proposed to enhance the resilience of MPDNs during
emergencies. The routing and scheduling of EMPSs are optimised
in coordination with dynamic network reconfiguration. However, the
practical deployment and coordination of EMPSs may face chal-
lenges, such as limited power availability and inadequate charging
infrastructure for EVs. In [5], a dynamic load restoration method
is proposed to restore service in MPDNs effectively by consider-
ing the interdependence with the transportation system. However,
the assumption of uniformity among mobile generators may not
always hold true, which can impact the effectiveness of the method.
Therefore, additional testing and refinement are necessary before
implementing this method in real-world scenarios. In [6], a time-
space network is utilized to optimize the routing of flexible EMPSs
for MPDN restoration, enhancing calculation efficiency. A trans-
portation network simplification method is proposed to reduce the
number of binary variables involved in the optimization process.
However, the absence of implemented charging infrastructures for
mobile energy storage power sources adds additional complexity
to the transportation network simplification method, requiring more
nodes and binary variables. In [7–9], a joint restoration model is sug-
gested to enhance post-disaster resilience by coordinating electric
bus scheduling and MPDNs restoration. The model focuses on max-
imizing load pickups and minimizing electric bus rental expenses.
However, it should be noted that the assumptions of charging sta-
tion availability and bus companies’ willingness to participate may
not accurately represent real-world implementation. In [10, 11], a
rolling optimization framework for MESSs is proposed. It can effec-
tively optimize the allocation and scheduling of MESSs, microgrids,
and MPDN reconfiguration to restore critical loads during extreme
events. However, the proposed approach simplifies the distribution
network and transportation network models, neglecting the real-
world constraints of movement of mobile power sources such as
charging points availability and road closures.

1.1 Motivation

In the aforementioned literature, the utilised EMPSs are limited
by their utility and rely on prior knowledge of the outage and the
affected area. They may not be sufficient for unexpected outages
or larger affected areas, resulting in extended outages and disrup-
tions. Furthermore, the lack of an intelligent coordination framework
for EVs with high penetrations leads to inefficient resource use,
and increased EV penetration complicates transportation and charg-
ing station automated system prepositioning plans and dispatching
strategies, necessitating more sophisticated and smart restoration
strategies to ensure EVs access charging stations efficiently and
without causing further disruptions.

Henceforward, an ingenious framework for coordinating EVs is
requisite to enhance MPDN resilience, so as to effectively manage
the massive data generated by the motion and information produc-
tion of EVs. This can be achieved by the integration of MPDN, smart
charging system (SCS), and intelligent transportation systems (ITS)
[1, 12, 13]. The Internet of Things (IoT) and fifth-generation (5G)
network technologies expedite the communication between ITS/SCS
automated system and EVs for coordination throughout recently
invented machinery that facilitates vehicular communications like
roadside unit (RSU) and charging points with vehicle-to-everything

(V2X) operation mode [14, 15]. Incorporating these technologies
enables ITS/SCS automated system and MPDN operator to store the
information of EVs, roads, and charging points across distributed
data centres (DDCs) and simultaneously update resilience-oriented
restoration plans of roads, charging points, and MPDN components
in real-time [16]. The advent of cyber-physical social systems has
facilitated data exchange of EVs through efficient information sys-
tem [17, 18], where this capability is particularly relevant for MPDN
restoration and is considered desirable by power utilities seeking to
improve MPDN resilience in the face of high impact low probability
events (i.e., rare events).

On the other hand, rare events can destroy transportation system
roads and charging points which in turn impact the dispatching of
EVs and impose more challenges to service restoration for enhanc-
ing MPDN resilience. Commonly, the literature focuses on coupling
MPDN branches and transportation roads for emergency mobile
power source dispatching problems but neglects geographic fac-
tors like actual locations, travel distance, energy consumption rates,
road congestion and damage status, as well as charging points
capacity, characteristics, and technology. Although there has been
progress in deploying transportation roads constraints in [5, 10, 19],
current research studies on dispatching problems consider trans-
portation and charging station systems in a deterministic manner
or do not thoroughly consider the full impact of interrelated geo-
graphic and spatial-temporal positioning and dispatching constraints
on the intelligent transportation system and smart charging system
for enhancing MPDN resilience after a rare event.

1.2 Major Contributions

To address the aforementioned challenges and further enhance
MPDN resilience, an innovative resilient EVs coordination frame-
work with a novel proactive prepositioning model and an advanced
spatial-temporal dispatching model is proposed in this paper to
effectively bridge the coordination gap in the large penetration of
EVs.

A novel communication methodology is also proposed for
exchanging EVs data to further enhance MPDN resilience, which
takes into account the automated system of the intelligent transporta-
tion system (ITS) and smart charging system (SCS). The methodol-
ogy uses real traffic data and patterns for simulating a typical EV
driving behaviour in a the real world.

Further, a novel bidirectional geographic graph is proposed to
consider spatiotemporal factors such as actual distance, traffic con-
ditions, charging station availability, and power demand to optimize
the routes between charging points and EVs accordingly. This helps
to reduce the load on the SCS and prevent overloading and queuing,
which can cause power outages and other disruptions.

The paper is structured as follows: Section 2 presents the problem
statement and the proposed information system. Section 3 provides
the mathematical formulation. Section 4 covers the solution method
and linearizations. Section 5 presents the simulation studies and
results, as well as the sensitivity analysis. Section 6 provides fur-
ther remarks of the proposed work. Section 7 concludes this article.
Section 9 presents the appendices.

2 EVs Coordination Framework

2.1 Problem Statement

A modified conceptual resilience curve (R) is presented in Fig. 1,
to illustrate the variance in MPDN robustness level during the pre-
disruption (t0 ∼ te), disruption progress (te ∼ tpe), and restorative
phases (tpe ∼ tpr) of a rare event [20]. The dashed line represents
the results obtained from the proposed method, while the solid line
represents the conventional approach. The comparison is shown to
highlight the superiority of the proposed method. The paper employs
two categories of measures to enhance resilience: planning-oriented
measures before the event (t0 ∼ te) in the first stage, and operation-
oriented measures after the event (tpe ∼ tpr) in the second stage.
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In the first stage, the MPDN survivability is evaluated from tpe
to tr , which proves the ability of the proposed EVs propositioning
model to enhance the MPDN resilience from Rr to R′

r at an earlier
time (t′r) which is earlier than tr . The MPDN reconfiguration model
is co-optimized to shift the system into a state of less impacted and
stressed by the event [21].

In the second stage, the MPDN recovery is measured from tr to
tpir proving the capability of the proposed EVs dispatching model
to enhance the MPDN resilience from Rpr to R′

pr and achieves
complete restoration at t′pir enhancing MPDN robustness level from
(R0) to (R′

0). Spatiotemporal routing and dynamic power schedul-
ing of EVs, dynamic network reconfiguration and dynamic power
dispatch of the MPDN, are co-optimized in this stage. As a result,
the proposed EVs coordination framework enhances the MPDN
resilience from the solid curve, in Fig. 1, to the dashed curve.

Fig. 1: A modified conceptual resilience curve associated with an
event [20]. The comparison is shown to highlight the superiority of
the proposed intelligent EVs coordination framework (i.e., dashed
line) over the conventional EMPSs coordination framework (i.e.,
solid line).

2.2 Algorithm

The innovative algorithm in this section is proposed to maintain
EVs and charging points (CPs) do not deviate from their prepo-
sitioning and dispatching plans obtained by ITS/SCS automated
system and MPDN operators via the proposed information system in
Section 2.3. These are achieved by modelling binary variables (xe,t),
(xcp,t), and (xe,cp,t), in which they are explained in this section,
respectively.

For the former variable (xe,t), EVs are categorised based on their
connection mode. First, away EV (A-EV) which refers to EV cannot
participate in the restoration processes due to it is connected to uni-
directional CP, and/or its state-of-charge level (SOCe) is equal or
lower than the minimum value (SOCe). Here, xe,t = 0∀t. Second,
connected EV (C-EV) refers to EV that can participate in the restora-
tion process since it is connected to bidirectional CP and its SOCe

is greater than SOCe. Here, xe,t = 1∀t⇒ SOCe ≥ SOCe. Third
travelling EV (T-EV) which to EV that is travelling and cannot
connect until arriving time (tare,cp) is reached, where t = tare,cp. To
enable participation in this category, T-EV calculated SOCe at tare,cp
must be greater than SOCe. Here, xe,t = 1, t ≥ tare,cp ⇒ SOCe ≥
SOCe.

For the medial variable (xcp,t), CPs are classified based on
their technologies into two categories. First, bidirectional charg-
ing point (V2G-CP) which is a CP support vehicle-to-grid (V2G)
operation mode, for example, Vehicle-to-building (V2B) operation
mode, which can inject the power to the MPDN allowing C-EV to
discharge. Various capacities (i.e., the characteristics of supplying
electric power to an EV, ranging from slow to ultra-rapid), and capa-
bilities (i.e., the constraint of charging slot allows for connection to
only one EV at each time period (tn ∼ tn+τ ), given τ is the con-
nection period of time). Here, xcp,t = 1∀t if it is not damaged, and

0 otherwise. Second, a unidirectional charging point (V1G-CP) that
is a CP cannot inject the power back to the MPDN, for example, in
vehicle-to-home (V2H) operation mode. Here, xcp,t = 0∀t.

For the latter variable (xe,cp,t), if a C-EV is connected to V2G-
CP, it is equal to 1 for the connection period (tare,cp ≤ t ≤ τ ), and
0 otherwise. As a result, charging/discharging processes, connect-
ing and disconnecting timings, and routes and destinations comply
with the obtained EVs prepositioning and dispatching plan of the
ITS/SCS automated system.

2.3 Information System

The data obtained by the ITS/SCS automated system in the first and
second stages are automatically transmitted to distributed data cen-
tres (DDCs) via roadside units (RSUs) of intelligent transportation
infrastructure [22]. Thus, MPDN operators and ITS/SCS automated
system dynamically update the MPDN resilience-oriented restora-
tion plan at each predefined time step. Moreover, ITS/SCS auto-
mated system share data with EVs throughout vehicle-to-everything
(V2X) mode of operation [23]; particularly, vehicle-to-infrastructure
(V2I) communications [24].

In the first stage, the MPDN operator and the automated system
of the intelligent transportation system (ITS) and smart charging
system (SCS) take preventive actions to enhance MPDN resilience.
Particularly, SCS automated system collects the technical and geolo-
cation information of V2G-CPs and C-EVs to maximise the avail-
able EVs aftermath, allowing them to participate and discharge
shortly after the rare event. Meanwhile, the MPDN operator max-
imises the survived loads while maintaining the constraint of their
network’s components. At the same time, ITS automated system
plans for the restorative phase by collecting locations and technical
data of T-EVs, which are used to optimize the critical route for each
EV once the road damage status and traffic conditions are obtained
shortly after the event. For example, as in Fig. 2(a), SCS automated
system collects technical data of V2G-CPs, C-EV6, and C-EV5,
while T-EV1 and T-EV2 are prepositioned. Note that, T-EV3 is not
eligible due to its low SOCav

e,t level.
In the second stage, the restorative actions are taken based on the

preparation actions in the first stage. Specifically, SCS automated
system reports the V2G-CPs damage status and updates the avail-
able energy of C-EVs (SOCav

e,t). This is achieved in accordance
with ensuring C-EVs are immediately disconnected if their SOCe

level reaches the minimum boundary (SOCe), allowing the next T-
EV in the queue to participate immediately avoiding long queues, as
well as, to maximise the use of charging points. Meanwhile, the ITS
automated system updates traffic data, road status, and congestion
rate at each time step to dynamically optimise the critical path for
T-EVs. Meantime, the MPDN operator updates the network compo-
nents’ status based on the provided reports by repair crews (RCs).
For instance, Fig. 2(b) shows C-EV6 is disconnected so that T-EV2
can connect and discharge, ITS automated system shares optimal
routes between V2G-CPs and T-EV1 and T-EV2, while C-EV5 is
discharging.

3 Mathematical Formulation

3.1 Proactive Prepositioning of EVs

Before a rare event, MPDN operator and ITS/SCS automated system
collaborate to maximize the number of connected EVs for enhancing
MPDN survivability. The objective function of the first stage, in (1),
maximizes the amount of survived MPDN loads at t = 0.

min
e,cp,t

(max
l,ϕ,t

∑
t

∑
l

∑
ϕ

[xLl,t · P
L
l,ϕ,t])

, ∀l ∈ L ⊂ K, e ∈ Y̆ ⊂ K, cp ∈ Ŷ ⊂ K, ϕ ∈ Φ, t = 0

(1)

Unlike [4, 5, 7–11, 19, 25–31], the number of available EVs is
not predetermined here. Thus, the objective function facilitates the
prompt discharge of available EVs following the event to maximise
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Fig. 2: An illustration of the proposed EVs coordination framework. (a) The preventive actions associated with the first stage (before the event
[t0 ∼ tpe]). (b) The restorative actions associated with the second stage (after the event [tpe ∼ tpr]).

the amount of restored load in the inner level, while obviating the
necessity for further EV discharge if all loads are survived in the
outer level. Involved the variables in the outer level, constraint (2)
is modelled using the charging status (xche,t) and discharging sta-
tus (xdische,t ) binary variables to ensure EVs are prepositioned and
connected at predetermined CPs to start discharging immediately
after the event. Constraint (3) maintains the capability of charging
point/station.

xche,t + xdische,t ≤ xe,cp,t, ∀e ∈ GE , cp ∈ NCP , t = 0 (2)∑
e

xe,t ≤ xcp,t, ∀e ∈ GE , cp ∈ NCP , t = 0 (3)

The problem of prepositioning is intelligently addressed by utiliz-
ing the variables that are interrelated with the second stage making
the proposed approach novel and highly effective for improving
MPDN resilience. This is due to several reasons. First, the approach
effectively incorporates the diverse categories of EVs and CPs in
the proposed algorithms in Section 2.2. In addition, the informa-
tion system outlined in Section 2.3 for well-coordination between
the MPDN operators and ITS/SCS automated system is effectively
pursued. Accordingly, the proposed method ensures the continuous
development of MPDN resilience. The inner level of the objective
function is subjected to the following constraints:

Vi,ϕ,t − Vj,ϕ,t ≤ z̃ij,ϕS
∗
ij,ϕ,t + z̃∗ij,ϕSij,ϕ,t

+M
(
1− xNi,ϕ,t

)
,∀ij ∈ B/V, ϕ ∈ Φ, t = 0

(4)

Vi,ϕ,t − Vj,ϕ,t ≥ z̃ij,ϕS
∗
ij,ϕ,t + z̃∗ij,ϕSij,ϕ,t

−M
(
1− xNi,ϕ,t

)
,∀ij ∈ B/V, ϕ ∈ Φ, t = 0

(5)

(
V i,ϕ,t

)2
Vi,ϕ,t ≤ Vj,ϕ,t ≤

(
V i,ϕ,t

)2
Vi,ϕ,t

, ∀i, j ∈ V, ϕ ∈ Φ, t = 0

(6)

∑
ji

PB
ji,ϕ,t + P disch

e,ϕ,t =
∑
ij

PB
ij,ϕ,t + P ch

e,ϕ,t + PL
l,ϕ,t

, ∀e ∈ GE , ϕ ∈ Φ, t = 0

(7)

∑
ji

QB
ji,ϕ,t +Qdisch

e,ϕ,t +QC
v,ϕ,t =

∑
ij

QB
ij,ϕ,t +QL

l,ϕ,t

, ∀e ∈ GE , ϕ ∈ Φ, v ∈ V, t = 0

(8)

The three-phase unbalanced power flow model is applied here
since the MPDN is naturally unbalanced [32–35]. First, con-
straints (4)-(5) represent the three-phase line model that ensures
the feasible range of voltage difference between two end nodes
(i), and (j), of each line (i, j) and phase (ϕ) except volt-
age regulators and transformers. Note, z̃ij,ϕ ∈ C3×3 is the
equivalent three-phase line impedance matrix consisting of con-
stant values defined in [33]. The three-phase apparent power
(Sij,ϕ,t) from node (i) to node (j) at time (t) is equiva-
lent to

[
Pij,a,t + iQij,a,t, Pij,b,t + iQij,b,t, Pij,c,t + iQij,c,t

]
∈

C3×3. Note that, subscript “i” denotes the node index, while a com-
plex number of the imaginary part is denoted as “i”. M is a large
positive number and it is selected to ensure the constraints are valid
only when the line is energized. Second, the regulators are assumed
to be wye-connected and the tap setting is continuous [36] and
approximated as suggested in [37] using constraint (6) forcing the
regulators’ voltage on the secondary side of the voltage regulator to
be within 5% of the primary side. Constraints (7)-(8) are three-phase
active and reactive power node balance, respectively.

Furthermore, the mathematical formulations of the remaining
MPDN operational constraints are presented in the Appendices
Section of the paper (Section 9.1) as in equations (20)-(25). These
include the radiality constraint, active power limits for EV charging
and discharging operations, limits on capacitor reactive power, and
the limits of line power, node voltages, and regulator voltages.

3.2 Dynamic Dispatch of EVs

After the occurrence of a rare event, the damage to MPDN compo-
nents is addressed by the MPDN operator, at the same time, ITS/SCS
automated system report the status of roads and charging points,
respectively. In this stage, large penetration of EVs is dispatched
aiming to restore the maximum amount of outage MPDN loads as
follows:

max
∑
t

(
∑
ϕ

∑
l

[xLl,t · P
L
l,ϕ,t]

−
∑
cp

∑
e

∑
r

[De,cp,r,t · ECRe])

, ∀l ∈ L ⊂ K, e ∈ Y̆ ⊂ K, cp ∈ Ŷ ⊂ K, r ∈ R ⊂ E ,
ϕ ∈ Φ, t ∈ T

(9)

In (9), the first line maximizes the amount of restored loads, ensur-
ing that each load is restored non-decreasingly and fully recovered,
which prevents the restored load from being shed again. The second
line minimizes the energy used in the transportation of EVs, taking
into account the energy consumption rate (ECRe) and consider-
ing only critical routes to avoid unnecessary travel of EVs, which
results in additional deficit energy. The objective function quanti-
fies MPDN resilience via optimal EVs routing and power scheduling
maintaining MPDN operational constraints, which they presented in
the following subsections, respectively.

3.2.1 Spatial-temporal routing model:
Considering transportation system geographic constraints, the

road map is defined by a bidirectional geographic graph (Z(Y ,R)).
For intersections set (Y), each node (y : (γ, β)) is determined by
its coordinate (i.e., longitude (γ) and latitude (β)). This set contains
the coordinates of charging points (ŷ : (γ, β) ∈ Ŷ), and EVs (y̆ :
(γ, β) ∈ Y̆). On the other hand, ends of road (r) in the set of edges
(R) are modeled as (yδ, yζ) ∈ R. Similarly, the MPDN is designed
as a bidirectional geographic graph (G(N , B)). In the set of buses
(N ) nodes are indexed by i : (γi, βi), and j : (γj , βj), and branches
are indicated asB={(i : (γi, βi), j : (γj , βj))|i, j ∈N ; i ̸= j}. Cor-
respondingly, the aforementioned graphs are combined into the
proposed bidirectional geographic graph (H) with a set of nodes
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Fig. 3: An illustration the proposed geographic graphsH(K,E).

(K) and edges (E). For the set of nodes/intersections (K), the
geographic graph (H) is intelligently modelled to reduce the over-
all number of nodes without losing any associated coordinates.
Accordingly, similar coordinates are merged which in turn signifi-
cantly reduces the overall computational burdens for the proposed
methodology. For example, two graphs are represented in Fig. 3
demonstrating the aforementioned graphs and the proposed geo-
graphic graph. The number of intersections at node1 is four (i.e.,
an EV, a CP, and the ends of two roads). However, these four inter-
sections are merged to become one node in H(K,E). For the set
of edges/segments (E), combining the aforementioned graphs into
the proposed graph increases the segments of the associated edges
(E={(kρ, kϱ)|kρ, kϱ ∈K; ρ ̸= ϱ}), which in turns will increase the
accuracy of calculating the actual distance between EVs and CPs.
For instance, the edge (k3 ∼ k7) in Fig. 3 has become two segment
(i.e., k3 ∼ k5, and k5 ∼ k7).

Consequently, the proposed routing model not only exhibits
advanced geographical capabilities that facilitate coordinating large
penetration of EVs across roads and CPs but also includes a dynamic
update of a large volume of EVs data that permits movement in
multiple directions. This is achieved by introducing a bidirectional
flow variable (←→x R

kρ,kϱ,e,t
), which allows each EV to travel between

node kϱ and node kρ in either direction mimicking the typical EV
driving behaviour in the real world. To ensure precise computation
of the critical distance traveled by an EV (e) and its associated
charging point (cp), constraint (10) is introduced. This constraint
represents a nonlinear model that calculates the critical path distance
(Dkϱ,kρ,e,t) accurately.

Dkρ,e,t =
∑
kϱ

xkϱ,kρ,e,t(Dkϱ,e,t + (Dkϱ,kρ,e,tx
tr
e,tCRR

r,t))

, ∀(kϱ, kρ) ∈ K, (kϱ, kρ) : (γ, β) = y̆ : (γ, β)

, e ∈ GE , t ∈ T , t+ τ ≤ T , τ ≤ ttre,r, r ∈ E
(10)

The rest of the mathematical formulation of the proposed routing
model is provided in the Appendices Section of the paper (Section
9.2) as in equations (26)-(29). These equations upholds routing con-
straints to ensure compliance with the EVs’ routing plan, maintain
the designated start and end intersections, enforce the required travel
distance for EVs, eliminate sub-tours, and calculate the critical path
distance for each EV.

3.2.2 Dynamic power scheduling model:
Practically, the amount of energy consumed (SOCtr

e,t) by an
EV (e) during travelling is relatively small. However, the proposed
framework coordinates a large number of EVs, so the cumulative
amount of SOCtr

e,t is considerable and affects the resilience-oriented
restoration strategy; hence, constraint (11) is used to calculates the
available SOC level of EVs.

SOCav
e,t = SOCav

e,t−1 + (ηCHP ch
e,t −

P disch
e,t

ηdisch
)∆t

−SOCtr
e,t, ∀e ∈ GE , r ∈ R, t ∈ T

(11)

Constraint (12) is a nonlinear model computes the energy con-
sumption during travelling on critical routes (SOCtr

e,t) considering
the energy consumption rate (ECRe) for each EV (e) individually.

SOCtr
e,t = xtre,tECReDkϱ,kρ,e,t

, ∀e ∈ GE , t ≤ tar, kϱ, kρ ∈ K, kϱ : (γ, β) = y̆ : (γ, β),

kρ : (γ, β) = ŷ : (γ, β)

(12)

Also, constraints (30)-(36) in the Appendices Section (Section
9.3) are formulated to ensure EVs adhere to the obtained schedul-
ing plan of the ITS/SCS automated system. Accordingly, this model
includes constraints that limit the SOC level of EVs, active power
limits for EVs, exclusive charging and discharging actions, CP capa-
bility and connection maintenance, and capacity control for charging
demand and the power injected to the grid during EV discharging
operations..

3.2.3 Modern Power Distribution Network Operational Con-
straints:

After an extended period of outage, the effect of the cold load
pickup (CLPU) phenomenon may happen [38], considering the
diversified load (PD

L ), and undiversified load (PU
L ). The CLPU con-

straint for active and reactive power are formulated as in constraints
(13)-(14), as per [37, 39].

PL
l,ϕ,t = xLl,ϕ,tP

D
l,ϕ,t +

(
xLl,ϕ,t − xLl,ϕ,t−1

)
PU
l,ϕ,t

,∀ϕ ∈ Φ, l ∈ L, t ∈ T
(13)

QL
l,ϕ,t = xLl,ϕ,tQ

D
l,ϕ,t +

(
xLl,ϕ,t − xLl,ϕ,t−1

)
QU

l,ϕ,t

,∀ϕ ∈ Φ, i ∈ L, t ∈ T
(14)

Considering a modern power distribution network, the set of
switchable loads (LS) and non-switchable loads (L/

{
LS

}
) are

modelled. A non-switchable load (l) is energized immediately if it
is connected to an energized node (i) using constraint (15), on the
other hand, constraint (16) requires the switchable loads (l) can only
be energized if it is connected to an energized node (i). Constraint
(17) ensures loads (L) are not tripped again after they have been
restored.

xLl,t = xNi,t, ∀l ∈ L/
{
LS ∪ LF

}
, ϕ ∈ Φ, t ∈ T (15)

xLl,t ≤ xNi,t, ∀l ∈ L
S/LF , ϕ ∈ Φ, t ∈ T (16)

xLl,t − xLl,t−1 ≥ 0, ∀l ∈ LS , ϕ ∈ Φ, t ∈ T (17)

Remotely controlled switches (RCSs) are considered with man-
ual switches in the MPDN. Constraints (18)-(19) limit the number
of switching operations which are expressed by the binary variable
(xRCS

ij,ϕ,t). It is equal to 1 if the line switches its status from 0 (off) to
1 (on), or from 1 (on) to 0 (off).

xRCS
ij,ϕ,t ≤ xBij,ϕ,t − xBij,ϕ,t−1,∀ij ∈ B

S , ϕ ∈ Φ, t ∈ T (18)

xRCS
ij,ϕ,t ≤ xBij,ϕ,t−1 − xBij,ϕ,t,∀ij ∈ B

S , ϕ ∈ Φ, t ∈ T (19)

Also, the fault location, isolation, and service restoration (FLISR)
model is integrated and represented in the Appendices Section
(Section 9.4), specifically captured by constraints (37)-(43). This
model is integrated into the second stage to ensure the preservation
of safe operational conditions within the modern power distribution
network. Moreover, similarly to the initial stage’s MPDN opera-
tional constraints, constraints (44)-(47) are implemented in this stage
primarily for power scheduling purposes. They define the feasible
ranges for capacitor reactive power, line active and reactive power,
while also ensuring the maintenance of MPDN radiality. Addi-
tionally, optimal power flow for three-phase unbalanced MPDN,
and node balance equations are also integrated and represented in
constraints (48)-(52) in in the Appendices Section (Section 9.4).
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Fig. 4: The relative optimality gap at each iteration.

4 Solution Method

4.1 Rolling Horizon Optimization Framework

Obtaining massive data on EVs and CPs, and the damage status of
MPDN components and roads for all time periods of restoration at
t = 0 is a challenging task [10]. Hence, a rolling optimization frame-
work is adopted to solve the problem recursively in a finite-moving
horizon of intervals [40]. The time horizon (T ) is discretized into
equal time intervals (∆t), and the problem is solved at each interval
where T = 24 and ∆t = 0.5 hr. The decisions and information in
the first interval are implemented and updated at each (t), the predic-
tion horizon is shifted forward and the calculation is repeated until
the end of the time horizon.

4.2 Linearization Techniques

The critical distance calculation model in (10), and the model of
energy consumed during travelling in (12) are nonlinear. Therefore,
for constraint (10), α is a large parameter is used to relax this con-
straint, and the congestion rate variable (CRR

r,t) is replaced with a
non-constant parameter (CRR

r ), where its value changes over time
for each road. Hence, distance calculation model in (10) is reformu-
lated as in constraints (53)-(56) in Appendices Section of the paper
(Section 9.5).

Similarly, the travelling energy consumption model in (12) is
nonlinear. Thus, it is reformulated and expressed as in (57) by
eliminating the travelling status variable (xtre,t) to be maintained
in constraint (58) as outlined in Appendices Section of the paper
(Section 9.6).

5 Simulation Studies

5.1 Intelligent EVs Coordination Performance

The strategy is implemented in GAMS 42.2.0 studio and solved with
Gurobi version 10.0.0 on a PC with a 12th Gen Intel(R) Core(TM)
i7-12700k, 3500 MHz CPU processor and 8 GB RAM. The relative
optimality gap, a measure of the difference between primal (zP ) and
dual (zD) objective bounds, is defined by the incumbent equation
(i.e., gap = |zP − zD| / |zP |) as per [41]. The gap decreases mono-
tonically until it reaches a threshold of 0.001%, indicating an optimal
solution. This convergence is demonstrated in Fig. 4, where the opti-
mal strategy is achieved within approximately 40 minutes at iteration
number 104.

Fig. 5: The map of Battersea road in London, UK; including A-, B-,
and C-roads, as well as all roads combined.

Fig. 6: The map of Battersea road with different congestion rate
(CR), ranging from high to low level.

5.2 Case Studies

The application of the aforementioned metric enables the eval-
uation and comparison of different case studies, elucidating the
efficacy of novel and advanced framework elements, such as the pre-
positioning and dispatching model, information system, integration
of ITS/SCS automated system, and geographic graph. These com-
ponents contribute to achieving an optimal solution and managing
the voluminous geographic and technical data associated with roads,
MPDN components, CPs, and EVs. Three case studies are designed
as follows:

Case-I: presents the proposed methodology.
Case-II: represents a less coordinated approach where the first and

second stages are not synchronized to highlight the robustness of the
proposed prepositioning model.

Case-III: represents a non-automated EVs dispatching framework
to demonstrate the effectiveness of integrating the proposed infor-
mation system and geographic graph into MPDN resilience-oriented
restoration strategies.

5.3 Test Systems

For all three cases, only EVs are considered as mobile power sources
to prove the effectiveness of the proposed coordination scheme in
handling a large penetration of EVs considering multiple infrastruc-
tures. Moreover, a UK-wide map of electric car charging points is
adopted from ZAP-MAP [42], as well as real-world EV technical
characteristics. The repair time for charging points (CPs) are are cou-
pled with MPDN nodes. A map of Battersea road is used to simulate
the transportation system, as shown in Fig. 5. Roads are categorized
as A-, B-, and C-roads, which are adopted from the UK Government
website [43]. Congestion rates are assigned based on Google Maps
colour codes representing live traffic speeds, as in Fig. 6, [44]. The
real distances between T-EVs and the associated CPs are adapted
with the real traffic information from Google Maps using a Python
client [45]. The robustness of the proposed framework is verified
on a modified three-phase IEEE 123 node test feeder with the mod-
ern power distribution network separated from the main grid during
the restoration period (T = 24), where ∆t = 0.5 hr. MPDN lines
repair times are adopted from a two-stage stochastic program pro-
posed in [46] considering the scenario with 15 damaged lines and
laterals, as listed in Table 1.
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5.4 Simulation Results and Discussion

The proposed pre-positioning model and constrained large-scale
EV routing problem are involved in considering several interre-
lated decision variables, such as the distance travelled by the EVs
(Dkϱ,kρ,e,t), the energy consumed during travel (SOCtr

e,t), and the
state of charge (SOC) of the EVs upon arrival at charging points
(SOCav

e,t). The optimal values of these variables affect MPDN
resilience-oriented restoration strategy. In Fig. 7, the critical path
distances (Dkϱ,kρ,e,t), and the median value with the normal dis-
tribution curve of (SOCtr

e,t) of each case are illustrated. Owing to
the intelligent preparing stage, the proposed novel prepositioning
approach has significantly lower values for the distance variable
(Dkϱ,kρ,e,t). This is due to the coordinated efforts of MPDN oper-
ators and automated systems in maximizing SOCav

e,t of the EVs,
which in turn maximizes the amount of survived loads (PL

l,ϕ,t)
shortly after a rare event. As time passes, the ITS/SCS automated
system updates the decision variables obtained in the first stage, and
the critical path distance values increase as most of the connected
EVs (C-EVs) become discharged (i.e., SOCav

e,t = SOCe,t) and dis-
connected from charging points, while the travelling EVs (T-EVs)
start their journeys to connect to the charging points for discharging.

Traditionally, the optimal solution is typically the one with the
lowest distance. However, in the case of the proposed approach
(Case-I), while it appears to have the highest distance, ITS/SCS auto-
mated system optimizes the distance considering power scheduling
constraints, charging point utilization, and overloading and queue
management at charging stations. The proposed methodology priori-
tizes the efficient use of charging points and EVs, taking into account
factors such as charging station capacity, battery levels of EVs, and
the availability of CPs ensuring that the optimal charging schedule is
achieved without causing system overloading or disruptions. There-
fore, the proposed methodology is able to optimize distance in a way
that reduces SOCtr

e,t having a maximum amount of restored loads.
As a consequence, Case-I has shown its robustness and resilient as in
Fig. 7, where the median amount of consumed energy during travel
(SOCtr

e,t) in Case-I is the lowest, saving more than 20% of (SOCav
e,t)

compared to the comparative cases.
The proposed approach aims to increase (SOCav

e,t) by maximis-
ing the number of communicated EVs in both stages. This leads to
a higher communication rate of online EVs (i.e., online EVs refer
to the EVs that are able to be communicated by ITS/SCS automated
system via roadside unites installed on roads using V2I technology).
Thus, around 97%, 86%, and 74% of online EVs are communicated
for Case-I, Case-II, and Case-III, respectively. This is achieved by
considering the proposed information system which allows for effi-
cient collaboration between the automated system of roads and CPs,
enabling the transfer and update of data and decisions obtained at
t = 0. Therefore, the proposed approach achieves a communication
rate that is 11% and 23% higher than Case-II and Case-III, respec-
tively, demonstrating the superiority of the proposed information
technology for enhancing the MPDN resilience.

The number of communicated EVs is crucial for improving the
MPDN resilience, but not all may participate in the restoration
process due to interrelated limitations like charging point capac-
ity, capability, road congestion and status, and the EVs’ state of
charge levels. Therefore, maximizing the number of participating
EVs is a challenging task. Despite this, simulation results indicate
that the proposed dynamic approach performs well in worst-case
scenarios, where 72% of the communicated EVs are able to partic-
ipate in Case-I. In contrast, only 52% and 17% of EVs participated

Table 1 The repair times of the damaged lines and laterals [46]

Line 7-8 15-17 18-19 27-33 38-39
Repair time (∆t) 1.25 2.375 2.625 3.75 4.625
Line 54-57 58-59 18-163 67-72 76-86
Repair time (∆t) 5 5.25 6.125 8.75 12.75
Line 91-93 93-95 105-106 113-114 150-149
Repair time (∆t) 13.5 14.875 16.25 16.875 24

Fig. 7: The simulation results. (a) The load restored at each time
step (PL

l,t). (b) The commutative load restored at each time step
(
∑

t∈T PL
l,t). (c) The median and normal distribution curve of con-

sumed SOC during travelling (SOCtr
e,t). (d) The distance of critical

paths (Dkϱ,kρ,r,t).

in Case-II and -III, respectively. This demonstrates the robustness
of the proposed approach, which intelligently updates and coordi-
nates between MPDN operators and automated systems, resulting in
a 20% and 55% increase compared to Case-II and Case-III, respec-
tively, leading to further enhancement of the MPDN resilience.

Fig. 7 presents the load restored at each time step and the cumula-
tive load restored in the presence of the CLPU phenomenon, which
can cause delays in the restoration process by absorbing additional
power due to undiversified loads (PU

l,ϕ,t). Case-I, which employs
the proposed approach, shows faster and more efficient restora-
tion with higher objective values at all time steps compared to the
comparative cases (i.e., Case-II and Case-III). The severe damage
scenario assumes that most of the distribution network’s 3-phase
lines are damaged at t = 0, yet the proposed approach still signif-
icantly enhances the MPDN resilience by restoring 100% of the
load at t = 24, which is earlier than the comparative cases. Specifi-
cally, Case-II and Case-III restore around 91% and 81% of the load,
respectively, at t = 24 indicating more EV (i.e., higher amount of
SOC), as well as, more time steps are required in comparative cases
to fully restore the MPDN.

5.5 Sensitivity Analysis

This section aims to compare the robustness of the prepositioning
and routing strategy proposed in this work with the strategy pro-
posed in [11]. To ensure a fair comparison, the test systems and
scenarios are correspondingly modified. Thus, Case-IV is added
to represent the proposed coordination framework with 6 mobile
emergency power sources (including 2 mobile energy storage sys-
tems (MESSs), 2 mobile emergency generators (MEGs), and 2 EV
fleets). Further, Also, 6 charging stations are placed per [11], and
the time window is considered to be T = 48. The involved MEGs
are assumed to be three-phase. The result in Fig.8 shows that the
proposed method exhibits enhanced MPDN resiliency during the
post-event state (tpe ∼ tpr), with a 14% increase in the amount of
survived loads compared to the case in [11]. This is attributed to
the well-coordinated efforts of the operators in the pre-event stage
(t0 ∼ tpe), where the information generated by the automated sys-
tems are optimally utilized in solving the pre-positioning, routing
and power scheduling problems.

In the restorative state, the routing and dispatching strategy pro-
posed in [11] restored more loads between t = 5 and t = 24 due
to it assuming normal road statuses and neglecting the congestion
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Fig. 8: Restored loads at each time period for the proposed strategy
in this work and in [11].

level. In contrast, the proposed strategy experiences delays and crit-
ical path damage and closures, which led to longer travel times and
distances for some EV fleets and MESS units. On the other hand, the
proposed approach in this study exhibits superior performance (i.e.,
from t = 25) when the transportation automated systems report that
the roads are restored and repaired. As a result, the proposed strategy
allows for more flexible routing of mobile power sources on the road
network due to the well-coordinated efforts of the MPDN operators
and the ITS/SCS automated systems in the preparation and restora-
tion phases. Hence, the MPDN loads are fully restored at t = 41
in Case-IV (i.e., the proposed coordination framework), which is
earlier than the work in [11], where it was achieved at t = 45.

6 Further Remarks

The necessity of separating the stages in the proposed two-stage
optimization framework arises from the adverse consequences that
would arise if the stages were combined into a single detailed model.
Such integration would result in escalated complexity, posing com-
putational challenges and diminishing tractability. Moreover, the
inter-dependencies between the stages may become complected, pre-
venting independent analysis and optimization. Hence, it is vital to
maintain the separation of stages to ensure manageable complexity,
facilitate efficient computation, and enable independent evaluation.

Furthermore, it is crucial to acknowledge the uncertainties asso-
ciated with how EV users behave when they are requested to par-
ticipate in the restoration processes. Future research aims to address
these uncertainties technically. The model is aimed to be published
to another journal paper.

In addition, while this paper primarily focuses on a large-single
area, the proposed EV coordination methodology has the flexi-
bility to be adapted for multiple independent large areas. This
can be achieved by partitioning the problem into m number of
sub-problems, where m represents the number of areas, each sub-
problem can be solved separately and in parallel, utilizing multiple
available PCs. This approach enables efficient and simultaneous
optimization of the restoration processes across different areas, facil-
itating expedited decision-making and enhancing overall system
performance.

In addressing optimization problems related to multi-dependent
large-scale transportation systems, charging points, distribution sys-
tems, and a substantial number of electric vehicles (EVs), the authors
have achieved significant progress by introducing an optimization
clustering technique with novel algorithms. This approach effec-
tively addresses interdependent across multiple large areas, resulting

in promising results. Initial findings indicate this technique outper-
forms commonly used clustering methods, such as the AI-based
K-means clustering technique. The authors aim to publish this work
in another journal paper.

7 Conclusion

The proposed intelligent EVs coordination framework proves its
robustness and superiority in coordinating a large number of EVs,
handling a significant amount of spatiotemporal data, and enabling
dynamic data exchange to ensure reliable updates of critical informa-
tion such as EV location, charging status, and power demand. In the
first stage, the proposed prepositioning model successfully addresses
prepositioning challenges and improves MPDN resilience shortly
after the rare event by preserving considerably more energy than in
comparative case studies. Also, allowing data transfer to the next
stage and applying the proposed information system facilitate com-
munication between ITS/SCS automated system and EVs resulting
in achieving a notably higher communication rate than comparative
studies. In the second stage, the proposed dispatching approach suc-
cessfully manages geographical and operational constraints of roads
and charging points to control the movement of EVs avoiding long
queues and preventing overloading at charging stations. This demon-
strates the superiority of the proposed geographic graphs in handling
a huge amount of geographical information for improving the rout-
ing in the penetration of a large number of EVs resulting in that
a significantly higher number of communicated EVs being able to
participate in the proposed methodology, compared to comparative
case studies.

The proposed intelligent framework outperforms all published
studies in the literature in worst-case scenarios where it has success-
fully proven its ability to fully restore the loads in a much earlier
time step. Henceforward, it is crucial for modern power distribution
network planners to consider implementing intelligent EV coordi-
nation frameworks to enhance resilience-oriented smart restoration
strategies in the face of increasing rare events.
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9 Appendices

9.1 Constraints Associated With The EVs Proactive
Prepositioning Model:

The following equations pertain to the proposed proactive prepo-
sitioning model of EVs that is outlined in Section 3.1. Constraint
(20) represents the radiality constraint, which is derived from ref-
erence [47]. Constraints (21) and (22) define the limits for active
discharging and charging power of EVs, respectively. Constraint (23)
ensures the maintenance of limits for reactive power of a capacitor
(v). Constraints (24) and (25) impose restrictions on line active and
reactive power, node voltages, and regulator voltages, ensuring their
adherence to safe margins.∑

ij

xBij,t ≤
∣∣∣BO∣∣∣− 1,∀ij ∈ BO, t = 0 (20)

P
disch
e,t xe,t ≥ P disch

e,t ≥ 0, ∀e ∈ GE , t = 0 (21)

P
ch
e,txe,t ≥ P ch

e,t ≥ 0,∀e ∈ GE , t = 0 (22)

Q
C
v,ϕ,tx

C
v,ϕ,t ≥ QC

v,ϕ,t ≥ 0, ∀v ∈ V, ϕ ∈ Φ, t = 0 (23)

P
B
ij,ϕ,tx

B
ij,ϕ,t ≥ PB

ij,ϕ,t ≥ PB
ij,ϕ,tx

B
ij,ϕ,t

, ∀ij ∈ B, ϕ ∈ Φ, t = 0
(24)

Q
B
ij,ϕ,tx

B
ij,ϕ,t ≥ QB

ij,ϕ,t ≥ QB
ij,ϕ,t

xBij,ϕ,t

,∀ij ∈ B, ϕ ∈ Φ, t = 0
(25)

9.2 Constraints Associated With The EVs Spatial-temporal
routing model:

The following equations pertain to the proposed spatial-temporal
routing model of EVs (i.e., Section 3.2.1). Constraints (26)-(29)
ensure EVs do not deviate from their routing plan initiated by
ITS/SCS automated system maintaining the start and end intersec-
tions, respectively. Constraints (26)-(27) initiate and conclude the
optimal path, respectively. Constraint (28) ensures the transportation
of EVs among different coordinates satisfies the necessary travel dis-
tance by enforcing that the number of incoming and outgoing edges
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from a node are equal. Constraint (29) eliminates sub-tours for routes
and ensures EV’s route is a single and continuous path that visits all
the required coordinates.∑

kϱ

←→x kϱ,kρ,e,t = 0,∀(kϱ, kρ) ∈ K

, (kϱ, kρ) : (γ, β) = y̆ : (γ, β), e ∈ GE , t ∈ T
(26)

∑
kρ

←→x kϱ,kρ,e,t = 1,∀(kϱ, kρ) ∈ K

, (kϱ, kρ) : (γ, β) = ŷ : (γ, β), e ∈ GE , t ∈ T
(27)

∑
kϱ

−→x kϱ,kρ,e,t =
∑
kρ

←−x kϱ,kρ,e,t, ∀(kϱ, kρ) ∈ K

, (kϱ, kρ) : (γ, β) ̸= y̆ : (γ, β), kρ : (γ, β) ̸= ŷ : (γ, β)

, e ∈ GE , t ∈ T , t+ τ ≤ T , τ ≤ ttre,r

(28)

Dkρ,e,t = 0

, ∀kρ ∈ K, kρ : (γ, β) = y̆ : (γ, β), e ∈ GE , t ∈ T
(29)

9.3 Constraints Associated With The EVs Dynamic Power
Scheduling model:

The following equations pertain to the proposed dynamic power
scheduling model of EVs (i.e., Section 3.2.2). Constraint (30) lim-
its the SOC level of EVs within the feasible range, respectively.
Constraints (31)-(32) define the active discharging/charging power
limits of EVs, respectively. Constraint (33) guarantees the charging
(xche,t) and discharging (xdische,t ) actions are always mutually exclu-
sive states for each EV (e), and if it is not connected to a CP (cp), it
can neither charge nor discharge. Also, it ensures each EV is posi-
tioned and connected at a CP (cp) that is predetermined by ITS/SCS
automated system. Constraint (34) maintains CP connection capa-
bility. Constraints (35)-(36) maintain CPs capacity, where the rate
of charging demand and feed electricity back into the grid do not
exceed the capacity of CPs, respectively.

SOCe,t ≤ SOCav
e,t ≤ SOCe,t, ∀e ∈ GE , t ∈ T (30)

P
disch
e,t xe,t ≥ P disch

e,t ≥ 0, ∀e ∈ GE , t ∈ T (31)

P
ch
e,txe,t ≥ P ch

e,t ≥ 0, ∀e ∈ GE , t ∈ T (32)

xche,t + xdische,t ≤ xe,cp,t,∀e ∈ GE , cp ∈ NCP , t ∈ T (33)∑
e

xe,t ≤ xcp,t, ∀e ∈ GE , cp ∈ NCP , t ∈ T (34)

0 ≤ P disch
e,t ≤ P

disch
cp,t , ∀e ∈ GE , cp ∈ NCP , t ∈ T (35)

0 ≤ P ch
e,t ≤ P

ch
cp,t, ∀e ∈ GE , cp ∈ NCP , t ∈ T (36)

9.4 Constraints Associated With The Operation of Modern
Power Distribution Network:

The following equations pertain to the MPDN operational con-
straints (i.e., Section 3.2.3). Constraints (37)-(43) represent fault
location, isolation, and service restoration (FLISR) model which are
used to reconfigure the MPDN, isolate the failed lines, and ensure
the restored lines cannot be disconnected again [32]. Constraints
(37) ensures the voltage limits for MPDN nodes are within the
permissible range. Constraint (38) forces the MPDN line with volt-
age regulators to be within the feasible limits. Constraints (39)-(40)
ensure both end nodes of a switchable line must be energized when it

is activated. Similarly, Constraints (41)-(42) ensure a non-switchable
line is promptly energized when either of its end nodes receives
power. Constraint (43) establishes that an energized line cannot be
tripped afterwards.

V i,ϕ,tx
N
i,t ≥ Vi,ϕ,t ≥ V i,ϕ,tx

N
i,t, ∀i ∈ N , ϕ ∈ Φ, t ∈ T (37)

V ij,ϕ,tx
B
ij,tx

V
v,t ≥ Vv,ϕ,t ≥ V ij,ϕ,tx

B
ij,tx

V
v,t

, ∀v ∈ V, ij ∈ B ∩ V, ϕ ∈ Φ, t ∈ T
(38)

xBij,ϕ,t ≤ xNi,ϕ,t, ∀ij ∈ B
S/BF , ϕ ∈ Φ, t ∈ T (39)

xBij,ϕ,t ≤ xNj,ϕ,t, ∀ij ∈ B
S/BF , ϕ ∈ Φ, t ∈ T (40)

xBij,ϕ,t = xNi,ϕ,t, ∀ij ∈ B/
{
BS ∪ BF

}
,

ϕ ∈ Φ, t ∈ T
(41)

xBij,ϕ,t = xNj,ϕ,t, ∀ij ∈ B/
{
BS ∪ BF

}
,

ϕ ∈ Φ, t ∈ T
(42)

xBij,ϕ,t − xBij,ϕ,t−1 ≥ 0,∀ij ∈ BS/BF , ϕ ∈ Φ, 1 ≤ t < T (43)

Also, constraints (44)-(52) are utilized primarily for power
scheduling purposes, similar to the operational constraints in the first
stage. These constraints define the acceptable ranges for capacitor
reactive power (44)-(46), line active and reactive power (46), and
radiality of the modern power distribution network (47).

Q
C
v,ϕ,tx

C
v,ϕ,t ≥ QC

v,ϕ,t ≥ 0,∀v ∈ V, ϕ ∈ Φ, t ∈ T (44)

P
B
ij,ϕ,tx

B
ij,ϕ,t ≥ PB

ij,ϕ,t ≥ PB
ij,ϕ,tx

B
ij,ϕ,t

, ∀ij ∈ B, ϕ ∈ Φ, t ∈ T
(45)

Q
B
ij,ϕ,tx

B
ij,ϕ,t ≥ QB

ij,ϕ,t ≥ QB
ij,ϕ,t

xBij,ϕ,t

, ∀ij ∈ B, ϕ ∈ Φ, t ∈ T
(46)

∑
ij

xBij,t ≤
∣∣∣BO∣∣∣− 1, ∀ij ∈ BO, t ∈ T (47)

Furthermore, equations (48)-(52) are utilized to enforce con-
straints in the second stage of the three-phase unbalanced MPDN
optimal power flow and node balance equations, respectively.

Vi,ϕ,t − Vj,ϕ,t ≤ z̃ij,ϕS
∗
ij,ϕ,t + z̃∗ij,ϕSij,ϕ,t

+M
(
1− xNi,ϕ,t

)
, ∀ij ∈ B/V, ϕ ∈ Φ, t ∈ T

(48)

Vi,ϕ,t − Vj,ϕ,t ≥ z̃ij,ϕS
∗
ij,ϕ,t + z̃∗ij,ϕSij,ϕ,t

−M
(
1− xNi,ϕ,t

)
, ∀ij ∈ B/V, ϕ ∈ Φ, t ∈ T

(49)

(
V i,ϕ,t

)2
Vi,ϕ,t ≤ Vj,ϕ,t ≤

(
V i,ϕ,t

)2
Vi,ϕ,t

, ∀i, j ∈ V, ϕ ∈ Φ, t ∈ T
(50)

∑
ji

PB
ji,ϕ,t + P disch

e,ϕ,t =
∑
ij

PB
ij,ϕ,t + P ch

e,ϕ,t + PL
l,ϕ,t

,∀e ∈ GE , ϕ ∈ Φ, t ∈ T
(51)

∑
ji

QB
ji,ϕ,t +Qdisch

e,ϕ,t +QC
v,ϕ,t =

∑
ij

QB
ij,ϕ,t +QL

l,ϕ,t

,∀e ∈ GE , ϕ ∈ Φ, v ∈ V, t ∈ T
(52)
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9.5 Linear form of critical distance calculation model:

As outlined in Section 4.2, the relaxed form of the nonlinear criti-
cal distance calculation model in equation (10) is represented by the
subsequent constraints:

Dkϱ,kρ,e,t =
∑
kϱ

xkϱ,kρ,e,t

(
Dkϱ,e,t +

(
Dkϱ,kρ,e,tCRR

r

))
, ∀(kϱ, kρ) ∈ K, (kϱ, kρ) : (γ, β) = y̆ : (γ, β)

, e ∈ GE , t ∈ T , t+ τ ≤ T , τ ≤ ttre,r, r ∈ E
(53)

Dkρ,e,t ≤ xkϱ,kρ,e,tα,∀kϱ, kρ ∈ K, e ∈ G
E , t ∈ T (54)

Dkρ,e,t ≤ Dkϱ,e,t +Dkϱ,kρ,e,t

, ∀kϱ, kρ ∈ K, e ∈ GE , r ∈ E , t ∈ T
(55)

Dkρ,e,t ≥ Dkϱ,e,t +Dkϱ,kρ,e,t − α+ xkϱ,kρ,e,tα

,∀kϱ, kρ ∈ K, e ∈ GE , r ∈ E , t ∈ T
(56)

Constraint (53) represents the mathematical expression used for
calculating the critical distance. In order to account for all the
critical roads traversed by an an EV (e), constraints (54)-(56) are
implemented. These constraints ensure that the distances traveled on
critical roads are included in the calculation. To restrict the validity
of these constraints to segments associated with the critical routes, a
large positive number (α) is carefully enforced and selected.

9.6 Linear form of travelling energy consumption model:

As outlined in Section 4.2, the relaxed form of the nonlinear trav-
elling energy consumption model in equation (12) is represented
by the subsequent constraints, where constraint (58) is introduced
to enforce EV (e) to be either in a connection mode (C-EV) or a
travelling mode (T-EV).

SOCtr
e,t = ECReDkϱ,kρ,e,t

,∀e ∈ GE , kϱ, kρ ∈ K, kϱ : (γ, β) = y̆ : (γ, β),

kρ : (γ, β) = ŷ : (γ, β), t ≤ tar

(57)

xtre,t + xe,t ≤ xe,cp,t,∀e ∈ GE , cp ∈ Ŷ, t ∈ T (58)
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