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Abstract

Accurate estimation of percolation is crucial for assessing landfill final cover effectiveness, designing leachate collection/treatment

systems, and many other applications, such as in agriculture. Despite the importance, percolation is seldom measured due to the

high cost and maintenance of lysimeters, underlining the need for skillful simulation. Process-based numerical models, despite

requiring validation and numerous parameters, present an alternative for percolation simulation, though few studies have

assessed their performance. This study compares percolation measured from three fully instrumented large-scale experimental

plots to simulate percolation using a new version of the Soil Vegetation and Snow (SVS) land-surface model with an active

soil-freezing module. Previous research indicates numerical model performance may significantly vary based on soil-related

parameter values. To account for input data and parameter uncertainty, we use an ensemble simulation strategy incorporating

random perturbations. The results suggest that SVS can accurately capture the seasonal patterns of percolation, including

significant events during snowmelts in spring and fall, with little to no percolation in winter and summer. The continuous

ranked probability skill score values for the three plots are 0.13, -0.13, and 0.33. SVS simulates near-surface soil temperature

dynamics effectively ( R 2 values 0.97-0.98) but underestimates temperature and has limitations in simulating soil temperature

in snow-free situations in the cold season. It also overestimates soil freezing duration, revealing discrepancies in the onset

and end of freezing periods compared to observed data. This study highlights the potential of land surface models for the

simulation of percolation, with potential applications in the design of systems such as leachate collection and treatment. While

the SVS model already provides an interesting outlook, further research is needed to address its limitations in simulating soil

temperature dynamics during soil freezing periods.

1



Process-based simulations of percolation from various
landfill final covers in a cold climate
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uous ranked probability skill score values for the three plots are 0.13, -0.13, and

0.33. SVS simulates near-surface soil temperature dynamics effectively (R2 val-

ues 0.97-0.98) but underestimates temperature and has limitations in simulating

soil temperature in snow-free situations in the cold season. It also overestimates

soil freezing duration, revealing discrepancies in the onset and end of freezing

periods compared to observed data. This study highlights the potential of land

surface models for the simulation of percolation, with potential applications in

the design of systems such as leachate collection and treatment. While the SVS

model already provides an interesting outlook, further research is needed to ad-

dress its limitations in simulating soil temperature dynamics during soil freezing

periods.

Keywords: land-surface model; percolation; lysimeter; soil freezing; soil

moisture; soil temperature; landfill final cover; ensemble simulation;

1. Introduction1

Accurate estimates of deep percolation, the net amount of water percolating2

below the root zone (Bethune et al., 2008), are necessary for various practical3

applications. In landfill engineering, precise percolation estimates are critical4

for assessing the effectiveness of landfill final covers to design leachate collection5

systems properly. Leachate, a toxic liquid produced from percolated water in-6

teracting with waste, must be treated to prevent environmental harm such as7

groundwater and soil pollution (Kjeldsen et al., 2002).8

Percolation estimates are vitally important in agricultural water manage-9

ment for optimizing irrigation, i.e. minimizing percolation and maximizing10

transpiration (Wang et al., 2012). Percolation is also associated with nitrogen11

leaching from agricultural soils (Xu et al., 2017), which threatens groundwater12

quality and has other adverse effects such as contributing to the eutrophication13

of water bodies (Carpenter et al., 1998), leading to harmful algal blooms and14

loss of biodiversity (Abdalla et al., 2019; Ascott et al., 2017; Smith et al., 2006).15

In groundwater management, percolation rates are important for understanding16
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aquifer recharge and developing effective conservation and management strate-17

gies, particularly in regions with low precipitation and high water demand where18

unsustainable groundwater abstraction can occur (Finch, 1998a).19

Lysimeters, such as pan lysimeters, are reliable and accurate for measuring20

percolation directly in the field (Bethune et al., 2008; Kahale & Cabral, 2022;21

Mijares & Khire, 2012). However, they can be expensive to install and maintain,22

requiring specialized labor and materials, as well as regular maintenance and23

monitoring. This renders other methods of estimating percolation appealing, in24

particular during the pre-feasibility and feasibility phase of the design process.25

Process-based numerical models, which consider the physical processes gov-26

erning the transport of water through soil, could offer an alternative to costly27

direct measurements, or complement them. These models can, for example, be28

used to better understand the underlying processes and variables influencing29

percolation (for instance through sensitivity analyses), as well as testing the30

impact of different scenarios. This can for instance help applications such as31

irrigation management and groundwater conservation. A process-based model32

can help to quantify the response of percolation to different management prac-33

tices (Bethune et al., 2008) and climate change scenarios (Wang et al., 2018),34

among other sources of uncertainty.35

However, using any particular numerical model presents at least two chal-36

lenges. First, a large amount of field data from locations with diverse climatic37

and physical conditions is required to validate the model. Second, a large set of38

physical parameters is needed to describe the natural systems being modeled,39

and this requires specialized knowledge and/or measuring equipment (Finch,40

1998b; Bethune et al., 2008). As a result, there are relatively few studies that41

have focused on local percolation simulations using process-based models. De-42

spite these challenges, process-based numerical models are a potential option43

for estimating percolation because they can be used to simulate it for example44

at various spatial and temporal scales, under different climatic conditions, or45

considering different management scenarios.46

Bethune et al. (2008) reported on a lysimeter experiment in Southeastern47
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Australia aimed at measuring percolation in an irrigated pasture under various48

conditions such as different combinations of water table depths, soil types, and49

ponding times as a result of surface irrigation. The analysis of experimental data50

led to the identification of influential governing variables for percolation, which51

in turn were used to develop a conceptual model. This model was subsequently52

tested against lysimeter and field-scale water balance data. The performance53

of the developed model was benchmarked against both a data-driven model54

and a calibrated process-based model, namely, artificial neural networks and55

HYDRUS-1D (Simunek et al., 2005). The conceptual model performed bet-56

ter than the data-driven and process-based models for most soil types while57

requiring fewer input data compared to the artificial neural network.58

Benson et al. (2005) evaluated the simulations of percolations from two mod-59

els, UNSAT-H (Fayer, 2000) and VADOSE/W (Krahn, 2004), against measure-60

ments from an instrumented experimental plot in a semi-arid climate (Cali-61

fornia, USA). UNSAT-H overestimated surface runoff, which led to the model62

underestimating percolation. On the contrary, VADOSE/W was able to esti-63

mate runoff relatively accurately. However, similarly to UNSAT-H, it underes-64

timated percolation. The authors hypothesized that this issue could be related65

to the accuracy of saturated hydraulic conductivity as an input parameter to66

the models.67

Using the measured percolation/runoff quantities from the same test plot of68

Benson et al. (2005), Bohnhoff et al. (2009) assessed and compared the perfor-69

mance of HYDRUS, LEACHM (Hutson & Wagenet, 1995), VADOSE/W, and70

UNSAT-H. The accuracy of all water-balance components was influenced by71

the accuracy of the runoff prediction. Runoff was estimated more accurately72

when precipitation was applied uniformly throughout the day, the surface layer73

was given a larger saturated hydraulic conductivity, and Brooks-Corey functions74

were employed to describe the hydraulic characteristics of the soils. Percolation75

was consistently underestimated by all models. A five to ten-fold increase in76

the laboratory-obtained saturated hydraulic conductivity of the soils improved77

the simulation of percolation.78
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Past research focusing on percolation simulation has typically been car-79

ried out in regions characterized by minimal annual rainfall, negligible to non-80

existent snow accumulation, and the absence of seasonal freeze-thaw cycles.81

This concentration of studies in such specific geographic and climatic contexts82

means that their findings may not translate effectively to different environmental83

conditions. For instance, in regions where snow accumulation and soil freezing84

are prevalent, these factors can significantly influence soil hydrology (Fu et al.,85

2018). These circumstances add complexity for numerical models.86

Furthermore, widespread models, such as HYDRUS-1D which is often used87

in landfill final cover assessment, do not consider factors like snow and soil freez-88

ing. This could limit the comprehensiveness and applicability of their results89

when dealing with diverse and more challenging environmental conditions.90

Previous studies on simulating percolation did not account for sources of91

uncertainty, such as meteorological input data uncertainty, and soil hydraulic92

parameters’ uncertainty, which can significantly impact the performance of mod-93

els, as shown by Bohnhoff et al. (2009). Probabilistic approaches, like ensemble94

simulation, can help estimate these uncertainties by generating a range of possi-95

ble outcomes based on different input data and parameters. Ultimately, better96

estimating these uncertainties allows for more informed decision-making.97

Another important limitation of earlier percolation studies is that they only98

compared total annual simulated and measured percolation volumes, rather than99

daily or sub-daily time series (Mijares & Khire, 2012). This temporal aggrega-100

tion restricts our ability to detect differences in the temporal patterns of perco-101

lation. It also limits the identification of potential causes of differences between102

simulated and measured values.103

In this study, we use the Soil, Vegetation, and Snow (SVS) land-surface104

model (Alavi et al., 2016; Husain et al., 2016) to simulate point-scale percolation105

from the bottom of three large-scale experimental plots (soil enclosures). These106

experimental plots are designed and built to evaluate the performance of three107

different landfill final covers. They are located in Southeast Quebec (Canada),108

a region with a warm-summer humid continental climate (Dfb), according to109
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the Köppen classification (Peel et al., 2007). Four pan lysimeters (two inside110

one of the plots) are installed to collect percolation, which is recorded hourly111

by data loggers.112

SVS is a process-based model developed and used operationally by Environ-113

ment and Climate Change Canada (ECCC), with a special focus on the rep-114

resentation of subsurface hydrological processes. SVS explicitly considers and115

simulates the processes related to the water and energy balance and snowpack116

evolution. Recently, a new soil freezing module has been added to the model,117

using the simple heat-conduction algorithm of Hayashi et al. (2007). SVS in-118

cluding this new soil freezing scheme sets apart from other models commonly119

used in percolation-related research, which do not account for snow and frozen120

ground on their own and require evapotranspiration as input data and makes121

it particularly appealing in cold climates. Previous works involving SVS have122

mainly focused on surface energy and water balance simulations (Maheu et al.,123

2018; Leonardini et al., 2020), and on SVS snowpack simulations (Leonardini124

et al., 2021).125

With this work, we aim to address the following research question: are land-126

surface models (and in particular SVS) able to simulate percolation in a cold127

climate where the soil undergoes seasonal freeze-thaw cycles? We hypothe-128

size that SVS will be able to simulate percolation from our three experimental129

plots, since it can account for the influential underlying processes, including130

soil freezing. To provide a more stringent performance assessment, we do not131

calibrate SVS using any field-measured data, which are typically unavailable132

to modelers. Instead, we use an ensemble simulation approach, to account for133

uncertainties related to meteorological input data, input parameters such as134

soil hydraulic/thermal properties, and uncertainties related to the choice of the135

lower-boundary condition of SVS that directly influences percolation simulation.136

The work presented in this study is the first to evaluate the performance of SVS137

regarding percolation simulations and soil hydrology in a cold climate. More-138

over, it is the first study involving the newly developed soil-freezing module and139

assessing its performance.140
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The remainder of this paper is structured as follows: In Section 3, we provide141

a brief description of the SVS land-surface model and the experimental setup. In142

Section 2 we present the case study, including a description of the experimental143

site and the available data. In Section 4, we present and discuss the results.144

Finally, in Section 5, we summarize the main findings of the study, discuss145

the implications and limitations of our work, and suggest directions for future146

research.147

2. Case study148

2.1. Experimental plots149

Figure 1 shows the configuration of the three experimental plots (enclosures).150

The plots are constructed at the St-Nicéphore landfill site in Drummondville,151

Quebec (Canada), shown in Figure 2. These experimental plots are constructed152

as prospective landfill final covers where the main variable of interest is the153

percolation exiting through these covers into the waste layer.154

Figure 1: The different soil layers in the three experimental plots. The blue circles

represent the soil moisture/temperature sensors placed at 7.5 cm depth.
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Figure 2: The location of the study site and the Saint-Germain de Grantham weather

station on the map

The percolation from the bottom of these plots is collected using pan lysime-155

ters and recorded hourly using tipping counters (100 ml for each tip) (Figure156

3-a). Soil water content and soil temperature are also measured (half-hourly)157

using dielectric sensors (5TM made by Decagon Devices Inc) depicted as blue158

circles in Figure 1. These sensors are placed at a depth of 7.5 cm. The plots are159

equipped with several more sensors and instruments (e.g. settlement plates),160

not shown in the figures since they are not used in this study.161
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Figure 3: The cross-section view of the experimental plots (a) and the top-view of the

plots in the site immediately after construction in the summer of 2018 (b)

Each experimental plot has a different configuration of soil layers. The E1162

plot 1-a contains exclusively typical cover material, a term adopted to refer to163

a type of soil, ranging from sandy to silty, commonly used as cover materials164

at St-Nicéphore landfill. The E2 plot 1-b includes a layer of BC soil and two165

layers of cover material, and E3 has a layer of AB soil between layers of cover166

material. BC and AB refer to the level of contamination according to the local167

legislation. At the bottom of each lysimeter, an identical 20-cm drainage layer168
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of sand and gravel is placed to facilitate the draining of the water from the169

bottom of the lysimeters. Table 1 presents the laboratory-obtained parameters170

for the aforementioned soils. Section 3.4 describes how these parameters were171

measured in the laboratory.172

2.2. Data173

The long-term precipitation records for the study site (Drummondville) in-174

dicate this location, on average, receives more than 1050 mm of precipitation175

(snowfall + rainfall), including 227 cm of snowfall annually. Snow depth mea-176

surements from 1982 to 2017 show that on average there are 109 days with more177

than 3 cm of snow on the ground.178

The meteorological forcing variables for SVS are obtained from the Saint-179

Germain de Grantham (Saint-G) weather station (13 km from the study site, see180

Figure 2), except for short-wave and long-wave radiation that is not measured181

anywhere nearby. Radiation from the ERA5 reanalysis (Hersbach et al., 2020)182

is used as a proxy. Specific humidity is estimated using dew point temperature183

and atmospheric pressure. The Saint-Germain de Grantham station is equipped184

with a double Alter Shield precipitation gauge and as suggested by Smith et al.185

(2022) no wind-bias-adjustment is applied to the precipitation data.186

The precipitation’s phase discrimination in SVS is done using a zero-degree187

threshold. However, we overwrite this by using the formula proposed by Jen-188

nings et al. (2018) which distinguishes between rainfall and snowfall using hu-189

midity and air temperature, as in equation 1190

Psnow =
1

[1 + exp c1 + (c2Ta) + (c3Rh)]
(1)

where Ta is air temperature (°C), Rh is the relative humidity (%), and191

c1, c2, c3 are empirical coefficients which are equal to -10.04, 1.41, 0.09, respec-192

tively. Precipitation is recognized as snow if Psnow is greater than 0.5, and rain193

otherwise.194
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3. Methods195

3.1. SVS land-surface model196

The SVS land-surface model is developed and is actively maintained by197

ECCC (Alavi et al., 2016; Husain et al., 2016; Leonardini et al., 2021). It198

requires seven hourly meteorological variables as input data, including air tem-199

perature, short- and long-wave radiation, wind speed, specific humidity, atmo-200

spheric pressure, and precipitation. To start SVS under snow-free conditions,201

initial values for soil volumetric water content and soil temperature must be202

provided for each defined soil layer. By default, SVS estimates soil hydraulic203

and thermal properties using pedo-transfer functions based on the percentage204

of sand and clay in each layer. Therefore, these two parameters are the only205

ones that are required to fully describe the soil column in SVS.206

Each grid cell in SVS can be divided into four tiling components: 1) bare207

ground, 2) low/high vegetation, 3) snow over bare ground and low vegetation,208

and 4) snow under high vegetation. For each of these four components, SVS209

uses the force-restore approach (Bhumralkar, 1975; Blackadar, 1976) to calcu-210

late the energy budget. SVS uses a one-layer approach for the snowpack and211

the vegetation canopy. A detailed description of the SVS snow component is212

presented in Leonardini et al. (2021).213

Within the soil column, the vertical movement of water is governed by214

Richards equation for unsaturated flow, solved by a finite difference scheme215

(Verseghy, 1991). In SVS, the soil water retention curve (SWRC) and verti-216

cal hydraulic conductivity (Kv) are modeled using the following two equations217

(Clapp & Hornberger, 1978):218

ψ(z, t) = ψa

[
ω(z, t)

ωsat

]−b

(2)

and219

Kv(z, t) = Kv,sat

[
ω(z, t)

ωsat

]2b+3

(3)
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where ψ (kPa) is soil suction, ωsat is the saturated soil volumetric water220

content, and Kv,sat is the saturated vertical hydraulic conductivity of the soil.221

In equations 2 and 3, b and ψa are empirical (fitting) parameters related to the222

slope of the SWRC and air-entry value suction of the soil, respectively.223

In SVS, by default, percolation at the bottom of the last soil layer is cal-224

culated only when the soil volumetric water content is larger than the water225

content at field capacity. We refer to this parameter as ωtrig. Furthermore, the226

calculation of surface runoff in the model is based on the saturated fraction of227

the surface and is generated when either the precipitation rate is larger than228

the first layer’s Kv,sat or when soil moisture exceeds saturation.229

The default version of SVS does not simulate soil freezing and thawing and230

its impact on infiltration and percolation (Alavi et al., 2016). To overcome231

this limitation, a simple soil freezing scheme has been implemented in SVS. It232

relies on the simple heat-conduction algorithm of Hayashi et al. (2007) and is233

described in detail in Appendix A.234

3.2. Experiment design235

3.2.1. Research question236

Our research question is are land-surface models (and in particular237

SVS) able to simulate percolation in a cold climate where the soil un-238

dergoes seasonal freeze-thaw cycles? To address this question, 200-member239

ensembles are created for each plot to account for uncertainties in the model’s240

meteorological input data, input parameters related to soil hydraulic properties,241

and lower boundary condition related to the simulation of percolation.242

The construction of experimental plots was concluded in the summer of 2018,243

however, the field data (i.e. percolation + soil moisture/temperature) for the244

first year after the construction is not used in the analysis due to the impacts of245

experimental plot stabilization. Meteorological data for this period, July 2018246

to July 2019, is used for model warm-up. The model evaluation period spans247

from July 2019 to the end of June 2021. The vertical discretization of the soil248

column inside SVS is identical for the three plots and is as follows: the first and249

13



last 15 cm of the 190 cm long soil column is divided into layers of 2.5 cm, the250

rest of the soil column is divided into layers with 5 cm depth (total of 44 layers251

for each soil column).252

3.2.2. Constructing the ensembles253

To represent the uncertainty related to the model’s input parameters, a254

sampling interval is considered for the parameters in Table 1 for which there255

are several laboratory-estimated values. The interval is the same as the range256

presented in the table for each parameter.257

The interval for ωtrig is defined as a multiplier from 0.5 to 0.99 of ωsat of the258

corresponding soil layer, which we argue is a reasonable range considering the259

capillary effect present at the interface between the soil covers and the drainage260

layer (made of sand and gravel). To ensure a more evenly distributed sample,261

we use Latin hypercube sampling (Loh, 1996) to create the ensemble members262

rather than random sampling.263

The ensemble of meteorological data is constructed by applying a random264

perturbation to the variables and following the approach proposed by Charrois265

et al. (2016), which ensures physically consistent temporal variations for the266

data. According to this approach, a first-order autoregressive model, 4, is used267

to compute the random perturbation for each variable (Deodatis & Shinozuka,268

1988).269

Pt = ϕPt−1 + ϵt (4)

In Eq. 4 Pt is the perturbation value at time t, ϕ is the parameter for270

the autoregressive model, and ϵ is a white noise process with zero mean and271

σ2 variance. ϕ is obtained by fitting an AR(1) model to the time series of272

each variable and variance σ2 is computed using the standard deviation of the273

residuals between the variables from the Saint-Germain de Grantham station274

and the corresponding variable from the field stations (average of three stations)275

following Eq. 5.276

14



σ2 = σres(1− ϕ2) (5)

An additive perturbation is applied to air temperature, dew temperature,277

and atmospheric pressure. A multiplicative perturbation is applied to short-278

wave radiation, wind speed, and relative humidity Charrois et al. (2016). The279

multiplicative perturbation is limited to [0.8, 1.2] to avoid extreme values.280

Concerning longwave radiation, as there is no field measurement available, no281

perturbation is applied. Precipitation data is perturbed according to the World282

Meteorological Organization’s recommended range of uncertainty for rainfall283

measurements taken by automatic tipping-counter rain gauges, which is ±5 %284

(Lanza et al., 2005; Colli et al., 2013). The phase of precipitation is computed285

following the perturbation of air temperature and relative humidity data.286

3.3. Performance assessment metrics287

The performance of the ensembles regarding different hydrological variables,288

namely the soil moisture/temperature, snow depth, and percolation, is evaluated289

using the Continuous Ranked Probability Score (CRPS) (Bröcker & Smith,290

2007). The CRPS is a widely-used metric that penalizes the over or under-291

dispersion and bias in ensemble simulations (Clark, 2017); a low CRPS denotes292

better simulations, and perfect simulations would have a score of zero. The293

ensverif Python library: https://pypi.org/project/ensverif/ is used to294

calculate the CRPS.295

We use the Continuous Ranked Probability Skill Score (CRPSS) to compare296

the simulations produced by SVS to a benchmark. The CRPSS is calculated297

using Eq. 6. A positive CRPSS indicates that SVS performs better than the298

benchmark, a negative value means that it performs worse, and a CRPSS of299

zero indicates that there is no difference in performance between the two. A300

CRPSS of 1 signifies a perfect simulation.301

CRPSS = 1− CRPSsvs

CRPSbench
(6)
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To have realistic and competitive benchmarks, we linearly varied the ob-302

served values between ȳobs − sobs
4 and ȳobs +

sobs
4 and assigned each of them to303

an ensemble member (200 total). Here, ȳobs is the average value for the obser-304

vations of the hydrological variable, and sobs is the standard deviation of the305

observations.306

We also use R2 (square of Pearson’s correlation coefficient) and mean-bias-307

error (MBE) to assess the performance of the ensemble average regarding the308

variables of interest. MBE is calculated by subtracting the observations from309

simulated values.310

3.4. Laboratory methods311

The soil water content at saturation, field capacity, and the wilting point are312

obtained by conducting the HYPROP (HYdraulic PROPerty analyzer, Schindler313

& Müller, 2017; Schindler et al., 2015) technique (METER Group, Inc.). This314

technique involves measuring the pressure head, against time, at two different315

depths within a 5-cm soil column. This is done while the water evaporates from316

the surface. Fluxes and water contents are determined by continuous weighing317

of the column. In the end, the measurements for pressure head, water content,318

and evaporation fluxes are used to obtain the water retention curve which is a319

graph that shows the relationship between the soil’s water content and the soil320

suction (Bezerra-Coelho et al., 2018).321

Based on the HYPROP results, the soil volumetric water content at field322

capacity (ωfc) for the different types of soils is estimated to be the soil water323

content corresponding to the 33 kPa suction. The b coefficient and ψa in Eq. 2324

are obtained by fitting the equation to water content and suction measurements325

that have been obtained using the HYPROP technique. This is done using326

a mathematical optimization algorithm called the Levenberg-Marquardt algo-327

rithm, which adjusts the parameters to find the best fit between the equation328

and the measurements.329

The saturated hydraulic conductivity (Ksat) was estimated using the KSAT330

(METER Group, Inc.) device, which automatically measures Ksat of saturated331
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soil samples based on Darcy’s equation. In this test, a fully saturated soil sample332

is percolated with degassed water at room temperature, perpendicular to the333

sample’s cross-section. During the percolation, the flow rate and hydraulic334

gradient are measured. Ksat (m.s
−1) is then calculated using Darcy’s equation:335

Ksat =
LV

∆HA∆T
(7)

where ∆T is the length of the time interval (s), V is the volume of water336

passed through the sample (m3), L is the length of the soil sample (m), A is the337

soil sample cross-sectional area (m2), and ∆H is the hydraulic head gradient338

along the flow direction (m).339

4. Results and discussion340

Figure 4 presents the CRPSS, CRPS, MBE, and R2 values obtained by341

SVS (2019-07-01 to 2021-06-30) for the ensemble simulation of daily averaged342

surface soil moisture/temperature and daily percolation volumes for the three343

experimental plots. For the E1 experimental plot, the metrics values represent344

the mean calculated from two separate sets of observations for each variable.345
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Figure 4: Performance assessment metrics for assessing the performance of SVS en-

semble simulation (CRPS and CRPSS) and ensemble mean (MBE and R2) concerning

the experimental plots and soil moisture/temperature (7.5 cm) and percolation. There

are two independent measurements available for E1.

In the following subsections, we further analyze the performance of SVS for346

the simulation of snow, soil temperature and soil moisture, and percolation. To347

gain insight into the general quality and realism of the model, its performance348

regarding the simulation of snow cover and soil freezing is assessed before as-349

sessing the quality of the simulation for percolation.350
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4.1. Snow simulation351

Figure 5 shows the comparison between the snow depth measured by the352

Saint-Germain de Grantham weather station (blue line) and the values sim-353

ulated by SVS (in orange) for two consecutive winters (Nov-May). The blue354

triangles represent manual on-site snow depth measurements. Each point rep-355

resents the average of 10 samples taken on a specific day. These measurements356

are indicative of the similarity between the snow depth at the Saint-Germain357

de Grantham station and the actual snow cover on site.358
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Figure 5: Snow depth values measured by the Saint-Germain de Grantham weather

station (blue line) and simulated by the SVS model (shown in orange as the ensemble

mean and 5-95th interpercentile range) for a) the winter of 2020 and b) the winter of

2021. The triangles are on-site manual snow measurements.

The simulated snow accumulation and melt during the two winter periods359

are generally consistent with the observations and SVS performs well in this360

regard, which is reflected by a CRPSS of 0.67 and R2 of 0.82 (average over361
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two winters). The ensemble simulation can be considered reliable since the362

observed snow depth measurements reside within the ensemble for most of the363

two winters, denoting that ensemble simulations are successful at capturing the364

uncertainty associated with the snow melt and accumulation process.365

The good performance of SVS in the simulation of snow cover is vital for sim-366

ulating snowmelt events in the spring, which can result in significant percolation367

volumes. However, the model’s ability to simulate the resulting percolation is368

largely dependent on its simulation of the soil freeze-thaw cycle, as soil freezing369

impacts the infiltration capacity of the soil. SVS’s performance in simulating370

near-surface soil temperature will be discussed in the following section.371

4.2. Soil temperature at 7.5 cm372

Figure 6 shows the simulated soil temperature values from SVS (in red) and373

the temperature values recorded by sensors at a depth of 7.5 cm within the plots374

(shown in light/dark blue).375
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Figure 6: Daily averaged soil temperature simulation by SVS (in orange, with the

ensemble mean and the 5-95th percentile range) and temperature values from a sensor

(in light/dark blue) placed at 7.5 cm depth of the (a) E1, (b) E2, (c) E3 plots. Two

sensors were placed inside the E1 plot

Figure 6 shows that SVS simulates the near-surface soil temperature rea-376

sonably well, for all plots and throughout the year. As shown in Figure 4, the377

ensemble has a CRPSS of around 0.70, and the ensemble average has R2 of378
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about 0.98 for all three plots, indicating a strong agreement between the sim-379

ulation and observations. This demonstrates the model’s ability to effectively380

capture the seasonal dynamics of near-surface soil temperature. The similarity381

of values for the evaluation metrics between all plots is because the near-surface382

soil is the same for all plots, i.e. cover material (Table 1).383

The MBE values for the ensemble mean are -2.92, -2.75, and -2.51 °C for384

the E1, E2, and E3 plots respectively. These values indicate that SVS tends to385

underestimate near-surface soil temperature. The underestimation issue is more386

pronounced at a few specific periods, for instance, Dec-2020, Dec-2021, and Mar-387

2021, as shown in Figure 6, where most or all ensemble members significantly388

underestimate soil temperature (or overestimate frost depth).389

Figure 6 also shows that the ensemble has a low spread, especially for non-390

freezing temperatures. On one hand, this can indicate a robust performance by391

SVS which exhibits low sensitivity to the perturbation concerning input data392

and parameters (see Section 3.2.2) in the simulation of near-surface soil temper-393

ature. On the other hand, this can indicate an overconfident ensemble, leading394

to the underestimation of underlying uncertainty affecting the soil temperature.395

The latter point might be related to the fact that the uncertainty concerning the396

soil thermal parameters, such as soil (solid and dry) thermal conductivity, is not397

directly explored in the construction of the ensemble. In the ensemble, the per-398

turbation of soil sand/clay content, porosity, and dry density is responsible for399

variations in the thermal properties of the soils, as SVS uses those parameters400

to estimate soil thermal conductivity.401

It is also important to determine how well the model simulates the onset,402

duration, and end of soil freezing, with particular emphasis on the latter, which403

often coincides with the melting of accumulated snow and is a major hydrological404

event in areas with significant snow accumulation (Iwata et al., 2010). For the405

analysis, we only use data from one of the sensors inside the E1 plot, the dark406

blue line in Figure 6-a, since it is the source of soil temperature observations407

for which we have the fewest number of missing values for both winters. We408

compare the observations with the ensemble mean. It is reasonable to assume409
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that the analysis would be very similar for E2 and E3 since their near-surface410

soil has the same type as E1 (i.e. cover material).411

During the first winter (2019-11-01 to 2020-04-01), there are 132 days with412

observations, with a daily-averaged observed soil temperature of 0.55 °C. The413

simulated average soil temperature is -1.06. For this period, the soil at a depth414

of 7.5 cm is frozen for 60 days, whereas for the ensemble mean (simulations), this415

number is 113. The freezing period starts on 2019-12-13 according to the sensor,416

while according to the simulations, it begins more than one month earlier, on417

2019-11-09. It is difficult to compare the end date of the freezing period between418

observations and simulations, as the period between 2020-02-21 and 2020-03-12419

is missing from the observations. Nevertheless, the observations from 2020-03-420

12 onward show positive values, while the average freezing period according to421

the simulations ends on 2020-03-25.422

During the second winter (2020-11-01 to 2021-04-01), there are 151 days of423

available observations, with a daily averaged observed soil temperature of 1.42424

°C, compared to -1.05 °C for the simulations. The observation record shows425

that there are only 37 days where the soil is frozen at 7.5 cm. The simulation426

shows a significantly larger number, with a total of 113 days where the soil is427

frozen. The first subzero day according to the simulations is on 2020-11-01,428

while for the observations it is on 2020-12-16. The last frozen day according to429

the simulation is on 2021-03-22, while for the observations it is on 2021-03-17.430

Examining the simulated snow depth values for the ensemble median sug-431

gests that the severe underestimation of surface soil temperature occurs when432

there is little to no simulated snow cover. Snow cover acts as an insulator for433

the underlying soil and is inversely related to frost depth, an effect considered434

in the calculation of surface layer heat flux in SVS (Appendix A). The Saint-435

Germain de Grantham weather station’s snow depth measurements also show436

little or no snow cover during these periods, indicating that the underestimation437

of soil temperature is unlikely caused by an underestimation of snow cover in438

the model.439

This suggests that the soil freezing module of SVS may not perform well in440
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simulating soil temperature for snow-free situations and air temperatures below441

the freezing point. This may be associated with the fact that the soil freezing442

scheme is used as an upper boundary condition for the surface temperature from443

the force restore scheme implemented in SVS Husain et al. (2016).444

This scheme neglects the effects of soil freezing and thawing (latent heat445

release) on its prognostic temperature variables. Boone et al. (2000) have shown446

how the inclusion of these effects in a force restore scheme can improve the447

simulation of soil temperature when the soil freezes. Neglecting this effect in448

SVS may lead to an underestimation of the surface soil temperature during the449

fall in snow-free conditions affecting the ground heat flux used as the upper450

boundary conditions for the soil freezing scheme and ultimately generating an451

overestimation of the frost depth. In addition, the soil freezing dynamic in the452

fall depends on the liquid water content in the soil at that period (Zhao et al.,453

1997; Kurylyk & Watanabe, 2013).454

The next section we will specifically focus on assessing the accuracy and455

reliability of SVS’s soil moisture simulation, which is equally important for456

understanding hydrological processes in snow-dominated areas.457

4.3. Soil moisture at 7.5 cm458

The accuracy of a model’s simulated overland flow can often be assessed459

by examining its simulated near-surface soil moisture, which can provide an460

indirect way to evaluate the model’s performance in cases where there are no461

direct measurements of overland flow available. Figure 7 displays the simulated462

soil moisture values from SVS (in orange) and the moisture values recorded by463

sensors at a depth of 7.5 cm within the experimental plots in (dark/light) blue.464
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Figure 7: Daily averaged soil moisture simulation by SVS (in orange, with the ensemble

mean and the 5-95th percentile range) and moisture values from sensors (in light/dark

blue) placed at 7.5 cm depth of the (a) E1, (b) E2, (c) E3 plots. Two sensors were

placed inside the E1 plot.

Concerning the E1 experimental plot, Figure 7-a shows that SVS is con-465

sistently underestimating (i.e. negative bias) soil moisture at 7.5 cm, which is466

more conspicuous after snowmelt events, for instance in Nov 2019, Dec 2019,467
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and Mar 2021 (see Figure 5). The mean-bias-error (MBE, simulation - obser-468

vation) between the ensemble mean and the two sensors are -5.5 % and -7.83469

%.470

The negative bias is very likely the reason why SVS has negative CRPSS471

values, -0.37 and -0.73 concerning the first and second moisture sensors, which472

means it performs worse than the simple benchmark. This is in turn due to473

the low reliability of the ensemble. The lack of reliability in the ensemble is474

primarily attributed to its inability to consistently encompass the observations475

within its range for the majority of the time steps. Using the decomposition476

proposed by Hersbach (2000), the total CRPS of 7.2 % for SVS (concerning the477

second sensor) can be decomposed into reliability and potential components of478

7.07 % and 0.13 % respectively. This demonstrates the fact that most of the479

total CRPS is due to the low reliability of the ensemble.480

Results shown in Figure 7 highlight an underestimation of the soil liquid481

water content in the fall that can partially explain why the soil freezes too482

quickly in SVS. It is also possible that the issue may be exacerbated due to483

the uncertainty present in the radiation data used to drive SVS, which directly484

affects the soil heat transfer calculations (the shortwave and longwave radiation485

data are obtained from the ERA5 dataset as long-term direct observations are486

not available). Such bias in the radiation forcing may explain why the soil487

temperature is also underestimated during the warm period.488

The weak performance of the ensemble simulation, as measured by the489

CRPSS, can be partially attributed to a large discrepancy between the laboratory-490

obtained ωsat of the near-surface soil, cover material, and the actual values de-491

duced from analyzing half-hourly moisture measurements. The largest value492

obtained in the laboratory is 33 % (see Table 1), while the two sensors inside493

the E1 plot have recorded values around 38%. This means the actual ωsat (and494

porosity) of cover material used inside E1 can be at least 15 % larger than the495

laboratory-obtained value. Since cover material is used for the near-surface soil496

of all of the plots, we should expect a similar discrepancy affecting the perfor-497

mance of SVS concerning E2 and E3. In the case of E2, the moisture sensor has498
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recorded a value of 37 %, and the sensor placed inside E3 has recorded a value499

of 44.9 % (a storm event in Aug 2020)500

The above-mentioned issue might be related to the fact that all laboratory501

tests of soil hydraulic parameters were conducted during the construction phase502

of the experimental plots. After construction (summer of 2018), these plots con-503

tinued to experience settlement as well as soil freeze-thaw cycles, and this can504

significantly impact soil hydraulic properties, such as porosity and saturated hy-505

draulic conductivity. This process is disruptive and is expected to increase these506

properties through the expansion of water in soil pores (as it freezes into ice)507

and rearrangement of soil particles (Rooney et al., 2022; Xu et al., 2021). The508

resulting increased porosity leads to a larger area for water flow, contributing509

to an expected increase in saturated hydraulic conductivity.510

SVS’s overestimation of the soil freezing period (Section 4.2), which begins511

earlier and lasts longer than suggested by the sensor data, could be another con-512

tributing factor to its underestimation of soil moisture. During these extended513

periods of simulated soil freezing, water infiltration would be reduced according514

to simulations, potentially leading to lower modeled soil moisture levels, which515

is more critical at the beginning of the spring and during snowmelt events.516

Concerning the E2 and E3 plots, Figure 7-b, c, shows that, despite the afore-517

mentioned discrepancy, SVS performs better than the benchmark simulation,518

with CRPSS values of 0.10 and 0.38, respectively. This could be partially be-519

cause the sensors inside E2 and E3 have missing values for most of the winter520

and spring of 2021, a period when the performance of SVS degrades, in the case521

of the E1 plot (see Figure 7-a).522

Despite the negative CRPSS values for SVS regarding the E1 plot, Figure523

7-a demonstrates that SVS adequately captures the overall seasonal and sub-524

seasonal variations in near-surface soil moisture. This trend is similarly observed525

for the E2 and E3 plots (Figure 7-b, c). In the case of E1, this is also evident526

in the R2 values of around 0.48, which is moderately high considering the fact527

that R2 between the two adjacent soil moisture sensors inside E1 (within a528

few meters) is 0.85. This demonstrates the inherent variability and uncertainty529
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in the observed soil moisture measurements themselves, a consideration that530

affects the assessment of the model’s performance.531

In the next section, we examine the model’s performance in simulating per-532

colation, which is our ultimate goal.533

4.4. Daily percolation534

Figure 8 shows the simulated volumes of daily percolation (in orange) and535

the percolation volumes collected by the pan lysimeters at the bottom of the536

experimental plots (in light/dark blue).537

29



Figure 8: Total volume of daily percolation simulated by SVS (in orange, with the

ensemble mean and the 5-95th percentile range) and the measured quantities from the

lysimeters (light/dark blue) situated at the bottom of the (a) E1, (b) E2, and (c) E3

plots. Two lysimeters were placed inside the E1 plot.

There are periods when measurements are not available due to issues with538

data loggers and drainage pipes. However, it is still possible to compare the539

simulated percolation volumes from SVS with the measured values. Figure 8540
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shows that most percolation is collected in spring after the snow melts or in fall.541

In winter, the surface soil freezes, as indicated by sensors placed at 7.5 cm542

recording subzero temperatures, thereby reducing the amount of percolation543

collected from the experimental plots due to limited water infiltration. Data on544

percolation and near-surface soil temperature for the experimental plots from545

2019-07 to 2021-07 reveals that, on average, only 2 % of the total percolation546

volume was collected during frozen periods. This underlines the necessity for547

accurate simulation of soil freeze-thaw cycles. Factors such as the reduced infil-548

tration capacity of frozen ground (Heinze, 2021), the contraction of pore space549

and decrease in unsaturated hydraulic conductivity due to frozen trapped pore550

water, and the inverse correlation between water temperature and its dynamic551

viscosity, can partially account for the observed effect.552

As shown in Figure 8, the percolation during fall is significantly higher than553

in summer, despite the average monthly total rainfall being roughly the same554

throughout both seasons (Jun to Nov, with an average of 94 mm per month).555

This may be attributed to evapotranspiration loss in summer (June to August),556

which can account for 65% of the total annual evapotranspiration on average in557

Canada, while the loss in the colder months (including October and November)558

can be less than 10 mm per month Wang et al. (2013).559

The seasonality of percolation at the study location suggests that missing560

data in the fall or spring likely include significant percolation. For instance, the561

first period of missing data in the E2 experimental plot (Figure 8-c) includes562

spring 2020, when large volumes of percolation occurred in the other experi-563

mental plots. It is reasonable to assume that similar percolation events also564

occurred in the E2 plot.565

Figure 8 shows that SVS accurately matches the timing of major percola-566

tion events. In addition, the simulation accurately shows little or no percolation567

during winter and summer, consistent with observed patterns of percolation at568

the study location. However, Figure 8-a shows the model does not simulate per-569

colation at all for two significant rainfall events in Aug 2020, which is collected570

by the lysimeter inside E1. While this highlights the need for further refinement571
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of the SVS model, overall it demonstrates its ability to capture the seasonal and572

sub-seasonal patterns of percolation dynamics in the study area.573

The CRPSS values for percolation from the plots, shown in Figure 4, are 0.13,574

-0.13, and 0.33. According to these values, SVS has acceptable performance575

for E1 and E3, while it performs worse than the benchmark for the E2 plot.576

However, this poor performance must be considered in light of the fact that577

major percolation volumes were not recorded in the spring of 2020 for the E2578

plot, where SVS has simulated a significant amount of percolation.579

The R2 between the ensemble average and the daily percolation collected580

by the two lysimeters inside E1 is 0.15 and 0.24. Considering the fact that581

R2 between the collected percolation by these two lysimeters is 0.56, it would582

not be unreasonable to consider the model’s performance moderately successful.583

Concerning the E2 and E3 plots, the R2 values are 0.46 and 0.28, which indicates584

the simulated percolation has a considerably higher correlation with observed585

values, compared to the case of E1. Assuming the same inherent variability for586

percolation from E2 and E3, as demonstrated by the fact that R2 between two587

adjacent lysimeters can be as low as 0.56, we can argue that SVS has a good588

performance concerning E2 and E3, in terms of correlation.589

Figure 8 shows that, for all plots, there is a large variability in the timing of590

the simulated percolation between the members of each ensemble. It is highly591

likely that the main source of variation in this regard is the wide sampling592

space for the ωtrig parameter, which is 50-99 % of ωsat of cover material. This593

suggests that further refinement of the sampling space could potentially improve594

the performance of the ensemble simulations.595

5. Conclusion596

Reliable estimation of percolation is crucial for various applications, includ-597

ing landfill engineering, irrigation management, and groundwater management.598

Land-surface models offer a valuable tool for simulating percolation and en-599

hancing our understanding of the complex interactions between soil properties,600
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hydrological processes, and environmental factors.601

We evaluate the ability of the SVS land-surface model to simulate percolation602

from the bottom of three experimental plots (soil covers) equipped with pan603

lysimeters, soil moisture, and temperature sensors. These plots are constructed604

at a landfill site in the vicinity of Drummondville, Quebec (Canada), with a605

warm-summer humid continental climate. The site receives a significant amount606

of snowfall during the cold months (Nov-Apr) and undergoes seasonal soil freeze-607

thaw cycles. This presents an opportunity to assess the performance of the newly608

developed soil-freezing module of SVS.609

The main research question is the following: are land-surface models610

(and in particular SVS) able to simulate percolation in a cold cli-611

mate where the soil undergoes seasonal freeze-thaw cycles? To address612

this, 200-member ensemble simulations are created for each plot, considering613

uncertainties in meteorological input data, soil hydraulic properties, and lower614

boundary condition associated with percolation simulations (i.e. trigger mois-615

ture). The simulation period spans from July 2018 to June 2021 (inclusively),616

with the first year used only for model warm-up.617

To represent uncertainty in model input parameters, sampling intervals are618

created (by considering the ranges presented in Table 1) for each parameter with619

multiple laboratory-estimated values. For trigger moisture (ωtrig), an interval620

ranging from 0.5 to 0.99 of the corresponding soil layer’s saturated water content621

(ωsat) is defined. Meteorological data ensembles are constructed by applying a622

random perturbation to variables using a first-order autoregressive model (AR1)623

for physically consistent temporal variations.624

The results demonstrate the ability of the SVS model to capture the seasonal625

and sub-seasonal patterns of percolation dynamics in the study area. The model626

accurately matches the timing of major percolation events due to snowmelt in627

spring and in fall and shows little or no percolation during winter and summer.628

The CRPSS values for the E1 and E3 plots indicate an acceptable model per-629

formance, while the performance for the E2 plot is worse than the benchmark.630

The R2 values between the ensemble average and the daily percolation show a631
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moderately successful to good model performance for the E1, E2, and E3 plots.632

It is worth noting that the correlation in percolation data between two closely633

located lysimeters is only around 0.56. This highlights the spatial variability634

and complexity of percolation processes in the field.635

While SVS shows promise in its ability to simulate percolation dynamics,636

it also highlights certain shortcomings that need to be addressed. Specifically,637

inaccuracies in simulating soil freezing and soil moisture potentially contribute638

to percolation simulation errors. Overestimation of soil freezing duration by the639

model impacts the accurate simulation of water infiltration, thereby leading to640

an underestimation of soil moisture levels. An underestimation of soil mois-641

ture can translate into a reduced simulation of percolation. This is particularly642

consequential during critical periods of high infiltration such as snowmelt. Fur-643

thermore, discrepancies between the laboratory measurements of soil hydraulic644

parameters and their actual field values could also be contributing to the model’s645

underestimation of soil moisture, thus affecting the prediction of percolation.646

SVS simulates near-surface soil temperature dynamics reasonably well with647

CRPSS values of approximately 0.70 and R2 values of approximately 0.98 for all648

three plots. However, the model may underestimate near-surface soil tempera-649

ture and has limitations in simulating soil temperature for snow-free situations650

and air temperatures below the freezing point. There are large discrepancies651

between the onset, duration, and end of simulated and observed soil freezing652

periods, where SVS largely overestimates the duration of the freezing period.653

These dynamics are critical in simulating percolation and overland flow due to654

snowmelt events in spring. Therefore, further efforts are necessary to improve655

the model’s accuracy in simulating soil freezing periods and their impacts on656

hydrological processes in snow-dominated regions.657

Our findings underscore the SVS model’s value and potential while empha-658

sizing areas that require further improvement. Moving forward, future studies659

could consider using multiple models for soil water retention curves which may660

help account for uncertainty in the model’s structure. Additionally, we can ex-661

plore the applicability of the model to different geographical regions or climatic662
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conditions.663
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Appendix A. Soil freezing module in SVS874

SVS uses a hybrid approach that combines Force Restore schemes to compute875

the surface energy budget of bare ground, vegetation, and snow (Husain et al.,876

2016) with a multi-layer hydrological module solving the Richards equations for877

unsaturated flow in a porous media Alavi et al. (2016). This hybrid approach878

initially prevented the simulation of soil freezing and thawing by the model. To879

overcome this limitation a new module has been developed.880

The representation of soil freezing in SVS relies on the soil freezing/thawing881

module available in the Versatile Soil Budget Model (VSMB Mohammed et al.,882

2013). This module is based on the simple heat-conduction algorithm of Hayashi883

et al. (2007) and simulates the evolution of soil temperature and associated phase884

changes without the computationally expensive iterative solution of coupled885

non-linear equations. In SVS, soil temperature, and phase changes are solved886

on the same vertical grid as the hydrological processes using upper boundary887

conditions provided by the force restore schemes solving the multiple energy888

budgets at the surface (Husain et al., 2016).889

Appendix A.1. Heat conduction algorithm890

In the soil temperature algorithm, the heat conduction between two adjacent891

soil layers (upper to lower) is given by:892

qh = −λs
∆zT

∆z
(A.1)

where qh is the soil heat flux (W m−2), ∆zT is the difference in soil tem-893

perature between adjacent layers (lower minus upper) (K), ∆z is the distance894

between the centers of the (m) and λs is the bulk thermal conductivity given by895
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the thickness-weighted harmonic mean conductivity of the two layers (W K−1
896

m−1).897

For a given soil layer j, the net heat flux (∆zqh,j) is then computed as:898

∆zqh,j = qh,j−1 − qh,j (A.2)

The soil temperature algorithm assumes then that the change in net heat899

flux corresponds to a change in heat stored as sensible and latent heat in layer900

j:901

∆zqh,j = (∆tTjcs,j +∆twi,jρwLf )dj (A.3)

where ∆tTj (K) and ∆twi,j (kg kg−1) are the changes in soil temperature902

and liquid equivalent ice content of layer j, respectively, with time, ρw is the903

density of water (kg m−3), Lf is the latent heat of fusion (J kg−1), dj is the904

layer thickness (m), and cs,j is the volumetric heat capacity of the soil layer (J905

m−3 K−1).906

The VSMB soil freezing scheme assumes that water in soil pores freezes at907

Tref = 273.15 K and ignores the freezing-point depression (Kurylyk & Watan-908

abe, 2013). It accounts for the presence of unfrozen water that remains in the909

soil at sub-zero temperatures and co-exists with ice. The default VSMB algo-910

rithm assumes that the residual unfrozen water content, wl,r, is constant and911

equals 0.06. This option has been used in the work since it corresponds well to912

local observations of residual liquid water content in frozen conditions. Another913

option in SVS allows the unfrozen residual water content to depend on the soil914

texture based on Niu & Yang (2006). If a soil layer j is completely thawed915

or frozen with no liquid water above the residual frozen water content (i.e.,916

Tj ̸= Tref ), ∆zqh,j is converted to sensible heat until Tj reaches Tref and any917

residual is converted to latent heat (melting of freezing). If the soil is already918

frozen (Tj=Tref ), ∆zqh,j is first used for phase change of all available liquid919

water above wl,r and any residual is converted to sensible heat. Calculations920

are performed sequentially from the top to the lowest soil layer.921
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The thermal heat capacity, cs, and thermal conductivity, λs, of the soil922

layers are parameterized following Peters-Lidard et al. (1998) as functions of923

soil moisture and texture (percentage of sand and clay) and account for the924

effect frozen soils as described in Boone et al. (2000). The dry soil thermal925

conductivity and soil thermal conductivity are taken from He et al. (2021) and926

Johansen (1975), respectively.927

Appendix A.2. Lower boundary condition928

The heat flux at the bottom of the lowest soil layer is specified using an

annual mean deep soil temperature, Tbtm, and an appropriate scaling depth,

zbtm. It is written as:

qh,N = λs,N
TN − Tbtm
(zbtm − zN )

(A.4)

where N corresponds to the deepest soil layer. In this study, Tbtm was set to929

7.5 (°C) and zbtm set to 5 m.930

Appendix A.3. Upper boundary condition931

The upper boundary condition accounts for the surface tiling use in SVS and932

includes the contribution from: (i) snow-free bare ground, (ii) snow-free low and933

high vegetation, (iii) snow over bare ground and low vegetation, and (iv) snow934

below high vegetation. The heat flux at the top of the superficial soil layer is935

written as:936

qh,0 = (1−fveg) [(1− fsnw)Hgrnd + fsnwHsnw]+fveg [(1− fsnwv)Hveg + fsnwvHsnwv]

(A.5)

Where fveg, fsnw and fsnwv are the fractions of the grid cell covered by high937

vegetation, the fraction of low vegetation and the bare ground covered by snow,938

and the fraction of soil under high-vegetation covered by snow, respectively.939

Hgrnd, Hveg, Hsnw and Hsnwv are the heat flux (W m−2) from snow-free bare940

ground, snow-free vegetation, snow over bare ground and low vegetation and941

snow below high vegetation.942
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For bare ground, the heat flux depends on the difference between the skin-

temperature Tgs simulated by the force-restore approach for bare ground and

the temperature of the upper soil layer (j=1). It is written as:

Hgrnd =
Tgs − T1
Rg

with Rg =
d1

2λs,1
(A.6)

In its current version, the soil freezing scheme has no feedback on the force943

restore scheme used for bare ground. Therefore, the prognostic temperature944

variables of the force restore scheme used for bare ground lack the effect of945

latent heat release due to soil freezing and thawing. This can lead to an under-946

estimation of soil temperature during soil freezing and an overestimation of soil947

temperature during soil thawing.948

SVS does not simulate the evolution of the surface soil temperature below949

the low and high vegetation. This limits the ability to compute accurately the950

heat flux below the vegetation tile. For this reason, without more information951

available, the heat flux from the vegetation tile is assumed to be the same as952

the heat flux from the bare ground tile: Hveg = Hgrnd.953

The force restore schemes used for the snowpack over bare ground and low

vegetation and the snowpack below high vegetation do not provide information

on the temperature at the interface between the ground and the snow. There-

fore, the deep snow temperature, Tsnw,d, from the force restore scheme is used

to estimate the heat flux between the superficial soil layer and the snow. It is

written as:

Hsnw =
Tsnw,d − T1

Rsnw
with Rsnw =

htherm
λsnw

+
d1

2λs,1
(A.7)

where λsnw is the snow thermal conductivity (W m−1 K-−1) and htherm the954

thickness used to compute the thermal exchanges between the snowpack and955

the ground (m). htherm depends on the snow damping depth, dsnw, used to956

characterize the diurnal variation of temperature close to the snow surface in the957

Force Restore scheme (Leonardini et al., 2021). htherm is computed as htherm =958

max/(hsnw/2, hsnw − dsnw) where hsnw is the total snow depth. The heat959

flux between the superficial soil layer and the snowpack below high vegetation,960
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Hsnwv, is derived in the same way as Hsnw using the simulated information for961

the snowpack below high vegetation.962

An accurate estimation of the fraction of the soil covered by snow is an im-

portant component of the soil freezing scheme. Indeed, it affects the estimation

of the surface heat flux and strongly controls soil freezing in the fall and soil

thawing in springtime. Two approaches can be used for snow cover fraction

in the soil freezing scheme. For the first option, the fraction is computed as

fsnw= max/(1., ρsnwhsnw

Wcr
) with Wcr = 1 kg m−2. The same formulation is used

for fsnwv. With this formulation, the snow cover fraction reaches the value of

1 as soon as the snow is present on the ground. Such formulation is mainly

suitable for point-scale applications of the soil freezing scheme and was used in

the study. A second option, recommended for gridded simulations, relies on the

formulation of Niu & Yang (2007):

fsnw = fsnwv = tanh/

 hsnw

2.5z0

(
ρsnw

ρref

)m

 (A.8)

where ρref = 100 kg m−3 and m = 1.6 are the default values from Niu & Yang963

(2007). In the soil freezing scheme, z0 is set to 0.01 m to preserve a rapid964

increase of the snow cover fraction with snow depth. The term
(

ρsnw

ρref

)m

in the965

denominator aims at roughly representing the hysteresis associated with the966

snow cover fraction (Niu & Yang, 2007).967

Appendix A.4. Hydrological impact968

The presence of frozen soil (wi > 0) modifies the hydraulic conductivity

at saturation and the soil porosity in the SVS soil hydrology scheme. The

saturated hydraulic conductivity in the presence of frozen soil is written as

ksatc = ficeksat where ksat is the hydraulic conductivity at saturation that

depends on soil texture. fice is a parameter that aims are reducing ksat in

presence of frozen water in the soil (e.g., Kurylyk & Watanabe, 2013). It is

computed as in the CLASS land surface scheme (Ganji et al., 2017):

fice =

[
1−max/

(
0,min/

(
wsat − 0.001

wsat
,
wi

wsat

))]2
(A.9)
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where wsat is the saturated volumetric water content.969

The volumetric liquid water content at saturation is also reduced assuming

that frozen water becomes part of the soil matrix (Zhao et al., 1997):

wsatc = max/(0.001, wsat − wi) (A.10)

Evapotranspiration is also indirectly impacted due to the change in the liquid970

water content when freezing and thawing occur.971
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