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Abstract
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across the tree of life. By mapping redox potentials onto networks of oxidoreductase fold evolution, we can infer the evolution of
electron transfer energetics over deep-time. ProtReDox is designed to include user-contributed submissions with the intention
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The energetics and evolution of oxidoreductases in deep time
Short Title: Protein Redox Potentials
Authors:

Kenneth N. McGuinness’2", Nolan Fehon®, Ryan Feehan*, Michelle Miller®, Andrew C. Mutter®, Justin
Nam?, Jenna E. AbuSalim?, Joshua T. Atkinson®, Hirbod Heidari”, Natalie Losada?, J. Dongun Kim?,
Ronald L. Koder®, Yi Lu’, Jonathan J. Silberg®, Joanna S.G. Slusky*®, Paul G. Falkowski®?", Vikas
Nanda?10*

Affiliations:
! Department of Natural Sciences, Caldwell University, Caldwell NJ 07006
2 Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway N.J 08854

3 Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences,
Rutgers University, New Brunswick NJ 08901



4 Computational Biology Program, The University of Kansas, Lawrence KS 66047

5 Department of Physics, The City College of New York, New York NY 10016

6 Department of Chemical and Biomolecular Engineering, Rice University, Houston TX 77005
" Department of Chemistry, University of Texas at Austin, Austin TX 78712

8 Department of Molecular Biosciences, The University of Kansas, Lawrence KS 66045

9 Department of Earth and Planetary Sciences, Rutgers University, New Brunswick NJ 08901

10 Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers
University, Piscataway NJ 08854

*correspondence should be addressed to: KNM kmcguinness@caldwell.edu, PGF falko@marine.rutgers.edu
or VN vik.nanda@rutgers.edu

Acknowledgements and Funding: The authors thank Jennifer Timm, and Jan Siess for useful discus-
sions, and extend our sincere appreciation to our colleagues who meticulously measured and published the
redox potentials surveyed in this work. This work was supported by a NASA Astrobiology Institute Grant
80ONSSC18MO0093 to J.J.S., P.G.F. and V.N. K.N.M. was supported by the NIH IRACDA Postdoctoral
Fellowship Program Grant K12GM093854. J.N. was supported by the RISE program at Rutgers University.

Keywords: enzymes, metabolism, electron transfer, database, oxidation-reduction

Data Availability Statement: The data that support the findings of this study are openly available
in https://protein-redox-potential.web.app

Conflict of Interest Statement: The authors have declared no conflict of interest.
ABSTRACT:

The core metabolic reactions of life drive electrons through a class of redox protein enzymes, the oxidoreduc-
tases. The energetics of electron flow is determined by the redox potentials of organic and inorganic cofactors
as tuned by the protein environment. Understanding how protein structure affects oxidation-reduction ener-
getics is crucial for studying metabolism, creating bioelectronic systems, and tracing the history of biological
energy utilization on Earth. We constructed ProtReDox (https://protein-redox-potential.web.app), a man-
ually curated database of experimentally determined redox potentials. With over 500 measurements, we
can begin to identify how proteins modulate oxidation-reduction energetics across the tree of life. By map-
ping redox potentials onto networks of oxidoreductase fold evolution, we can infer the evolution of electron
transfer energetics over deep-time. ProtReDox is designed to include user-contributed submissions with the
intention of making it a valuable resource for researchers in this field.

Keywords: oxidation-reduction; proteins; energy metabolism; electrons; oxidoreductases, enzymes and
coenzymes

INTRODUCTION

On a global scale from an electron perspective, all organisms are electronic half-cells, powered by circuits
plugged into electron sources and sinks in the environment [1-3]. For example, in aerobic respiration, which
is probably most familiar to us, as that is our source of energy, the oxidation of organic matter leads to a
flux of electrons and protons through metabolic pathways to reduce oxygen to water and CO5. This, like
all metabolic pathways, is a half-cell terms of chemical oxidation-reduction pathways. In the case of aerobic
respiration, the other half cell is oxygenic photosynthesis, where sunlight is used to oxidize water and the
electrons and protons drive reduction of CO5 to organic matter. The voltage potential between the anode
(e.g., organic matter; in its simplest form, sugars) and the cathode (e.g., oxygen) provides over 1 volt of



energy. That is the most energy available for life on this planet - but life existed long before there was
molecular oxygen.

In deep time, a set of enzymes evolved to facilitate electron transport — the oxidoreductases or EC 1 proteins.
Biological electronic circuits require the movement of electrons over sub-nanometer distances through an
electron transfer chain that powers life. The movement of electrons is governed by physical laws [4-6].
Oxidoreductases organize the positions and relative energetics of chains of redox-active cofactors, assuring the
rapid, directional flow of electrons [7]. The energetic tendency of a redox-active group to gain electron or lose
electrons can be experimentally measured as the redox potential, expressed in volts (V), relative to a reference
such as the standard hydrogen electrode, at a standard pH. Redox-active groups that contribute to the
redox potential can be cofactors such as iron-sulfur clusters, hemes, or flavins, or amino acid residues such as
cysteine, methionine, or tryptophan. The relative stability of cofactor oxidation states are largely determined
by the cofactor itself [8] but are further modulated by the protein matrix. Electrostatic interactions, such as
proximity of positively charged basic amino acids, can stabilize a redox cofactor in the reduced state [9, 10].
The protein can modulate oxidation-reduction energetics through hydrogen bonding [11, 12], hydration [13]
and dynamical features [14] of the protein-cofactor environment. Groups of oxidoreductases form metabolic
pathways, powering cellular-scale circuits where the current depends on the rate of catalysis and diffusion
of substrates [15]. It is critical to study how the protein environment modulates the energetics of oxidation-
reduction reactions in order to understand how electron transfer is coupled to metabolism.

The connection between oxidoreductase structure and energetics is central to the deep-time evolution of
metabolism. Oxidoreductases must have been among the first proteins at the origins of life over 3.5 billion
years ago providing the spark for metabolism [2, 16-20]. Due to its fundamental electrical nature, the
evolution of metabolism, and the associated oxidoreductases, was strongly coupled with changes in the redox
state of the planet, which has become increasingly oxidized over time due to both geochemical and biological
processes [2, 21, 22].

Modern oxidoreductases are massive nanomachines — far too complex to have arisen early in metabolism.
Various structure-based bioinformatics approaches have been applied to identify universal sub-folds or do-
mains within larger proteins that may have derived from early protein forms [16, 17, 23-32]. In previous
work focused on the evolution of oxidoreductases, we found that modern, large enzymes were largely derived
from just a few minimal protein-cofactor building blocks [16, 17, 33]. In addition to identifying core cofactor
binding folds, we used a structure-derived criterion for electron transfer based on cofactor-cofactor distances
[7] to map a network of electron transfer pathways between the different folds — which we refer to as the
Spatial Adjacency Network, SpAN. A notable feature of the SpAN was the abundance of more reducing
cofactor-binding folds in the network center and more oxidizing cofactor-folds at the periphery [17]. This
suggests a time axis in the SpAN from the center to the periphery of the network reflecting the adaptation
of protein redox energetics to emerging electron sources and sinks made available by an oxidizing planetary
environment over geologic time. Mapping quantitative estimates of protein redox energetics onto the SpAN
would allow us to potentially constrain the age of various protein folds based on redox information in the
geologic record [2, 34, 35].

Computational approaches for prediction of redox energetics based on protein structures is an ongoing
challenge. Current methods span many levels of theory from quantum-mechanical to empirical [36] and
recent advances using machine learning [37]. Site-directed mutagenesis studies on natural oxidoreductases
[38-40] and protein engineering [41-44] have been used to test molecular hypothesis of how the protein
environment tunes redox energetics. Large datasets of protein structures, including oxidoreductases, are
on the horizon with advances in functional annotation from genomic and metagenomic datasets [20, 45]
combined with recent advances in structure prediction [46-48| including bound cofactors [49]. Effective
models that can predict redox energetics based on structural information will become increasingly valuable
for understanding bioenergetics, evolution of metabolism and engineering of bioelectronic pathways [42, 50].

Motivated by the need to design and train better models and the goal of mapping redox energetics onto
the SpAN to study oxidoreductase evolution, we develop ProtReDox, a manually curated database of pro-



tein redox potentials. We examined literature reports of oxidoreductase energetics and identified the co-
factor type, redox potential, UniProt and PDB (if available) identifiers, and experimental metadata such
as potentiometric measurement technique, pH and buffer conditions. ProtReDox version one is available
athitps://protein-redox-potential.web.app. We apply this dataset to explore how redox energetics is mod-
ulated by cofactor-type, protein environment, experimental conditions and finally how energetics mapped
onto the SpAN inform geochemical constraints on deep-time oxidoreductase evolution.

METHODS

Data collection and curation . The dataset includes 514 redox potentials from 239 unique enzyme/cofactor
pairs consisting of metal ions (Cu, Fe, Mo), flavins, hemes, and multinuclear iron-sulfur clusters. Proteins are
indexed by their UniProt ID, and approximately half are associated with high-resolution structures deposited
in the Protein Data Bank [51]. Redox potentials are normalized to the standard hydrogen electrode and
pH-corrected to pH 7.0. Redox potentials were only included if the midpoint potential could unequivocally
be assigned to a particular cofactor.

ProtReDozx database construction . Redox potentials and associated data are stored in a Google Firebase
Cloud Firestore database [52]. The ProtReDox website is rendered using the Firebase Web v.9 modular
JavaScript SDK in combination with React.js (v. 18.2) (react.dev). The website user interface comprises a
navigation, logo, searchable redox dataset table, and a form to input new redox potentials and associated
information. User-contributed additions to the dataset will be marked for review and evaluated manually.

Feature-redox correlation analysis . To better understand the key features controlling redox potential, 486
features were calculated as previously described[53] for a set of 42 protein structures with type 1 copper sites
with experimentally identified reduction potentials. These features covered ten categories of physicochemical
properties based on how they were calculated: solvation, electrostatics, hydrogen bonding, van der Waals,
geometry, pocket void, secondary structure of the backbone region of the protein directly interacting to the
redox site, amino acid angles, pocket lining, and surface area. The property values for sites on different
chains of the same protein structure were averaged. Any features for which all structures had the same value
were removed, leaving 446 features. Pearson correlation coefficients between features and reduction potential
were then calculated using the python library SciPy [54]. For each structure, the reduction potential with an
experimental pH closest to the crystallization pH was selected. When no crystallization pH was available, the
reduction potential with the most neutral pH was selected. These reduction potentials were then normalized
to pH 7.0 for further analysis (eq. 1).

Mapping redox energetics on the SpAN . The SpAN is a network representation of protein electron transfer
pathways with nodes corresponding to classes of protein microenvironments surrounding the redox cofactor
(termed modules) and edges reflecting instances in the PDB where two modules are within electron transfer
proximity (cofactor-cofactor distance < 14 A) The generation of this network was described in our previous
work [16, 17]. The 2020 version of the SpAN was used in this study.

RESULTS AND DISCUSSION

Cofactor-type is the primary determinant of redox energetics . Redox potentials included in ProtRedox span
almost 2 V, ranging from the -675 mV 2[4Fe-4S] binding bacterial ferredoxin of E. coli[55] to the 41301 mV
chlorophyll A in PS II within T. elongatus [56]. Within this broad range, the cofactor type is the primary
determinant of redox potential (Fig. 1 ). Cofactor types are designated based primarily on the PDB-derived
nomenclature. Cofactors from most reducing to most oxidizing were 4Fe-4S (SF4), 2Fe-2S (FES), flavins,
mononuclear iron sites (Fe), iron-bound hemes (HEM) and copper sites (Cu). These ranges are consistent
with previous analyses of protein electron carriers [8].

Molecular features that determine energetics . Protein redox potential is a complex property that is affected by
features of the redox site first and second shell environment: solvation, hydrogen-bonding, ligand interactions,
metal coordination, electrostatic interactions [57, 58] and corresponding enthalpic and entropic energy terms
[59]. Redox potential can be directly calculated from first principle quantum mechanics calculations [60, 61],



however these calculations are expensive and are not practical for protein design. To better understand the
protein features that determine redox potential, we calculated the correlation between 433 physicochemical
features (including energy and geometry features) and reduction potentials (Fig. 2 ) for copper proteins
with ReProDox.

The categories of features with best correlations tended to be those related to electrostatics and solvation.
These include solvation features that describe Lazaridis-Karplus solvation energies both isotropic and ani-
sotropic contributions for various distance cutoffs within 9 A. The significant electrostatic features include
calculations for Coulombic electrostatic potential as well as features describing the theoretical titration cur-
ve of surrounding residues. In contrast, other categories of features are more statistical. For example, eight
of the nine significant “amino acid angle” features are Dunbrack rotamer energies of residues within 5 A,
indicating the use of some more common and some less common rotamers. In addition to further evaluating
significant features that correlate with protein redox potentials found in ProtRedox, we expect these features
can be used to train models [37, 53] for high throughput redox active protein design.

Coupling redox energetics to pH. Comparing protein redox potentials is challenging due to the numerous
experimental conditions under which redox potentials are measured. Experimental pH is known to be a
significant factor affecting redox processes accompanied by protonation/deprotonation events [62], which is
commonly observed among Cu redox proteins [62-65]. To compare experimental redox potentials values are
normalized to a reference pH (7.0) using the Nernst equation,

Eq. 1t Eyea = E+ (59.16 mV xnx (pH —7))

where 59.16 mV is the Nernst constant relating pH to redox potential. E..q is the normalized reduction
potential of each protein at pH 7 and E is the reduction potential measured at the literature pH. The
variable n, assumed to be one, is the electron and proton ratio involved in the redox reaction, respectively.

For copper proteins with an azurin fold, we observed a correlation between pH and redox potential with
a slope of -51 mV/pH unit (Fig 3A ), near what is expected if the reactions followed Nernstian behavior
(-59 mV/pH unit), assuming one electron transfer per reaction. Normalization removes the slope of this
correlation (Fig. 3B ). Experimental pH conditions showed the strongest positive Pearson coefficient with
redox potential, above the computed factors from structure described earlier. However, there is a very large
variance in observed potentials, clearly indicating that no one parameter can fully explain redox energetics.

Redox gradients and oxidoreductase evolution. Many of the ProtReDox entries are associated with an expe-
rimentally determined three-dimensional structure deposited in the PDB. This allowed us to map the redox
energetics onto the SpAN — an existing network mapping electron transfer pathways in oxidoreductases of
known structure [16, 17]. Nodes in the SpAN correspond to redox-cofactor binding protein microenviron-
ments — termed modules. Edges reflect the existence spatial proximity of cofactor atoms in a pair of modules
in one or many structures, providing a pathway for electron transfer. Cofactor edge-to-edge distances less
than 14.0 A were considered electron-transfer competent [7].

The full SpAN contains 133 modules [17]. We identified 18 modules with specified redox energetics (Fig. 4,
Table 1 ). These modules formed a fully connected sub-graph within the SpAN with the exception of the
heme-binding cytochrome-C fold module 140. Within this network, there is a clear downhill redox energetic
gradient, starting from 4Fe-4S coordinating ferredoxin folds (module 85) with an average potential of -430
mV and ending with more oxidizing hemes (modules 1737 at +168 mV; 1746 at +70 mV), the molybdenum
containing module 16 (4204 mV) and copper module 72 at +325 mV. One can envision electrons percolating
from the center of this network to the periphery, driving redox-coupled reactions along a metabolic pathway.

Multiple features of the SpAN suggest its structure provides insight into the evolution of oxidoreductases
in addition to their metabolic function. Network models of growing systems indicate that nodes with high
centrality and connectivity are the first to arise [66-68]. In the ProtReDox annotated sub-graph of the SpAN,
flavin module 7 and 4Fe-4S module 85 are reducing such that they are energetically matched with the early
Earth redox environment. It is informative that the annotated modules form a connected sub-graph within



the SpAN. Most of these modules correspond both to isolated protein electron carriers [45] as well as being
domains within larger oxidoreductases. Assignment of potentials is easier within an isolated domain versus
a larger, multi-cofactor enzyme. Small, isolated modules would be useful building blocks of larger enzymes,
forming multi-domain structures through duplication and diversification. Metal utilization for central versus
peripheral modules is largely consistent with metal availability through geologic history [21, 69, 70|, with
early folds incorporating iron-containing cofactors and later folds binding molybdenum and copper.

CONCLUSIONS

Knowledge of redox energetics of oxidoreductases is critical to understanding metabolic function and evolu-
tion. ProtReDox is intended to be a valuable tool in this regard as we and others contribute to its growth.
Currently, the size of ProtReDox limits the extent to which structure-based predictive models can be trained
on redox energetics. However, with further experimental investigations and as high-quality models of protein
structures become readily accessible, these models should improve. This would allow more complete mapping
of data structures such as the SpAN, providing a greater understanding of the evolution of redox energetics
in metabolism through time.
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Figure 1. Distribution of redox potentials for the most abundant cofactor types found in ProtReDox. Sorted
according to mean redox potential cofactors and displayed vertically from most reducing to most oxidizing
along with corresponding atomic structures. SF4 (4Fe4S; 82) -329 + 268 mV; FES (2Fe2S; 64) -220 + 199
mV; Flavin (114) -183 +/- 141 mV; Fe (10) -72 £ 173 mV; HEM (42) 43 + 190 mV; Cu (147) 333 + 129
mV. Count of each cofactor type is within parenthesis.
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Figure 2. Correlation of reduction potential and physicochemical properties: Groups of physicochemical
properties of metalloenzymes that can be measured from protein structure are shown along the x-axis. Each
circle is the absolute value of the Pearson correlation coefficient for reduction potentials. Colored circles
represent p-value [?] 0.05 for the correlation and empty circles represent p-value [?] 0.05. Horizontal box
lines, from top to bottom, represent the upper quartile, median, and lower quartile correlation values for the
respective property category. The whiskers display the range of correlation values for the respective property
category, except for outliers, which are greater than 150% of the interquartile range from the box.
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Figure 3. Cu cofactor type correlation of pH and redox potential A.) experimental results and B.) normalized
using the Nernst equation (eq. 1) Figures include linear regression with a 95% confidence interval and the
equation of best fit.
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Figure 4. Network of redox active modules where the nodes are modules that share common and structural
similarity [16, 17, 71], and the edges are connections between modules that are within the same protein
and are capable of electron transfer between each module. Node colors represent a gradient of average
redox potentials for each module. Gray edges are connections between modules without associated redox
potentials within ProtReDox, and black edges are between modules with reported potentials. Node sizes are
porportional to the number of redox potentials for each module. Nodes with greater than one measurement
are shown. Size of the node is proportional to the number of experimental redox potentials for each node.
Labeled nodes represent the redox-active cluster type: SF4 (85, 539, 1475, 1479), FES (537, 538, 539), Flavin
(7, 8, 2266, 2269, 2280), heme (130, 131, 140, 421, 1737, 1746), Mo (16), and Cu (24, 72). See Table 1 for
values.

Table 1: Redox energetics associated with SpAN modules. Module numbers defined in [17]. Potentials are
the arithmetic mean of values in the database.
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