Inference of the distribution of fitness effects of mutations is affected by SNP filtering methods, sample size and population structure

Bea Andersson ${ }^{1}$, Wei Zhao ${ }^{2}$, Benjamin Haller ${ }^{3}$, ${ }^{\circ}$ Ake Brännström ${ }^{1}$, and Xiao-Ru Wang ${ }^{2}$

${ }^{1}$ Umeå Universitet
${ }^{2}$ Umeå University
${ }^{3}$ Cornell University
May 10, 2023

Inference of the distribution of fitness effects of mutations is affected by SNP filtering methods, sample size and population structure

Bea Angelica Andersson ${ }^{1 *}$, Wei Zhao ${ }^{1 *}$, Benjamin C. Haller ${ }^{2}$, Åke Brännström ${ }^{3,4,5}$, Xiao-Ru Wang ${ }^{1}$
${ }^{1}$ Department of Ecology and Environmental Sciences, Umeå University, Sweden
${ }^{2}$ Department of Computational Biology, Cornell University, USA
${ }^{3}$ Department of Mathematics and Mathematical Statistics, Umeå University, Sweden
${ }^{4}$ Advancing Systems Analysis Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
${ }^{5}$ Complexity Science and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Japan

*These authors contributed equally to this study.
Correspondence to Xiao-Ru Wang, xiao-ru.wang @umu.se, phone +46 907869955

Total word counts for the main body of the text: 7367 (excluding references)
Word counts for Introduction: 924
Word counts for Materials and Methods: 1988
Word counts for Results: 2297
Word counts for Discussion: 1547
Word counts for Conclusion: 258
Number of Figures: 5 (all in color)
Number of Tables: 1
Supporting information: 2 table, 1 figure

Abstract

The distribution of fitness effects (DFE) of new mutations has been of interest to evolutionary biologists since the concept of mutations arose. Modern population genomic data enable us to quantify the DFE empirically, but few studies have examined how data processing, sample size and cryptic population structure might affect the accuracy of DFE inference. We used simulated and empirical data (from Arabidopsis lyrata) to show the effects of missing data filtering, sample size, number of SNPs and population structure on the accuracy and variance of DFE estimates. Our analyses focus on three filtering methods - downsampling, imputation and subsampling - with sample sizes of $4 \sim 100$ individuals. We show that (1) the choice of missingdata treatment directly affects the estimated DFE, with downsampling performing better than imputation and subsampling; (2) the estimated DFE is less reliable in small samples (<8 individuals), and becomes unpredictable with too few SNPs (<5000); and (3) population structure may skew the inferred DFE toward more strongly deleterious mutations. We suggest that future studies should consider downsampling for small datasets, and use samples larger than 4 (ideally larger than 8) individuals, with more than 5000 SNPs in order to improve the robustness of DFE inference and enable comparative analyses.

Key words: DFE, missing-data treatment, population structure, sample size, SLiM simulation.

1 INTRODUCTION

The distribution of fitness effects (DFE) of new mutations can be described as the probability that a new mutation will have a specific effect on the fitness of an individual. This probability distribution affects the accumulation of genetic variation and can thus directly impact the evolutionary trajectory of organisms (Bataillon \& Bailey, 2014; Keightley \& Eyre-Walker, 2007; Ohta, 1992). Understanding the DFE is integral to understanding molecular evolution and remains an important focus in modern evolutionary theory (Chen et al., 2020; Halligan \& Keightley, 2009; Kimura, 1968; Ohta, 1973). To date, the arguably most popular methods of inferring the DFE are based on contrasting frequencies of putatively neutral and selected polymorphisms presented as a site frequency spectrum (SFS), describing how commonly mutations of different frequencies occur in a population (Gutenkunst et al., 2009; Keightley \& Eyre-Walker, 2007; Kim et al., 2017; Tataru \& Bataillon, 2019). Since the SFS can be affected by both neutral and selective processes, most methods use the SFS of synonymous mutations to estimate a demographic model representing the effects of population size changes and genetic drift. Meanwhile, the SFS of non-synonymous mutations are assumed to be shaped by both neutral and selective processes, and can therefore be used to estimate the DFE of non-neutral mutations after demography and drift have been accounted for (Boyko et al., 2008; Huang et al., 2021; Keightley \& Eyre-Walker, 2007; Kim et al., 2017; Schneider et al., 2011; Tataru \& Bataillon, 2019). However, factors other than demography and selection may also affect the shape of the SFS and thus the estimated DFE.

First, SFS-based DFE inferences require that datasets contain no missing sites - all individuals must have complete data for all loci that are to be analysed. Since sequencing techniques are imperfect, such datasets are uncommon (probably non-existent) in empirical population genomics. As a result, missing-data treatment is an essential first step of data processing. To obtain a complete dataset, the data are treated either by filtering out some portion of the data (sub- or downsampling), or filling in the "gaps" using an algorithm such as imputation, see section 2.2 Missing-data treatment methods). Depending on how the treatment is performed, there is a risk of altering the relative allele frequencies in the dataset, yielding misleading results (Johri et al., 2021; Larson et al., 2021). Recent studies on DFE have applied different data processing methods; for example see Hämälä \& Tiffin (2020) for imputation, and Gossmann et al. (2010) for downsampling. However, it is unknown whether and how the different methods influence DFE estimates.

Second, the sizes of datasets used in published DFE studies vary enormously, from as few as two to several hundred individuals (Chen et al., 2017; Hämälä \& Tiffin, 2020). The SFS
is highly sensitive to sample size, but the minimum number required to achieve stable DFE estimates remains undetermined (but see Kutschera et al. 2020). Similarly, the number of polymorphic sites necessary for reliable DFE estimation is largely unknown. While some studies of model species use whole genome sequencing with millions of single nucleotide polymorphisms (SNPs) available for analysis (Hämälä \& Tiffin, 2020), others may only include a few hundred SNPs (Eyre-Walker \& Keightley, 2009; Gossmann et al., 2010). Therefore, investigating the impact of sample size (both the number of individuals and sites/SNPs) on DFE estimates is crucial for reliable and accurate DFE estimation.

Finally, most methods of SFS-based DFE estimation first estimate a Wright-Fisher demographic model from the neutral variation in order to control for neutral factors affecting the SFS (Keightley \& Eyre-Walker, 2007; Tataru \& Bataillon, 2019). Such models assume that mating occurs at random in panmictic populations, even though complete absence of population structure is likely rare in wild samples. For example, sampling from a large area is preferred for drawing general conclusions about population genetic dynamics, but it increases the likelihood of including genetic structure in the sample (Perez et al., 2018; Zhao et al., 2020). If cryptic genetic clusters are unwittingly included, the demographic model estimated from the data would not fulfil the assumptions underlying the Wright-Fisher model, and subsequent DFE estimates might be biased. However, population stratification has not to our knowledge been examined as a potential factor affecting the accuracy of DFE inference.

In this study we test whether and how data processing methods, sample size, SNP number and population structure influence the results of DFE inference, to raise awareness of their potential confounding effects. We used whole genome re-sequencing data from two populations of Arabidopsis lyrata (subsp. petraea) to create multiple datasets (Fig. 1) with (1) three different methods of missing-data treatment - downsampling, imputation and subsampling - under different filtering thresholds; (2) different numbers of randomly sampled individuals and sites; and (3) samples with induced population stratification, to be contrasted with uniform, single populations. Then, we conducted forward simulation in SLiM 4.0 (Haller \& Messer, 2023) to create a population with a known DFE that matches DFEs estimated in A. lyrata. Using this known DFE, we evaluate the accuracy of DFE estimates resulting from the different data manipulations. By contrasting the results obtained from the different procedures, we aim to answer the following questions: (1) Do data processing methods and missing-data filtering thresholds affect DFE estimation, and if so, how? (2) How many individuals and SNPs are needed to reach an accurate DFE estimate? and (3) Does population structure affect the DFE, and if so, how? Our results illustrate the importance of careful consideration of all steps
in genomic data processing and analysis, both when performing DFE inference and when interpreting its results.

2 MATERIALS AND METHODS

2.1 Genomic dataset and basic quality control

We downloaded the whole genome re-sequencing data for two populations of the perennial, diploid obligately outbreeding Arabidopsis lyrata subsp. petraea, 29 individuals from Austria and 16 individuals from Norway, from the NCBI SRA database (Table S1). The quality of the sequence reads was first assessed with FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Adapter sequences and lowquality bases were removed using fastp v0.23.0 (Chen et al., 2018) with the parameters "-q 20 -1 36 --cut_front --cut_tail -c". Clean reads were mapped to the A. lyrata v.1.0 genome (https://plants.ensembl.org/) using the BWA-MEM algorithm with default parameters (Li , 2013). PCR duplicates were removed using Picard MarkDuplicates (http://broadinstitute. github.io/picard/). Reads around putative insertions and deletions were locally realigned using RealignerTargetCreator and IndelRealigner in the Genome Analysis Toolkit (GATK v.3.7-0; (Van der Auwera et al., 2013). Variants were called using the SAMtools and BCFtools pipeline as described in (Li, 2011). Several filtering steps were performed to minimize genotyping errors: indels and SNPs with mapping quality (MQ) < 30 were removed, genotypes with genotype quality (GQ) <20 or read depth (DP) < 5 were masked as missing, and all SNPs with a missing rate above 50% or allele number above 2 were removed. After these basic filtering steps, a total of $122,432,856$ sites (including invariant sites) were retained in the 45 samples for the following analyses.

2.2 Missing-data treatment methods

Missing genotypes are common in genomic datasets and should be eliminated before generating an SFS. We tested three methods to treat missing values on the same original datasets downsampling, imputation and subsampling (Fig. 1a, Fig. 2), and then compared the DFE inferred from each resulting dataset using bootstrapped 95% confidence intervals (CIs).

Downsampling is performed by randomly selecting n genotypes at each site without replacement (Keightley \& Eyre-Walker, 2007); sites with fewer than n genotypes available are removed. A 75% downsampling threshold in a sample size of 100 individuals means that 75 random genotypes are sampled at each site (Fig. 2). Sites that contain <75 genotypes are removed. In this study, we applied downsampling at thresholds $75 \%, 66 \%$, and 50% on both

Austrian and Norwegian datasets. The same set of sites were kept and analyzed in both populations, making direct comparisons of the DFE between populations possible. Downsampling was performed using a Python script available on Dryad (Papadopoulou \& Knowles, 2015) with minor modification (https://github.com/hui-liu/BioinformaticsScripts/blob/master/Scripts/Python/ sampleDownMSFS_Hui_final.py).

Imputation refers to the statistical inference ("filling in") of missing genotypes using the available linkage information from successfully genotyped samples (Fig. 2). We tested threshold $70 \%, 80 \%$ and 90% on the A. lyrata datasets (i.e. excluding sites with less than 70%, 80% and 90% genotype information available), and filled in the missing genotypes at all other sites using Beagle v5.1 (Browning et al., 2018) with default parameters. We performed imputation using all individuals from both populations, as imputation accuracy tends to increase with sample size, as shown by previous studies (Pook et al., 2020).

Subsampling works in two steps: 1) Individuals that are missing more than a prescribed fraction of their genotype information are excluded, and 2) for the individuals remaining, any site with a missing genotype is removed (Fig. 2). This means that the size of a subsampled dataset is highly dependent on the individual missing rates and the distribution of missing data across the genome. We first calculated the missingness on a per-individual basis using the parameter "--missing-indv" in VCFtools (Danecek et al., 2011). We then extracted the individuals that had missing rates below the threshold value using "--keep", and finally, we removed all sites containing missing genotypes by setting the parameter "--max-missing 1 " in VCFtools. In the A. lyrata dataset, we tested four maximum missing rates per individual - 10%, $15 \%, 20 \%$ and 25% (Note: no individual had more than 25% missing data). Note that with higher subsampling thresholds, more individuals but fewer sites are retained (Fig. 1a).

2.3 Sample size and SNPs number

To decouple the potential effects of the number of individuals and/or sites on DFE estimation, we randomly sampled $4,8,12,16,20,24$ or 29 (all) individuals and/or $1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{M}$, 10 M or 55.0 M sites from the Austrian population subsampled at a maximum missing rate of 25% per individual (Fig. 1). To investigate the effect of sample size, we kept all sites and compared samples with different numbers of individuals (4-29). Conversely, to investigate the effect of the number of SNPs, all 29 individuals were kept and a randomly chosen subset of 1 K to 10 M sites were extracted. Finally, the same subsets of 1 K to 10 M sites were extracted from a dataset with only 4 individuals. By comparing the DFEs from 4 vs. 29 individuals for each
set of sites, we could see the combined effects of the number of individuals and sites on the estimated DFE and confidence intervals (Fig. 3).

2.4 Manipulating population structure

To gain an overview of the genetic differentiation between the Austrian and Norwegian populations, we performed a principal component analysis (PCA) on the 45 sampled individuals using Eigensoft v.6.1.4 (Price et al., 2006). The dataset was filtered at a maximum missing rate of 20% per site and a minor allele frequency (MAF) ≥ 0.05, retaining $3,921,575$ SNPs for the PCA. To investigate whether population structure affects DFE estimates, we randomly selected three different subsets (labelled a, b and c) of 10 and 15 individuals from each of the Austrian and Norwegian populations, imputed at an 80% threshold. Single sets from each population were then combined to form 12 new merged populations with four different configurations (Fig. 1c): 10 Austrian +10 Norwegian individuals, 10 Austrian +15 Norwegian individuals, 15 Austrian +10 Norwegian individuals, and 15 Austrian +15 Norwegian individuals, each with three replicates. We then estimated the DFE for each subset as well as all merged samples.

Using the single and merged datasets we investigated 1) the effect of sample choice within a geographic population on DFE, by comparing the three replicate subsets from a single population (e.g. replicates a vs. b vs. c of subset Aus10), 2) the effect of each geographic population on the merged population, by comparing the DFE of the merged population to each of the contributing populations (e.g. replicate c of merged population Aus10+Nor15 vs. replicate c of subsets Aus10 and Nor15), and 3) the effect of population differentiation (F_{ST}) on DFE in the merged population. The weighted $F_{\text {ST }}$ between the two contributing subsets in each merged population was calculated using VCFtools.

2.5 DFE analyses

We used DFE-alpha (Eyre-Walker \& Keightley, 2009), a software that uses a maximumlikelihood approach to determine the shape of the DFE of nonsynonymous mutations. In the simplest model, DFE-alpha assumes that mutations at synonymous sites are selectively neutral and that all non-synonymous mutations are deleterious. DFE-alpha first estimates a simple demographic model using the SFS of neutral mutations to represent the effect of drift. We modelled the effect of recent demographic change on neutral SFS by assuming one step population size change and inferred the fitness of new deleterious mutations at the selected sites from a gamma distribution while simultaneously fitting the estimated parameters for the demographic model. The estimated fitness effects of new mutations are scaled by effective
population size N_{e} and selection coefficient s as $N_{e} s$, and divided into four categories: effectively neutral $\left(0<-N_{e} s \leq 1\right)$, slightly deleterious $\left(1<-N_{e} s \leq 10\right)$, moderately deleterious $\left(10<-N_{e} s \leq 100\right)$ and strongly deleterious $\left(-N_{e} s>100\right)$. The DFE is presented as the proportion of nonsynonymous mutations that is expected to fall into each of these categories.

We generated a folded SFS for a class of putatively neutral reference sites (4-fold degenerate sites) and a class of selected sites (0 -fold degenerate sites) for each dataset. We modelled the effects of recent demographic change on the 4 -fold sites SFS by assuming a single population size change event and inferred the fitness of new deleterious mutations at the 0 -fold sites from a gamma distribution. The 95% CIs for all DFE estimates were calculated by bootstrapping 0 -fold and 4 -fold sites with replacement for 99 iterations. We performed bootstraps using 999 and 99 iterations in 9 samples and found no discernible difference in CI size; all reported CIs are thus based on 99 iterations.

2.6 Simulations in SLiM

To validate the effects of filtering methods and sample size on DFE estimates, we used SLiM 4.0 to simulate a population with a known DFE , represented by a gamma distribution with shape (β) and mean (Es) parameter values matching the DFE estimated in A. lyrata. The simulation consisted of a population of 10,000 outcrossing individuals with a genome size of 5 million sites on one contiguous chromosome, and a uniform recombination rate of 4×10^{-8} (Hämälä \& Tiffin, 2020). New mutations occurred at a mutation rate of 5.6×10^{-8} and were drawn from a deleterious DFE with a gamma distribution with $\beta=0.1$ and $E s=-100$. The population state at 60,000 generations was saved as a .trees file, at which point the effective population size N_{e} had stabilized around 100 individuals with around 60,000 segregating deleterious mutations. A neutral burn-in and segregating neutral mutations were then added with recapitation and overlaid mutations according to SLiM 4.0 (Haller et al., 2019). After adding neutral mutations, non-segregating sites (selected or neutral) were added between SNP positions and randomly assigned as either selected (20%) or neutral (5\%) to approximate the 0 -fold and 4 -fold ratios in the empirical A. lyrata dataset. A VCF file with 1000 randomly sampled individuals was created from the dataset and used in subsequent analyses with DFE-alpha.

To get a baseline accuracy for DFE-alpha, 10 replicates of 100 individuals (the maximum size supported by DFE-alpha) from the simulated dataset were analysed, and the estimation error compared to the known DFE was in each case assessed as the Earth Mover's Distance (see below). To investigate the effects of filtering methods, 15% of the sites in each
individual in one set of 100 individuals were masked as missing. This dataset was filtered with a) downsampling at a threshold of 85%, b) imputation at a threshold of 85%, or c) subsampling at a threshold of 15%. However, the subsampled dataset retained no 4 -fold SNPs in the SFS after filtering, making DFE estimation impossible. We thus instead sampled four replicates of $4,8,12,16,20,24$ and 50 individuals from the 15% missing dataset, and applied subsampling at 100% (i.e. all sites with missing data were excluded). The same sets of sample sizes were then extracted from the downsampled and imputed datasets to compare the accuracy of the different methods while controlling for the effect of sample size. To directly investigate the effect of sample size and SNP number, 10 replicates of $4,8,12,16,20,24,50$ and 100 individuals were extracted from the datasets with no missing data and analysed with DFE-alpha (Fig. 4a-d).

With the DFE associated with the simulated datasets being known, the accuracy of estimated DFE was assessed by comparing them to the known DFE using Earth Mover's Distance (EMD) implemented in the transport package in R (Schuhmacher et al., 2019). EMD quantifies the dissimilarity between two distributions as the "work" required to change one distribution to the other, thus taking into account the amount of overlap. In contrast to the widely used Kolmogorov-Smirnov (KS) distance, EMD is not limited by an upper bound, enabling it to more accurately capture substantial differences between distributions. Additionally, EMD is better suited for gauging distances between distributions with long tails. The EMD was evaluated within the range $-10^{5}<s<-10^{-3}$ where s represents the selection coefficient for each mutation, in increments of 10^{-3}. Higher EMD values signify a poorer fit between the estimated and true distribution, thus indicating a less accurate result. The EMD values of each dataset was plotted against the number of individuals and SNPs with a regression line to illustrate the relationship.

3 RESULTS

3.1 The effect of missing-data treatments on DFE in A. lyrata

Downsampling. The datasets downsampled to $50 \%, 66 \%$ and 75% of the genotypes per site retained $105.7 \mathrm{M}, 99.5 \mathrm{M}$, and 95.0 M sites, respectively, for both A. lyrata populations (Table 1). The Austrian datasets contained 15,19 and 22 "individuals" and $1.39 \mathrm{M}, 1.46 \mathrm{M}$ and 1.47 M SNPs for the three thresholds, while the Norwegian population kept 8,11 , and 12 "individuals" and 374 K , 366 K and 341 K SNPs, respectively. The DFE in the Norwegian datasets differed significantly from that of the Austrian population in that neutral mutations were more frequent (31~33\%), while slightly (8~9\%) and moderately (10~12\%) deleterious mutations were less
frequent, but the proportion of strongly deleterious mutations was similar (45~51\%) (Table 1). Additionally, the impact of filter thresholds from 50% to 75% on the three deleterious groups of mutations in the two populations showed inverse patterns, e.g. strongly deleterious mutations increased with the threshold in the Norwegian population but decreased in the Austrian population. While the estimated DFE varied between populations by $1 \sim 10$ percentage points under the same method and threshold, it also varied by up to 5 percentage points among the downsampling thresholds within each population.

Imputation. The imputed datasets retained all individuals (i.e. 29 Austrian and 16 Norwegian individuals), and $103.4 \mathrm{M}, 97.9 \mathrm{M}$ and 86.3 M sites at the $70 \%, 80 \%$ and 90% thresholds, respectively. In the Austrian population, $1.69 \mathrm{M}, 1.63 \mathrm{M}$ and 1.44 M SNPs were included, while $399 \mathrm{~K}, 365 \mathrm{~K}$ and 341 K SNPs in the Norwegian population, at the three thresholds, respectively. Increasing the threshold from 70% to 90% only caused $2 \sim 4$ percentage points of variation in each category of mutations (Table 1). Across both populations, the DFE were stable among imputation thresholds, with the Austrian population displaying slightly larger variance.

Subsampling. In the subsampling trial, we applied four different thresholds, allowing a maximum of $10 \%, 15 \%, 20 \%$ and 25% missing genotypes per individual. In the Austrian population, a strict threshold of 10% missing data left 8 individuals, 97.4 M sites and 844 K SNPs in the dataset, while a relaxed 25% threshold preserved all 29 individuals with 55.0 M sites and 609 K SNPs (Note: increasing the missing rate from 20% to 25% only added one more individual) (Table 1). Increasing the missing threshold from 10% to 25% decreased the estimated neutral mutations from 23% to 20%, and the strongly deleterious mutations from 49% to 32%, while the slightly and moderately deleterious mutations increased from 11% to 17% and from 17% to 30%, respectively. Overall, change the threshold from 10% to 15% induced the largest difference in the DFE of all stepwise increases (3-8 percentage points of difference in all categories).

In the Norwegian population, the dataset filtered with a missing rate of 10% included only 2 individuals with 109.4 M sites and 249 K SNPs. At this level, the DFE was estimated to 7% neutral, 86% slightly deleterious, 6% moderately deleterious and no strongly deleterious mutations. Increasing the threshold to 15% increased the number of individuals to 15 , retaining 80.0M sites and 172 K SNPs, and shifted the DFE to 28% neutral, 8% slightly deleterious, 10% moderately deleterious and 53% strongly deleterious mutation. Further relaxing the missing rate to 20% and 25% included one more individual (16 total) and had little effect on the DFE
compared to the dataset filtered at 15\% (Table 1). Overall, the Austrian population displayed up to 17 percentage points of difference between thresholds, while the Norwegian population displayed up to 79 percentage points of difference when including the dataset filtered at 10% missing data.

3.2 The effect of sample size and sites on DFE

We subsampled the Austrian population of A. lyrata into $4,8,12,16,20$ and 24 individual sets, each containing $211 \mathrm{~K}, 320 \mathrm{~K}, 357 \mathrm{~K}, 426 \mathrm{~K}, 512 \mathrm{~K}$ and 557 K SNPs, respectively, from the complete dataset of 29 individuals containing 609K SNPs (Fig 3b). We found that decreasing the sample size from 29 to 4 substantially increased the proportion of strongly deleterious mutations from 32% to 45%, while it decreased the proportion of slightly deleterious mutations from 17% to 13% and moderately deleterious mutations from 30% to 20%. Neutral mutations changed only slightly (from 20% to 22%) (Fig. 3a). The partition of DFE remained stable with sample sizes of 8 and upward (≤ 1 percentage points fluctuation). The 95% CIs remained similar and narrow ($0.5 \sim 4 \%$) in all samples.

In the second trial, we randomly sampled $1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{M}$ and 10 M sites in the 29 individuals (with 55.0 M sites, 609 K SNPs), resulting in $10,109,1115,11.1 \mathrm{~K}$, and 111 K SNPs, in each dataset, respectively. We found that the DFE estimates became increasingly unstable with decreasing the number of sites: the datasets with fewer than 1 M sites (11.1 K SNPs) showed a large variation in DFE values (8-50 percentage points; Fig. 3b). Notably, a decrease in the number of sites brought a simultaneous increase of the width of the 95% CIs, in a manner not seen when decreasing the numbers of individuals (Fig. 3a vs. 3b). At 1 K sites (10 SNPs), the $\mathbf{9 5 \%}$ CIs for the three deleterious categories covered $98 \sim 100 \%$ of the entire range of possible values, indicating low confidence in where the true values lie. At 10K sites (109 SNPs) the CIs shrunk but were still large, covering between $34 \sim 71 \%$ of the possible values. On average, each tenfold decrease in the number of sites increased the size of the bootstrapped 95\% CIs 2.5 times.

In the third trial, we examined the effect of sites in a small sample of 4 individuals. The sites chosen were the same as those in the second trial, although the set of 1 K sites included too few SNPs to be evaluated and was not shown in Fig. 3c. The datasets with 10K, 100K, 1M, 10 M and all 55.0 M sites had $43,391,3821,38.6 \mathrm{~K}$ and 211 K SNPs, respectively. At 10 K sites, the DFE in the 4 -individual set was drastically different from the 29 individuals. Furthermore, the 95% CIs of neutral, and slightly and moderately deleterious mutations increased by $18 \sim 81 \%$ in the 4 -individual relative to the 29 -individual dataset. The CIs for strongly deleterious mutations shrank somewhat in the 4-individual dataset but was still large and spanned 66% of
the range of possible values. The DFE estimates at 100 K sites and above in 4 -individual datasets were very similar (≤ 1 percentage points of difference) to the second trial using 29 individuals (Fig. 3c vs. 3b), but the 95% CIs approximately doubled for the three classes of deleterious mutations.

3.3 Accuracy of DFE-alpha in SLiM simulated data

To determine which missing-data treatment and sample sizes produced the least error and thus approximated the true DFE most accurately, we conducted SLiM simulations with a known DFE. The simulation produced a dataset with 1000 individuals and 29,944 SNPs. Using 10 replicate samples of 100 individuals, each containing $\sim 15,500$ SNPs, the DFE was estimated to between $29 \sim 31 \%$ neutral, $8-10 \%$ slightly deleterious, $10 \sim 13 \%$ moderately deleterious and $48 \sim 52 \%$ strongly deleterious mutations; the true DFE should be approximately 30% neutral, 9% slightly deleterious, 11% moderately deleterious and 50% strongly deleterious mutations, meaning an error of $\pm 1 \sim 2 \%$ can be expected with this dataset in optimal conditions. The β and Es parameters of the gamma distributions ranged between $0.097 \sim 0.128$ and $-276 \sim-33$, respectively, yielding error values (EMD $\mathrm{x} \cdot 10^{7}$) between $3.5 \sim 20.5$ (Fig. 4e). These values are used as reference for the "maximum" accuracy of DFE-alpha for the simulated dataset.

To evaluate the effect of filtering methods, we used four replicates of $4,8,12,16,20$, 24 and 50 individuals and excluded all missing sites in each sample, which mimics the effect of subsampling at different thresholds. In order to compare these results to downsampling and imputation, the same sample sizes were extracted from the downsampled and imputed datasets created at 85% threshold from the full dataset. At a sample size of 4 individuals, all three methods performed roughly equally well (average EMD was 33.7, 36.4 and 36.5 for downsampling, imputation and subsampling, respectively. Fig. 4b-d,e, Table S2), but subsampling tended to slightly underestimate the proportion of slightly and moderately deleterious mutations (by up to 5% and 7%, respectively), and overestimate strongly deleterious mutations (by up to 11%). Downsampling gave the most accurate results based on the average EMD across all sample sizes above 8 individuals (Fig. 4b,e). Imputation performed slightly worse in all samples except 8 individuals (Fig. 4c,e). Both downsampling and imputation produced results within $1 \sim 3 \%$ of the range of the reference set at all sample sizes above 4 individuals. Subsampling, however, produced highly variable and noticeably less accurate results even at higher sample sizes (Fig. 4d,e). For example, the 4 replicates of 24 individuals produced EMD values between $3.7 \sim 18.8$ for downsampling, $12.3 \sim 47.4$ for imputation and $31.2 \sim 112.8$ for subsampling (Table S2). We found that subsampling produced the most
accurate results at an intermediate sample size (e.g. 16 individuals; EMD from 1.7 to 56.1) and became less accurate at sample sizes where fewer SNPs were retained (e.g. 50 individuals with 5 SNPs remaining; Fig. 4b, Table S2).

Our simulated data verified the trends observed in the empirical data, showing that increased sample size correlated with lower error in DFE estimates when the number of SNPs is not a limiting factor. In the datasets of $4,8,12,16,20,24$ and 50 individuals (10 replicates of each) with no missing genotypes, the EMD values were the largest in samples of 4 and 8 individuals, stabilized around $12 \sim 24$ individuals, and then decreased further in 50 individuals to a level similar to that in the 100 individuals (Fig. 4e). Linear regression in these datasets showed that DFE estimation error (EMD) was negatively correlated with number of individuals ($p=0.00179, R^{2}=0.1182$), and even more strongly correlated with the number of SNPs in the dataset ($p=6.38 \cdot 10^{-6}, R^{2}=0.2311$) (Fig 4 f). An even stronger negative correlation between EMD and SNP number was seen when the four replicates of $4 \sim 50$ individuals from the downsampled, imputed and subsampled datasets were analysed with a joint linear regression (p $=1.11 \cdot 10^{-9}, R^{2}=0.3658$) (Fig 4b). Datasets with few SNPs also displayed larger 95\% CIs while the number of individuals had a minor effect on CI size (Fig. 4a-d, Table S2), similar to what was observed in the empirical datasets.

In summary, applying different filtering methods and thresholds affected the final data matrix size (number of individuals and SNPs) and subsequent DFE estimates. Imputation and downsampling produced similar and less variable DFE results than subsampling, and downsampling appeared more accurate than imputation for the simulated samples used. Further, higher numbers of individuals and SNPs both increased accuracy of the results, especially at very low sample sizes ($4 \sim 8$ individuals, <5000 SNPs).

3.4 The effect of population structure on DFE

The PCA of the 45 samples from Austria and Norway showed a distinct separation of the two populations along PC1 (which explained 24.7% of the total genetic variance), and separation of the Austrian population into four visible clusters along PC2 (which explained 7.3\% of the total genetic variance) (Fig. S1). The weighted $F_{\text {ST }}$ between the two populations was 0.228 , while the $F_{\text {ST }}$ among the four Austrian clusters was relatively small as 0.073 . To understand the effect of merging genetically distinct populations on the estimated DFE, we created 12 merged populations with contributions of 10 or 15 individuals from Austria and Norway, with three subsets of each population (Fig. 1c). We then calculated the $F_{\text {ST }}$ between the contributing subsets to evaluate how the degree of population stratification in a sample affects the joint DFE
estimate. We first examined the DFE in the unmerged replicate samples of 10 and 15 individuals from the two populations. Among the replicates of 10 individuals from the Austrian population, a maximum difference of $2,3,7$ and 6 percentage points were observed in the neutral, slightly, moderately and strongly deleterious mutations. By comparison, no mutation category varied by more than 2 percentage points in the samples of 15 individuals. Comparably stable DFE estimates were observed in the Norwegian samples, with variation in the range of $0,2,3$ and 4 percentage points for the four categories of mutations in samples of 10 individuals, and less than 1 percentage point of a difference among replicates of 15 individuals (Fig. 4a). However, the DFE estimates were markedly different between the two geographical populations, e.g. neutral mutations shifted up by an average of 9 percentage points while the slight and moderate mutations shifted downwards in Norway compared to Austria. The estimated proportions of strongly deleterious mutations were similar in the two populations.

With this population-specific DFE in mind, we then examined the differences between the merged samples and their respective contributing single population subsets. In most cases, the estimated DFE values for the merged samples were in-between the DFE estimates of the contributing subsets, but not always perfectly intermediate (Fig. 5a). The estimated weighted F_{ST} values between the pairs of contributing subsets ranged from 0.218 to 0.263 (mean F_{ST} between 0.085 and 0.131). These estimates are largely in line with previous studies, where mean $F_{\text {ST }}$ across European populations of A. lyrata ranges between 0.06-0.09 (Marburger et al., 2019). Plotting the weighted $F_{\text {ST }}$ against the estimated DFE in the merged populations showed an apparent relationship (Fig. 5b). Using linear regression, $F_{\text {ST }}$ was correlated with the proportion of slightly ($R=-0.61, p=0.037$), moderately ($R=-0.60, p=0.038$) and strongly deleterious mutations ($R=0.66, p=0.02$), but not with that of neutral mutations ($p=0.17$). These results show that population structure had a significant effect on the deleterious portion of the DFE, with higher $F_{S T}$ potentially driving up the estimated proportion of strongly deleterious mutations and reducing the estimates of the less deleterious classes.

4 DISCUSSION

4.1 Methods of missing-data treatment affect DFE results

Missing-data treatment is the first step in any genomics analyses. Using simulated data with known DFE we were able to evaluate the accuracy of different filtering methods in recovering the true DFE. We found the dataset with no missing data produced the most accurate result, followed by downsampling, then imputation, and then subsampling. The number of SNPs in the downsampled and imputed datasets were similar in all samples, suggesting that any
difference in performance between the two methods is likely due to imputation affecting the shape of the SFS in a non-random manner. The assumption that deleterious mutations appear as low-frequency alleles in the SFS, in combination with the relatively small sample sizes used in the tests, makes an SFS-based analysis highly reliant on those low-frequency categories, especially singleton SNPs. Low frequency alleles thus display much higher error rates than higher-frequency alleles in imputation procedures (Pook et al., 2020).

Filtering with subsampling produced the least accurate estimates on average. Since increasing the number of individuals in the subsampled dataset decreases the number of sites, this filtering method's performance is thus affected by sample size in two ways, both the number of individuals and the number of SNPs available. This effect is expected to be especially strong in datasets where the distribution of missing data is random (as was the case in our simulated datasets), where a highly dissimilar pattern of missing data across individuals excludes a large number of sites by subsampling. This pattern was not as strong in the empirical datasets where the missing data across individuals was more similar. Thus intermediate sample sizes of individuals are preferable for this method.

The array of tested filtering thresholds on the empirical datasets corroborated the trend and conclusions drawn from the simulated datasets. The empirical datasets proved to be more sensitive to minor changes in filtering thresholds as even slight adjustments resulted in significantly different outcomes in some cases. The DFE estimates in the subsampled datasets were unpredictable, both within and among populations. This is most likely a result of substantial downsizing of the data matrix, since the total number of sites and SNPs were reduced by $50-90 \%$ in the subsampled datasets compared to the other two methods. Downsampling and imputation produced results with similar levels of variation across the different thresholds. With the simulation results in mind, it could be argued that both methods are be equally valid in this case, and the choice between them might depend on other conditions and computational resources. As a general rule, we recommend filtering data with several thresholds to obtain an overview of the variability produced by each method. This is especially important because the 95\% CIs do not provide information about whether the filtered and subsampled dataset is representative of the initial population and, as we show in this study, the differences among subsets of samples from the same population can be significant

A cursory review of recently published DFE estimation studies shows that downsampling is the most frequently used of the three methods tested here (see Castellano et al., 2019; Chen et al., 2020; Gossmann et al., 2010; Liang et al., 2022; Takou et al., 2021). This is not surprising, since downsampling is considerably faster than imputation, yet retains more
data than subsampling. Imputation methods require high quality datasets from the outset to be able to make reliable predictions; datasets with high rates of missing sites and low levels of genome-wide linkage disequilibrium are not ideal for this treatment. With low levels of genome-wide linkage disequilibrium, the presence/absence of any given SNP is mostly uncorrelated with the presence/absence of any other SNP, meaning that there are no patterns of linkage disequilibrium among sites from which imputation can accurately predict the state of a missing site. In such cases, downsampling might be a better choice. With the current rate of improvement in both genome-wide sequence data and computing power, however, we predict an increasing popularity of imputation as a data processing method in DFE estimation and other population genomics analyses. We recommend prefacing any missing-data treatment with an analysis of the prevalence of missing sites and the level of linkage disequilibrium to determine whether imputation is the appropriate method for each dataset.

4.2 Very small sample sizes skew the estimated DFE

A review on DFE estimated in 139 plant and animal species (Chen et al., 2017), each with between 2-50 chromosomes sampled, shows very different DFE distributions. We evaluated the effects of the number of sampled individuals on the estimated DFE when the number of sites was not a limiting factor. We found that DFE estimated from few individuals (<8) were strongly skewed compared to larger sample sizes. In simulated datasets with no missing data, the accuracy of the estimated DFE was highest in the largest sample (100 individuals) and lowest in the smallest samples (4 and 8 individuals), and the samples with >8 individuals markedly improved DFE estimates. Similarly, DFE estimates based on 4 individuals produced the least accurate results using both downsampling and imputation for missing-data treatment.

In the empirical trials, DFE estimates between random sets of 4 individuals were rather unstable in the Austrian population. In the Norwegian dataset subsampled at 10% that kept only 2 diploid individuals, the proportion of slightly deleterious mutations was greatly overestimated compared to that of the full population size. Results stabilized with a sample size of 8 or more, which is consistent with the findings from the simulated datasets. This suggests that a relatively small number of individuals is needed for reliable DFE estimates when there are many sites available, but that very limited sample sizes increases the risk of producing non-representative results. We thus deem the potential effects of low sample size to be alarming due to their unpredictable and stochastic nature, and caution against using sample sizes below 4 diploid individuals (8 haploids).

4.3 Limited sites cause high variability in DFE results

Reducing the number of sites resulted in highly variable and unpredictable DFE estimates even with larger sample sizes. Overall, the negative correlation was observed between the number of SNPs and EMD values in the simulated datasets indicates that the accuracy of SFS-based DFE estimation is limited by the number of SNPs available. This trend was also observed in the empirical data, where estimates based on $1 \mathrm{M}, 10 \mathrm{M}$ and 55 M sites in 29 individuals all looked similar, but using $1 \mathrm{~K} \sim 10 \mathrm{~K}$ sites ($59 \sim 571$ SNPs) produced highly dissimilar results, demonstrating the importance of having a sufficient number of sites and SNPs for reliable SFSbased analyses. The DFE is estimated from SFS, i.e. the distribution of SNPs of different frequencies in the population. Thus, the number and specific subset of SNPs directly affect the resolution to which we can estimate the shape of the DFE. This would explain why the 95% CIs increased in size as the number of sites decreased. At $1 \mathrm{~K} \sim 10 \mathrm{~K}$ sites, the confidence intervals spanned the entire range of possible values for several of the mutational categories (Fig. 3b). For these datasets, we are therefore left with no confidence that our predicted DFE is close to the true DFE. If the CIs are ignored, the very different DFE estimates from subsets of the same dataset could lead to different interpretations of the selection pressures acting on the population. This result illustrates a clear type 1 error; the estimated DFE from our samples of $1 \mathrm{~K}, 10 \mathrm{~K}$ and 100 K sites are not representative of the full sites and produce incorrect inferences that imply differences in the underlying DFE, despite being random subsets of the same dataset.

Based on both the empirical and simulated trials, we conclude that DFE estimates of DFE become stochastic and unpredictable with very small number of sites/SNPs, and accuracy is expected to increase significantly with the number of SNPs included; at least 5K SNPs are required to obtain reliable DFE estimates using DFE-alpha.

4.4 Population structure may skew DFE estimates

By combining samples from the Austrian and Norwegian populations into merged populations, we were able to see how the composition of populations affects DFE estimates. One trend was immediately clear: the estimated proportion of strongly deleterious mutations was higher in the merged populations than in the contributing single population subsets. A high $F_{S T}$ may skew the DFE towards higher estimated proportions of strongly deleterious mutations and lower proportions of slightly and moderately deleterious mutations. This correlation may not be conclusive, but it indicates that population structure can indeed affect DFE and should be taken into consideration when performing these analyses at a species level. Studies on DFE often include multiple or combined populations to gain a global estimate that characterizes the
organism or species (Chen et al., 2017; Hämälä \& Tiffin, 2020; Slotte et al., 2010; Zhao et al., 2020). We cannot presently state that pooled samples will always skew the DFE distribution, but it is advisable to estimate the DFE separately in individual populations, as well as from pooled samples to evaluate any deviations caused by pooling that might inform conclusions drawn from the results. A recent study developed a joint DFE approach that enables the analysis of pairs of populations (Huang et al., 2021), which could be practical in examining variance of DFE among populations.

5 CONCLUSION

Accurate estimation of DFE from genomic data hinges on several factors, including the number of sampled individuals, the availability of sites and SNPs, and the approach employed to address missing data. Our study, which utilized both empirical data and forward simulations, explored all these aspects and offers guidance for experimental design of DFE estimation studies. We found that downsampling is a dependable method of handling missing data, though it may still impact the DFE to some extent. Imputation, while generally accurate, may be less suitable for small samples (≤ 100 individuals, $<10 \mathrm{~K} \mathrm{SNPs)} \mathrm{or} \mathrm{when} \mathrm{genome-wide} \mathrm{linkage} \mathrm{disequilibrium} \mathrm{is}$ very low (as is often the case with highly outbreeding species). We demonstrated that DFE estimates derived from datasets with less than four diploid individuals or less than 5K SNPs may be unreliable due to the risk of sampling error and the limited information in the SFS. Furthermore, strong population structure within samples can potentially skew DFE estimates.

More advanced methods of DFE estimation employ an unfolded SFS, where each SNP is categorized as ancestral or derived based on an outgroup reference genome. While model species can benefit from these sophisticated techniques, most studies must still rely on methods utilizing the folded SFS, and frequently deal with limited sample sizes. Given the extensive body of previously published work employing folded SFS, it is imperative to be able to understand the expected accuracy of DFE estimates in comparative analyses. This study highlights the factors that should be considered when interpretating DFE estimates, thereby enhancing the reliability and relevance of future research.

ACKNOWLEDGEMENTS

Genomic data processing and analyses were performed using resources provided by the Swedish National Infrastructure for Computing (SNIC), through the High Performance Computing Centre North (HPC2N). This study was supported by grants from the Swedish Research Council (VR) and T4F program to XRW. The authors declare no conflict of interest.

AUTHOR CONTRIBUTION

WZ and XRW designed the empirical study. All authors contributed to designing the simulation study. BH provided support for simulations in SLiM 4.0. BA and WZ performed empirical data analyses. ÅB provided statistical advice. BA, WZ and XRW wrote the manuscript draft. All authors contributed to the revision of the manuscript.

DATA AVAILABILITY

All sequencing data are retrieved from the NCBI SRA database with accession numbers listed in Supplemental Table 1. Procedures associated with the SLiM simulations are provided to GitHub repository at https://github.com/beaangelica/DFE-filtering.

REFERENCES

Bataillon, T., \& Bailey, S. F. (2014). Effects of new mutations on fitness: insights from models and data. Annals of the New York Academy of Sciences, 1320, 76-92. doi:10.1111/nyas. 12460

Boyko, A. R., Williamson, S. H., Indap, A. R., Degenhardt, J. D., Hernandez, R. D., Lohmueller, K. E., . . . Bustamante, C. D. (2008). Assessing the evolutionary impact of amino acid mutations in the human genome. Plos Genetics, 4, e1000083. doi:10.1371/journal.pgen. 1000083

Browning, B. L., Zhou, Y., \& Browning, S. R. (2018). A one-penny imputed genome from next-generation reference panels. The American Journal of Human Genetics, 103, 338348. doi:https://doi.org/10.1016/j.ajhg.2018.07.015

Castellano, D., Macia, M. C., Tataru, P., Bataillon, T., \& Munch, K. (2019). Comparison of the full distribution of fitness effects of new amino acid mutations across great apes. Genetics, 213, 953-966. doi:10.1534/genetics.119.302494

Chen, J., Glemin, S., \& Lascoux, M. (2017). Genetic diversity and the efficacy of purifying selection across plant and animal species. Molecular Biology and Evolution, 34, 14171428. doi: $10.1093 / \mathrm{molbev} / \mathrm{msx} 088$

Chen, J., Glemin, S., \& Lascoux, M. (2020). From drift to draft: how much do beneficial mutations actually contribute to predictions of Ohta's slightly deleterious model of molecular evolution? Genetics, 214, 1005-1018. doi:10.1534/genetics.119.302869

Chen, S. F., Zhou, Y. Q., Chen, Y. R., \& Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34, 884-890. doi:10.1093/bioinformatics/bty560

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., . . . 1000 Genomes Project Analysis Group. (2011). The variant call format and VCFtools. Bioinformatics, 27, 2156-2158. doi:10.1093/bioinformatics/btr330
Eyre-Walker, A., \& Keightley, P. D. (2009). Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change. Molecular Biology and Evolution, 26, 2097-2108. doi:10.1093/molbev/msp1 19

Gossmann, T. I., Song, B. H., Windsor, A. J., Mitchell-Olds, T., Dixon, C. J., Kapralov, M. V., . . . Eyre-Walker, A. (2010). Genome wide analyses reveal little evidence for adaptive evolution in many plant species. Molecular Biology and Evolution, 27, 1822-1832. doi:10.1093/molbev/msq079
Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H., \& Bustamante, C. D. (2009). Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. Plos Genetics, 5, e1000695. doi:10.1371/journal.pgen. 1000695

Haller, B. C., Galloway, J., Kelleher, J., Messer, P. W., \& Ralph, P. L. (2019). Tree-sequence recording in SLiM opens new horizons for forward-time simulation of whole genomes. Molecular Ecology Resources, 19, 552-566. doi:10.1111/1755-0998.12968

Haller, B. C., \& Messer, P. W. (2023). SLiM 4: Multispecies eco-evolutionary modeling. American Naturalist. doi:10.1086/723601

Halligan, D. L., \& Keightley, P. D. (2009). Spontaneous mutation accumulation studies in evolutionary genetics. Annual Review of Ecology Evolution and Systematics, 40, 151172. doi:10.1146/annurev.ecolsys.39.110707.173437

Huang, X., Fortier, A. L., Coffman, A. J., Struck, T. J., Irby, M. N., James, J. E., . . . Gutenkunst, R. N. (2021). Inferring genome-wide correlations of mutation fitness effects between populations. Molecular Biology and Evolution, 38, 4588-4602. doi:10.1093/molbev/msab162

Hämälä, T., \& Tiffin, P. (2020). Biased gene conversion constrains adaptation in Arabidopsis thaliana. Genetics, 215, 831-846. doi:10.1534/genetics.120.303335

Johri, P., Aquadro, C. F., Beaumont, M., Charlesworth, B., Excoffier, L., Eyre-Walker, A., . . . Jensen, J. D. (2021). Recommendations for improving statistical inference in population genomics. Plos Biology, 20, e3001669.

Keightley, P. D., \& Eyre-Walker, A. (2007). Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies. Genetics, 177, 2251-2261. doi:10.1534/genetics.107.080663

Kim, B. Y., Huber, C. D., \& Lohmueller, K. E. (2017). Inference of the distribution of selection coefficients for new nonsynonymous mutations using large samples. Genetics, 206, 345-361. doi:10.1534/genetics.116.197145
Kimura, M. (1968). Evolutionary rate at molecular level. Nature, 217, 624-626. doi: 10.1038/217624a0

Kutschera, V. E., Poelstra, J. W., Botero-Castro, F., Dussex, N., Gennnnell, N. J., Hunt, G. R., . . . Wolf, J. B. W. (2020). Purifying selection in corvids is less efficient on islands. Molecular Biology and Evolution, 37, 469-474. doi:10.1093/molbev/msz233

Larson, W. A., Isermann, D. A., \& Feiner, Z. S. (2021). Incomplete bioinformatic filtering and inadequate age and growth analysis lead to an incorrect inference of harvested-induced changes. Evolutionary Applications, 14, 278-289. doi:https://doi.org/10.1111/eva. 13122

Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics, 27, 2987-2993. doi:10.1093/bioinformatics/btr509

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWAMEM. arXiv:1303.3997v2 [q-bio.GN].
Liang, Y. Y., Shi, Y., Yuan, S., Zhou, B. F., Chen, X. Y., An, Q. Q., . . . Wang, B. S. (2022). Linked selection shapes the landscape of genomic variation in three oak species. New Phytologist, 233, 555-568. doi:10.1111/nph. 17793

Marburger, S., Monnahan, P., Seear, P. J., Martin, S. H., Koch, J., Paajanen, P., . . . Yant, L. (2019). Interspecific introgression mediates adaptation to whole genome duplication. Nature Communications, 10, 5218. doi:10.1038/s41467-019-13159-5

Ohta, T. (1973). Slightly deleterious mutant substitutions in evolution. Nature, 246, 96-98. doi:10.1038/246096a0

Ohta, T. (1992). The nearly neutral theory of molecular evolution. Annual Review of Ecology and Systematics, 23, 263-286. doi:10.1146/annurev.es.23.110192.001403

Papadopoulou, A., \& Knowles, L. L. (2015). Genomic tests of the species-pump hypothesis: Recent island connectivity cycles drive population divergence but not speciation in Caribbean crickets across the Virgin Islands. Evolution, 69, 1501-1517. doi:10.1111/evo. 12667

Perez, M. F., Franco, F. F., Bombonato, J. R., Bonatelli, I. A. S., Khan, G., Romeiro-Brito, M., . . . Moraes, E. M. (2018). Assessing population structure in the face of isolation by
distance: Are we neglecting the problem? Diversity and Distributions, 24, 1883-1889. doi:10.1111/ddi. 12816

Pook, T., Mayer, M., Geibel, J., Weigend, S., Cavero, D., Schoen, C. C., \& Simianer, H. (2020). Improving imputation quality in BEAGLE for crop and livestock data. G3-Genes Genomes Genetics, 10, 177-188. doi:10.1534/g3.119.400798

Schneider, A., Charlesworth, B., Eyre-Walker, A., \& Keightley, P. D. (2011). A method for inferring the rate of occurrence and fitness effects of advantageous mutations. Genetics, 189, 1427-1437. doi:10.1534/genetics.111.131730

Schuhmacher, D., Bähre, B., Gottschlich, C., Hartmann, V., Heinemann, F., Bernhard Schmitzer, \& Schrieber, J. (2019). transport: Computation of optimal transport plans and Wasserstein distances. R package version $0.13-0$. doi:https://cran.rproject.org/package=transport
Slotte, T., Foxe, J. P., Hazzouri, K. M., \& Wright, S. I. (2010). Genome-wide evidence for efficient positive and purifying selection in Capsella grandiflora, a plant species with a large effective population size. Molecular Biology and Evolution, 27, 1813-1821. doi:10.1093/molbev/msq062

Takou, M., Hamala, T., Koch, E. M., Steige, K. A., Dittberner, H., Yant, L., . . . de Meaux, J. (2021). Maintenance of adaptive dynamics and no detectable load in a range-edge outcrossing plant population. Molecular Biology and Evolution, 38, 1820-1836. doi:10.1093/molbev/msaa322

Tataru, P., \& Bataillon, T. (2019). polyDFEv2.0: testing for invariance of the distribution of fitness effects within and across species. Bioinformatics, 35, 2868-2869. doi:10.1093/bioinformatics/bty1060

Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin, R., del Angel, G., Levy-Moonshine, A., . . . DePristo, M. A. (2013). From FastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Current Protocols in Bioinformatics, 43, 11.10.11-11.10.33. doi:10.1002/0471250953.bi1110s43

Zhao, W., Sun, Y. Q., Pan, J., Sullivan, A. R., Arnold, M. L., Mao, J. F., \& Wang, X. R. (2020). Effects of landscapes and range expansion on population structure and local adaptation. New Phytologist, 228, 330-343. doi:10.1111/nph. 16619

Figure legends

Figure 1: Experimental design

We performed three sets of tests to understand their potential influence on the estimated DFE: a) three procedures of missing-data treatment, b) the number of individuals and sites used, and c) population structure. Each box represents a derived dataset, with the number of individuals shown on top and nucleotide sites below. The study involved two populations of Arabidopsis lyrata from Austria and Norway. We created merged populations with subsets of individuals from Austria and Norway as specified on the left of each merged boxes (c, greyed out). The estimated DFE of the merged population are compared to that of the contributing populations.

Figure 2: Methods of missing-data treatments for SFS based analyses

Illustration of the different steps involved in the three missing-data filtering methods examined in this study. Each box corresponds to an individual's genotype at a site, and missing boxes represent missing data for a genotype. In downsampling, step 1 excludes sites at which data is missing in more than a prescribed threshold of individuals (e.g. 25%), while step 2 samples genotypes without replacement from the remaining data at each site. In imputation, as in downsampling, step 1 excludes sites with missing rate more than a prescribed fraction, while step 2 imputes (fills in) missing data. In subsampling, step 1 excludes individuals with missing data in more than a prescribed fraction of sites, while step 2 excludes all sites with missing data.

Figure 3: Effects of number of individuals and sites on DFE

DFE estimated from Arabidopsis lyrata, a) random samples of 4, 8, 12, 16, 20 and 24 of the 29 individuals of the Austrian population with 55M sites; b) all 29 individuals, c) a random sample of 4 individuals with $1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{M}, 10 \mathrm{M}$ and 55 M sites. The complete DFE is represented as percentage contribution of each of four categories of mutations: neutral (blue), slightly deleterious (yellow), moderately deleterious (orange) and strongly deleterious (red). The DFE for each sample size is represented in two ways: on the left as stacked estimated percentages of the four categories of mutations, and on the right as the estimated percentage of each category of mutations (black bars and light areas) together with the 95% CIs (darker coloured areas).

Figure 4: The accuracy of DFE estimations by manipulating SLiM simulated dataset

DFE estimates and 95% CIs for $4,8,12,16,20,2450$, and a maximum of either 85 (in downsampling) or 100 (in the other cases) individuals, with either a) no missing data, or 15% missing data per individual and filtered with either b) downsampling, c) imputation or d)
subsampling. e) DFE estimation error, as represented by Earth Mover's Distance (EMD), in different sample sizes without missing data (black, 10 replicates (n) per sample size), or with 15% missing data and filtered with either downsampling (green), imputation (red) or subsampling (yellow), in four replicates each. f) DFE estimation error in samples plotted against SNP number, in datasets without missing data (black) as well as with missing-data filtered by downsampling (green), imputation (red) or subsampling (yellow). Linear regression lines for the no missing data (black) and for all of the filtered datasets combined (brown) are displayed to show the trend of EMD over SNP number in the two groups. Datasets without missing data include 10 replicates of $4 \sim 100$ individuals, while four replicates of $4 \sim 50$ individuals are included for the missing-data filtered datasets.

Figure 5: Effect of population structure on DFE

a) The estimated DFE of the Austrian (dark dots) and Norwegian (light dots) samples of Arabidopsis lyrata, compared to merged samples (solid lines) containing both groups in different combinations. The relative sample size from each population is listed along the horizontal axis (bottom), as well the name of each of three replicates (top). b) Linear regression of the estimated proportion of each of the four mutational categories of the DFE over the F_{ST} between the merged samples, with 95% confidence intervals shown in shaded areas.

SUPPORTING INFORMATION

Table S1. Sequence information of the Arabidopsis lyrata samples included in this study.
Table S2. Accuracy of DFE estimations for different missing-data treatments and sample sizes from the SLiM simulated dataset.

Figure S1. Principal component analysis in the 45 individuals of Arabidopsis lyrata sampled from Austria and Norway, based on 3,921,575 SNPs.

Figure 1.

C

Effect of population structure

Figure 2.

Filtered datasets

Figure 3.

787

Figure 4.

Figure 5.

Table 1. The estimated DFE using downsampling, imputation and subsampling procedures in Austrian and Norwegian populations of A. lyrata. For downsampling, thresholds show the percentage of data retained at each locus. Imputation thresholds signify the data quality (inverse of the max missing rate) of the individuals included in the dataset prior to imputation. Subsampling thresholds signify the max missing rates per individual.

	Filtering method											CI]: \% of mut	tations	with - $\mathrm{N} s$ values		
				Individuals	Total sites	0-fold sites	4-fold sites	SNPs in SFS		[0, 1]		$(1,10]$		$(10,100]$		>100
				15	105,746,755	20,081,506	4,532,827	1,389,235	24.63	[24.53-24.73]	10.59	[10.47-10.72]	15.11	[14.87-15.34]	49.68	[49.37-49.96]
				19	99,518,927	19,796,632	4,465,916	1,455,146	23.26	[23.15-23.35]	11.73	[11.61-11.80]	17.53	[17.30-17.70]	47.48	[47.26-47.80]
				22	95,023,967	19,576,647	4,410,244	1,472,536	21.76	[21.69-22.95]	12.91	[11.45-13.00]	20.30	[17.07-20.48]	45.03	[44.75-48.57]
				29	103,436,893	19,988,452	4,509,075	1,686,431	23.08	[22.97-24.04]	12.39	[11.26-12.51]	18.87	[16.47-19.12]	45.66	[45.35-48.25]
				29	97,909,623	19,724,874	4,444,971	1,625,688	22.67	[22.57-22.77]	12.12	[11.99-12.22]	18.44	[18.17-18.65]	46.77	[46.50-47.12]
				29	86,272,541	19,088,682	4,267,939	1,437,770	20.21	[20.09-20.33]	13.56	[13.46-13.68]	22.24	[21.99-22.52]	43.99	[43.69-44.27]
				8	97,383,774	19,593,039	4,364,309	843,938	22.96	[22.80-23.28]	11.21	[10.60-11.43]	16.61	[15.39-17.05]	49.22	[48.61-50.79]
				21	76,996,896	18,026,562	3,900,662	874,047	19.78	[19.60-19.90]	14.68	[14.50-14.87]	24.81	[24.40-25.28]	40.74	[40.16-41.24]
				28	59,099,749	14,532,777	3,066,767	662,641	20.11	[19.41-20.29]	16.87	[16.62-17.62]	29.21	[28.62-31.15]	33.81	[31.81-34.50]
				29	54,974,337	13,445,210	2,824,524	609,256	20.31	[20.10-20.56]	17.29	[16.96-17.56]	29.93	[29.16-30.56]	32.47	[31.72-33.38]
䨍			50\%	8	105,746,755	20,081,506	4,532,827	374,403	33.13	[32.78-33.45]	9.40	[7.96-10.17]	12.06	[9.86-13.30]	45.41	[43.60-48.80]
			66%	11	99,518,927	19,796,632	4,465,916	366,254	32.05	[31.58-32.32]	7.91	[7.42-9.95]	9.86	[9.13-13.07]	50.17	[45.39-51.36]
				12	95,023,967	19,576,647	4,410,244	341,308	30.91	[30.70-31.15]	8.11	[7.72-8.67]	10.24	[9.64-11.10]	50.74	[49.38-51.59]
			70\%	16	103,436,893	19,988,452	4,509,075	399,078	32.83	[32.58-33.04]	6.51	[6.20-6.96]	7.80	[7.37-8.44]	52.86	[51.89-53.62]
			80%	16	97,909,623	19,724,874	4,444,971	365,494	31.62	[31.33-31.89]	6.64	[6.26-7.20]	8.04	[7.49-8.85]	53.71	[52.54-54.49]
				16	86,272,541	19,088,682	4,267,939	268,958	29.30	[29.04-29.68]	8.06	[7.09-8.41]	10.27	[8.79-10.83]	52.38	[51.49-54.50]
				2	109,442,991	20,192,673	4,555,968	248,706	7.26	[7.00-7.48]	86.62	[86.37-86.99]	6.12	[5.89-6.30]	0.00	[0.00-0.00]
				15	79,983,985	18,525,720	4,136,084	179,342	28.20	[27.89-28.57]	7.97	[7.46-8.23]	10.22	[9.42-10.64]	53.60	[53.01-54.72]
				16	77,586,760	18,343,099	4,091,607	171,711	28.36	[27.78-28.69]	7.55	[7.02-8.83]	9.56	[8.76-11.61]	54.53	[51.62-55.79]
				16	77,586,760	18,343,099	4,091,607	171,711	28.36	[27.78-28.69]	7.55	[7.02-8.83]	9.56	[8.76-11.61]	54.53	[51.62-55.79]

Table S1. Sequence information of the Arabidopsis lyrata samples included in this study. Source codes are NCBI accession IDs.

Population	Source	Coverage (Mb, >=5x)	Mean depth (>=5x)	Median depth (>=5x)	No. reads
Norway	ERR3397904	147.26	25.71	16	63201441
Norway	ERR3397905	144.61	21.83	14	52859026
Norway	ERR3397906	143.18	22.77	13	54633798
Norway	ERR3397907	143.9	22.27	14	53839619
Norway	ERR3397908	146.44	23.74	15	59507152
Norway	ERR3397909	146.45	23.69	15	59465532
Norway	ERR3397910	145.45	24.72	14	62069317
Norway	ERR3397911	148	26.05	15	66516823
Norway	ERR3397912	145.1	23.77	14	59254019
Norway	ERR3397913	143.16	21.8	13	53951341
Norway	SRR5124977	151.64	70	38	127927590
Norway	SRR5124983	144.92	33.26	22	59142085
Norway	SRR5124985	135.63	22.97	13	34814708
Norway	SRR5124997	153.66	55.35	35	102114289
Norway	SRR5124998	149.93	49.79	30	88534336
Norway	SRR5124999	139.45	27.54	16	42830997
Austria	ERR3514864	130.18	17.02	11	20727733
Austria	ERR3514865	141.4	23.75	15	31042548
Austria	ERR3514866	140.31	21.29	15	27625035
Austria	ERR3514869	156.87	49.12	37	72515100
Austria	ERR3514870	145.82	25.47	18	34493579
Austria	ERR3514871	147.85	26.79	19	36994924
Austria	ERR3514872	130.12	17.95	11	22086024
Austria	ERR3514873	136.53	19.89	13	25584056
Austria	ERR3514874	141.42	26.26	16	34646984
Austria	ERR3514875	128.41	16.94	10	20457660
Austria	ERR3514876	148.58	29.17	22	39961518
Austria	ERR3514877	130.4	16.15	11	19708718
Austria	ERR3514878	155.98	42.5	33	62109925
Austria	ERR3514879	141.14	21.85	14	29584688
Austria	ERR3514880	153.3	38.58	27	54727972
Austria	ERR3514883	130	19.1	11	23003063
Austria	ERR3514884	130.2	17.75	11	21314626
Austria	ERR3514885	141.2	27.63	16	37910237
Austria	ERR3514886	124.05	15.02	10	17565928
Austria	ERR3514887	144.2	26.05	17	35825064
Austria	ERR3514888	142.67	26.2	17	34966847
Austria	ERR3514889	141.14	24.65	16	32554512
Austria	ERR3514892	138.26	19.26	14	24924196
Austria	ERR3514893	142.71	23.43	16	30871081
Austria	ERR3514895	148.06	30.95	20	42713949
Austria	ERR3514896	149.81	31.97	23	44511357
Austria	ERR3514897	135.69	22.12	13	27521061
Austria	ERR3514898	145.12	32.64	21	44216326
Austria	ERR3514899	144.58	29.89	19	39745319

Table S2: Number of sites and SNPs in different simulated datasets, together with their respective estimated mean (Es) and shape (β) parameters of the DFE. Earth Mover's Distance (EMD) signifies the accuracy of each estimated gamma distribution of DFE to the known DFE used in the simulation (shape $\beta: 0.1$, mean Es: -100). Lower EMD values indicate a closer fit to the known DFE.

Filtering method	Individuals	Sites in VCF after filtering	Sites in SFS (min - max)	$\begin{aligned} & \hline \text { SNPs in SFS } \\ & (\min -\max) \\ & \hline \end{aligned}$				Es	EMD (10^{-7})		
					(Median	$[\min -\max])$	(Median	$[\min -\max])$	(Median	Mean	$[\min -\max])$
	4	50,000,000	12,162,648-12,162,869	5,156-5,448	0.0902	[0.0500-0.1675]	-682	[-6.36×10 $\left.{ }^{6}--4\right]$	49.7	38.5	[6.7-56.5]
	8	50,000,000		6,840-7,205	0.1064	[0.0500-0.1318]	-127	$\left[-5.19 \times 10^{6}-21\right]$	13.9	20.8	[5.8-56.5]
	12	50,000,000		8,002-8,342	0.1077	[0.0865-0.1326]	-103	[-1,044--18]	7.9	13.3	[2.5-30.5]
	16	50,000,000		8,832-9,182	0.1043	[0.0900-0.1308]	-148	[-714--22]	12.9	13.3	[3.2-26.5]
	20	50,000,000		9,420-9,859	0.1044	[0.0843-0.1220]	-134	[-1,293--37]	12.3	13.0	[3.7-32.5]
	24	50,000,000		10,019-10,336	0.1051	[0.0792-0.1291]	-126	[-2,773--24]	9.8	13.2	[2.6-40.5]
	50	50,000,000		12,617-12,818	0.1096	[0.0874-0.1235]	-94	[-821--36]	5.3	8.9	[3.4-27.5]
	100	50,000,000		15,357-15,702	0.1138	[0.0972-0.1280]	-79	[-276--33]	7.5	8.9	[3.5-21.5]
	4	28,420,524	6,911,406	2,959-3,099	0.1253	[0.0500-0.1411]	-39	$\left[-1.23 \times 10^{7}--11\right]$	34.5	33,7	[9.4-57.5]
	8	28,420,524		4,010-4,075	0.0724	[0.0500-0.1001]	-8,392	$\left[-3.15 \times 10^{6}--147\right]$	45.9	38,0	[4.8-55.5]
	12	28,420,524		4,621-4,694	0.0999	[0.0919-0.1162]	-198	[-420--52]	13.0	11,7	[2.2-19.5]
	16	28,420,524		5,085-5,122	0.0945	[0.0777-0.1082]	-336	[-3,711--80]	14.4	19,0	[4.9-42.5]
	20	28,420,524		5,446-5,539	0.0907	[0.0727-0.1096]	-456	$[-6,829--78]$	19.9	22,9	[5.5-46.5]
	24	28,420,524		5,795-5,827	0.0981	[0.0913-0.1030]	-229	[-417--136]	9.8	10,5	[3.7-19.5]
	50	28,420,524		7,165-7,216	0.0992	[0.0929-0.1088]	-248	[-391--88]	10.6	10,5	[3.0-18.5]
	85 ($\mathrm{n}=1$)	28,420,524		8,323	0.1045		-139		4.0	4,0	
	4	28,420,524	6,911,406	2,907-3,136	0.1140	[0.0500-0.1498]	-137	$\left[-5.64 \times 10^{6}--7\right]$	38.3	36,4	[12.9-56.5]
	8	28,420,524		3,892-3,976	0.0998	[0.0642-0.1171]	-293	$[-54,893--32]$	19.6	24,2	[5.2-52.5]
	12	28,420,524		4,426-4,554	0.0848	[0.0815-0.1079]	-1,201	[-1,762--84]	30.0	24,9	[4.1-35.5]
	16	28,420,524		4,840-5,017	0.0866	[0.0794-0.1111]		[-1,953--63]	26.8	24,6	[8.3-36.5]
	20	28,420,524		5,179-5,384	0.0894	[0.0760-0.0981]	-819	[-3,850--226]	22.2	24,4	[10.5-43.5]
	24	28,420,524		5,592-5,750	0.0793	[0.0729-0.1155]	-2,976	[-8,094--50]	36.5	33,2	[12.3-47.5]
	50	28,420,524		6,931-6,958	0.0948	[0.0814-0.1132]	-334	[-1,642--65]	15.4	18,5	[8.5-35.5]
	100 ($\mathrm{n}=1$)	28,420,524		8,396	0.0986		-247		11.6	11,6	
	4	26,099,661	6,347,733	2,707-2,870	0.1279	[0.0733-0.1518]		[-11,804--6]	37.2	36,5	[22.4-49.5]
	8	13,629,024	3,313,984	1,897-2,003	0.0702	[0.0500-0.0737]	-11,337	$\left[-8.96 \times 10^{6}-2,657\right]$	48.7	48,3	[39.4-56.5]
	12	7,109,386	1,730,591	1,107-1,194	0.1040	[0.0696-0.1366]	-2,386	[-10,280--18]	37.0	37,5	[27.7-48.5]
	16	3,713,156	902,526	624-661	0.1109	[0.0782-0.1618]		[-1,223--3]	26.3	27,6	[1.7-56.5]
	20	1,938,476	470,900	348-402	0.0907	[0.0500-0.1938]	-35,852	[-795,504--2]	53.1	47,1	[18.3-64.5]
	24	1,011,970	246,323	174-199	0.0540	[0.0500-0.5804]	$-362,712$	$\left[-3.23 \times 10^{6}-0\right]$	55.1	63,6	[31.2-113.5]
	50	14,863	3,737	3-5	0.5172	[0.0500-0.5227]		$\left[-2.16 \times 10^{12}-0\right]$	113.2	102,3	[64.2-118.5]

Figure S1. Principal component analysis in the 45 individuals of Arabidopsis lyrata sampled from Austria and Norway, based on 3,921,575 SNPs.

