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Abstract 28 

The distribution of fitness effects (DFE) of new mutations has been of interest to evolutionary 29 

biologists since the concept of mutations arose. Modern population genomic data enable us to 30 

quantify the DFE empirically, but few studies have examined how data processing, sample size 31 

and cryptic population structure might affect the accuracy of DFE inference. We used simulated 32 

and empirical data (from Arabidopsis lyrata) to show the effects of missing data filtering, 33 

sample size, number of SNPs and population structure on the accuracy and variance of DFE 34 

estimates. Our analyses focus on three filtering methods – downsampling, imputation and 35 

subsampling – with sample sizes of 4 ~ 100 individuals. We show that (1) the choice of missing-36 

data treatment directly affects the estimated DFE, with downsampling performing better than 37 

imputation and subsampling; (2) the estimated DFE is less reliable in small samples (<8 38 

individuals), and becomes unpredictable with too few SNPs (<5000); and (3) population 39 

structure may skew the inferred DFE toward more strongly deleterious mutations. We suggest 40 

that future studies should consider downsampling for small datasets, and use samples larger 41 

than 4 (ideally larger than 8) individuals, with more than 5000 SNPs in order to improve the 42 

robustness of DFE inference and enable comparative analyses.  43 

 44 

Key words: DFE, missing-data treatment, population structure, sample size, SLiM simulation. 45 

  46 
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1 INTRODUCTION 47 

The distribution of fitness effects (DFE) of new mutations can be described as the probability 48 

that a new mutation will have a specific effect on the fitness of an individual. This probability 49 

distribution affects the accumulation of genetic variation and can thus directly impact the 50 

evolutionary trajectory of organisms (Bataillon & Bailey, 2014; Keightley & Eyre-Walker, 51 

2007; Ohta, 1992). Understanding the DFE is integral to understanding molecular evolution 52 

and remains an important focus in modern evolutionary theory (Chen et al., 2020; Halligan & 53 

Keightley, 2009; Kimura, 1968; Ohta, 1973). To date, the arguably most popular methods of 54 

inferring the DFE are based on contrasting frequencies of putatively neutral and selected 55 

polymorphisms presented as a site frequency spectrum (SFS), describing how commonly 56 

mutations of different frequencies occur in a population (Gutenkunst et al., 2009; Keightley & 57 

Eyre-Walker, 2007; Kim et al., 2017; Tataru & Bataillon, 2019). Since the SFS can be affected 58 

by both neutral and selective processes, most methods use the SFS of synonymous mutations 59 

to estimate a demographic model representing the effects of population size changes and genetic 60 

drift. Meanwhile, the SFS of non-synonymous mutations are assumed to be shaped by both 61 

neutral and selective processes, and can therefore be used to estimate the DFE of non-neutral 62 

mutations after demography and drift have been accounted for (Boyko et al., 2008; Huang et 63 

al., 2021; Keightley & Eyre-Walker, 2007; Kim et al., 2017; Schneider et al., 2011; Tataru & 64 

Bataillon, 2019). However, factors other than demography and selection may also affect the 65 

shape of the SFS and thus the estimated DFE. 66 

First, SFS-based DFE inferences require that datasets contain no missing sites – all 67 

individuals must have complete data for all loci that are to be analysed. Since sequencing 68 

techniques are imperfect, such datasets are uncommon (probably non-existent) in empirical 69 

population genomics. As a result, missing-data treatment is an essential first step of data 70 

processing. To obtain a complete dataset, the data are treated either by filtering out some portion 71 

of the data (sub- or downsampling), or filling in the “gaps” using an algorithm such as 72 

imputation, see section 2.2 Missing-data treatment methods). Depending on how the treatment 73 

is performed, there is a risk of altering the relative allele frequencies in the dataset, yielding 74 

misleading results (Johri et al., 2021; Larson et al., 2021). Recent studies on DFE have applied 75 

different data processing methods; for example see Hämälä & Tiffin (2020) for imputation, and 76 

Gossmann et al. (2010) for downsampling. However, it is unknown whether and how the 77 

different methods influence DFE estimates. 78 

Second, the sizes of datasets used in published DFE studies vary enormously, from as 79 

few as two to several hundred individuals (Chen et al., 2017; Hämälä & Tiffin, 2020). The SFS 80 



4 
 

is highly sensitive to sample size, but the minimum number required to achieve stable DFE 81 

estimates remains undetermined (but see Kutschera et al. 2020). Similarly, the number of 82 

polymorphic sites necessary for reliable DFE estimation is largely unknown. While some 83 

studies of model species use whole genome sequencing with millions of single nucleotide 84 

polymorphisms (SNPs) available for analysis (Hämälä & Tiffin, 2020), others may only include 85 

a few hundred SNPs (Eyre-Walker & Keightley, 2009; Gossmann et al., 2010). Therefore, 86 

investigating the impact of sample size (both the number of individuals and sites/SNPs) on DFE 87 

estimates is crucial for reliable and accurate DFE estimation.  88 

Finally, most methods of SFS-based DFE estimation first estimate a Wright-Fisher 89 

demographic model from the neutral variation in order to control for neutral factors affecting 90 

the SFS (Keightley & Eyre-Walker, 2007; Tataru & Bataillon, 2019). Such models assume that 91 

mating occurs at random in panmictic populations, even though complete absence of population 92 

structure is likely rare in wild samples. For example, sampling from a large area is preferred for 93 

drawing general conclusions about population genetic dynamics, but it increases the likelihood 94 

of including genetic structure in the sample (Perez et al., 2018; Zhao et al., 2020). If cryptic 95 

genetic clusters are unwittingly included, the demographic model estimated from the data 96 

would not fulfil the assumptions underlying the Wright-Fisher model, and subsequent DFE 97 

estimates might be biased. However, population stratification has not to our knowledge been 98 

examined as a potential factor affecting the accuracy of DFE inference. 99 

In this study we test whether and how data processing methods, sample size, SNP 100 

number and population structure influence the results of DFE inference, to raise awareness of 101 

their potential confounding effects. We used whole genome re-sequencing data from two 102 

populations of Arabidopsis lyrata (subsp. petraea) to create multiple datasets (Fig. 1) with (1) 103 

three different methods of missing-data treatment – downsampling, imputation and 104 

subsampling – under different filtering thresholds; (2) different numbers of randomly sampled 105 

individuals and sites; and (3) samples with induced population stratification, to be contrasted 106 

with uniform, single populations. Then, we conducted forward simulation in SLiM 4.0 (Haller 107 

& Messer, 2023) to create a population with a known DFE that matches DFEs estimated in A. 108 

lyrata. Using this known DFE, we evaluate the accuracy of DFE estimates resulting from the 109 

different data manipulations. By contrasting the results obtained from the different procedures, 110 

we aim to answer the following questions: (1) Do data processing methods and missing-data 111 

filtering thresholds affect DFE estimation, and if so, how? (2) How many individuals and SNPs 112 

are needed to reach an accurate DFE estimate? and (3) Does population structure affect the 113 

DFE, and if so, how? Our results illustrate the importance of careful consideration of all steps 114 
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in genomic data processing and analysis, both when performing DFE inference and when 115 

interpreting its results. 116 

 117 

2 MATERIALS AND METHODS 118 

2.1 Genomic dataset and basic quality control 119 

We downloaded the whole genome re-sequencing data for two populations of the perennial, 120 

diploid obligately outbreeding Arabidopsis lyrata subsp. petraea, 29 individuals from Austria 121 

and 16 individuals from Norway, from the NCBI SRA database (Table S1). The quality of the 122 

sequence reads was first assessed with FastQC 123 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Adapter sequences and low-124 

quality bases were removed using fastp v0.23.0 (Chen et al., 2018) with the parameters “-q 20 125 

-l 36 --cut_front --cut_tail -c”. Clean reads were mapped to the A. lyrata v.1.0 genome 126 

(https://plants.ensembl.org/) using the BWA-MEM algorithm with default parameters (Li, 127 

2013). PCR duplicates were removed using Picard MarkDuplicates (http://broadinstitute. 128 

github.io/picard/). Reads around putative insertions and deletions were locally realigned using 129 

RealignerTargetCreator and IndelRealigner in the Genome Analysis Toolkit (GATK v.3.7-0; 130 

(Van der Auwera et al., 2013). Variants were called using the SAMtools and BCFtools pipeline 131 

as described in (Li, 2011). Several filtering steps were performed to minimize genotyping 132 

errors: indels and SNPs with mapping quality (MQ) <30 were removed, genotypes with 133 

genotype quality (GQ) <20 or read depth (DP) <5 were masked as missing, and all SNPs with 134 

a missing rate above 50% or allele number above 2 were removed. After these basic filtering 135 

steps, a total of 122,432,856 sites (including invariant sites) were retained in the 45 samples for 136 

the following analyses.  137 

 138 

2.2 Missing-data treatment methods 139 

Missing genotypes are common in genomic datasets and should be eliminated before generating 140 

an SFS. We tested three methods to treat missing values on the same original datasets – 141 

downsampling, imputation and subsampling (Fig. 1a, Fig. 2), and then compared the DFE 142 

inferred from each resulting dataset using bootstrapped 95% confidence intervals (CIs).  143 

Downsampling is performed by randomly selecting n genotypes at each site without 144 

replacement (Keightley & Eyre-Walker, 2007); sites with fewer than n genotypes available are 145 

removed. A 75% downsampling threshold in a sample size of 100 individuals means that 75 146 

random genotypes are sampled at each site (Fig. 2). Sites that contain < 75 genotypes are 147 

removed. In this study, we applied downsampling at thresholds 75%, 66%, and 50% on both 148 

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
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Austrian and Norwegian datasets. The same set of sites were kept and analyzed in both 149 

populations, making direct comparisons of the DFE between populations possible. 150 

Downsampling was performed using a Python script available on Dryad (Papadopoulou & 151 

Knowles, 2015) with minor modification (https://github.com/hui-liu/Bioinformatics-152 

Scripts/blob/master/Scripts/Python/ sampleDownMSFS_Hui_final.py).  153 

Imputation refers to the statistical inference (“filling in”) of missing genotypes using 154 

the available linkage information from successfully genotyped samples (Fig. 2). We tested 155 

threshold 70%, 80% and 90% on the A. lyrata datasets (i.e. excluding sites with less than 70%, 156 

80% and 90% genotype information available), and filled in the missing genotypes at all other 157 

sites using Beagle v5.1 (Browning et al., 2018) with default parameters. We performed 158 

imputation using all individuals from both populations, as imputation accuracy tends to increase 159 

with sample size, as shown by previous studies (Pook et al., 2020). 160 

Subsampling works in two steps: 1) Individuals that are missing more than a prescribed 161 

fraction of their genotype information are excluded, and 2) for the individuals remaining, any 162 

site with a missing genotype is removed (Fig. 2). This means that the size of a subsampled 163 

dataset is highly dependent on the individual missing rates and the distribution of missing data 164 

across the genome. We first calculated the missingness on a per-individual basis using the 165 

parameter “--missing-indv” in VCFtools (Danecek et al., 2011). We then extracted the 166 

individuals that had missing rates below the threshold value using “--keep”, and finally, we 167 

removed all sites containing missing genotypes by setting the parameter “--max-missing 1” in 168 

VCFtools. In the A. lyrata dataset, we tested four maximum missing rates per individual – 10%, 169 

15%, 20% and 25% (Note: no individual had more than 25% missing data). Note that with 170 

higher subsampling thresholds, more individuals but fewer sites are retained (Fig. 1a).  171 

 172 

2.3 Sample size and SNPs number 173 

To decouple the potential effects of the number of individuals and/or sites on DFE estimation, 174 

we randomly sampled 4, 8, 12, 16, 20, 24 or 29 (all) individuals and/or 1K, 10K, 100K, 1M, 175 

10M or 55.0M sites from the Austrian population subsampled at a maximum missing rate of 176 

25% per individual (Fig. 1). To investigate the effect of sample size, we kept all sites and 177 

compared samples with different numbers of individuals (4 - 29). Conversely, to investigate the 178 

effect of the number of SNPs, all 29 individuals were kept and a randomly chosen subset of 1K 179 

to 10M sites were extracted. Finally, the same subsets of 1K to 10M sites were extracted from 180 

a dataset with only 4 individuals. By comparing the DFEs from 4 vs. 29 individuals for each 181 
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set of sites, we could see the combined effects of the number of individuals and sites on the 182 

estimated DFE and confidence intervals (Fig. 3). 183 

 184 

2.4 Manipulating population structure 185 

To gain an overview of the genetic differentiation between the Austrian and Norwegian 186 

populations, we performed a principal component analysis (PCA) on the 45 sampled individuals 187 

using Eigensoft v.6.1.4 (Price et al., 2006). The dataset was filtered at a maximum missing rate 188 

of 20% per site and a minor allele frequency (MAF) ≥0.05, retaining 3,921,575 SNPs for the 189 

PCA. To investigate whether population structure affects DFE estimates, we randomly selected 190 

three different subsets (labelled a, b and c) of 10 and 15 individuals from each of the Austrian 191 

and Norwegian populations, imputed at an 80% threshold. Single sets from each population 192 

were then combined to form 12 new merged populations with four different configurations (Fig. 193 

1c): 10 Austrian + 10 Norwegian individuals, 10 Austrian + 15 Norwegian individuals, 15 194 

Austrian + 10 Norwegian individuals, and 15 Austrian + 15 Norwegian individuals, each with 195 

three replicates. We then estimated the DFE for each subset as well as all merged samples.  196 

Using the single and merged datasets we investigated 1) the effect of sample choice 197 

within a geographic population on DFE, by comparing the three replicate subsets from a single 198 

population (e.g. replicates a vs. b vs. c of subset Aus10), 2) the effect of each geographic 199 

population on the merged population, by comparing the DFE of the merged population to each 200 

of the contributing populations (e.g. replicate c of merged population Aus10+Nor15 vs. 201 

replicate c of subsets Aus10 and Nor15), and 3) the effect of population differentiation (FST) on 202 

DFE in the merged population. The weighted FST between the two contributing subsets in each 203 

merged population was calculated using VCFtools.  204 

 205 

2.5 DFE analyses 206 

We used DFE-alpha (Eyre-Walker & Keightley, 2009), a software that uses a maximum-207 

likelihood approach to determine the shape of the DFE of nonsynonymous mutations. In the 208 

simplest model, DFE-alpha assumes that mutations at synonymous sites are selectively neutral 209 

and that all non-synonymous mutations are deleterious. DFE-alpha first estimates a simple 210 

demographic model using the SFS of neutral mutations to represent the effect of drift. We 211 

modelled the effect of recent demographic change on neutral SFS by assuming one step 212 

population size change and inferred the fitness of new deleterious mutations at the selected sites 213 

from a gamma distribution while simultaneously fitting the estimated parameters for the 214 

demographic model. The estimated fitness effects of new mutations are scaled by effective 215 
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population size 𝑁𝑒  and selection coefficient 𝑠  as 𝑁𝑒𝑠 , and divided into four categories: 216 

effectively neutral (0 < -𝑁𝑒𝑠 ≤ 1), slightly deleterious (1 < -𝑁𝑒𝑠 ≤ 10), moderately deleterious 217 

(10 < -𝑁𝑒𝑠 ≤ 100) and strongly deleterious (-𝑁𝑒𝑠 > 100). The DFE is presented as the proportion 218 

of nonsynonymous mutations that is expected to fall into each of these categories. 219 

We generated a folded SFS for a class of putatively neutral reference sites (4-fold 220 

degenerate sites) and a class of selected sites (0-fold degenerate sites) for each dataset. We 221 

modelled the effects of recent demographic change on the 4-fold sites SFS by assuming a single 222 

population size change event and inferred the fitness of new deleterious mutations at the 0-fold 223 

sites from a gamma distribution. The 95% CIs for all DFE estimates were calculated by 224 

bootstrapping 0-fold and 4-fold sites with replacement for 99 iterations. We performed 225 

bootstraps using 999 and 99 iterations in 9 samples and found no discernible difference in CI 226 

size; all reported CIs are thus based on 99 iterations. 227 

 228 

2.6 Simulations in SLiM 229 

To validate the effects of filtering methods and sample size on DFE estimates, we used SLiM 230 

4.0 to simulate a population with a known DFE, represented by a gamma distribution with shape 231 

(β) and mean (Es) parameter values matching the DFE estimated in A. lyrata. The simulation 232 

consisted of a population of 10,000 outcrossing individuals with a genome size of 5 million 233 

sites on one contiguous chromosome, and a uniform recombination rate of 4 ×∙10-8 (Hämälä & 234 

Tiffin, 2020). New mutations occurred at a mutation rate of 5.6 ×∙10-8 and were drawn from a 235 

deleterious DFE with a gamma distribution with β=0.1 and Es=-100. The population state at 236 

60,000 generations was saved as a .trees file, at which point the effective population size Ne had 237 

stabilized around 100 individuals with around 60,000 segregating deleterious mutations. A 238 

neutral burn-in and segregating neutral mutations were then added with recapitation and 239 

overlaid mutations according to SLiM 4.0 (Haller et al., 2019). After adding neutral mutations, 240 

non-segregating sites (selected or neutral) were added between SNP positions and randomly 241 

assigned as either selected (20%) or neutral (5%) to approximate the 0-fold and 4-fold ratios in 242 

the empirical A. lyrata dataset. A VCF file with 1000 randomly sampled individuals was created 243 

from the dataset and used in subsequent analyses with DFE-alpha.  244 

To get a baseline accuracy for DFE-alpha, 10 replicates of 100 individuals (the 245 

maximum size supported by DFE-alpha) from the simulated dataset were analysed, and the 246 

estimation error compared to the known DFE was in each case assessed as the Earth Mover’s 247 

Distance (see below). To investigate the effects of filtering methods, 15% of the sites in each 248 
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individual in one set of 100 individuals were masked as missing. This dataset was filtered with 249 

a) downsampling at a threshold of 85%, b) imputation at a threshold of 85%, or c) subsampling 250 

at a threshold of 15%. However, the subsampled dataset retained no 4-fold SNPs in the SFS 251 

after filtering, making DFE estimation impossible. We thus instead sampled four replicates of 252 

4, 8, 12, 16, 20, 24 and 50 individuals from the 15% missing dataset, and applied subsampling 253 

at 100% (i.e. all sites with missing data were excluded). The same sets of sample sizes were 254 

then extracted from the downsampled and imputed datasets to compare the accuracy of the 255 

different methods while controlling for the effect of sample size. To directly investigate the 256 

effect of sample size and SNP number, 10 replicates of 4, 8, 12, 16, 20, 24, 50 and 100 257 

individuals were extracted from the datasets with no missing data and analysed with DFE-alpha 258 

(Fig. 4a-d).  259 

With the DFE associated with the simulated datasets being known, the accuracy of  260 

estimated DFE was assessed by comparing them to the known DFE using Earth Mover’s 261 

Distance (EMD) implemented in the transport package in R (Schuhmacher et al., 2019). EMD 262 

quantifies the dissimilarity between two distributions as the “work” required to change one 263 

distribution to the other, thus taking into account the amount of overlap. In contrast to the widely 264 

used Kolmogorov-Smirnov (KS) distance, EMD is not limited by an upper bound, enabling it 265 

to more accurately capture substantial differences between distributions. Additionally, EMD is 266 

better suited for gauging distances between distributions with long tails. The EMD was 267 

evaluated within the range −105 <  𝑠 < −10−3 where s represents the selection coefficient for 268 

each mutation, in increments of 10-3. Higher EMD values signify a poorer fit between the 269 

estimated and true distribution, thus indicating a less accurate result. The EMD values of each 270 

dataset was plotted against the number of individuals and SNPs with a regression line to 271 

illustrate the relationship. 272 

 273 

3 RESULTS 274 

3.1 The effect of missing-data treatments on DFE in A. lyrata  275 

Downsampling. The datasets downsampled to 50%, 66% and 75% of the genotypes per site 276 

retained 105.7M, 99.5M, and 95.0M sites, respectively, for both A. lyrata populations (Table 277 

1). The Austrian datasets contained 15, 19 and 22 “individuals” and 1.39M, 1.46M and 1.47M 278 

SNPs for the three thresholds, while the Norwegian population kept 8, 11, and 12 “individuals” 279 

and 374K, 366K and 341K SNPs, respectively. The DFE in the Norwegian datasets differed 280 

significantly from that of the Austrian population in that neutral mutations were more frequent 281 

(31~33%), while slightly (8~9%) and moderately (10~12%) deleterious mutations were less 282 
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frequent, but the proportion of strongly deleterious mutations was similar (45~51%) (Table 1). 283 

Additionally, the impact of filter thresholds from 50% to 75% on the three deleterious groups 284 

of mutations in the two populations showed inverse patterns, e.g. strongly deleterious mutations 285 

increased with the threshold in the Norwegian population but decreased in the Austrian 286 

population. While the estimated DFE varied between populations by 1~10 percentage points 287 

under the same method and threshold, it also varied by up to 5 percentage points among the 288 

downsampling thresholds within each population. 289 

 290 

Imputation. The imputed datasets retained all individuals (i.e. 29 Austrian and 16 Norwegian 291 

individuals), and 103.4M, 97.9M and 86.3M sites at the 70%, 80% and 90% thresholds, 292 

respectively. In the Austrian population, 1.69M, 1.63M and 1.44M SNPs were included, while 293 

399K, 365K and 341K SNPs in the Norwegian population, at the three thresholds, respectively. 294 

Increasing the threshold from 70% to 90% only caused 2~4 percentage points of variation in 295 

each category of mutations (Table 1). Across both populations, the DFE were stable among 296 

imputation thresholds, with the Austrian population displaying slightly larger variance. 297 

 298 

Subsampling. In the subsampling trial, we applied four different thresholds, allowing a 299 

maximum of 10%, 15%, 20% and 25% missing genotypes per individual. In the Austrian 300 

population, a strict threshold of 10% missing data left 8 individuals, 97.4M sites and 844K 301 

SNPs in the dataset, while a relaxed 25% threshold preserved all 29 individuals with 55.0M 302 

sites and 609K SNPs (Note: increasing the missing rate from 20% to 25% only added one more 303 

individual) (Table 1). Increasing the missing threshold from 10% to 25% decreased the 304 

estimated neutral mutations from 23% to 20%, and the strongly deleterious mutations from 49% 305 

to 32%, while the slightly and moderately deleterious mutations increased from 11% to 17% 306 

and from 17% to 30%, respectively. Overall, change the threshold from 10% to 15% induced 307 

the largest difference in the DFE of all stepwise increases (3–8 percentage points of difference 308 

in all categories).  309 

In the Norwegian population, the dataset filtered with a missing rate of 10% included 310 

only 2 individuals with 109.4M sites and 249K SNPs. At this level, the DFE was estimated to 311 

7% neutral, 86% slightly deleterious, 6% moderately deleterious and no strongly deleterious 312 

mutations. Increasing the threshold to 15% increased the number of individuals to 15, retaining 313 

80.0M sites and 172K SNPs, and shifted the DFE to 28% neutral, 8% slightly deleterious, 10% 314 

moderately deleterious and 53% strongly deleterious mutation. Further relaxing the missing 315 

rate to 20% and 25% included one more individual (16 total) and had little effect on the DFE 316 
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compared to the dataset filtered at 15% (Table 1). Overall, the Austrian population displayed 317 

up to 17 percentage points of difference between thresholds, while the Norwegian population 318 

displayed up to 79 percentage points of difference when including the dataset filtered at 10% 319 

missing data. 320 

 321 

3.2 The effect of sample size and sites on DFE 322 

We subsampled the Austrian population of A. lyrata into 4, 8, 12, 16, 20 and 24 individual sets, 323 

each containing 211K, 320K, 357K, 426K, 512K and 557K SNPs, respectively, from the 324 

complete dataset of 29 individuals containing 609K SNPs (Fig 3b). We found that decreasing 325 

the sample size from 29 to 4 substantially increased the proportion of strongly deleterious 326 

mutations from 32% to 45%, while it decreased the proportion of slightly deleterious mutations 327 

from 17% to 13% and moderately deleterious mutations from 30% to 20%. Neutral mutations 328 

changed only slightly (from 20% to 22%) (Fig. 3a). The partition of DFE remained stable with 329 

sample sizes of 8 and upward (≤1 percentage points fluctuation). The 95% CIs remained similar 330 

and narrow (0.5~4%) in all samples.  331 

In the second trial, we randomly sampled 1K, 10K, 100K, 1M and 10M sites in the 29 332 

individuals (with 55.0M sites, 609K SNPs), resulting in 10, 109, 1115, 11.1K, and 111K SNPs, 333 

in each dataset, respectively. We found that the DFE estimates became increasingly unstable 334 

with decreasing the number of sites: the datasets with fewer than 1M sites (11.1K SNPs) showed 335 

a large variation in DFE values (8–50 percentage points; Fig. 3b). Notably, a decrease in the 336 

number of sites brought a simultaneous increase of the width of the 95% CIs, in a manner not 337 

seen when decreasing the numbers of individuals (Fig. 3a vs. 3b). At 1K sites (10 SNPs), the 338 

95% CIs for the three deleterious categories covered 98~100% of the entire range of possible 339 

values, indicating low confidence in where the true values lie. At 10K sites (109 SNPs) the CIs 340 

shrunk but were still large, covering between 34~71% of the possible values. On average, each 341 

tenfold decrease in the number of sites increased the size of the bootstrapped 95% CIs 2.5 times.  342 

In the third trial, we examined the effect of sites in a small sample of 4 individuals. 343 

The sites chosen were the same as those in the second trial, although the set of 1K sites included 344 

too few SNPs to be evaluated and was not shown in Fig. 3c. The datasets with 10K, 100K, 1M, 345 

10M and all 55.0M sites had 43, 391, 3821, 38.6K and 211K SNPs, respectively. At 10K sites, 346 

the DFE in the 4-individual set was drastically different from the 29 individuals. Furthermore, 347 

the 95% CIs of neutral, and slightly and moderately deleterious mutations increased by 18~81% 348 

in the 4-individual relative to the 29-individual dataset. The CIs for strongly deleterious 349 

mutations shrank somewhat in the 4-individual dataset but was still large and spanned 66% of 350 
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the range of possible values. The DFE estimates at 100K sites and above in 4-individual datasets 351 

were very similar (≤1 percentage points of difference) to the second trial using 29 individuals 352 

(Fig. 3c vs. 3b), but the 95% CIs approximately doubled for the three classes of deleterious 353 

mutations.  354 

 355 

3.3 Accuracy of DFE-alpha in SLiM simulated data 356 

To determine which missing-data treatment and sample sizes produced the least error and thus 357 

approximated the true DFE most accurately, we conducted SLiM simulations with a known 358 

DFE. The simulation produced a dataset with 1000 individuals and 29,944 SNPs. Using 10 359 

replicate samples of 100 individuals, each containing ~15,500 SNPs, the DFE was estimated to 360 

between 29~31% neutral, 8-10% slightly deleterious, 10~13% moderately deleterious and 361 

48~52% strongly deleterious mutations; the true DFE should be approximately 30% neutral, 362 

9% slightly deleterious, 11% moderately deleterious and 50% strongly deleterious mutations, 363 

meaning an error of ±1~2% can be expected with this dataset in optimal conditions. The β and 364 

Es parameters of the gamma distributions ranged between 0.097 ~ 0.128 and -276 ~ -33, 365 

respectively, yielding error values (EMD x∙107) between 3.5 ~ 20.5 (Fig. 4e). These values are 366 

used as reference for the “maximum” accuracy of DFE-alpha for the simulated dataset. 367 

To evaluate the effect of filtering methods, we used four replicates of 4, 8, 12, 16, 20, 368 

24 and 50 individuals and excluded all missing sites in each sample, which mimics the effect 369 

of subsampling at different thresholds. In order to compare these results to downsampling and 370 

imputation, the same sample sizes were extracted from the downsampled and imputed datasets 371 

created at 85% threshold from the full dataset. At a sample size of 4 individuals, all three 372 

methods performed roughly equally well (average EMD was 33.7, 36.4 and 36.5 for 373 

downsampling, imputation and subsampling, respectively. Fig. 4b-d,e, Table S2), but 374 

subsampling tended to slightly underestimate the proportion of slightly and moderately 375 

deleterious mutations (by up to 5% and 7%, respectively), and overestimate strongly deleterious 376 

mutations (by up to 11%). Downsampling gave the most accurate results based on the average 377 

EMD across all sample sizes above 8 individuals (Fig. 4b,e). Imputation performed slightly 378 

worse in all samples except 8 individuals (Fig. 4c,e). Both downsampling and imputation 379 

produced results within 1~3% of the range of the reference set at all sample sizes above 4 380 

individuals. Subsampling, however, produced highly variable and noticeably less accurate 381 

results even at higher sample sizes (Fig. 4d,e). For example, the 4 replicates of 24 individuals 382 

produced EMD values between 3.7 ~ 18.8 for downsampling, 12.3 ~ 47.4 for imputation and 383 

31.2 ~ 112.8 for subsampling (Table S2). We found that subsampling produced the most 384 
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accurate results at an intermediate sample size (e.g. 16 individuals; EMD from 1.7 to 56.1) and 385 

became less accurate at sample sizes where fewer SNPs were retained (e.g. 50 individuals with 386 

5 SNPs remaining; Fig. 4b, Table S2). 387 

Our simulated data verified the trends observed in the empirical data, showing that 388 

increased sample size correlated with lower error in DFE estimates when the number of SNPs 389 

is not a limiting factor. In the datasets of 4, 8, 12, 16, 20, 24 and 50 individuals (10 replicates 390 

of each) with no missing genotypes, the EMD values were the largest in samples of 4 and 8 391 

individuals, stabilized around 12 ~ 24 individuals, and then decreased further in 50 individuals 392 

to a level similar to that in the 100 individuals (Fig. 4e). Linear regression in these datasets 393 

showed that DFE estimation error (EMD) was negatively correlated with number of individuals 394 

(p = 0.00179, R2 = 0.1182), and even more strongly correlated with the number of SNPs in the 395 

dataset (p = 6.38∙10-6, R2 = 0.2311) (Fig 4f). An even stronger negative correlation between 396 

EMD and SNP number was seen when the four replicates of 4 ~ 50 individuals from the 397 

downsampled, imputed and subsampled datasets were analysed with a joint linear regression (p 398 

= 1.11∙10-9, R2 = 0.3658) (Fig 4b). Datasets with few SNPs also displayed larger 95% CIs while 399 

the number of individuals had a minor effect on CI size (Fig. 4a-d, Table S2), similar to what 400 

was observed in the empirical datasets. 401 

In summary, applying different filtering methods and thresholds affected the final data 402 

matrix size (number of individuals and SNPs) and subsequent DFE estimates. Imputation and 403 

downsampling produced similar and less variable DFE results than subsampling, and 404 

downsampling appeared more accurate than imputation for the simulated samples used. Further, 405 

higher numbers of individuals and SNPs both increased accuracy of the results, especially at 406 

very low sample sizes (4 ~ 8 individuals, <5000 SNPs). 407 

 408 

3.4 The effect of population structure on DFE 409 

The PCA of the 45 samples from Austria and Norway showed a distinct separation of the two 410 

populations along PC1 (which explained 24.7% of the total genetic variance), and separation 411 

of the Austrian population into four visible clusters along PC2 (which explained 7.3% of the 412 

total genetic variance) (Fig. S1). The weighted FST between the two populations was 0.228, 413 

while the FST among the four Austrian clusters was relatively small as 0.073. To understand the 414 

effect of merging genetically distinct populations on the estimated DFE, we created 12 merged 415 

populations with contributions of 10 or 15 individuals from Austria and Norway, with three 416 

subsets of each population (Fig. 1c). We then calculated the FST between the contributing 417 

subsets to evaluate how the degree of population stratification in a sample affects the joint DFE 418 
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estimate. We first examined the DFE in the unmerged replicate samples of 10 and 15 individuals 419 

from the two populations. Among the replicates of 10 individuals from the Austrian population, 420 

a maximum difference of 2, 3, 7 and 6 percentage points were observed in the neutral, slightly, 421 

moderately and strongly deleterious mutations. By comparison, no mutation category varied by 422 

more than 2 percentage points in the samples of 15 individuals. Comparably stable DFE 423 

estimates were observed in the Norwegian samples, with variation in the range of 0, 2, 3 and 4 424 

percentage points for the four categories of mutations in samples of 10 individuals, and less 425 

than 1 percentage point of a difference among replicates of 15 individuals (Fig. 4a). However, 426 

the DFE estimates were markedly different between the two geographical populations, e.g. 427 

neutral mutations shifted up by an average of 9 percentage points while the slight and moderate 428 

mutations shifted downwards in Norway compared to Austria. The estimated proportions of 429 

strongly deleterious mutations were similar in the two populations.  430 

With this population-specific DFE in mind, we then examined the differences between 431 

the merged samples and their respective contributing single population subsets. In most cases, 432 

the estimated DFE values for the merged samples were in-between the DFE estimates of the 433 

contributing subsets, but not always perfectly intermediate (Fig. 5a). The estimated weighted 434 

FST values between the pairs of contributing subsets ranged from 0.218 to 0.263 (mean FST 435 

between 0.085 and 0.131).  These estimates are largely in line with previous studies, where 436 

mean FST across European populations of A. lyrata ranges between 0.06-0.09 (Marburger et al., 437 

2019). Plotting the weighted FST against the estimated DFE in the merged populations showed 438 

an apparent relationship (Fig. 5b). Using linear regression, FST was correlated with the 439 

proportion of slightly (R = -0.61, p = 0.037), moderately (R = -0.60, p = 0.038) and strongly 440 

deleterious mutations (R = 0.66, p = 0.02), but not with that of neutral mutations (p = 0.17). 441 

These results show that population structure had a significant effect on the deleterious portion 442 

of the DFE, with higher FST potentially driving up the estimated proportion of strongly 443 

deleterious mutations and reducing the estimates of the less deleterious classes. 444 

 445 

4 DISCUSSION 446 

4.1 Methods of missing-data treatment affect DFE results 447 

Missing-data treatment is the first step in any genomics analyses. Using simulated data with 448 

known DFE we were able to evaluate the accuracy of different filtering methods in recovering 449 

the true DFE. We found the dataset with no missing data produced the most accurate result, 450 

followed by downsampling, then imputation, and then subsampling. The number of SNPs in 451 

the downsampled and imputed datasets were similar in all samples, suggesting that any 452 
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difference in performance between the two methods is likely due to imputation affecting the 453 

shape of the SFS in a non-random manner. The assumption that deleterious mutations appear 454 

as low-frequency alleles in the SFS, in combination with the relatively small sample sizes used 455 

in the tests, makes an SFS-based analysis highly reliant on those low-frequency categories, 456 

especially singleton SNPs. Low frequency alleles thus display much higher error rates than 457 

higher-frequency alleles in imputation procedures (Pook et al., 2020).  458 

Filtering with subsampling produced the least accurate estimates on average. Since 459 

increasing the number of individuals in the subsampled dataset decreases the number of sites, 460 

this filtering method's performance is thus affected by sample size in two ways, both the number 461 

of individuals and the number of SNPs available. This effect is expected to be especially strong 462 

in datasets where the distribution of missing data is random (as was the case in our simulated 463 

datasets), where a highly dissimilar pattern of missing data across individuals excludes a large 464 

number of sites by subsampling. This pattern was not as strong in the empirical datasets where 465 

the missing data across individuals was more similar. Thus intermediate sample sizes of 466 

individuals are preferable for this method. 467 

The array of tested filtering thresholds on the empirical datasets corroborated the trend 468 

and conclusions drawn from the simulated datasets. The empirical datasets proved to be more 469 

sensitive to minor changes in filtering thresholds as even slight adjustments resulted in 470 

significantly different outcomes in some cases. The DFE estimates in the subsampled datasets 471 

were unpredictable, both within and among populations. This is most likely a result of 472 

substantial downsizing of the data matrix, since the total number of sites and SNPs were reduced 473 

by 50–90% in the subsampled datasets compared to the other two methods. Downsampling and 474 

imputation produced results with similar levels of variation across the different thresholds. With 475 

the simulation results in mind, it could be argued that both methods are be equally valid in this 476 

case, and the choice between them might depend on other conditions and computational 477 

resources. As a general rule, we recommend filtering data with several thresholds to obtain an 478 

overview of the variability produced by each method. This is especially important because the 479 

95% CIs do not provide information about whether the filtered and subsampled dataset is 480 

representative of the initial population and, as we show in this study, the differences among 481 

subsets of samples from the same population can be significant 482 

A cursory review of recently published DFE estimation studies shows that 483 

downsampling is the most frequently used of the three methods tested here (see Castellano et 484 

al., 2019; Chen et al., 2020; Gossmann et al., 2010; Liang et al., 2022; Takou et al., 2021). This 485 

is not surprising, since downsampling is considerably faster than imputation, yet retains more 486 
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data than subsampling. Imputation methods require high quality datasets from the outset to be 487 

able to make reliable predictions; datasets with high rates of missing sites and low levels of 488 

genome-wide linkage disequilibrium are not ideal for this treatment. With low levels of 489 

genome-wide linkage disequilibrium, the presence/absence of any given SNP is mostly 490 

uncorrelated with the presence/absence of any other SNP, meaning that there are no patterns of 491 

linkage disequilibrium among sites from which imputation can accurately predict the state of a 492 

missing site. In such cases, downsampling might be a better choice. With the current rate of 493 

improvement in both genome-wide sequence data and computing power, however, we predict 494 

an increasing popularity of imputation as a data processing method in DFE estimation and other 495 

population genomics analyses. We recommend prefacing any missing-data treatment with an 496 

analysis of the prevalence of missing sites and the level of linkage disequilibrium to determine 497 

whether imputation is the appropriate method for each dataset. 498 

 499 

4.2 Very small sample sizes skew the estimated DFE 500 

A review on DFE estimated in 139 plant and animal species (Chen et al., 2017), each with 501 

between 2–50 chromosomes sampled, shows very different DFE distributions. We evaluated 502 

the effects of the number of sampled individuals on the estimated DFE when the number of 503 

sites was not a limiting factor. We found that DFE estimated from few individuals (<8) were 504 

strongly skewed compared to larger sample sizes. In simulated datasets with no missing data, 505 

the accuracy of the estimated DFE was highest in the largest sample (100 individuals) and 506 

lowest in the smallest samples (4 and 8 individuals), and the samples with >8 individuals 507 

markedly improved DFE estimates. Similarly, DFE estimates based on 4 individuals produced 508 

the least accurate results using both downsampling and imputation for missing-data treatment.  509 

In the empirical trials, DFE estimates between random sets of 4 individuals were rather 510 

unstable in the Austrian population. In the Norwegian dataset subsampled at 10% that kept only 511 

2 diploid individuals, the proportion of slightly deleterious mutations was greatly overestimated 512 

compared to that of the full population size. Results stabilized with a sample size of 8 or more, 513 

which is consistent with the findings from the simulated datasets. This suggests that a relatively 514 

small number of individuals is needed for reliable DFE estimates when there are many sites 515 

available, but that very limited sample sizes increases the risk of producing non-representative 516 

results. We thus deem the potential effects of low sample size to be alarming due to their 517 

unpredictable and stochastic nature, and caution against using sample sizes below 4 diploid 518 

individuals (8 haploids). 519 

 520 
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4.3 Limited sites cause high variability in DFE results 521 

Reducing the number of sites resulted in highly variable and unpredictable DFE estimates even 522 

with larger sample sizes. Overall, the negative correlation was observed between the number 523 

of SNPs and EMD values in the simulated datasets indicates that the accuracy of SFS-based 524 

DFE estimation is limited by the number of SNPs available. This trend was also observed in 525 

the empirical data, where estimates based on 1M, 10M and 55M sites in 29 individuals all 526 

looked similar, but using 1K ~ 10K sites (59 ~ 571 SNPs) produced highly dissimilar results, 527 

demonstrating the importance of having a sufficient number of sites and SNPs for reliable SFS-528 

based analyses. The DFE is estimated from SFS, i.e. the distribution of SNPs of different 529 

frequencies in the population. Thus, the number and specific subset of SNPs directly affect the 530 

resolution to which we can estimate the shape of the DFE. This would explain why the 95% 531 

CIs increased in size as the number of sites decreased. At 1K ~ 10K sites, the confidence 532 

intervals spanned the entire range of possible values for several of the mutational categories 533 

(Fig. 3b). For these datasets, we are therefore left with no confidence that our predicted DFE is 534 

close to the true DFE. If the CIs are ignored, the very different DFE estimates from subsets of 535 

the same dataset could lead to different interpretations of the selection pressures acting on the 536 

population. This result illustrates a clear type 1 error; the estimated DFE from our samples of 537 

1K, 10K and 100K sites are not representative of the full sites and produce incorrect inferences 538 

that imply differences in the underlying DFE, despite being random subsets of the same dataset.  539 

Based on both the empirical and simulated trials, we conclude that DFE estimates of 540 

DFE become stochastic and unpredictable with very small number of sites/SNPs, and accuracy 541 

is expected to increase significantly with the number of SNPs included; at least 5K SNPs are 542 

required to obtain reliable DFE estimates using DFE-alpha. 543 

 544 

4.4 Population structure may skew DFE estimates 545 

By combining samples from the Austrian and Norwegian populations into merged populations, 546 

we were able to see how the composition of populations affects DFE estimates. One trend was 547 

immediately clear: the estimated proportion of strongly deleterious mutations was higher in the 548 

merged populations than in the contributing single population subsets. A high FST may skew 549 

the DFE towards higher estimated proportions of strongly deleterious mutations and lower 550 

proportions of slightly and moderately deleterious mutations. This correlation may not be 551 

conclusive, but it indicates that population structure can indeed affect DFE and should be taken 552 

into consideration when performing these analyses at a species level. Studies on DFE often 553 

include multiple or combined populations to gain a global estimate that characterizes the 554 
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organism or species (Chen et al., 2017; Hämälä & Tiffin, 2020; Slotte et al., 2010; Zhao et al., 555 

2020). We cannot presently state that pooled samples will always skew the DFE distribution, 556 

but it is advisable to estimate the DFE separately in individual populations, as well as from 557 

pooled samples to evaluate any deviations caused by pooling that might inform conclusions 558 

drawn from the results. A recent study developed a joint DFE approach that enables the analysis 559 

of pairs of populations (Huang et al., 2021), which could be practical in examining variance of 560 

DFE among populations.  561 

 562 

5 CONCLUSION 563 

Accurate estimation of DFE from genomic data hinges on several factors, including the number 564 

of sampled individuals, the availability of sites and SNPs, and the approach employed to address 565 

missing data. Our study, which utilized both empirical data and forward simulations, explored 566 

all these aspects and offers guidance for experimental design of DFE estimation studies. We 567 

found that downsampling is a dependable method of handling missing data, though it may still 568 

impact the DFE to some extent. Imputation, while generally accurate, may be less suitable for 569 

small samples (≤100 individuals, <10K SNPs) or when genome-wide linkage disequilibrium is 570 

very low (as is often the case with highly outbreeding species). We demonstrated that DFE 571 

estimates derived from datasets with less than four diploid individuals or less than 5K SNPs 572 

may be unreliable due to the risk of sampling error and the limited information in the SFS. 573 

Furthermore, strong population structure within samples can potentially skew DFE estimates.  574 

More advanced methods of DFE estimation employ an unfolded SFS, where each SNP 575 

is categorized as ancestral or derived based on an outgroup reference genome. While model 576 

species can benefit from these sophisticated techniques, most studies must still rely on methods 577 

utilizing the folded SFS, and frequently deal with limited sample sizes. Given the extensive 578 

body of previously published work employing folded SFS, it is imperative to be able to 579 

understand the expected accuracy of DFE estimates in comparative analyses. This study 580 

highlights the factors that should be considered when interpretating DFE estimates, thereby 581 

enhancing the reliability and relevance of future research.  582 
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Figure legends 721 

Figure 1: Experimental design 722 

We performed three sets of tests to understand their potential influence on the estimated DFE: 723 

a) three procedures of missing-data treatment, b) the number of individuals and sites used, and 724 

c) population structure. Each box represents a derived dataset, with the number of individuals 725 

shown on top and nucleotide sites below. The study involved two populations of Arabidopsis 726 

lyrata from Austria and Norway. We created merged populations with subsets of individuals 727 

from Austria and Norway as specified on the left of each merged boxes (c, greyed out). The 728 

estimated DFE of the merged population are compared to that of the contributing populations.  729 

 730 

Figure 2: Methods of missing-data treatments for SFS based analyses 731 

Illustration of the different steps involved in the three missing-data filtering methods examined 732 

in this study. Each box corresponds to an individual’s genotype at a site, and missing boxes 733 

represent missing data for a genotype. In downsampling, step 1 excludes sites at which data is 734 

missing in more than a prescribed threshold of individuals (e.g. 25%), while step 2 samples 735 

genotypes without replacement from the remaining data at each site. In imputation, as in 736 

downsampling, step 1 excludes sites with missing rate more than a prescribed fraction, while 737 

step 2 imputes (fills in) missing data. In subsampling, step 1 excludes individuals with missing 738 

data in more than a prescribed fraction of sites, while step 2 excludes all sites with missing data.  739 

 740 

Figure 3: Effects of number of individuals and sites on DFE 741 

DFE estimated from Arabidopsis lyrata, a) random samples of 4, 8, 12, 16, 20 and 24 of the 29 742 

individuals of the Austrian population with 55M sites; b) all 29 individuals, c) a random sample 743 

of 4 individuals with 1K, 10K, 100K, 1M, 10M and 55M sites. The complete DFE is represented 744 

as percentage contribution of each of four categories of mutations: neutral (blue), slightly 745 

deleterious (yellow), moderately deleterious (orange) and strongly deleterious (red). The DFE 746 

for each sample size is represented in two ways: on the left as stacked estimated percentages of 747 

the four categories of mutations, and on the right as the estimated percentage of each category 748 

of mutations (black bars and light areas) together with the 95% CIs (darker coloured areas). 749 

 750 

Figure 4: The accuracy of DFE estimations by manipulating SLiM simulated dataset 751 

DFE estimates and 95% CIs for 4, 8, 12, 16, 20, 24 50, and a maximum of either 85 (in 752 

downsampling) or 100 (in the other cases) individuals, with either a) no missing data, or 15% 753 

missing data per individual and filtered with either b) downsampling, c) imputation or d) 754 
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subsampling. e) DFE estimation error, as represented by Earth Mover’s Distance (EMD), in 755 

different sample sizes without missing data (black, 10 replicates (n) per sample size), or with 756 

15% missing data and filtered with either downsampling (green), imputation (red) or 757 

subsampling (yellow), in four replicates each. f) DFE estimation error in samples plotted against 758 

SNP number, in datasets without missing data (black) as well as with missing-data filtered by 759 

downsampling (green), imputation (red) or subsampling (yellow). Linear regression lines for 760 

the no missing data (black) and for all of the filtered datasets combined (brown) are displayed 761 

to show the trend of EMD over SNP number in the two groups. Datasets without missing data 762 

include 10 replicates of 4 ~ 100 individuals, while four replicates of 4 ~ 50 individuals are 763 

included for the missing-data filtered datasets.  764 

 765 

Figure 5: Effect of population structure on DFE 766 

a) The estimated DFE of the Austrian (dark dots) and Norwegian (light dots) samples of 767 

Arabidopsis lyrata, compared to merged samples (solid lines) containing both groups in 768 

different combinations. The relative sample size from each population is listed along the 769 

horizontal axis (bottom), as well the name of each of three replicates (top). b) Linear regression 770 

of the estimated proportion of each of the four mutational categories of the DFE over the FST 771 

between the merged samples, with 95% confidence intervals shown in shaded areas.  772 

 773 

 774 

SUPPORTING INFORMATION 775 

Table S1. Sequence information of the Arabidopsis lyrata samples included in this study. 776 

Table S2. Accuracy of DFE estimations for different missing-data treatments and sample sizes 777 

from the SLiM simulated dataset. 778 

Figure S1. Principal component analysis in the 45 individuals of Arabidopsis lyrata sampled 779 

from Austria and Norway, based on 3,921,575 SNPs. 780 
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Table 1. The estimated DFE using downsampling, imputation and subsampling procedures in Austrian and Norwegian populations of A. lyrata.  

For downsampling, thresholds show the percentage of data retained at each locus. Imputation thresholds signify the data quality (inverse of the 

max missing rate) of the individuals included in the dataset prior to imputation. Subsampling thresholds signify the max missing rates per individual. 

 
Filtering  

method 
Individuals Total sites 0-fold sites 4-fold sites SNPs in SFS 

DFE  [95% CI]: % of mutations with -Nes values of: 

[0, 1] (1, 10] (10, 100] > 100 
A

u
st

r
ia

 

D
o

w
n

sa
m

p
li

n
g
 

50% 15 105,746,755 20,081,506 4,532,827 1,389,235 24.63 [24.53–24.73] 10.59 [10.47–10.72] 15.11 [14.87–15.34] 49.68 [49.37–49.96] 

66% 19 99,518,927 19,796,632 4,465,916 1,455,146 23.26 [23.15–23.35] 11.73 [11.61–11.80] 17.53 [17.30–17.70] 47.48 [47.26–47.80] 

75% 22 95,023,967 19,576,647 4,410,244 1,472,536 21.76 [21.69–22.95] 12.91 [11.45–13.00] 20.30 [17.07–20.48] 45.03 [44.75–48.57] 

Im
p

u
ta

ti
o

n
 70% 29 103,436,893 19,988,452 4,509,075 1,686,431 23.08 [22.97–24.04] 12.39 [11.26–12.51] 18.87 [16.47–19.12] 45.66 [45.35–48.25] 

80% 29 97,909,623 19,724,874 4,444,971 1,625,688 22.67 [22.57–22.77] 12.12 [11.99–12.22] 18.44 [18.17–18.65] 46.77 [46.50–47.12] 

90% 29 86,272,541 19,088,682 4,267,939 1,437,770 20.21 [20.09–20.33] 13.56 [13.46–13.68] 22.24 [21.99–22.52] 43.99 [43.69–44.27] 

S
u

b
sa

m
p

li
n

g
 10% 8 97,383,774 19,593,039 4,364,309 843,938 22.96 [22.80–23.28] 11.21 [10.60–11.43] 16.61 [15.39–17.05] 49.22 [48.61–50.79] 

15% 21 76,996,896 18,026,562 3,900,662 874,047 19.78 [19.60–19.90] 14.68 [14.50–14.87] 24.81 [24.40–25.28] 40.74 [40.16–41.24] 

20% 28 59,099,749 14,532,777 3,066,767 662,641 20.11 [19.41–20.29] 16.87 [16.62–17.62] 29.21 [28.62–31.15] 33.81 [31.81–34.50] 

25% 29 54,974,337 13,445,210 2,824,524 609,256 20.31 [20.10–20.56] 17.29 [16.96–17.56] 29.93 [29.16–30.56] 32.47 [31.72–33.38] 

N
o

r
w

a
y
 

D
o

w
n

sa
m

p
li

n
g
 

50% 8 105,746,755 20,081,506 4,532,827 374,403 33.13 [32.78–33.45] 9.40 [7.96–10.17] 12.06 [9.86–13.30] 45.41 [43.60–48.80] 

66% 11 99,518,927 19,796,632 4,465,916 366,254 32.05 [31.58–32.32] 7.91 [7.42–9.95] 9.86 [9.13–13.07] 50.17 [45.39–51.36] 

75% 12 95,023,967 19,576,647 4,410,244 341,308 30.91 [30.70–31.15] 8.11 [7.72–8.67] 10.24 [9.64–11.10] 50.74 [49.38–51.59] 

Im
p

u
ta

ti
o

n
 70% 16 103,436,893 19,988,452 4,509,075 399,078 32.83 [32.58–33.04] 6.51 [6.20–6.96] 7.80 [7.37–8.44] 52.86 [51.89–53.62] 

80% 16 97,909,623 19,724,874 4,444,971 365,494 31.62 [31.33–31.89] 6.64 [6.26–7.20] 8.04 [7.49–8.85] 53.71 [52.54–54.49] 

90% 16 86,272,541 19,088,682 4,267,939 268,958 29.30 [29.04–29.68] 8.06 [7.09–8.41] 10.27 [8.79–10.83] 52.38 [51.49–54.50] 

S
u

b
sa

m
p

li
n

g
 10% 2 109,442,991 20,192,673 4,555,968 248,706 7.26 [7.00–7.48] 86.62 [86.37–86.99] 6.12 [5.89–6.30] 0.00 [0.00–0.00] 

15% 15 79,983,985 18,525,720 4,136,084 179,342 28.20 [27.89–28.57] 7.97 [7.46–8.23] 10.22 [9.42–10.64] 53.60 [53.01–54.72] 

20% 16 77,586,760 18,343,099 4,091,607 171,711 28.36 [27.78–28.69] 7.55 [7.02–8.83] 9.56 [8.76–11.61] 54.53 [51.62–55.79] 

25% 16 77,586,760 18,343,099 4,091,607 171,711 28.36 [27.78–28.69] 7.55 [7.02–8.83] 9.56 [8.76–11.61] 54.53 [51.62–55.79] 
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Table S1. Sequence information of the Arabidopsis lyrata samples included in this study. 

Source codes are NCBI accession IDs. 

 

Population Source Coverage (Mb, >=5x) Mean depth (>=5x) Median depth (>=5x) No. reads 

Norway ERR3397904 147.26 25.71 16 63201441 

Norway ERR3397905 144.61 21.83 14 52859026 

Norway ERR3397906 143.18 22.77 13 54633798 

Norway ERR3397907 143.9 22.27 14 53839619 

Norway ERR3397908 146.44 23.74 15 59507152 

Norway ERR3397909 146.45 23.69 15 59465532 

Norway ERR3397910 145.45 24.72 14 62069317 

Norway ERR3397911 148 26.05 15 66516823 

Norway ERR3397912 145.1 23.77 14 59254019 

Norway ERR3397913 143.16 21.8 13 53951341 

Norway SRR5124977 151.64 70 38 127927590 

Norway SRR5124983 144.92 33.26 22 59142085 

Norway SRR5124985 135.63 22.97 13 34814708 

Norway SRR5124997 153.66 55.35 35 102114289 

Norway SRR5124998 149.93 49.79 30 88534336 

Norway SRR5124999 139.45 27.54 16 42830997 

Austria ERR3514864 130.18 17.02 11 20727733 

Austria ERR3514865 141.4 23.75 15 31042548 

Austria ERR3514866 140.31 21.29 15 27625035 

Austria ERR3514869 156.87 49.12 37 72515100 

Austria ERR3514870 145.82 25.47 18 34493579 

Austria ERR3514871 147.85 26.79 19 36994924 

Austria ERR3514872 130.12 17.95 11 22086024 

Austria ERR3514873 136.53 19.89 13 25584056 

Austria ERR3514874 141.42 26.26 16 34646984 

Austria ERR3514875 128.41 16.94 10 20457660 

Austria ERR3514876 148.58 29.17 22 39961518 

Austria ERR3514877 130.4 16.15 11 19708718 

Austria ERR3514878 155.98 42.5 33 62109925 

Austria ERR3514879 141.14 21.85 14 29584688 

Austria ERR3514880 153.3 38.58 27 54727972 

Austria ERR3514883 130 19.1 11 23003063 

Austria ERR3514884 130.2 17.75 11 21314626 

Austria ERR3514885 141.2 27.63 16 37910237 

Austria ERR3514886 124.05 15.02 10 17565928 

Austria ERR3514887 144.2 26.05 17 35825064 

Austria ERR3514888 142.67 26.2 17 34966847 

Austria ERR3514889 141.14 24.65 16 32554512 

Austria ERR3514892 138.26 19.26 14 24924196 

Austria ERR3514893 142.71 23.43 16 30871081 

Austria ERR3514895 148.06 30.95 20 42713949 

Austria ERR3514896 149.81 31.97 23 44511357 

Austria ERR3514897 135.69 22.12 13 27521061 

Austria ERR3514898 145.12 32.64 21 44216326 

Austria ERR3514899 144.58 29.89 19 39745319 
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Table S2: Number of sites and SNPs in different simulated datasets, together with their respective estimated mean (Es) and shape (β) parameters of the 

DFE. Earth Mover’s Distance (EMD) signifies the accuracy of each estimated gamma distribution of DFE to the known DFE used in the simulation 

(shape β: 0.1, mean Es: -100). Lower EMD values indicate a closer fit to the known DFE.  

 

Filtering method Individuals Sites in VCF after filtering 
Sites in SFS SNPs in SFS β Es EMD (10-7) 

(min – max) (min – max) (Median  [min – max]) (Median  [min – max]) (Median Mean  [min – max]) 

N
o

 m
is

si
n

g
 d

a
ta

 

(i
n

 1
0

 r
e
p

li
c
a

te
s)

 

4 50,000,000 

12,162,648  – 12,162,869 

5,156 – 5,448 0.0902 [0.0500 – 0.1675] -682 [-6.36×106 – -4] 49.7 38.5 [6.7 – 56.5] 

8 50,000,000 6,840 – 7,205 0.1064 [0.0500 – 0.1318] -127 [-5.19×106 – -21] 13.9 20.8 [5.8 – 56.5] 

12 50,000,000 8,002 – 8,342 0.1077 [0.0865 – 0.1326] -103 [-1,044 – -18] 7.9 13.3 [2.5 – 30.5] 

16 50,000,000 8,832 – 9,182 0.1043 [0.0900 – 0.1308] -148 [-714 – -22] 12.9 13.3 [3.2 – 26.5] 

20 50,000,000 9,420 – 9,859 0.1044 [0.0843 – 0.1220] -134 [-1,293 – -37] 12.3 13.0 [3.7 – 32.5] 

24 50,000,000 10,019 – 10,336 0.1051 [0.0792 – 0.1291] -126 [-2,773 – -24] 9.8 13.2 [2.6 – 40.5] 

50 50,000,000 12,617 – 12,818 0.1096 [0.0874 – 0.1235] -94 [-821 – -36] 5.3 8.9 [3.4 – 27.5] 

100 50,000,000 15,357 – 15,702 0.1138 [0.0972 – 0.1280] -79 [-276 – -33] 7.5 8.9 [3.5 – 21.5] 

D
o

w
n

sa
m

p
li

n
g

  

(i
n

 4
 r

e
p

li
c
a

te
s)

 

4 28,420,524 

6,911,406  

2,959 – 3,099 0.1253 [0.0500 – 0.1411] -39 [-1.23×107 – -11] 34.5 33,7 [9.4 – 57.5] 

8 28,420,524 4,010 – 4,075 0.0724 [0.0500 – 0.1001] -8,392 [-3.15×106 – -147] 45.9 38,0 [4.8 – 55.5] 

12 28,420,524 4,621 – 4,694 0.0999 [0.0919 – 0.1162] -198 [-420 – -52] 13.0 11,7 [2.2 – 19.5] 

16 28,420,524 5,085 – 5,122 0.0945 [0.0777 – 0.1082] -336 [-3,711 – -80] 14.4 19,0 [4.9 – 42.5] 

20 28,420,524 5,446 – 5,539 0.0907 [0.0727 – 0.1096] -456 [-6,829 – -78] 19.9 22,9 [5.5 – 46.5] 

24 28,420,524 5,795 – 5,827 0.0981 [0.0913 – 0.1030] -229 [-417 – -136] 9.8 10,5 [3.7 – 19.5] 

50 28,420,524 7,165 – 7,216 0.0992 [0.0929 – 0.1088] -248 [-391 – -88] 10.6 10,5 [3.0 – 18.5] 

85 (n=1) 28,420,524 8,323 0.1045  -139  4.0 4,0  

Im
p

u
ta

ti
o

n
 

(i
n

 4
 r

e
p

li
c
a

te
s)

 

4 28,420,524 

6,911,406  

2,907 – 3,136 0.1140 [0.0500 – 0.1498] -137 [-5.64×106 – -7] 38.3 36,4 [12.9 – 56.5] 

8 28,420,524 3,892 – 3,976 0.0998 [0.0642 – 0.1171] -293 [-54,893 – -32] 19.6 24,2 [5.2 – 52.5] 

12 28,420,524 4,426 – 4,554 0.0848 [0.0815 – 0.1079] -1,201 [-1,762 – -84] 30.0 24,9 [4.1 – 35.5] 

16 28,420,524 4,840 – 5,017 0.0866 [0.0794 – 0.1111] -811 [-1,953 – -63] 26.8 24,6 [8.3 – 36.5] 

20 28,420,524 5,179 – 5,384 0.0894 [0.0760 – 0.0981] -819 [-3,850 – -226] 22.2 24,4 [10.5 – 43.5] 

24 28,420,524 5,592 – 5,750 0.0793 [0.0729 – 0.1155] -2,976 [-8,094 – -50] 36.5 33,2 [12.3 – 47.5] 

50 28,420,524 6,931 – 6,958 0.0948 [0.0814 – 0.1132] -334 [-1,642 – -65] 15.4 18,5 [8.5 – 35.5] 

100 (n=1) 28,420,524 8,396 0.0986  -247  11.6 11,6  

S
u

b
sa

m
p

li
n

g
 

(i
n

 4
 r

e
p

li
c
a

te
s)

 4 26,099,661 6,347,733 2,707 – 2,870 0.1279 [0.0733 – 0.1518] -23 [-11,804 – -6] 37.2 36,5 [22.4 – 49.5] 

8 13,629,024 3,313,984 1,897 – 2,003 0.0702 [0.0500 – 0.0737] -11,337 [-8.96×106– -2,657] 48.7 48,3 [39.4 – 56.5] 

12 7,109,386 1,730,591 1,107 – 1,194 0.1040 [0.0696 – 0.1366] -2,386 [-10,280 – -18] 37.0 37,5 [27.7 – 48.5] 

16 3,713,156 902,526 624 – 661 0.1109 [0.0782 – 0.1618] -59 [-1,223 – -3] 26.3 27,6 [1.7 – 56.5] 

20 1,938,476 470,900 348 – 402 0.0907 [0.0500 – 0.1938] -35,852 [-795,504 – -2] 53.1 47,1 [18.3 – 64.5] 

24 1,011,970 246,323 174 – 199 0.0540 [0.0500 – 0.5804] -362,712 [-3.23×106 – 0] 55.1 63,6 [31.2 – 113.5] 

50 14,863 3,737 3 – 5 0.5172 [0.0500 – 0.5227] 0 [-2.16×1012– 0] 113.2 102,3 [64.2 – 118.5] 
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Figure S1. Principal component analysis in the 45 individuals of Arabidopsis lyrata sampled 

from Austria and Norway, based on 3,921,575 SNPs. 

 

 


