Text Classification Method Based on PEGCN

Zelin Guo!, Ruidong Zhang!, and Hai Huan'

'Nanjing University of Information Science and Technology

April 21, 2023

Abstract

The purpose of text classification is to label the text with known labels. In recent years, the method based on graph neural
network (GNN) has achieved good results. However, the existing methods based on GNN only regard the text as the set of
co-occurring words, without considering the position information of each word in the statement. Meanwhile, this method mainly
extracts node features, but neglects the use of edge features between nodes. To solve these problems, a new text classification
method, graph convolutional network using positions and edges (PEGCN), is proposed. In the word embedding section, a
positional encoding input representation is employed to enable the neural network to learn the relative positional information
among words. Meanwhile, the dimension of the adjacency matrix is increased to extract the multi-dimensional edge features.
Through experiments on multiple text classification datasets, the proposed method is shown to be superior to the traditional

text classification method, and has achieved a maximum improvement of more than 4%.

Introduction

Text classification is a core task of natural language processing and has been used in many real-world appli-
cations, such as spam detection! and opinion mining?. Transduction learning? is a special text classification
method that uses both labelled and unlabeled samples in the training process. A graph neural network
(GNN) is an effective transduction learning method*® and is widely used in text classification applications.
This method constructs a graph to model the relationship between documents. Nodes in the figure represent
text units such as text or documents, while edges are constructed based on semantic similarity between
nodes. Therefore, a GNN can be used to learn and classify nodes in the figure. The advantages of this
method for classification are as follows: (1) The representation of each node depends not only on itself but
also on its neighbors, endowing the representation of nodes certain context information; (2) During training,
the model spreads the influence of supervision labels in training and test cases through graphs and edges.
Even data with no labels help to represent the learning process, yielding a higher performance.

However, the use of GNN for text classification has the following problems: (1) The method based on GNN
does not regard the text as a sequence but as a set of co-occurring words. In the task of text classification,
the word order relationship in the sentence plays a crucial role in the final classification result; (2) The
traditional GNN does not make full use of edge features. Only 0 and 1 are used between nodes to ascertain
whether there is a connection, namely, the connectivity feature; however, the edge features of the graph often
have rich semantic information, such as the type of connection between nodes, connection strength, etc .,
and should be represented as continuous vector features rather than binary variables.

Recent studies have shown that large-scale pre-training models are effective for various natural language
processing tasks, especially text classification tasks®7?. The pre-training model takes the unsupervised corpus
as the training object and can learn the rich text semantics implied in the language. However, the methods
used for transducing text classification tasks prior to 2020%%13-17 did not consider the use of pre-trained
models. It was not until 2021 when Lin et al . proposed BERTGCN?®, which combines BERT and GCN
and demonstrates the effectiveness of pre-trained models in transductive learning.

Major contributions

The use of a graph convolutional network using positions and edges (PEGCN) model is proposed to address
the aforementioned problems. Firstly, aiming at the problem whereby the traditional GNN ignores the
relative position relation between words, the position information encoding is added into the word embedding
part, so that the network can learn the position information between words. Secondly, in view of the
insufficient use of edge features in GNN, the adjacency matrix is proposed to raise and normalize to extract
multi-dimensional continuous features of edges. Finally, combining the advantages of the large-scale pre-
training model, it can be proved that using the large-scale pre-training model is beneficial to the transduction
learning through experiments. The key contribution of the work can be divided into the following parts:

(1) In this paper, we propose the PEGCN model, which effectively addresses the issue of disregarding text
positional information in graph neural networks by utilizing input representations with positional information
in the word embedding section; (2) The new model can contain multidimensional positive edge features, which
overcomes the limitation that the traditional GNN can only process one-dimensional edge features and makes
full use of the features of nodes and edges in the graph;

Related work
Text classification

Text classification is an important task in natural language processing, which is often applied to sentiment
analysis, news filtering, spam detection, and other scenarios®. Text classification uses features to represent
raw text and provides them as inputs to downstream classifiers. The most commonly used representation is
Word2vec?, which uses low-dimensional dense word vectors to represent words, but it ignores the semantic
relationship between words, so it faces problems such as data sparsity and polysemy. In recent years, deep
neural networks such as convolutional neural network (CNN) and recurrent neural network (RNN)1%have been
applied to extract contextual information and semantic representation from text. The results show that the
performance is better than the traditional method. Kim et al . achieved good results in sentence classification
by using different filters to extract multi-granularity feature sentences'!. Sinha utilized bidirectional long
and short-term networks to convert words into context embedded representations'?, enabling the network
to learn contextual information in statements.

GNN

A GNN is a connection model that captures the dependency between graph nodes by connecting the edges
of nodes'®1415 which can be roughly divided into graph convolutional networks'®!” and graph attention
networks!'®1?. In 2019, Yao et al . proposed text graph convolutional network (TextGCN)*, which applies
the GNN to the text classification task for the first time. TextGCN first constructs a symmetric adjacency
matrix based on the given diagram, then fuses the representation of each node with its neighbors through
convolution operations, and finally sends the representation of the node to the softmax layer for classification.
However, TextGCN assigns the same weight to each node, which is inconsistent with the actual contribution
of each node to the final classification. To solve this problem, Petar et al . proposed graph attention network
(GAT)'® which uses masked self-attention methods to assign different weights to each node according to the
characteristics of adjacent nodes. The problem of using graph convolutional network for text classification is
solved. Only the text information is considered when constructing the graph for the pre-ordering work, but
the heterogeneous information such as text labels is ignored. In 2020, Xinet al . established a GNN based on
label fusion?®. This method combines label information by adding “text-tag-text” paths while constructing
graphs, through which supervisory information can be transmitted more directly between graphs. Chang
et al . designed a local aggregation function?!, which is a shareable non-linear operation for aggregating
local inputs with disordered arrangement and unequal dimensions over non-Euclidean domains. It can fit
non-linear functions without activation functions and can be easily trained using standard back propagation.
In 2021, Wang et al . proposed a new short text classification method based on GNN the better to utilize the
interaction between nodes of the same type and capture the similarity between short texts?2. This method
first models the short text dataset as a hierarchical heterogeneous graph, then dynamically learns a short

document graph to make label propagation between similar short documents more effective.

With the emergence of large-scale pre-training models in recent years, Devlin et al . proposed the pre-
training model BERT (Bidirectional Encoder Representations from Transformers) based on self-attention
mechanism®. BERT enhances a new representation of the input data at each layer of the encoder, obtaining
a text representation with contextual information using multiple attention operations on different parts. Liu
et al . made improvements on this basis’, cancelling the next sentence prediction task, using more diverse
data for training and achieving better results. Some recent studies combined GCN and BERT. Jeong et al .
proposed a citation graph model for paper recommendation tasks?3, which combines the output of GCN and
BERT to make the interaction between local information and global information conducive to downstream
prediction tasks. Lu et al . established a BERT model based on graph embedding?*, which connects word
embedding with node representation, and makes local information and global information interact through
BERT, to determine the final text representation.

Method

This paper constructs a heterogeneous graph containing word nodes and document nodes. The proposed
PEGCN model architecture proposed is shown in Figure 1. The leftmost part shows the input to the model.
The present work adds Token Embedding and Position Embedding as the word vector. Then the model
feeds the vector data to the GCN layer and BERT layer respectively. Finally, the output of the two layers is
interpolated and sent to the softmax layer for classification. In the GCN part of Figure 1, two layers of GCN
layers are used as the graph network. The bottom half of Figure 1 shows the BERT layer of the pre-training
model.

Figure 1. PEGCN network.
Position coding

Previous network models that utilized One-Hot vectors as GCN inputs were unable to consider the relative
positional information between words. In contrast to such inputs, the PEGCN model uses the sum of Token
Embedding and Position Embedding as input word embeddings, which are sourced from BERT distributed
representations®. The input representation of BERT is the sum of Token Embedding, Segment Embedding,
and Position Embedding. The introduction of Segment Embedding in BERT is primarily for the next sentence
prediction task. As the specific classification tasks in this study all involve single sentences, the Segment
Embedding used to distinguish between the preceding and following sentences is considered redundant for
this task. Therefore, only the sum of Token Embedding and Position Embedding is used to represent the
network input in this study. Specific details are illustrated in Figure 2. The Token Embedding layer converts
each word into a fixed-size vector that contains the semantic meaning of the text. In this study, the length
and dimension of word vectors are both based on the BERT paper. Each word is converted into a 768-
dimensional vector representation. Assuming a sentence length of 128, the sentence is represented as a (128,
768) matrix after the Token Embedding layer.

Figure 2. Input representation of PEGCN.

The network will learn a vector representation on each Position of the Position Embedding. The vector
representation is coded as the information of the sequence order. The network will judge the relative
position relationship of words in the sentence through the offset of each vector. The Position Embeddings
layer is essentially a table measuring (128, 768) with the first row (when seen as a vector) representing
the first position of the first sequence, the second row representing the second position of the sequence,
and so on. The data of each row in this table are randomly generated at the beginning and updated with
the training of the network. In the specific training, the network will also consider the batch size of the
model batch_size, therefore, the Token Embedding and Position Embedding are represented as the tensor of
(batch_size,128,768). When they are added together, the final input representation can be obtained. The
word vectors obtained in this manner are used as the input representation for PEGCN document nodes in
this study. The node embedding X for the document is represented as a matrix of dimensions ((ndoc+nword)

x d), where ndoc represents the number of document nodes, nword represents the number of word nodes,
and d represents the dimensionality of the node embedding.

Edge features

GNN defines a graph as a set of G = (V, E),Vand E representing nodes and edges respectively. Nodes are
divided into word nodes and document nodes, and the edges between word nodes are defined as Point-wise
Mutual Information (PMI)%. The edge between the word node and the document node is defined as Term
Frequency-Inverse Document Frequency (TF-IDF)25. The weight of two nodes i and jthe edges between
them is defined as:

where A;; is the adjacency matrix, the word frequency denotes the number of times a word appears in
the document, and inverse document frequency is the logarithm of the total number of documents over the
number of documents containing the word. PMI is a popular word association measure, which can collect
co-occurrence information on all documents in the corpus with a sliding window of fixed size and calculate
the weight between two word-nodes. The PMI values for wordsi and words j are calculated as:

where, #W (i) is the number of sliding windows containing words i in the corpus, #W (i, j) is the number
of windows containing words ¢ and j, #W represents the total number of sliding windows in the corpus.
To extract multidimensional edge features, the N X N dimensional adjacency matrix A;; is raised to an
N XxNXP tensorEijp, where P represents the P dimensional features of the edge. The specific process is
shown in Figure 3.

Figure 3. Upgrading of tensor dimensionA; ;.

The tensor changes with the training of the network, and the extra dimension is the newly learned weight.
The adjacency matrix, after dimensionalization, represents edge features with the value of continuous mul-
tidimensional, which can make full use of edge features compared with traditional GNN. After network
training is completed,Eijpis normalized as follows:

The | | operator joins operations. Herein, the initial node feature of the graph X is defined as the identity
matrix, that is, each word or document is represented as a one-hot vector. After two layers of GCN, X is
sent to Softmax for classification:

Where, E = D~/ 2EijD_1/ 2 denotes the normalized edge feature matrix. Wy and W, are the weight para-
meters of training respectively.The output of the GCN layer is considered as the final representation of the
document, which is then fed to the Softmax layer for classification.

Combining BERT and GCN

Herein, BERT is trained in another part of the network as an auxiliary classifier®. Combining BERT on
GCN can make the network combine the advantages of large-scale pre-training model, resulting in more
rapid convergence and better performance. In terms of specific implementation, an auxiliary classifier is
constructed by embedding documents X directly into the Softmax layer:

Finally, linear interpolation is used to combine the representation of BERT and GCN with:

The reasons for better performance through interpolation are: Zgggrr acts directly on the GCN input to
ensure that the GCN input is tuned and optimized towards the goal. This helps the multi-layer GCN model
to overcome inherent shortcomings, such as gradient disappearance or over-smoothing??, thus resulting in
an improved performance.

Experiment
Introduction to datasets

Five common public datasets are used for experiments (Table 1): 20NG is a corpus containing 20 categories,
with a total of 11,314 documents in the training set and 7532 documents in the test set; R52 and RS8 are
two subsets of the Reuters dataset (R8 has eight categories and is split into 5485 training documents and

2189 test documents; R52 has 52 categories, divided into 6532 training documents and 2568 test documents);
Ohsumed is a database from the medical sciences that contains 23 categories. Herein, 7400 documents are
selected, among which 3357 documents are in the training set and 4043 documents are in the test set. MR is
a dataset of movie reviews for binary sentiment classification, where each review contains only one sentence.
There are 5331 positive and 5331 negative comments in the corpus.

Table 1. Dataset information

20NG R8 R52 Ohsumed MR

Classes 20 8 52 23 2 Dos 18,846 7674 9100 7400 10,662

Train dataset 11314 5458 6532 3357 7108

Test dataset 7532 2189 2568 4043 3554

Nodes 61,603 15,362 17,992 21,557 29,426 Edges 26,990,597 3,504,462 4,406,322 8,066,963 1,927,676

Where, Classes represent the number of categories, Dos represents the number of documents, Nodes represent
the number of graph nodes, and Edges represent the number of edges.

Parameter settings

The maximum sentence length is set to 128 and the batch size to 64; SGD is used as an optimizer to optimize
all trainable parameters. The number of hidden layer units in GCN used herein is 200, the learning rate is
0.001, and parameter A is set to 0.3 according to the experiment. The BERT learning rate is set to 1 x 107
and the dropout value is set to 0.5. The experiments in this article were conducted on a high-performance
computer with an Nvidia T1 graphics card and 32 GB of RAM, using the PyTorch 1.5.0 framework and
Python 3.6.

Experimental analysis

As the A -value is a hyperparameter in the proposed model, to determine the best value of A , the PEGCN
model is used to conduct experiments on the four datasets (R8, R52, Ohsumed, and MR) with different A
-values. The experimental results are summarized in Table 2.

Table 2. PEGCN network A value experimental accuracy comparison. metric: accuracy (%)

A R8 R52 Ohsumed MR

0.1 97.67 95.83 72.12 89.48
0.2 97.94 96.14 73.02 88.80
0.3 98.22 96.65 73.26 89.59
0.4 98.04 96.11 72.67 88.89
0.5 98.17 95.02 72.30 87.51

0.6 0.70.80.9 97.6298.02 97.94 97.58 94.55 95.37 95.64 95.17 72.69 72.89 72.30 72.47 87.23 89.53 86.94 86.86

As can be seen from the data in the table, PEGCN has the highest classification accuracy in each dataset
when A is 0.3, that is, when the weight ratio of GCN to BERT is 0.3/0.7. The accuracy of the four datasets is
98.22%, 96.65%, 73.26%, and 89.59%, respectively. Compared with the case of a A- value of 0.5, the accuracy
is 0.04%,1.63%, 0.96%, and 2.08% higher, so A is set to 0.3 herein because the large-scale pre-training model
can significantly improve the classification effect, and assigning a larger weight is conducive to improving the
accuracy. For specific datasets, GCN is also required for further feature extraction, so the best effect arises
when the weight ratio is 0.3/0.7.

Based on TextGCN, the proposed method delivers an improvement. A position graph convolutional network
(PGCN) is a GCN model that adds position information. A position and Bert graph convolutional network
(PBGCN) is a network model that combines BERT based on the addition of position information. Meanwhile,

experiments on GAT were conducted to verify the effectiveness of the proposed method. A position and
Bert graph attention network (PBGAT) is a GAT network with position information and a model trained
together with BERT. Finally, the method of PEGCN is GCN model using position information and edge
features. The improved experimental results are listed in Table 3.

Table 3. Module validity experiment accuracy comparison. metric: accuracy (%)

Model 20NG RS R52 Ohsumed MR

TextGCN 86.30 97.07 93.56 68.36 76.74
PGCN 87.44 9781 9490 72.08 87.62
PBGCN 88.16 98.17 93.73 7193 88.83
PBGAT 87.04 98.13 95.60 71.61 87.70

PEGCN 89.66 98.22 96.65 73.26 89.59

The difference between PGCN and TextGCN is that PGCN includes sequence position information while
TextGCN does not. In the 20NG dataset, PGCN is increased by 1.11% (an improvement of 0.74% on the R8
dataset; 1.46% on the R52 dataset; Ohsumed and MR increased by 3.72% and 10.88%). At the same time,
position information is added into GAT for experiment (i.e . the PBGAT model in Table 3). As can be seen
from Table 3, the classification accuracy of PBGAT is higher than that of PGCN on the five datasets; adding
position information into the network can significantly improve the classification accuracy, especially in the
sentiment classification dataset MR. According to the analysis presented herein, because the task of emotion
classification is closely related to word order, the effect on MR is significantly improved: for example, “I
like this actor but I don’t like this movie” without the position information, the model cannot tell where
the actor is in relation to the movie. Once the positions are reversed, the emotion of the whole sentence is
reversed. Therefore, the improvement of sentiment analysis dataset is the most obvious, which shows the
necessity of adding position information.

To verify the effectiveness of edge features in improving network performance, a PBGCN and a PEGCN
are compared here. The PEGCN model processes the adjacency matrix based on PBGCN and makes full
use of the multi-dimensional features of the edge. The only difference between the two is the processing of
the edge features. As seen from Table 3, the classification accuracy of PEGCN on five benchmark datasets
has been improved, and the optimal classification effect has been achieved on all datasets. In particular, for
the 20NG and MR datasets, the accuracy is improved by 2.62% and 1.89%, respectively. The analysis of
this study: Compared with the edge features represented by the adjacency matrix in the past, the tensor
after dimension enhancement has richer semantics. Discretized points can only indicate whether there is a
connection between nodes, that is, connectivity features; while the edge matrix after dimension enhancement
has P additional dimensional features, which can be used to represent more information between nodes, such
as connection types, connection strength, etc., making full use of edge features helps the network to train
better node representations, thereby improving the classification task. It can be seen from Table 3 that the
full extraction of edge features has a certain effect on GCN to improve the accuracy of text classification.

To make a comparison with similar models, BERTGCN?® is used as the baseline model: BERTGCN is the
model combining BERT and GCN. The model proposed herein is compared with the model also combined
with BERT and GCN (Table 4).

Table 4. Comparison of Classification Accuracy of Similar Models. metric: accuracy (%)

Model 20NG RS R52 Ohsumed MR

TextGCN (Yao et al.4, 2019) 86.30 97.07 93.56 68.36 76.74
BERT (Devlin et al.5, 2018) 85.30 97.80 96.40 70.50 85.70
BERTGCN (Lin et al.?%, 2021) 89.30 98.10 96.60 72.80 86.00

Model 20NG RS R52 Ohsumed MR

BERTGAT (Lin et al26, 2021) 87.40 97.80 9650 71.20 86.50
PEGCN (present work) 89.66 98.22 96.65 73.26 89.59

As seen from Table 4, the performance of BERTGCN and PEGCN is much better than that of the single
TextGCN or BERT models, with an improvement of 2 to 4% in each of the five datasets. Compared with
BERTGCN, PEGCN is 0.36% better than BERTGCN on the 20NG dataset. The R8 and R52 datasets are
improved by 0.12% and 0.05%; Ohsumed and MR datasets are improved by 0.96% and 3.59%, respectively.
Both models, PEGCN and BERTGCN, combine GCN and pre-trained models, but PEGCN outperforms
BERTGCN in terms of classification performance. This study analyzes that BERTGCN also uses BERT
input representation, so this is not the main reason for the difference between the two. BERTGCN still uses
the adjacency matrix for edge feature processing, while this study uses the processed edge matrix, which
can extract richer edge features and improve the representation ability of node representation. At the same
time, it also reduces the appearance of discrete points and improves storage efficiency. Therefore, PEGCN’s
final classification results are superior to BERTGCN. The improvements made in TextGCN presented here
are conducive to the improvement of classification accuracy and the competitiveness of the proposed model
among similar models. As seen from Table 4, the classification accuracy of a series of combined models of
TextGCN and BERT is generally higher than that of a single model of BERT or TextGCN. This indicates that
the combination of TextGCN and large-scale pre-training model can significantly improve the classification
accuracy, and the combination of TextGCN and pre-training model has significant advantages.

The further to prove the reliability of PEGCN, the proposed method is also compared with other classical
methods (Table 5). Among them, the CNN proposed by Kim et al’! . in 2014, LSTM is the long and
short-term memory network!?, and Bi-LSTM is the two-way long and short-term memory network'?. PTE
is a network model based on word embeddings proposed by Tanget al .?® that learns word embeddings based
on heterogeneous text networks with words, documents and labels as nodes, and then averages the word
embeddings into document embeddings for text classification. FastText is a simple and efficient classification
method proposed by Joulin??, which imparts the mean value of words or N-grams as documents and passes
them to a linear classifier for classification. LEAM is an attention model based on tag embedding proposed
by Wang et al .3, which imparts words and tags into the same space for text classification. SGC is a
simplified graph network proposed by Wu et al .3'; SSGC is a spectrogram network proposed by Zhuet al
.32, which uses Markov diffusion nuclei to derive GCN, combining the advantages of spatial and spectral
methods.

Table 5. Comparison of classification accuracy of different models. metric: accuracy (%)

Model 20NG RS R52 Ohsumed MR

CNN (Kim et al.'!, 2014) 82.15 9571 87.50 58.44 7775
LSTM (Miyamoto et al.'%, 2016) 7543 96.09 90.48 51.10 77.33
Bi-LSTM (Sinha et al.'?,2018) 73.15 96.31 90.54 49.27 77.68
PTE (Tang et al.25, 2015) 76.74 96.69 90.71 53.58 70.23
FastText (Joulin et al.?", 2017) 79.38 96.13 92.81 57.70 75.14
LEAM (Wang et a3, 2018) 81.91 93.31 91.84 58.58 76.95
TextGCN (Yao et al.%, 2019) 86.30 97.07 93.56 68.36 76.74
SGC (Wu et al®', 2019) 83.50 9720 94.00 68.50 75.90
BERT (Devlin et al.%, 2018) 85.30 97.80 96.40 70.50 85.70
BERTGCN (Lin et al.?5, 2021) 89.30 98.10 96.60 72.80 86.00
SSGC (Zhu et al.3?, 2021) 88.60 97.40 94.50 68.50 76.70
PEGCN (present work) 89.66 98.22 96.65 73.26 89.59

As seen from Table 5, PEGCN has achieved the optimal precision effect on the five classified datasets; GNN-
based methods such as TextGCN, SGC, and SSGC are generally superior to traditional methods based
on CNN or RNN. On the MR dataset, PEGCN offers the most significant improvement in classification
accuracy, mainly because this dataset is extremely sensitive to position information, which is consistent with
the conclusion above. The classification performance of PEGCN is better than that of BERTGCN across all
datasets, not only on a single dataset, which proves the reliability of the model. In the GNN classification
method, PEGCN shows significant improvement on the 20NG and Ohsumed datasets; because the average
sentence length of these two datasets is greater than that of the other datasets, and the graph network is
composed of word-document statistics, this means that longer text may generate more document connections
passing through intermediate word nodes, which facilitates message passing through the graph and better
performance when combined with GCN. This may also explain why the GCN model performs better than
the BERT model on 20NG. For datasets with short documents, such as MR, the ability of graph structure
is limited, but after adding position information and edge information to the graph network, it can be found
that the classification accuracy is significantly improved. This finding also proves the importance of position
information and edge information to the classification task.

Conclusion

This paper proposes the PEGCN model, which fully utilizes the advantages of large-scale pre-trained models
and graph convolutional networks for text classification. The model first uses input representations with po-
sitional information to enable the network to learn relative position information between text; then processes
the adjacency matrix to extract edge features fully; meanwhile, uses the BERT model for auxiliary training;
finally, combines the predictions of the two models using linear interpolation for classification. Through a
series of experimental designs and comparative analyses, it is found that the proposed method in this study
outperforms other methods on five commonly used public datasets, achieving the highest classification accu-
racy and demonstrating the effectiveness of the model. Also, through a series of effectiveness experiments,
it is proved that adding positional information and extracting edge features in graph convolutional networks
are effective for improving classification accuracy. In future research, this study will further explore the
improvement space of this network.

Data availability

The data sets used in this paper are all public data sets. For details, please refer to the web-
site:https://github.com/ZeroRin/BertGCN /tree/main/dataSpecific figures are available at the website.

References

1. A. H. Wang, ”"Don’t follow me: Spam detection in Twitter,” 2010 International Conference on Security
and Cryptography (SECRYPT) , 2010, pp. 1-10.

2. Rushlene Kaur Bakshi, Navneet Kaur, Ravneet Kaur, and Gurpreet Kaur. Opinion mining and senti-

ment analysis. In 2016 3rd International Conference on Computing for Sustainable Global Development

(INDIACom) , 2016. pages 452-455.

Vladimir N. Vapnik. 1998. Statistical Learning Theory . Wiley-Interscience.

4. Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.Graph convolutional networks for text classification.
In Proceedings of the AAAI Conference on Artificial Intelligence , volume 33, pages 7370-7377.

5. Liu, X., You, X., Zhang, X., Wu, J., Lv, P.: Tensor graph convolutional networks for text classification.
In: Proceedings of the AAAI Conference on Artificial Intelligence , vol. 34,pp. 8409 — 8416 (2020)

6. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.(2018)

7. Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and V eselin Stoyanov. Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692. (2019)

8. C. C. Aggarwal and C. Zhai, ” A survey of text classification algorithms,’
, 2012, pp. 163 — 222.

&

)

in Mining text data. Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector
space. In: 1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona,
USA, May 2-4, 2013, Workshop Track Proceedings (2013), http://arxiv.org/abs/1301.3781

Y. Miyamoto, K. Cho. Gated word-character recurrent language model. in Proc. EMNLLP , Austin,
Texas, 2016, pp. 1992-1997.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882.

K. Sinha, Y. Dong, J. C. K. Cheung, and D. Ruths, ”A hierarchical neural attention-based text
classifier,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Process-
ing,2018 , pp. 817 — 823.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. 2008.
The graph neural network model. IEEE Transactions on Neural Networks , 20(1):61 — 80.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large
graphs. In Advances in neural information processing systems , pages 1024 — 1034.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826.

Thomas N Kipf and Max Welling. 2016a. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., & Weinberger, K. (2019, May). Simplifying graph
convolutional networks. In International conference on machine learning (pp. 6861-6871). PMLR.
Petar Veli Pebbles ckovi“c, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Y
oshua Bengio.2017. Graph attention networks. arXiv preprint arXiv:1710.10903.

Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit Y an Y eung. 2018a. Gaan:
Gated attention networks for learning on large and spatiotemporal graphs. In 34th Conference on
Uncertainty in Artificial Intelligence 2018 , UAT 2018.

Xint, Y., Xu, L., Guo, J., Li, J., Sheng, X., & Zhou, Y. (2021, January). Label incorporated graph
neural networks for text classification. In 2020 25th International Conference on Pattern Recognition
(ICPR) (pp. 8892-8898). IEEE.

Chang J, Wang L, Meng G, et al. Local-Aggregation Graph Networks[J]. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2019, PP (99):1-1.

Yaqing Wang, Song Wang, Quanming Yao, Dejing Dou:Hierarchical Heterogeneous Graph Represen-
tation Learning for Short Text Classification. EMNLP (1) 2021: 3091-3101.

Jeong, C., Jang, S., Park, E., & Choi, S. (2020). A context-aware citation recommendation model with
BERT and graph convolutional networks. Scientometrics, 124 (3), 1907-1922.

Lu, Z., Du, P., & Nie, J. Y. (2020, April). VGCN-BERT: augmenting BERT with graph embedding for
text classification. In European Conference on Information Retrieval (pp. 369-382). Springer,Cham..
Ho Chung Wu, Robert Wing Pong Luk, Kam Fai Wong, and Kui Lam Kwok. 2008. Interpreting TF-
IDF term weights as making relevance decisions. ACM Trans. Inf. Syst. 26, 3, Article 13 (June 2008),
37 pages. https://doi.org/10.1145/1361684.1361686

Lin, Yuxiao & Meng, Yuxian & Sun, Xiaofei & Han, Qinghong & Kuang, Kun & Li, Jiwei & Wu,
Fei. (2021). BertGCN: Transductive Text Classification by Combining geri weis-corbley and BERT.
1456-1462. 10.18653 / v1/2021 . The findings - acl. 126.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018a. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the AAAI Conference on Artificial Intelligence,volume
32.

Tang, J., Qu, M., & Mei, Q. (2015, August). Pte: Predictive text embedding through large-scale
heterogeneous text networks. In Proceedings of the 21th ACM SIGKDD international conference on
knowledge discovery and data mining (pp. 1165-1174).

Joulin, A.; Grave, E.; Bojanowski, P.; and Mikolov, T. 2017. Bag of tricks for efficient text classification.
In FACL , 427 — 431. Association for Computational Linguistics.

Wang, G.; Li, C.; Wang, W.; Zhang, Y.; Shen, D.; Zhang, X.; Henao, R.; and Carin, L. 2018. Joint

embedding of words and labels for text classification. In ACL , 2321 — 2331.
31. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., & Weinberger, K. (2019, May). Simplifying graph
convolutional networks. In International conference on machine learning (pp. 6861-6871). PMLR.
32. Zhu H, Koniusz P. Simple Spectral Graph Convolution[C]//International Conference on Learning Re-
presentation .2021 .

Competing interests (mandatory)
The authors declare no competing interests.
Author contributions

R.Z. set the experimental strategies. Z.G. draft the main manuscript text. H.H., Z.G. designed and applied
the experiments. All authors reviewed the manuscript. H.H. handled the process and paper publication
issues.

10

