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Abstract

We introduce a deep learning-based ligand pose scoring model called zPoseScore for predicting protein-ligand complexes in the

15th Critical Assessment of Protein Structure Prediction (CASP15). Our contributions are three-fold: firstly, we generate six

training and evaluation datasets by employing advanced data augmentation and sampling methods. Secondly, we redesign the

“zFormer” module, inspired by AlphaFold2’s Evoformer, to efficiently describe protein-ligand interactions. This module enables

the extraction of protein-ligand paired features that lead to accurate predictions. Lastly, we develop the zPoseScore framework

with zFormer for scoring and ranking ligand poses, allowing for atomic-level protein-ligand feature encoding and fusion to

output refined ligand poses and ligand per-atom deviations. Our results demonstrate excellent performance on various testing

datasets, achieving Pearson’s correlation R = 0.783 and 0.659 for ranking docking decoys generated based on experimental and

predicted protein structures of CASF-2016 protein-ligand complexes. Additionally, we obtain an averaged lDDT = 0.558 of

AIchemy LIG2 in CASP15 for de novo protein-ligand complex structure predictions. Detailed analysis shows that accurate

ligand binding site prediction and side-chain orientation are crucial for achieving better prediction performance. Our proposed

model is one of the most accurate protein-ligand pose prediction models and could serve as a valuable tool in small molecule

drug discovery.
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We introduce a deep learning-based ligand pose scoring model called zPos-
eScore for predicting protein-ligand complexes in the 15th Critical Assessment
of Protein Structure Prediction (CASP15). Our contributions are three-fold: firstly,
we generate six training and evaluation datasets by employing advanced data
augmentation and sampling methods. Secondly, we redesign the "zFormer"
module, inspired byAlphaFold2’s Evoformer, to efficiently describe protein-ligand
interactions. This module enables the extraction of protein-ligand paired fea-
tures that lead to accurate predictions. Lastly, we develop the zPoseScore frame-
work with zFormer for scoring and ranking ligand poses, allowing for atomic-
level protein-ligand feature encoding and fusion to output refined ligand poses
and ligand per-atomdeviations. Our results demonstrate excellent performance
on various testing datasets, achieving Pearson’s correlation R = 0.783 and 0.659
for ranking docking decoys generated based on experimental and predicted pro-
tein structures of CASF-2016 protein-ligand complexes. Additionally, we obtain
an averaged lDDT = 0.558 of AIchemy_LIG2 in CASP15 for de novo protein-
ligand complex structure predictions. Detailed analysis shows that accurate lig-
and binding site prediction and side-chain orientation are crucial for achieving
better prediction performance. Our proposed model is one of the most accu-
rate protein-ligand pose prediction models and could serve as a valuable tool in
small molecule drug discovery.
K E YWORD S
CASP15, protein-ligand prediction, pose scoring, attention-based model

1 | INTRODUCTION
The prediction of protein-ligand binding represents a crucial technology in drug discovery [1, 2]. The binding pattern is a fundamental
information for understanding the interaction between the target protein and a drug or a small molecule, providing visual and structural
insights into the molecular mechanisms underlying relevant biological actions. Accurate prediction of the protein-ligand binding pattern
enhances the rational design of new drugs, allowing for the development of pharmacologically relevant molecules with desired properties.

†Co-corresponding authors.*Equally contributing authors.
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Therefore, improving the accuracy of such binding pattern prediction is a vital goal in the field of computer-aided drug discovery (CADD).
Additionally, understanding the substrate-enzyme binding pattern can facilitate the rational design of industrial enzymes or bio-sensors in the
realm of enzyme engineering and bio-sensor design [3, 4, 5]. Molecular docking, molecular dynamics simulations, and artificial intelligence-
based approaches represent the three main strategies employed for protein-ligand binding pose prediction.

Molecular docking is a widely used computational method CADD that predicts the energetically favorable conformation of a ligand
bound to a protein [1, 2]. The aim is to determine the optimal pose of a ligand preferably in a specific binding pocket of the protein to
ensure accuracy. However, the accuracy of predicting protein-ligand interactions is limited when protein side-chain flexibility is considered.
In order to overcome this limitation, various molecular docking methods have been developed, such as AutoDock [6], AutoDock Vina [7, 8],
Smina, Glide [9], GOLD [10], and LeDock [11]. These methods utilize specific sampling methods (including Monte Carlo sampling or genetic
algorithm and other sampling strategies) to modify the ligand pose and adjust the protein side-chain orientations, as well as to evaluate
the binding energies through corresponding scoring functions. The resulting docking poses are then scored and clustered to provide final
outcomes [7, 6]. While some challenges remain, including the requirement for the near-native sampling of poses and accurate ranking of
poses according to their binding energies, molecular docking-based methods have been successful in previous protein-ligand challenges
(such as D3R grand challenge) [12].

Molecular dynamics (MD) simulations represent a powerful computational methodology for the prediction of protein-ligand interactions
with an unprecedented degree of accuracy at the atomic level [13, 14, 15]. In essence, MD simulations deal with fully flexible biomolecules,
solvents, and ions under the influence of Newton’s laws of motion. For a protein-ligand complex system, the solvation free energy of the
protein and the ligand could be calculated, and the nonbonded interactions between them could also be calculated, lastly, the conformational
entropy could also be estimated [16, 17, 18, 19]. Consequently, the corresponding binding free energies can be estimated. However, one
should note that the accurate prediction of such interactions via molecular dynamics simulations hinges on the use of a structurally plausible
protein-ligand complex model as an initial input, which consequently restricts its applicability to direct protein-ligand binding pose prediction
tasks. Furthermore, it is vital to acknowledge that molecular dynamics simulations are computationally demanding [15].

Current research in the field of Artificial Intelligence (AI)-based approaches has been focused on predicting protein-ligand binding affinity
and docking pose scoring [20, 21, 22, 23, 24]. Previous models, such as random-forest [25], convolutional neural network (CNN) [26, 27,
28, 29], and graph-based models [27, 28, 29], were designed to predict ligand binding affinity based on a given protein-ligand native poses.
The early models primarily focused on scoring native poses as opposed to docking poses, thus limiting their use in real drug design or virtual
screening tasks [30]. Recent advancements in the field of Machine Learning (ML) and Deep Learning (DL) have improved performance on
ligand binding pose scoring, leading to more accurate docking pose selection [20, 31, 32, 33] or optimization [34]. For instance, 3D CNN-
based pose prediction models [20] have demonstrated the potential of Graph Neural Networks (GNNs) as a viable alternative for docking
pose prediction and virtual screening tasks [35, 36]. Additionally, the DL docking approach Gnina has successfully integrated 3D CNN-
based scoring functions to score and rank the Vina scoring function guide poses [37]. More recent works, such as the use of graph models
to generate ligand poses from the protein surfaces [38, 39], have shown promising performance in blinded docking scenarios. However,
these methods are not yet practical enough for structure-based drug discovery, especially in cases where the binding pocket is predefined.
Meanwhile, generating high-quality docking poses with protein side-chain flexibility remains an open research question.

In this study, a novel scoring model, called zPoseScore, is introduced and its performance on testing datasets and CASP15 tasks is
reported. The zPoseScore model incorporates three key features: (1) utilization of both experimental structures and fastAF2 predicted
protein structures and predicted pockets for large-scale pose generation, (2) introduction of a "zFormer" network module for protein-ligand
pairwise interactions with iterative representation updating, and (3) incorporation of per-atom deviations similar to plDDT [40] in AlphaFold2
for predicting atomic level ligand pose quality. Moreover, the protein-ligand interaction atoms sampling strategy enhances the accuracy of
the model. Results show that zPoseScore outperforms the traditional scoring function Vinascore and other DL-based scoring functions on
different testing datasets. Additionally, the model’s performance on CASP15 tasks, namely, AIchemy_LIG, AIchemy_LIG2, and AIchemy_LIG3,
is summarized. It is also observed that the binding sites of the ligand and the orientations of the pocket residue side-chains could affect
zPoseScore’s performance in protein-ligand pose predictions. Overall, zPoseScore presents a robust scoring model for docking pose scoring,
and it could potentially serve as a valuable tool for future drug discovery and drug design.

2 | MATERIALS AND METHODS
2.1 | Training data preparation
Firstly, we collected the 285 protein-ligand complex pairs from CASF-2016 core set (dataset 3) [30]. Then we selected the protein-ligand
complexes released after the year 2019 fromPDBBind2020 and only kept the protein-ligand complexes dissimilar to complexes in the general
set of PDBBind2020 to form dataset 5. The similarity was defined as the product of the protein sequence similarity and ligand fingerprint
similarity [20], and a cutoff = 0.6 was used to filter the similar data. The protein-ligand complexes from RCSB PDB were collected (Date:
2022-Mar-24) to form dataset 1. For all pdb structures, the molecules were split by chains, and protein-ligand pairs were generated. In this
process, only ligands with heavy atom numbers between 10-100 were considered, and the ligand should interact with only one protein chain
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(heavy atom contacts between the ligand and the protein chain should be larger than 10), otherwise, the protein-ligand pair was discarded.
For all protein-ligand pairs, the pairs were also discarded if the protein amino acid sequence length was less than 30 or greater than 1500.
For one experimental protein-ligand complex structure, if multiple same ligands exist, only one copy was kept. In the meanwhile, the similar
protein-ligand complexes (similarity higher than 0.6) to those in datasets 3 and 5 were removed.

For all these pairs (from experimental complexes), the protein sequences were extracted and then used for protein structure prediction
using the fastMSA-based AlphaFold2 protocol described in this paper [41]. Later, the predicted structures were structurally aligned to their
corresponding native structures by DeepAlign [42]. This way, we have three more artificial protein-ligand complexes datasets (datasets 2, 4,
and 6). The test sets (datasets 3 and 4) are designed to compare the docking pose scoring performance with other methods [34, 20]. And to
more strictly evaluate the performance of the model, datasets 5 and 6 are designed by collecting the most recent protein-ligand experimental
complexes and these complexes are quite different from the complex structures in PDBBind 2019 general set, which is often used as training
data in many DL or ML based scoring functions for docking pose scoring [37, 31, 20, 34]. Therefore, datasets 5 and 6 are the most strict
testing datasets for docking pose scoring evaluation and performance comparison.

In this research, we try to collect and generate datasets that could mimic the real applications in CASP15 tasks, where no receptor
protein structure and ligand initial conformer are provided. By predicting the protein structure from scratch, defining the possible ligand
binding sites, and docking the ligand into multiple pockets, the generated docking poses could be used to train models more suitable for
CASP15 tasks by minimizing the bias in protein structures and binding sites between model training and inference.

2.2 | The pose scoring and generation pipeline
For all pairs in Table 1, the ligands are re-docked into the protein structures by various docking protocols. For experimental protein structures,
the ligands were firstly docked into their original pockets (using the ligands’ geometry centers as pocket centers). While for the complexes
with experimental or predicted protein structures, the binding pockets were predicted by PointSite [43], and then the ligands were docked
into the most probable predicted pockets as described in [31] for reverse docking. Multiple docking tools (such as AutoDock Vina [7], iDock
[44], Qvina2 [45] and Smina [46] were used to generate various docking poses, while the three scoring functions (ad4 [6], dkoes [46], and
vina [7]) were used in Smina docking. For each pair, the ligand was repeatedly docked back into the defined pocket with pocket sizes (in
three dimensions) of 15 to 30 Å (randomly defined in 25 docking repeats to explore various binding areas) to generate no more than 500
decoys. Default docking parameters were used in all docking calculations. For each decoy, the decoy qualities were calculated as the root
mean square deviation (RMSD) for overall conformation and each atom using DockRMSD developed by Zhang Lab [47]. The decoys whose
overall RMSDs to native pose were higher than 15 Å were then removed.

2.3 | The networks of the zPoseScore single models
The zPoseScore single model is a transformer-based model designed to depict protein-ligand interactions which can be used to rank docking
poses by the predicted RMSD (pRMSD) values. The model utilizes a complex structure encoder and a backbone network called zFormer and
a scoring module.

The complex structure encoderwe designed is to capture the structural features of input conformations. The approach tomanaging input
features is simple and can be described as follows: firstly, the atomic-level features of proteins and ligands are extracted separately, including
one-hot encoding of element names and residue names. In addition to atom features, we also encode the 3D coordinates of the conformation
as pair representations by calculating the Euclidean distances between atoms. We did not employ extra features but utilized only element
names, residue names, and inter-atomic distance information, encouraging the neural network to learn complex interactions based on these
fundamental properties. In section 3.1, we discovered that such a configuration is sufficient to achieve high-precision predictions.

After obtaining the atom and pair representations of proteins and ligands, we constructed a backbone network for subsequent feature
updates. This backbone network, inspired by the Evoformermodule in AlphaFold2 [48], designs an interactionmodule specifically for protein-
ligand interactions, which we named zFormer. Unlike the Evoformer, zFormer focuses on iteratively updating atom-wise representations of
protein-ligand complexes, while the Evoformer addresses protein-only amino acid-level features. Furthermore, the Evoformer employs axial
attention [49] to handle columns and rows in two-dimensional multiple sequence alignment (MSA) [50]. In our model, however, atomic
features are one-dimensional, so we utilize a standard attention mechanism [51] instead of axial attention [52]. Moreover, the parameters
in each layer of zFormer share weights, reducing the number of model parameters and enhancing the model’s expressive power.

The backbone network is followed by a scoring module that predicts per-atom deviations and pRMSD for ligands. By calculating the
average of these predicted deviations, we can assess errors and rank conformations generated by the docking process. The key component
of the scoring module is the Invariant Point Attention [48] (IPA). The IPA module leverages geometric perception attention operations to
effectively address rotation or translation invariance issues. In our model, the inputs for IPA include atom representation, pair representation,
and three-dimensional coordinates of each atom; the output comprises updated atom features. Employing the rich feature representation
obtained from the IPA module, the scoring module can predict the deviation (distance) between each atom and the corresponding native
3D positions. To enable the model to learn structural information more directly, we introduce coordinate refinement to enhance model
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F IGURE 1 Overview of zPoseScore Models: the zPoseScore single model is a transformer-based model for depicting protein-ligand
interactions and ranking docking poses using predicted RMSD (pRMSD) values. It consists of a complex structure encoder, a zFormer
backbone network, and a scoring module. The encoder extracts atomic-level features and calculates inter-atomic distances. The zFormer
network updates atom-wise representations of protein-ligand complexes using attention mechanisms. Next, the scoring module predicts
per-atom deviations (with regard to native pose) and pRMSD (the root mean squared value of the per-atom deviations) for ligands. The
single model also introduces coordinate refinement and self-supervised loss to enhance the pose-scoring performance.

performance. With the features processed by the IPA module, the model predicts the translations of each atom on the ligand in 3D space.
For CASP15 tasks, 6 single models were assembled to make the zPoseScore model (a meta-predictor) for all ligand pose scoring by

calculating the average pRMSD values by the single models.

2.4 | The CASP15 protein-ligand prediction protocol
Given a protein sequence and a ligand’s SMILES code, the following protocol was adopted for protein-ligand complex structure prediction.
Firstly, the protein structure was predicted using the fastMSA-based AlphaFold2 protocol [41], and then the possible ligand binding regions
were predicted by PointSite [43]. For each protein structure, no more than 5 pockets were defined as defined in a previous study [31]. Then
the ligand was modeled with Rdkit [53] and its conformer optimization procedure and then docked into the ligand binding pockets. Multiple
docking tools (such as AutoDock Vina [7], iDock [44], Qvina2 [45], and Smina [46] were adopted for docking pose generation. The docking
pose generation protocol was exactly the same as used in datasets 2, 4, and 6 (Table 1), as described in Section 2.2. For each protein-ligand
pair, no more than 500 decoys were generated and scored by the pose ranking model. The top-ranked 50 poses were then selected and
clustered into 5 clusters by K-means algorithm [54], and the representative poses of the 5 clusters were visually re-ranked according to their
binding patterns. The 5 poses then were submitted under group AIchemy_LIG (see Figure S1).

The selected five poses by clustering and visual inspection thuswere further optimized usingDeepRMSD [34] guided byDeepRMSD+Vina
scoring scheme for no more than 100 steps. The last frames of the optimized poses thus were submitted under group AIchemy_LIG2 (see
Figure S1). For group AIchemy_LIG3, the 5 poses of AIchemy_LIG2 were further scored by DeepRMSD and submitted.

2.5 | The zPoseScore training protocol
A multi-task learning strategy was employed for the training of zPoseScore single models. The loss function for zPoseScore optimization
consisted of three parts: scoring loss, coordinate refinement loss, and self-supervised loss.

Scoring loss LpRMSD is the primary loss in our optimization. It aims to train models as an RMSD evaluator that predicts the RMSD of the
input ligand poses against the ground truth structures. The RMSD value is discretized into 10 bins with an interval of 1.0 Å. A cross-entropy
loss is employed as LpRMSD to calculate if the predicted RMSD falls in the ground truth bin. Coordinate refinement loss Lr ef i ne is designed to
supervise the zPoseScore to learn the structural information of protein-ligand complexes directly. It calculates theMean Squared Error (MSE)
loss between the refined coordinates output by the scoring module and the native ones. We believe that this auxiliary atom-wise structural
supervision can be beneficial to the training of the scoring function. Self-supervised loss Lsel f −superv i sed is achieved by predicting the atomic
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TABLE 1 The protein-ligand complex datasets.
Dataset Protein structure Group pairs Datasource
dataset 1 experimental training + validating 33632 All PDB
dataset 2 predicted training + validating 30674 All PDB
dataset 3 experimental testing 283 CASF-2016 coreset
dataset 4 predicted testing 250 CASF-2016 coreset
dataset 5 experimental testing 247 PDBBind2020 new data after 2021
dataset 6 predicted testing 175 PDBBind2020 new data after 2021

TABLE 2 The performance of single models with different network dimensions, pocket atom selection, and sampling strategies.
SN Description Network hyperparameters Training data dataset 5 dataset 6

R (PCCa ) R (SCCb ) R (PCCa ) R (SCCb )
1 model dimension dim64, prot64, distance dataset 1 0.439 0.405 0.262 0.268
2 model dimension dim96, prot64, distance dataset 1 0.458 0.423 0.292 0.272
3 model dimension dim128, prot64, distance dataset 1 0.467 0.434 0.311 0.278
4 number of pocket atoms dim64, prot64, distance dataset 1 0.439 0.405 0.262 0.228
5 number of pocket atoms dim64, prot96, distance dataset 1 0.454 0.410 0.290 0.261
6 number of pocket atoms dim64, prot128, distance dataset 1 0.470 0.427 0.335 0.311
7 training data dim64, prot128, distance datasets 1 and 2 0.449 0.376 0.511 0.470
8 atom sampling dim64, prot128, pointsite datasets 1 and 2 0.467 0.389 0.509 0.457
9 atom sampling dim64, prot128, distance+pointsite datasets 1 and 2 0.483 0.406 0.511 0.467
a. PCC indicates Pearson’s correlation coefficient.
b. SCC indicates Spearman’s correlation coefficient.

types of masked atoms. More specifically, in the training process, we generate random masks on a subset of atoms in both proteins and
ligands and require the model to predict the masked atom types. The purpose of this self-supervised loss is to endow the model with better
generalization capabilities.

The overall loss function is:
L = LpRMSD + Lr ef i ne + Lsel f −superv i sed (1)

During training, we also performed online data augmentation by randomly rotating and translating ligands’ 3D positions. We employed
the Adam optimizer [55] with a learning rate of 1e-3 and utilized a cosine annealing scheduler to adjust the learning rate [56]. The entire
training process consisted of 40,000 steps with a batch size of 512. We used 8 32GB-V100 GPUs, and the training took 9 hours to finish.

3 | RESULTS AND DISCUSSIONS
3.1 | The performance of different models with various hyper-parameters
Based on the network architecture defined in Figure 1, several single models were trained with various hyper-parameters. In these single
models, the atoms around the protein-ligand interface are encoded by the structure encoder module with various encoding dimensions (see
Table 2). Three dimension options (64, 96, and 128) were tested and the results indicate that a higher dimension could not guarantee better
performance, and dimension = 64 was adopted for further hyper-parameter tuning (models 1-3). In many graph-based DL models [35, 57],
an arbitrary distance cut-off is used to select the protein atoms or residues to describe the interaction area, however, it is not clear whether
such a setting is suitable for our single models. Meanwhile, very large graphs would slow down the model training and inference, so in these
single models, only a limited number of protein atoms are selected for encoding. Here, the distance-ranked and binding-pocket probability-
based [43] protein atom sampling strategies are applied. In each protein-ligand complex (either native complex or docking complex), the
protein atoms are ranked by their minimal distances to ligand-heavy atoms and only a fixed number of atoms (64, 96, and 128 in models
4-6 in Table 2) are then selected for protein atom encoding. It is obvious that more protein atoms could contribute to higher prediction
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accuracy in both datasets 5 and 6. It is worth trying to explore the possibilities of using more protein atoms for binding pocket encoding,
but exponential resources would be required for model training. In CASP15, we used 128 protein atoms for pocket encoding in the single
models.

Models 1-6 were all trained with training dataset 1, where the experimental protein structures were used for docking decoy generation.
To ensure robust performance for CASP15 tasks, the protein-structure-bias should be avoided, therefore training dataset 2 was composed
by using the predicted protein structures and predicted binding sites for docking decoys generation. With the same model architecture and
hyperparameters, model 7 shows better prediction accuracy (Pearson’s R = 0.511 and Spearman’s R = 0.47) on testing dataset 6 which is also
based on prediction protein structures, but model 6 (Pearson’s R = 0.47 and Spearman’s R = 0.437) is more accurate than model 7 (Pearson’s
R = 0.449 and Spearman’s R = 0.376) on testing dataset 5, which is based on experimental protein structures.

Finally, we posit that employing computed binding site probabilities as criteria for protein atom sampling could enhance the accuracy of
pose scoring. In model 8, instead of utilizing minimum distances between protein and ligand atoms for protein atom selection, we adopted
the protein atoms with maximum predicted probabilities generated by PointSite for encoding. Our findings indicate that the integration of
PointSite-based atom sampling improves the performance (Pearson’s correlation R = 0.467 and Spearman’s correlation R = 0.389) on dataset
5, which comprises experimental protein structures, in contrast to model 7. However, the performance of model 8 is inferior to that of
model 7 on dataset 6, consisting of predicted protein structures. The original study posits that PointSite, which is a point-cloud-based deep
learning model trained on experimental protein-ligand complexes for identifying binding sites, may suffer from decreased accuracy when
predicting protein structures [43]. Moreover, the pocket residue side-chains predicted by AlphaFold2 may obstruct ligand binding, thus
making PointSite-based protein atom sampling suboptimal for assessing dataset 6 and dataset 4. Section 3.4 dives further into the impact of
pocket residue side-chain orientations. Moreover, combining distance-based and PointSite-based protein atom sampling (model 9) enhanced
pose scoring accuracy for both datasets 5 and 6.

In essence, it is evident that disparate hyper-parameters associatedwith the networkwould undeniably impact the capacity of algorithms
to accurately estimate the pose score of ligand molecules. Specifically, augmenting the number of atoms that constitute the binding site
of the ligands during the process of pocket encoding and exploring varying pocket atom sampling strategies could effectively improve the
pose-scoring abilities. Notably, amalgamating models to produce a meta-predictor, referred to as the zPoseScore model, has the potential
to bolster the prediction performance. A more comprehensive discussion on the zPoseScore model is presented in Section 3.2.

3.2 | The ensemble zPoseScore model performance

F IGURE 2 The per-target ranking abilities of zPoseScore and Vinascore on dataset 3 (a and b), dataset 4 (c and d), dataset 5 (e and f),
and dataset 6 (g and h). The color bars indicate the performance difference between the two scoring methods Vinascore and zPoseScore,
brick red dots, therefore, suggest zPoseScore greatly outperforms Vinascore for different protein-ligand complex systems.

To improve the performance on the CASP15 tasks, we generated a meta-predictor (called zPoseScore model) by ensembling several
single models (models 2,3, 6, 7, 8 and 9 in Table 2). To evaluate the performance of the zPoseScore model and the widely used docking tool
AutoDock Vina [7] for docking pose ranking, four testing protein-ligand docking decoys datasets in Table 1 were used. In AutoDock Vina,
the docking poses are sampled through Monte Carlo sampling and local energy minimization using the Limited-memory Broyden-Fletcher-
Goldfarb-Shanno (LBFGS) algorithm guided by Vinascore. This scoring method (Vinascore) is a representative traditional scoring function
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TABLE 3 Performance (averaged per-target correlation) comparison of different scoring methods.
dataset 3 dataset 4 dataset 5 dataset 6

Method R (PCCa ) R (SCCb ) R (PCCa ) R (SCCb ) R (PCCa ) R (SCCb ) R (PCCa ) R (SCCb )
zPoseScore 0.783 0.729 0.659 0.593 0.604 0.535 0.554 0.507
Vinascore 0.162 0.186 0.035 0.071 0.364 0.356 0.209 0.192
DeepBSP 0.561 0.539 0.401 0.375 0.543 0.507 0.451 0.418
RTMscorec 0.736 0.668 0.632 0.576 - - - -
DeepRMSD 0.62 0.584 0.463 0.43 0.285 0.246 0.261 0.247
DeepRMSD+Vinad 0.449 0.449 0.248 0.29 0.405 0.362 0.299 0.287
a. PCC indicates Pearson’s correlation coefficient.
b. SCC indicates Spearman’s correlation coefficient.
c. the complexes in dataset 5 and dataset 6 are part of the train set of RTMscore. The values multiplied by -1.0 are used for RMSD prediction.
d. the weight for Vinascore is 0.5.

[30, 34].
In this work, we demonstrate that our zPoseScore model outperforms both Vinascore and other DL-based scoring methods [20, 57, 34]

in terms of ligand pose ranking and RMSD prediction tasks, based on experimental or predicted protein structures. The use of predicted
protein structures and optimized pocket side-chain orientations for docking pose generation and ranking is more practical in the context of
the rapidly growing structural proteome study and functional annotations of predicted structures in AlphaFold DB [58]. Moreover, cross-
docked docking poses are crucial for model training for real-world docking applications; similarly, the predicted structure and related pockets
serve as the non-native docking pockets.

In Figure 2, the Pearson’s correlation (or per-target correlation) between predicted pose scores and true pose RMSDs is shown for each
protein-ligand complex system, using no more than 500 docking poses generated with various docking protocols based on experimental or
predicted protein structures. A higher correlation value indicates better pose ranking ability. For all four test sets, zPoseScore outperforms
Vinascore in pose ranking tasks. For instance, for the protein-ligand complex 6UFO (see Figure S3), zPoseScore effectively predicts the true
RMSD values of the docking poses, while Vinascore failed to predict the docking pose RMSD ranking.

The performance of differentDL-basedmethods is also summarized in Table 3. The three deep learningmodels (DeepBSP [20], RTMscore
[57], and DeepRMSD [34]) show reasonable accuracy on dataset 3 and dataset 4. Among them, RTMscore achieves an averaged per-target
Pearson’s correlation coefficient of 0.736, indicating its potential to serve as a good scoring function for docking pose ranking in dataset 3.
When equipped with Vinascore, DeepRMSD shows improved performance in dataset 5 and dataset 6. Nonetheless, DeepRMSD is trained
with experimental re-docking poses, which makes it susceptible to overfitting to the training data and unsuitable for predicting pose RMSD
for dataset 4 and dataset 6, where predicted protein structures are used for docking pose generation. Although the training sets of these
scoring functions are not identical, the results still indicate the potential advantages and practical usability of our zPoseScore model.

3.3 | The CASP15 prediction performance
In CASP15, protocols were designed to predict the protein-ligand complexes, by predicting the protein structure, predicting the binding sites,
followed by generating a group of docking poses with certain variability, and then scoring and ranking the poses, and lastly clustering the
poses. Optionally, DL-based optimization was performed to ensure more fine-grained docking poses. For all these predictions, the standard
alone performance of each step, however, is not easy to evaluate. Rather, we summarize the overall prediction accuracy of the three groups
(AIchemy_LIG, AIchemy_LIG2 and AIchemy_LIG3).

The CASP15 performance of different groups is illustrated in Figure 3. The groups (AIchemy_LIG, AIchemy_LIG2 and AIchemy_LIG3)
achieved average lDDT scores (Figure 3, panel a) of 0.541, 0.558, and 0.549. The lDDT score represents the average ratio of local protein-
ligand contacts located within certain distance ranges. It is a commonly used metric in protein structure predictions and is more fine-grained
and alignment-free than the global distance test (GDT), which is defined by calculating the largest set of alpha carbon atoms within several
predefined distance cutoffs after structure superimposition [59]. Higher lDDT scores indicate more accurately predicted local protein-ligand
heavy atom contacts. In computing the lDDT scores, all unique ligands for a given target were merged and evaluated as a single task, and
only the best-performed first poses were considered.

Meanwhile, around 50.9%, 54.4%, and 52.6% protein-ligand pairs could be successfully predicted (Figure 3, panel a) by the three groups
(AIchemy_LIG, AIchemy_LIG2 and AIchemy_LIG3). Based on the averaged protein-ligand interaction-based lDDT scores, Zou, CoDock and
AIchemy_LIG2 are the top-ranked 3 groups, while if evaluated by the successfully predicted ratio, the three groups achieve the same perfor-
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mance. Here, the ratio is defined as the ratio of the protein-ligand pairs whose top-ranked poses are near-native poses (global RMSD less
than 2 Å to the native ligand poses with the predicted proteins aligned to the native protein structures ahead of the RMSD calculation). Dif-
ferent from lDDT score, the RMSD values should be computed after structure superimposition based on overall protein structure or ligand
binding site residues, thus introducing potential uncertainties in the calculation. The metric calculated here is quite similar to the docking
successful rate (or so-called docking power) defined in [30, 31], but the difference is that in CASF-2016, the protein structures are extracted
from experimental structures.

According to various assessment criteria, the performance outcomes of our predictions, as generated by AIchemy_LIG, AIchemy_LIG2,
and AIchemy_LIG3, rank among the top performers in the field [? ].

F IGURE 3 The CASP15 performance of different groups. a, the distribution of the top-ranked pose protein-ligand interaction lDDT
scores of the protein-ligand pairs in CASP15 targets; the orange lines indicate the median values, and the violet triangles indicate the mean
values. b, the ratio of the successfully predicted protein-ligand pairs.

3.4 | Protein pocket predictions affect the model quality and ligand pose prediction
In CASP15, only protein sequence and ligand SMILES information are provided. In current solutions, the protein structure is firstly predicted
with AlphaFold2 [48] or other structure prediction models. We built extensive training sets to mimic the real usage scenario by predicting
the protein structure, followed by binding pocket prediction, ligand pose generation, and pose scoring.

Therefore, the ligand binding site prediction is a fundamental requirement for correct ligand pose prediction [30, 31, 60]. For example,
target T1181 is a tetramer structure of the tail fiber proteins (gene name: gp66) from Escherichia phage, and four small molecules and four
ions are supposed to bind the tetramer structure (Figure 4, panel a and b). For this target, AIchemy_LIG and the other two groups both failed
in predicting the right binding sites using PointSite [43], resulting in very large ligand pose RMSDs with regard to the native ligand poses.
Similarly, the ligand poses predicted by other teams also are quite different from the native ligand poses (with RMSDs larger than 5 Å). A
more robust ligand binding sites prediction method should be developed to solve the situations where protein structure and binding site are
unknown.

The side chains or sometimes the backbones of the binding pocket residues are however often quite divergent to the native orientations
[62], and the scoringmodel zPoseScore and traditional scoring functionVinascore are less able to accurately predict the docking poses’ RMSD.
In dataset 5 (Figure S2 left panel) and dataset 6 (Figure S2 right panel), in more cases, the ranking abilities are much stronger for the poses
generated based on experimental protein structures (higher per-target correlations in lower triangle regions). For the cases with docking
poses generated based on predicted structures, the per-target correlations of nearly half of the protein-ligand complexes are not satisfactory
(Pearson’s correlation less than 0.25) for Vinascore. Although zPoseScore is more tolerant to the predicted protein structure-based docking
poses, around 1/3 of the protein-ligand complex systems are still badly predicted (Pearson’s correlation less than 0.25).

Sometimes, the ligand binding site could be accurately predicted either by deep learning methods [43, 63, 64], geometry-based methods
[65], or even by the template-based hypothesis [66], however, the orientations of the binding site residues’ side-chains are required to be
precisely predicted to generate ligand binding poses with atomic-level accuracies. AlphaFold2 [48] predicts high accuracy of protein overall
structures, but the prediction accuracies of the side-chain orientations, especially the ligand binding sites, are not satisfactory [62, 67].
Several studies [68, 69] adopt the AlphaFold2 predicted structures for ligand docking and virtual screening, and conclude that the predicted
structures could achieve similar enrichment performance when compared to the apo-form receptors, but by optimizing the binding site
site-chains orientations (using Glide induced-fit protocol [9]), the enrichment performance could be greatly improved.

Similar behavior is observed in CASP15 protein-ligand predictions. For example, in CASP15, T1124 is a dimeric tyrosine methyltrans-
ferase (MfnG) from Streptomyces drozdowiczii (Figure 4, panel c and d). We first predicted the binding patterns of the cofactor S-adenosyl-L-
Homocysteine (SAH) by protein structure prediction and binding site prediction. By searching similar structures in RCSBPDBusingDeepAlign
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F IGURE 4 The binding patterns and RMSD distributions of CASP15 targets T1181 (a and b) and T1124 (c and d). For a and c, the
predicted ligand poses are orange, the native ligand poses are pink, the green color structure is a monomer of the predicted protein, and
the gray color structure is the native protein structure. For b and d, the orange lines indicate the median values and the violet triangles
indicate the mean values, and the outliers are marked by red crosses. In panel c, the yellow color side-chains (Tyr163 and Phe253) are
optimized by PyMol [61].

[42], similar structures with SAH binding were identified (such as PDB IDs 6C5B and 4A6E). Detailed inspection suggested that several side-
chains in the binding site may hinder the SAH binding, thus the two residues (Tyr163 and Phe253) were optimized by PyMol [61] mutation
tool to avoid the potential spatial clashes with the cofactor SAH. Based on the optimized ligand binding pocket, the predicted SAH binding
poses are quite close to the native poses (best lDDT=0.884 and RMSD=0.585 Å by AIchemy_LIG2). Meanwhile, the average RMSDs of most
of the predicted poses are higher than 2 Å.

4 | CONCLUSION
To enhance the accuracy of predicting protein-ligand binding poses for the CASP15 tasks, we have created large-scale protein-ligand docking
decoy datasets. These datasets are composed of multiple docking decoys generated by various docking tools based on experimental and
predicted protein structures and DL-based binding site predictions. We have used these datasets for training and testing purposes to ensure
objective and reliable model inference. We have developed several single models for this purpose. These models incorporate protein and
ligand atoms encoding, iterative information updating through zFormer, and a ligand pose optimization and scoring output, therefore they
could predict both optimized ligand poses (not utilized for CASP15 submissions) and score per-atom deviations of the docking poses. With
the methodology of scoring and ligand pose optimization by DeepRMSD [34], our model demonstrates relatively robust performance when
applied to various testing datasets and CASP15 protein-ligand predictions. We have identified that accurate prediction of ligand binding
sites and side-chain orientation is crucial for improved prediction capabilities. In the future, the zPoseScore model will be expanded to
include fully flexible protein-ligand modeling with protein side-chain orientation optimization. Additionally, adapting the zPoseScore model
to become a more lightweight scoring method would be advantageous for large-scale ligand virtual screening and structural-based molecule
generation with reliable binding poses and high affinities.
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Appendix A: Additional Figures and Tables

F IGURE S1 The protein-ligand prediction pipeline in CASP15 for group AIchemy-LIG and AIchemy-LIG2.



Shen et al. 13

F IGURE S2 Scoring methods are less accurate for ranking docking poses based on predicted pockets.

F IGURE S3 Scoring methods are less accurate for ranking docking poses based on predicted pockets.


