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Abstract

Monitoring the effect of ecosystem restoration can be difficult and time consuming. Autonomous sensors, such as acoustic
recorders, can aid monitoring across long time scales. This project successfully developed, tested and implemented call recog-
nisers for eight species of frog in the Murray-Darling Basin. Recognisers for all but one species performed well and substantially
better than many species recognisers reported in the literature. We achieved this through a comprehensive development phase,
which carefully considered and refined the representativeness of training data, as well as the construction (amplitude cut-off)
and the similarity thresholds (score cut-offs) of each call template used. Recogniser performance was high for almost all species
examined. Recognisers for C. signifera, L. fletcherii, L. dumerilii, L. peronii, and C. parinsignifera all performed well, with most
templates having ROC values (the proportion of true positive and true negatives) over 0.7, and some much higher. Recognisers
for L. peronii, L. fletcherii and L. dumerilii performed particularly well in the training dataset, which allowed for responses
to environmental watering events, a restoration activity, to be clearly observed. While slightly more involved than building
recognisers using commercial packages, the workflows ensure that a high quality recogniser can be built and the performance
fine-tuned using multiple parameters. Using the same framework, recognisers can be improved in future iterations. We believe

that multi-species recognisers are a highly effective and precise way to detect the effects of ecosystem restoration.

Introduction

Bioacoustics — the study of sound production, dispersion and reception in animals — has been practiced
for millennia. Even in underwater systems, Aristotle had described communication between animals in
great anatomic and behavioural detail (Aristotle, 1910; Linke et al., 2020). Bioacoustics can be used to
study animal ecology — for example, reproductive behaviour and success (Teixeira et al., 2019) - to monitor
population dynamics of native or invasive species (Brodie et al., 2020b), and to detect rare and endangered
soniferous animals (Dema et al., 2020; Dutilleux and Curé, 2020; Znidersic et al., 2020). The sister discipline
ecoacoustics is a new field that is not restricted to biotic organisms, but — like ecology to biology — investigates
biodiversity, its relation to habitats as well as populations and ecological communities (Sueur and Farina,
2015).

Ecoacoustics has been used to quantify ecological responses to environmental restoration or improvement
in condition, providing a rapid and continuous monitoring framework that can detect both degradation and
restoration success (Greenhalgh et al., 2021; Linke and Deretic, 2020; Znidersic and Watson, 2022). Often,
acoustic indices are used in assessments. These indices are analogous to measurements of diversity or richness
in classical ecology — they summarise the acoustic properties of an overall soundscape, for example its spatial,
temporal or combined complexity, its overall volume or the relation between natural and human-influenced
frequency bands (Sueur et al., 2014). However, given inherent variations in soundscapes between places,



ecoacoustic indices must be calibrated by ecosystem. While some authors have described clear variation
along landscape gradients (Ng et al., 2018), others have found little relation of acoustic indices to human
disturbance (Mitchell et al., 2020). Other studies have found that acoustic indices can be dominated by
single acoustic events, for example river flows (Linke and Deretic, 2020) or single species that dominate the
soundscape, such as snapping shrimp (Bohnenstiehl et al., 2018).

To examine restoration of wetlands in Australia’s most highly regulated river system, the Murray-Darling,
Linke and Deretic (2020) used both manual annotation and ecoacoustic indices to track recovery of amphibian
and waterbird populations. The Murray-Darling system currently flows at only “40% of its natural capacity,
with the bulk of the extracted water used for irrigated agriculture (Grafton et al., 2014). Under a federal
government initiative - the “Murray-Darling Basin Plan” - water is being returned to rivers and wetlands via
water buybacks from irrigators, however quantifying ecological recovery over the long term is difficult (King
et al., 2015; Souchon et al., 2008). Linke and Deretic (2020) pioneered the use of ecoacoustic analysis as a tool
to continuously monitor populations after restorative water returns to wetlands. When manually listening
to recordings of frog and bird calls, they found highly significant responses in richness of water-dependent
biota to environmental watering. However, the response of acoustic indices was much weaker, and in some
cases non-significant, partially obfuscated by ambient noises, and also subject to high diurnal variation. This
led the authors to conclude that a logical next step was to trial multi-species call recognisers that would
combine the advantage of species specificity with the automated processing of acoustic indices (Linke and
Deretic, 2020).

Call recognisers usually function to detect single species, since bioacoustics is often used to detect cryptic
or rare animals. However, as the application of acoustics to environmental monitoring increases, multi-
species recognisers are likely to become more important. Multi-species recognisers detect sympatric species
simultaneously (Wright et al., 2020; Zhong et al., 2020), and outputs can be analysed for species separately or
combined. This is useful where groups of species (e.g. mixed species frog choruses) represent environmental
change or other ecological values. Like single-species recognisers, multi-species recognisers can use acoustic
indices to detect soundscapes in which target species are likely to occur (Brodie et al., 2020a), or they
can implement several single-species algorithms to detect discrete calls (Ruff et al., 2020). There are many
challenges to creating reliable multi-species recognisers, however methods for reducing the increased risk of
false detections are beginning to be examined (Campos et al., 2019; Wright et al., 2020).

Performance metrics used to evaluate and report on call recogniser performance are highly variable in the
literature (Knight et al., 2017). Terminology is inconsistent and studies may report only a small number of
possible performance metrics. This makes comparisons and repeatability difficult. Perhaps more importantly,
there are major inconsistencies in type and amount of training data used and the test datasets upon which
recognisers are evaluated. While strictly standardised methods are unlikely be feasible (e.g. for rare species,
datasets can be extremely difficult to acquire), studies should, as a minimum, report the representativeness
of the training data, how these were chosen or tested, and any limitations or assumptions. Decisions relating
to, for example, geographical coverage may have important consequences for recogniser performance and
transferability among regions. Moreover, the extent to which training and test data include real-world ambient
noise should be explained, because factors like wind, noise and other species’ calls can significantly impact
false detections (Brandes, 2008; Cragg et al., 2015; Crump and Houlahan, 2017; Kahl et al., 2021; Knight et
al., 2017; Priyadarshani et al., 2018; Salamon et al., 2016; Towsey et al., 2012). To standardise the reporting
of performance metrics, Knight et al. (2017) recommended all studies report precision, recall, F-score and
area under the precision-recall curve (AUC) or, for comparison with the broader classifier literature, receiver
operating characteristics (ROC) curve.

Using a template-matching algorithm (binary point matching, Towsey et al., 2012) in the R package monitor
(Katz et al., 2016b) , we aimed to establish a free and open source protocol to optimise multi-species call
recogniser construction and evaluation using three levers: template selection, amplitude cut-off and score-
cut-off.

e First, we tested the performance of geographically-representative candidate call templates (training



data) and, from this, selected a small number of high-performing templates from which to construct
call recognisers.

e Second, we examined call templates at a range of amplitude cut-offs, which alters their detection
sensitivity.

e Third, we tested templates across a wide range of score cut-offs, which defines the threshold of similarity
between templates and sound data at which a detection is returned.

As a case study, we tested this protocol on the calls of eight sympatric frog species from the Koondrook-
Pericoota wetland complex in the Murray-Darling Basin.

Methods
Overview and computational strategy

To build and evaluate the recognisers for eight target frog species, we used a large database of annotated
calls from the study area in Koondrook-Perricoota (KP) forest. The Forestry Corporation of NSW- the
body commissioning the study — had previously annotated 831 files from 20 sites and found varying levels
of presence for the different species. From these files, we extracted between 100 to 200 reference calls per
species, from all sites where the species was detected. Following manual inspections for call clarity and
variation, we used these reference calls to build approximately 20 candidate recognisers per species (i.e., one
template equals one recogniser per species). Some recognisers were based on templates of the same reference
call, but were created using different amplification settings, which is modifiable in monitoR. We then ran the
recognisers on the pre-annotated files to calibrate the score cut-off (similarity threshold between reference
call templates and the sound files) and estimate omission and commission errors. We then chose the final
recognisers based on the best ROC (Receiver Operator Criterion, Zou et al., 2007), thus minimising both
false positive and false negative detections.

Study area and data collection

The Forestry Corporation of NSW provided two years of acoustic data files recorded between February 2018
and February 2020. A SongMeter 3 or SongMeter 4 (Wildlife Acoustics Inc.) sound recorder was deployed at
each of the 20 study sites (see Appendix 1) in the KP Forest. Prior to January 2019, each recorder recorded
five minutes of audio per day at dusk. The start time of each recording changed according to the time of
sunset that day. From the acoustic data provided by the Forestry Corporation of NSW, eight frog species
were identified as potential indicators of ecological health. A list of previously annotated detections (i.e.
times, dates, and locations that these frogs had been detected via manual listening) was also provided by
the Forestry Corporation of NSW (see Table 1 for the number of files where the candidate frog species were
present in annotated files).

Table 1 Count of annotated evaluation files where calls of candidate frog species were present

Species Evaluation files (n)
Crinia signifera 300

Limnodynastes tasmaniensis 146

Limnodynastes fletcherii 78

Limnodynastes dumerilii 74

Litoria peronii 118

Crinia parinsignifera 298

Neobatrachus sudelli 62

Litoria raniformis 24

To build a training dataset of calls for recogniser development, we first manually selected and extracted a
minimum of 100 reference calls for each species using Adobe Audition CC and Raven Pro 1.5 software. To
maximise representativeness, we (a) selected calls from as many surveys sites as possible, to capture geo-



graphical variation, and (b) selected calls of varying quality and amplitude, to capture soundscape variation.
These are important steps to improve the similarity between call templates and ‘real-world’ sound data.
Building a recogniser solely from calls that are loud and clear would perform poorly if the species’ calls are
rarely loud and clear in field recordings. Given the complexity of frog choruses, variations in ambient noise
and differences in amplitude among calls (e.g. from variations in the distance of the frog from the sound
recorder), capturing diversity in call templates is a critical component of recogniser construction.

Recogniser construction

To construct the recognisers, we used the technique ‘binary template matching’ — a technique that first
converts a spectrogram into a binary template and then matches ‘on’ and ‘off’ points of the template to the
file the recogniser is applied to (Katz et al., 2016b; Towsey et al., 2012). This was done using the monitoR
package in R, which provides flexibility in its construction parametres (Katz et al., 2016b). To build the initial
recognisers, templates were constructed from a minimum of 10 reference calls (from the pool of 100 candidate
calls) that were both clear and representative of the variation in calls and environmental conditions. Binary
templates comprise ‘on’ and ‘off’ regions (call and non-call), which are based on a user-defined amplitude
cut-off (Figure 1). Each template’s amplitude cut-off was determined through manual inspection of templates
using the makeBinTemplate function in monitoR (Katz et al., 2016b). Amplitude cut-offs were set arbitrarily
and progressively altered and reviewed. A cut-off that clearly showed call structure and was not masked by
background noise, was deemed appropriate, with some background noise deemed acceptable.
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Figure 1 Example of amplitude cutoffs of a) -37dB, b) -34dB, c) -31 dB for a single Crinia signifera template.
Orange indicates “on” (call) regions and blue indicates “off” (non-call) regions.

The lower and upper bounds of the template’s frequency limits were manually chosen to capture as much
of the call as possible, while minimising potential overlap with common noise sources (e.g. crickets). Most
templates were constructed with a window size of 512 samples. Templates for C. signifera used a window
size of 256 samples to improve the resolution of the species’ highly pulsatile call. Both the frequency limit
and the window size affect the number of on and off points in the template and, therefore, the template’s
speed. ForL. tasmaniensis, we trialled templates with both window sizes, but chose to use the 512 sample
templates as they showed the call’s structure more clearly.

Recogniser evaluation and score cut-off

For each template we tested a range of score cut-offs, which is a user-defined similarity threshold at which
a template will return a detection. This threshold alters the proportion of true positive and false positive
detections and is, therefore, an important part of optimising call recognisers (Katz et al., 2016a). For
each species, we tested the recognisers at a low score cut-off of 3; thus, any call instance that scored 3 or
higher was returned as a detection by monitoR. Optimal score cut-off for each template was determined by
constructing receiver operating characteristic (ROC) curves, a diagnostic tool that optimises that trade-off
between false positive and true positive rates (Figure 2). We calculated true and false positive rates at score
cut-off increments of 0.2 and determined the optimum as the score cut-off where true positives were greatest
relative to false positives (i.e. the peaks in Figure 2). We then retained these score cut-offs for the recogniser
evaluation.
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Figure 2 ROC plots for different templates to detect Limnodynastes fletcherii . Templates 1, 2, and 3 were
chosen with the score cut-off corresponding to the highest ROC.

Recogniser evaluation and detection of false positives

Recogniser performance was evaluated on a manually verified and balanced subsample of 1-minute sound
recordings that were categorised for each species’ presence or absence. The sample size of evaluation files
varied among species. Any detection returned in a recording where the species was present was taken to be
a true positive detection. All other detections were deemed false positives. For each template, we quantified
the number of call detections in sound files where the species was present (true positive count; Count TP)
and absent (false positive count; Count FP) and the number of sound files in which the presence/absence
(PA) of species was correctly detected (true presence: PA TP), incorrectly detected (false presence; PA FP),
missed (false absence; PA FN) or correctly undetected (true absence; PA TN). Using these values, for each
template we calculated precision, recall and ROC value, which are given by the formulas:

Precision = True Positives / (True Positives + False Positives)
Recall = True Positives / (True Positives + False Negatives)
ROC = (True Positives + True Negatives) / Number of evaluation files

Sample detections of false positives were manually verified. To determine the source of false positive, files that
the recognisers deemed as having the frog species present were cross-examined against the manual detection
list provided by the Forestry Corporation. This presented a list of unverified false positive detections —
where the recognisers identified a call, but the original manual detection list indicated the frog species was
not present. A subsample of these false positive detections was manually verified through audio and visual
cues on Adobe Audition CC. The false positive detection files were reviewed until the source categories of
these false positive detections were considered consistent.

Results
Recogniser performance evaluation

Recognisers performed well for most species (Table 3). Performance was high (ROC > 0.8) for templates of
L. dumerilii ,L. fletcheri, and L. peronii. Performance was also high for N. sudelli and L. raniformis but
the sample sizes of their evaluation files were relatively small (Table 2). Performance was moderately high



(ROC > 0.7) for most templates of C. signifera and C. parinsignifera. Conversely, performance was poor
for L. tasmaniensis (ROC < 0.6), for which most templates showed low precision and moderate recall.

The L. fletcherii recogniser comprised two templates from two sites. All templates performed well. The
first template had very high precision with only two false positive detections in one sound file. However,
it had the greatest number of false negatives (i.e. poorest recall). The highest performing template had
a ROC value of 0.897 and was moderately sensitive, but yielded fewer false positives. The third template
was excluded. The L. dumerilii recogniser comprised four templates from two sites. Three of the templates
had very high ROC values (0.87-0.81). The fourth template displayed the greatest number of false positive
detections and the poorest ROC value (0.824) was excluded from the recogniser. The L. peronii recogniser
comprised three templates from a single site. Two templates, had the same ROC value of 0.847 and all
templates had relatively high precision.

The C. signifera recogniser comprised three templates from two sites, two from site S and one from site H
(Appendix 1). All three templates performed moderately well, with ROC values between 0.767 and 0.793,
modest survey precision and good recall. The C. parinsignifera recognisers were constructed from three
templates, stemming from two sites. The template from the first site performed poorly, with a ROC value of
0.671. This template detected over 6700 calls in 58 sound files where the species was absent (low precision).
The other templates were more precise and performed moderately well, with ROC values around 0.7-0.73.

The L. tasmaniensis recognisers performed poorly, with ROC values of 0.562, 0.596 and 0.582. One template
performed moderately well for survey recall (0.822) but had poor precision and a very high number of
detections in sound files where the species was absent. The other templates performed worse.

Two other species had limited validation data. The L. raniformisrecogniser comprised three templates from
site R. All performed highly, with two templates having no false positives (precision of 1.00), and one template
having no false negatives (recall of 1.00). All templates had a ROC of 0.917, however these performance
metrics were calculated from only 24 evaluation sound files and should be interpreted cautiously. The N.
sudelli recogniser comprised three templates from site M. All templates had a high ROC value of 0.984. All
templates had false positive detections in only one file, although the number of detections varied. However,
performance was evaluated on only 62 sound files.

Table 2 Performance evaluation of final recognisers. Counts are the count of call detections in sound files
where the species was absent (Count FP) or present (Count TP). Presence-absence (PA) values are the
number of sound files where the species was missed (PA FN), correctly detected (PA TP), incorrectly
detected (PA FP) or correctly undetected (PA TN). Performance metrics are precision (TP/TP+FP) for
calls (Call Precision) and PA in files (Survey Precision), recall (TP/TP+FN) for PA in files and ROC. *
Template excluded from final analyses.

Species Template name Count FP Count TP Call Precision PA FP PA 1
Crinia signifera -43_129_SM4S 1048 7963 0.884 28 116
Crinia signifera -46_130_SM4S* 4432 18488 0.807 41 127
Crinia signifera -47_183_SM4H 2211 18609 0.894 40 120
Limnodynastes tasmaniensis 512 5khz_-27_95_SM3-E+0 10509 4245 0.288 37 46
Limnodynastes tasmaniensis 512 5khz_-32_45_SM4G* 18671 9747 0.343 46 60
Limnodynastes tasmaniensis 512 5khz_-32_90_SM3-E+0 1807 1134 0.386 25 37
Limnodynastes fletcherii -23.95_SM3-E 52 9438 0.995 7 36
Limnodynastes fletcherii -25_29_SM4G 2 1041 0.998 1 27
Limnodynastes fletcherii -31.54_SM4G 381 6531 0.945 6 37
Limnodynastes fletcherii -34_3_SM3-E* 903 1866 0.674 14 38
Limnodynastes dumerilii -18_104_SM3-E* 47 3253 0.986 11 35
Limnodynastes dumerilii -18_106_SM3-E 7 1964 0.996 4 32
Limnodynastes dumerilii -28.97_20181022 (SM4G) 3 4043 0.999 2 33
Limnodynastes dumerilii -35_30_SM4G 19 3452 0.995 5 36



Litoria peronii -30-256_60_SM3-E 31 1874 0.984 9 45
Litoria peronii -31.512_65_SM3-E 9 806 0.989 5 46
Litoria peronii -38_256_75_SM3-E 2 678 0.997 1 42
Crinia parinsignifera -30_37_SM4S 1273 6201 0.830 33 100
Crinia parinsignifera -33_.38_SM4S 1520 4563 0.750 26 91
Crinia parinsignifera -41_47_SM3-E0+1* 6707 10575 0.612 58 109
Neobatrachus sudells -23.512_94_SM4M 105 3032 0.967 1 31
Neobatrachus sudelli -39.512_100_SM4M 36 2645 0.987 1 31
Neobatrachus sudelli -52.512_1_SM4M 3 2097 0.999 1 31
Litoria raniformis -36.512_24_SM4R 0 28 1.000 0 10
Litoria raniformis -42_512_85_SM4R 8 962 0.992 2 12
Litoria raniformis -44 512_99_SM4R 0 100 1.000 0 10
Sources of false positive detections

The major sources of false positive detections varied between frog species (Table 3). Insects caused the highest

proportions of false positive detections for C.signifera, L. fletcherii, and C. parinsignifera . Calls by other

frogs also caused many false positives. Other frogs returned the highest false positives forL.tasmaniensis,

N. sudelli, L. raniformis , and second highest forC. signifera and L. fletcherii . False positive detections

resulting from birds were high for L. dumerilli, L. peronii , andL.raniformis . Additionally, weather caused

most false positive detections for L. tasmaniensis .

These false positive detection sources that generated some of the highest error — insects, other frogs, and

weather — often caused high detections due to their continuous nature - as opposed to just episodic events.

These categories of error routinely lasted the entire five-minute recording, hence resulting in very high false

positive detections in a single file. Conversely, false positive detections from sources such as anthropogenic,

aquatic, birds, nature, or other animals remained relatively low in quantity, as the intervals at which these

sounds repeated were infrequent.

Table 3: False positive detections per category per frog species given as a percentage of total false positive

detections of that species.

Sources of false positive detections (%) C. signifera L. tasmaniensis L. fletcherii L. dumerilii L. peronii  C. par
Anthropogenic 0.1 9.9 3.3 33.3 0 0
Water sounds 0.2 0.1 0 4.8 7.0 0
Birds 10.5 0 9.1 52.4 72.1 0
Insects 46.5 0 48.1 0 0 66.1
Other geophony 0 0.1 0 0 2.3 33.9
Other animals 0 0 0.4 0 0 0
Other frogs 41.7 50.6 35.3 0 4.6 0
Weather 0.8 39.3 3.7 9.5 14.0 0

Discussion

Single call annotation, whether manual or via recognisers, is a viable alternative to acoustic indices for
monitoring ecological restoration (Linke and Deretic, 2020). While recognisers are commonly treated as one
analysis class, there is a gradient in both effort and performance of auto-detectors. This ranges from largely
automated recognisers — typically built-in software packages such as ‘Kaleidoscope’ (Wildlife Acoustics, 2017)
— to completely custom-built software (Towsey et al., 2012). In all cases, various parameters alter recogniser
performance; these may be left as defaults in software or manipulated by the end-user. Differences in



recogniser construction alters performance and this can manifest as poor agreement among recognisers built
using different software (Lemen et al., 2015). Relying on recognisers without properly understanding how
they operate can be problematic (Russo and Voigt, 2016). In this study, we took a semi-custom approach;
we used a pre-programmed matching algorithm (Towsey et al., 2012; Ulloa et al., 2016) within the R package
monitoR (Katz et al., 2016b), but actively investigated three important parameters that are often overlooked
— or, at least, are rarely reported on - in recogniser construction. These parameters were call template
selection and representativeness, template construction (including amplitude cut-off) and the threshold of
similarity at which a detection is returned (score cut-off). We argue that there is a need to establish thorough
construction and evaluation mechanisms for building recognisers, and for these to be properly reported in
the literature.

First, choices pertaining to call template selection are crucial (Katz et al., 2016a; Teixeira et al., 2022).
Studies typically report the source of call templates (e.g. whether calls were collected from wild or captive
animals), but usually fail to explain the decisions underlying the selection of the exact calls used. For
example, were calls free of background noise — and how did this affect recogniser performance? Animal calls
exist not in isolation, but within an overall soundscape. As such, representing calls within the context of
the soundscapes that we seek to monitor may be important. While our call recognisers perform well overall
(Table 2), they are also prone to species-specific errors. For example, L. tasmaniensis recognisers produce
false positives for rain events, whereas erroneous detections of C. parinsignifera mainly found birds and
insects (Table 3).

In this study, we attempted to represent common background noises, such other species’ calls and non-
biological sounds (e.g. running water). Although we selected calls that were relatively clear in their structure,
we maintained a ‘buffer’ (or a margin) around each selection, in both the time and frequency domains. Since
any manual selection of candidate calls will incur a level of human bias, we chose to extract between 100
and 200 templates per species, from which a minimum of 10 were tested and only two or three were chosen
for the final recogniser. Although for some rare or cryptic species, call templates can be difficult to acquire,
we argue that, as much as possible, recognisers should be built following the testing of many candidate
templates.

Another important consideration is the representativeness of species’ call types and behaviours (Priyadar-
shani et al., 2018). For species that exhibit large vocal repertoires, decisions must be made about the call
types to feature in recognisers. This should be driven by a program’s objectives or research questions; for
example, monitoring breeding may require only one or two breeding-associated call types to feature in the
recogniser (Teixeira et al., 2019). Further, geographic variation in call structure (e.g. regional dialects) may
also impact recogniser performance, and should be investigated when recognisers are intended for use at
spatial scales over which call types may vary (Kahl et al., 2021; Lauha et al., 2022; Priyadarshani et al.,
2018). If recognisers are used among discrete or isolated populations, call templates may need to represent
each area. In this study, we attempted to represent inter-site variability by selecting candidate call templates
from every site where the species was recorded. For several species, the final recognisers comprised templates
from more than one site.

Once call templates are chosen, decisions must be made about their construction for use in a recogniser. In
binary point matching, call templates are created from a grid of on and off points (i.e. call and non-call
points), which are manipulated by the amplitude cut-off set by the user (Katz et al., 2016b). In monitoR,
the impact of altering amplitude cut-off can be easily visualised (Figure 1). In this study, we manipulated
amplitude cut-off to show both the call structure and some background noise. Since the recogniser ‘matches’
both the on and off points, finding a suitable balance between these is important. Although visualising and
selecting amplitude cut-off is a manual and somewhat arbitrary process, we considered that the large sample
size of candidate templates tested in this study would minimise any bias from this process. However, for
studies that test a smaller number of candidate templates, we recommend that each template is tested at
several different amplitude cut-offs.

Finally, an appropriate score cut-off, which sets the threshold of similarity at which a detection is returned
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(Figure 2), must be set for each call template. Score cut-off alters the template’s sensitivity and therefore,
greatly affects performance. A higher score cut-off will reduce false positive detections, but may increase
false negatives (Katz et al., 2016a). Conversely, increasing sensitivity by lowering score cut-off will reduce
false negatives, but it may reduce precision by returning more false positives. Here, we tested every call
template at score cut-off increments of 0.2 from a low of 3, and measured performance by ROC value. For
most species examined, high ROC values indicated that call templates were able to sufficiently trade-off
false positives and false negatives while maximising true positives. This rigorous approach to score cut-off
testing allowed us to set highly specific cut-offs in the final recognisers. However, for species that are rarer or
more cryptic, returning sufficient true positives may require a lower score cut-off with a poorer ROC value.
Where detecting most, if not all, calls is important, other performance metrics like recall should be given
due consideration. Ultimately, decisions about score cut-off should be driven by a study’s objectives, but we
argue that general metrics like ROC values are a good starting point in most cases.

We argue that ecoacoustic researchers and practitioners need to stop treating recognisers like a black box
and actively develop, improve and test processes that help evaluation. From the literature, it is currently
unclear how reliable recognisers are. Many studies report poor performance but this may be more a function
of inappropriate construction, rather than recognition methods per se. Especially recogniser testing is often
ignored and recogniser performance is reported by number of detections in a larger dataset. Even when
performance is reported, it is often unclear what the source of low recogniser accuracy is. We demonstrated
that this could have multiple causes, from badly selected templates to a lack of template calibration, for
example amplification or detection cut-offs. We recommend that recognisers are not treated as a static
product. They can be refined and adapted as more monitoring data become available. Using this study as
an example, we are currently working on a refinement for the recogniser forL. tasmaniensis that is based
on better template recordings. A complete recommended workflow could start with a recogniser built for
a particular species in a particular region, then enhanced by data from other environments, followed by a
performance evaluation and refinement as necessary.

Conclusion and future directions

In this study, we have demonstrated the possibility of building high quality single call recognisers for moni-
toring ecosystem restoration. While testing the recognisers on data collected before and after watering would
determine their precision in responding to actual restoration, we expect the response to be sharp as precision
and recall scored high for most species. If sharp responses are found, we encourage testing transferability of
recognisers to other locations as site specificity of recognisers has rarely been investigated. Amphibians are
also not the only soniferous taxonomic group that responds to environmental watering. Birds were responsi-
ble for the bulk of the manually annotated response curves described by Linke & Deretic (2020). We strongly
encourage additional studies that build call recognisers for water-dependent birds or alternatively trial the
performance of a pre-built recogniser such as BirdNet (Kahl et al., 2021). This has the potential to lay the
foundation for a real-time monitoring system that can detect the ecological outcomes of environmental water
allocations in the Murray-Darling Basin — a milestone in the management of a stressed, but recovering, river.
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