Humidity - The Overlooked Variable in Thermal Biology of
Mosquito-Borne Disease

Joel Brown!, Mercedes Pascual?, Michael Wimberly?, Leah Johnson*, and Courtney
Murdock?

!Cornell University

2University of Chicago

3University of Oklahoma

4Virginia Polytechnic Institute and State University

April 6, 2023

Abstract

Vector-borne diseases cause significant financial and human loss, with billions of dollars spent on control. Arthropod vectors
experience a complex suite of environmental factors that affect fitness, population growth, and species interactions across
multiple spatial and temporal scales. Temperature and water availability are two of the most important abiotic variables
influencing their distributions and abundances. While extensive research on temperature exists, the influence of humidity
on vector and pathogen parameters affecting disease dynamics are less understood. Humidity is often underemphasized, and
when considered, is often treated as independent of temperature even though desiccation likely contributes to declines in
trait performance at warmer temperatures. This Perspectives explores how humidity shapes the thermal performance of
mosquito-borne pathogen transmission. We summarize what is known about its effects and propose a conceptual model for
how temperature and humidity interact to shape the range of temperatures across which mosquitoes persist and achieve
high transmission potential. We discuss how failing to account for these interactions hinders efforts to forecast transmission
dynamics and respond to epidemics of mosquito-borne infections. We outline future research areas that will ground the effects
of humidity on the thermal biology of pathogen transmission in a theoretical and empirical framework to improve spatial and

temporal prediction of vector-borne pathogen transmission.

1. Introduction

Vector-borne parasites are common, important biological enemies of humans, animals, and plants, transmit-
ted by one living organism to another. Despite the recent gains in reducing the overall global burden for
parasites like malaria (Gething et al. 2010; Bhatt et al. 2015; Ashepet et al. 2021), vector-borne diseases
still account for 17% of all infectious diseases and cause 700,000 deaths in humans annually (W.H.O. 2020).
Livestock and crop systems are also plagued by vector-borne diseases, which place serious constraints on
agricultural production globally (Déring 2017; Garros et al.2017), and vector-borne diseases can be deva-
stating in wildlife populations, particularly when introduced to new areas. Collectively, tens of billions of
dollars are spent every year on control, medical interventions, and mitigating loss of productivity (Warner
1968; Georgeet al. 2015; Stuchin et al. 2016; Aguirre 2017; Weaveret al. 2018).

The dependence of many pathogens on ectothermic arthropod vectors for transmission means that vector-
borne diseases are highly sensitive to variation in the environment. Arthropod vectors experience a complex
suite of environmental factors, both abiotic (e.g., temperature, rainfall, humidity, salinity) and biotic (e.g.,
biological enemies, inter- and intra-specific interactions, and variation in habitat quality). These factors vary
in their relative effects on organismal fitness, can synergize (Kleynhans & Terblanche 2011; Huxley et al.



2021, 2022; Liu & Gaines 2022), and exert their effects at different spatial scales (Cohen et al. 2016) with
important consequences for the abundance and distribution of arthropod vectors (Ryan et al. 2015; Evans
et al. 2019), vector population dynamics (Murdock et al. 2017), and pathogen transmission (Samuelet al.
2011; Mordecai et al. 2013; Murdock et al.2014a, 2016; Mordecai et al. 2017; Huber et al. 2018; Shocket et
al. 2018b; Tesla et al. 2018; Wimberly et al. 2020; Ngonghala et al. 2021).

In vector ecology, there has been a strong emphasis on studying the effects of temperature on mosquito-borne
pathogen transmission (reviewed in Mordecai et al. 2019). In addition to temperature, water availability is
another critical abiotic variable influencing ectotherm biology, and both play important roles determining the
distribution and abundance of ectotherms (Chown & Nicolson 2004; Deutsch et al.2008; Steiner et al. 2008;
Kearney & Porter 2009; Roura-Pascualet al. 2011; Lenhart et al. 2015; Rozen-Rechels et al. 2019; Gonzdlez-
Tokman et al. 2020; Klink et al. 2020) and species richness (Jamieson et al. 2012; Calatayud et al. 2016; Beck
et al. 2017; Cardoso et al. 2020; Pilottoet al. 2020; Hamann et al. 2021). Body temperature has important
effects on the rates of enzymatic processes as well as the structural integrity of cellular membranes and
proteins (Angilletta 2009), while all cellular processes rely on water as a solvent for biochemical reactions and
for trafficking nutrients into, within, and out of cells (Chown & Nicolson 2004; Chaplin 2006). Temperature
also affects the amount of desiccation stress an organism experiences due to the fundamental relationship
between ambient temperature and the amount of water the surrounding air can hold (Lawrence 2005; Romps
2021). Other fields at the climate-health interface have explored the effects of wet heat vs dry heat on the
energy budgets of endotherms in the context of human heat stress and climate change (Buzan & Huber 2020).
We anticipate that variation in relative humidity is also an important force shaping the thermal performance
of ectotherms, including mosquitoes. Whereas metabolic theory has been well developed and widely applied
in ecology to understand temperature effects (Brown et al. 2004; Dell et al. 2011; Corkrey et al. 2016) we
currently lack a similar framework for understanding how humidity and temperature interact to influence
mosquitoes and their pathogens.

In this Perspectives, we explore the effects of humidity on the thermal performance of mosquito-borne patho-
gen transmission. We begin by summarizing what is currently known about how temperature and humidity
affects mosquito fitness, population dynamics, and pathogen transmission, whilst highlighting current know-
ledge gaps. We present a conceptual framework for understanding the interaction between temperature and
humidity and how it shapes the range of temperatures across which mosquitoes persist and achieve high
transmission potential. We then discuss how failing to account for these interactions across climate variables
hinders efforts to forecast transmission dynamics and to respond to epidemics of mosquito-borne infections.
We end by outlining future research areas that will ground the effects of humidity on thermal performance
of pathogen transmission in a theoretical and empirical basis to improve spatial and temporal predicti-
on of vector-borne pathogen transmission. Such a framework will inform multiple fields (thermal, disease,
and landscape ecology and epidemiology) and a diversity of vector-borne disease systems (human, wildlife,
domestic animals, and plants).

2. The effects of temperature on mosquito population dynamics and pathogen transmission

Numerous studies have demonstrated that mosquito-borne pathogen transmission is both seasonally and
geographically limited at various spatial scales by variation in ambient temperature (e.g., malaria (Sirajet al.
2014; Ryan et al. 2015; Villena et al.2022), Zika (Siraj et al. 2018; Tesla et al. 2018; Ryanet al. 2020a), chikun-
gunya (Johansson et al. 2014), and dengue (Mordecai et al. 2017)). The effects of temperature on ectotherm
performance, including mosquito vectors, are typically non-linear, with performance steadily increasing from
zero at a minimum critical temperature (CTy,in) up to an optimum temperature (Topy ), followed by a steep
decline towards the critical thermal maximum (CTy,ax) (Fig. 1). The CTpin and CTyhax represent the ope-
rational limits for trait performance because temperatures that exceed their range are not permissive for
ectotherm development, survival, or reproduction (Brown et al. 2004; Deutsch et al. 2008; Hoffmann et al.
2013; Corkrey et al. 2016; Sinclair et al. 2016). These thermal limits in ectotherm performance are consis-
tent with the metabolic theory of ecology, which posits that organismal physiological and enzymatic rates
will increase predictably with temperature because of increased efficiency of biochemical reactions (Huey &



Kingsolver 2019) up to Topt. The steep decline in performance above the Top is attributed to the declining
efficiency of metabolic processes due to decreases in protein stability as temperatures increase, eventually
resulting in organismal death at the Ty ax. Collectively, this information gives us a Thermal Performance
Curve (TPC), which can be used to infer ecological and evolutionary outcomes.

Mosquitoes, like other ectotherms, are highly susceptible to changes in ambient temperature, which demons-
trably affects their growth rate (Tun-Lin et al. 2000; Alto & Juliano 2001; Monteiro et al. 2007; Delatte et
al. 2009; Paaijmans et al. 2013; Evans et al. 2018a; Huxley et al. 2022), reproduction (Carrington et al. 2013,;
Miazgowicz et al. 2020), metabolic rate (Vorhees et al. 2013), lifespan (e.g., Alto & Juliano 2001; Gunay et
al. 2010; Christofferson & Mores 2016; Miazgowicz et al. 2020), biting rate (Afrane et al. 2005; Lardeux et al.
2008; Shapiro et al. 2017; Miazgowiczet al. 2020), immunity (Suwanchaichinda & Paskewitz 1998; Murdock
et al. 2012, 2013, 2014b; Adelman et al. 2013; Ferreira et al. 2020), and ability to acquire, carry, and transmit
pathogens (Lambrechts et al. 2011; Paaijmans et al. 2012; Mordecai et al. 2013, 2017; Murdock et al.2014b,
2016; Johnson et al. 2015; Shocket et al. 2018a, 2020; Tesla et al. 2018) in a non-linear, unimodal fashion.
These temperature-trait relationships can vary in overall shape (e.g., symmetric or asymmetric non-linear
relationships) due to differences in the temperatures that optimize and constrain various traits, which in
combination will determine the predicted thermal minimum, maximum, and optimum for mosquito fitness,
intrinsic growth rates of mosquito populations, and pathogen transmission (Fig. 1).

Process-based models, which traditionally have relied upon temperature relationships grounded in metabolic
theory, have enhanced our ability to predict the effects of environmental drivers on spatial and temporal
dynamics of vector-borne disease. Several key biological insights have resulted from this general approach.
First, temperate areas of the world that currently experience relatively cool temperatures are expected to
increase in thermal suitability for many mosquito-borne diseases with future climate warming (Siraj et al.
2014; Ryan et al.2015; Tesla et al. 2018; Ryan et al. 2020a), and, in temperate regions, mosquito-borne
pathogens can invade or spread during the summer in seasonally varying environments (Huber et al. 2018;
Ngonghala et al. 2021). Secondly, areas that are currently permissive (near the Top) or warmer than the
Topt for transmission are expected to experience a decline in thermal suitability with future warming (Ryan
et al.2015, 2020b; Murdock et al. 2016). Third, because mosquito and pathogen species can have different
qualitative and quantitative relationships with temperature (resulting in different CTyin, CTmax, and Topy)
(Mordecai et al. 2013, 2017, 2019; Johnson et al. 2015; Shapiro et al. 2017; Shocket et al. 2018a, 2020;
Teslaet al. 2018; Miazgowicz et al. 2020; Villena et al.2022), shifts in thermal suitability with climate and
land use change could also alter the prevalence and magnitude of mosquito-borne diseases in a given area
(Tesla et al. 2018), such as sub-Saharan Africa (Mordecai et al. 2020). Fourth, small variations in ambient
temperature at fine spatial scales can contribute to high heterogeneity in predicted suitability for pathogen
transmission across various environments (Okech et al. 2004; Afrane et al. 2005; Paaijmans & Thomas 2011;
Cator et al. 2013; Pincebourde et al. 2016; Murdock et al. 2017; Thomas et al. 2018; Evanset al. 2019;
Verhulst et al. 2020; Wimberly et al.2020), which can have important ramifications for predicting mosquito-
borne pathogen transmission and targeting interventions (Thomaset al. 2018; Wimberly et al. 2020). Finally,
disease intervention efforts can also be directly or indirectly affected by variation in ambient temperature.
Various insecticides (Glunt et al. 2014; Akinwande et al. 2021), entomopathogenic fungi (Kikankie et al.
2010; Darbro et al. 2011), and Wolbachia transinfections (Murdock et al. 2014a; Ulrichet al. 2016; Ross et al.
2017, 2019, 2020; Foo et al. 2019; Gu et al. 2022) are thermally sensitive, indicating that the efficacy and
cost of these interventions could vary seasonally, across geographic regions, and with future climate and land
use change (Parham & Hughes 2015).

3. The effects of humidity on mosquito fitness, population dynamics, and pathogen transmission

Spatial and temporal variation in atmospheric moisture has important implications for an organism’s ability
to hydroregulate (Box 1). Hydroregulation is defined as the suite of physiological and behavioral responses
organisms utilize to regulate water balance and tolerate dehydrating environmental conditions (Chown &
Nicolson 2004; Benoit 2010; Chown et al. 2011; Edney 2012; Lucio et al. 2013). The relationship between
organismal fitness and optimal hydroregulation is complex, with significant costs to fitness (e.g., decreased



survival and reproduction) occurring when organisms become dehydrated (Mitchell & Bergmann 2016; An-
derson & Andrade 2017) or overhydrated (Chown & Nicolson 2004). Insects have a suite of adaptations to
conserve water, like physiological changes in skin or cuticular permeability (Rajpurohitet al. 2008; Wu &
Wright 2015), differential regulation of urine and feces production (Weihrauch et al. 2012; Durant & Donini
2019; Durant et al. 2021; Lajevardi et al. 2021), and behavioural changes in activity (Kiithnholz & Seeley
1997; Ostwaldet al. 2016). Insects also can mitigate water loss by regulating water intake via changes in
water utilization, food sources, and selection of specific habitats (Benoit 2010; Hagan et al. 2018; Bezerra Da
Silva et al. 2019)). Finally, insects can also produce water via metabolic processes (Jindra & Sehnal 1990;
Chown et al. 2011). Maintaining water balance is a particular challenge for blood-feeding (hematophagic)
vectors (Kleynhans & Terblanche 2011; Chappuis et al. 2013), like mosquitoes (Edney 2012), where the act
of taking a blood meal results in overhydration that requires specialized adaptations for the excretion of
water, which in turn enhances susceptibility to desiccation overall (Benoit & Denlinger 2010).

Instead of measuring humidity directly (Box 1), many studies use related variables, like seasonal precipitati-
on or land cover to predict mosquito population dynamics or pathogen transmission (Johansson et al.2009;
Chaves & Kitron 2011; Soti et al. 2012; Chandy et al. 2013; Abdelrazec & Gumel 2017; Sang et al. 2017;
Nosratet al. 2021). Mosquito-borne diseases generally peak during, or following, periods of highest rainfall
(Karim et al. 2012; Chowdhury et al. 2018; Magombedze et al. 2018; McLaughlinet al. 2019). Rainfall can
matter as a standalone variable, since standing water is essential for mosquitoes’ ontogenetic development.
However, the effect of precipitation on mosquito population dynamics and disease transmission can operate
through other factors that covary with precipitation, such as increased humidity and shifts in temperature
that impact mosquito development rates, adult survival and reproduction, parasite development rates, and
mosquito-human contact rates. The relationship between mosquitoes and precipitation is even more difficult
to discern for mosquito species that develop in artificial, human watered containers, where complex interacti-
ons can occur between amount of rainfall and access to piped water (Hayden et al. 2010; Padmanabha et al.
2010; Schmidt et al. 2011; Stewart Ibarra et al. 2013; Brown et al. 2014; Lippi et al.2018). Similarly, measures
of land cover such as the normalized difference vegetation index (NDVI) have been used to account for areas
too dry for widespread mosquito habitat (Ryan et al. 2015). Ultimately, the use of these proxy measures
obscures our understanding of how relative humidity and other environmental variables affect transmission,
which in turn constrains our ability to predict how mosquito-borne pathogens will respond to future climate
and land use change.

Several studies have demonstrated statistical associations between humidity and mosquito abundance, as well
as vector-borne disease incidence and prevalence (Mayne 1930; Azil et al. 2010; Chenet al. 2010; Buckner et
al. 2011; Karim et al.2012; Althouse et al. 2015; Lega et al. 2017; Asigau & Parker 2018; Davis et al. 2018;
Jemal & Al-Thukair 2018; Dialloet al. 2019; Evans et al. 2019; Santos-Vega et al.2022). For example, the sizes
of seasonal malaria epidemics in two cities in India exhibit a clear association with relative humidity (Fig.
2), with a higher correlation than for temperature or rainfall (Santos-Vega et al. 2016). A semi-mechanistic
epidemiological model that incorporates this effect of relative humidity on the transmission rate parameter
accurately predicts the temporal dynamics of the disease, including the multiyear cycles in the size of seasonal
epidemics (Santos-Vega et al. 2016, 2022). Such predictions can inform mosquito control efforts and targeting
prophylaxes. However, the underlying biology of the relationships that exist between humidity and these
response variables are often assumed and based on a limited number of empirical studies (summarized in
Table 1). Experimental work has thus far shown generally positive effects of increased relative humidity on
mosquito survival and desiccation tolerance, production and development of eggs, and mosquito activity (up
to 90% relative humidity). In contrast, biting rates exhibited increases when conditions are drier and the
effect of humidity on vector competence is less clear (Table 1).

Despite the existing body of research, we still do not have a sufficient knowledge base for incorporating
the effects of humidity into the current temperature-trait modeling framework. Results from observations
studies cannot necessarily be extrapolated to new locations or into the future. Further, the effects of humidity
on mosquito and pathogen fitness described by experimental / causation studies are of limited resolution,
typically exploring a limited number of humidity levels and encompassing only a handful of mosquito species.



The need to better incorporate humidity effects is not unique to vector-borne diseases, but parallels trends
seen in the larger body of ecological work on the effects of climate variability and climate change on heat
health in ectotherms (van Heerwaarden & Sgro 2014; Gunderson & Stillman 2015). In the following section,
we outline how variation in relative humidity interacts with temperature to change the thermal performance
of ectothermic vectors and, consequently, pathogen transmission.

4. Considering the combined effects of temperature and humidity on transmission

The optimal regulation of both body temperature and water balance is crucial for organismal performance
and fitness (Bradshaw 2003). Due to the fundamental relationship that exists between temperature and the
amount of moisture the air can hold (Fig. 3), variations in both relative humidity and temperature will
alter the degree of moisture stress ectothermic organisms, like mosquitoes, experience. For a given amount of
atmospheric moisture, warmer temperatures result in higher saturation vapor pressures that reduce relative
humidity and increase vapor pressure deficit (Fig. 3). Depending on the ambient temperature, variation in
relative humidity can exacerbate or buffer the negative effects of higher temperature on mosquito fitness
and pathogen transmission. The current manner in which thermal performance of vector-borne pathogen
transmission is conceptualized and empirically measured does not explicitly account for these effects. Even
when relative humidity is held constant, increases in temperature will increase the vapor pressure deficit and
the evaporative stress an adult mosquito experiences. Thus, it is currently unclear if the thermal maximum
of a given trait, which is typically an upper lethal limit (Chown & Nicolson 2004), is really being driven
by temperature effects on metabolic function or rather is a function of dehydration and water stress on the
organism. Understanding the physiological mechanisms underpinning mosquito responses to these abiotic
constraints will be critical for predicting how transmission will shift with future anthropogenic change (Chown
& Gaston 2008; Deutsch et al. 2008; Portner & Farrell 2008; Dillon et al. 2010).

We utilize a trait-based approach that leverages a widely used relative Ry model (Mordecai et al. 2013, 2017,
2019; Murdock et al. 2017; Shocket et al. 2018a, 2020; Tesla et al. 2018; Ryan et al. 2020b; Wimberly et
al. 2020; Villena et al. 2022) to present a framework that outlines the manner in which variation in relative
humidity could influence the thermal performance of vector-borne pathogen transmission (Figs. 4 & 5).
Overall, we anticipate that variation in relative humidity could result in significant shifts in the qualitative
shape of the temperature-trait relationship and cause these effects to vary with mosquito traits. Drawing
from the literature on other ectotherms, insects, and what little we do know for mosquitoes, we outline
several hypotheses for how variation in relative humidity may affect the thermal performance of mosquito
and pathogen traits (Table 2). We anticipate variation in relative humidity will be important throughout the
mosquito life cycle, with the largest effects at temperatures that approach the upper thermal limit (Tyaz )
for a given trait, with little to no effect of variation in relative humidity on the predicted thermal minimum
(Tynin ) (Table 2). This hypothesis is based on the observation that for a given change in relative humidity, the
corresponding change in vapor pressure deficit and evaporative stress will be greater at higher temperatures
(Figs. 3 & 4). How variation in relative humidity affects the predicted thermal optimum (T,,; ) of a given
trait will be somewhat dependent on the specific trait as well as the magnitude of the effect at warmer
temperatures.

The nature and magnitude of the effects of relative humidity and temperature variation on mosquito and
pathogen traits important for transmission could differ depending on mosquito life stage. One way in which
relative humidity and temperature interact to affect developing mosquitoes is through the evaporation rate
of larval habitat, which is also determined by the size and surface area of the larval habitat and rate of water
replenishment (Juliano & Stoffregen 1994). A second type of interaction could involve altering some intrinsic
factor of the larval environment such as surface tension, microbial growth, or solute concentration (Juliano &
Stoffregen 1994; Pérez-Diaz et al.2012). Causal evidence from semi-field experiments shows negative effects
of high relative humidity at temperatures near or above the predicted thermal optimum for Aedes albopictus
(Mordecai et al. 2017; Murdock et al. 2017) on larval survival and the probability of adult emergence
(Murdock et al. 2017). One possibility is that both temperature and water vapor in the atmosphere will
affect the surface tension of aquatic larval habitats. Warm temperatures and high humidity may cause larval



habitats to have too little surface tension, while cool and dry larval environments may have too high surface
tension (Singh & Micks 1957; Pérez-Diaz et al.2012), negatively affecting the ability of larval mosquitoes to
breath, access nutrients, and emerge from the pupal stage. In all likelihood, both types of effect could be
important in the field. Thus, the effects of relative humidity on the rate of evaporation relative to larval
development or shifts in intrinsic conditions of larval habitats could have substantial effects on the thermal
performance curves for both mosquito development rate (MDR ), the probability of egg to adult survival
(pEA ), and consequently the intrinsic growth rate of mosquito populations.

Once adults emerge from the larval environment, variation in relative humidity could potentially increase or
decrease the predicted upper thermal limit for adult traits that are critical for mosquito population dynamics
and transmission (Fig. 4, Table 2). For example, decreases in relative humidity at warm temperatures could
decrease mosquito survival (by increasing the per capita daily mortality rate (u)) via increasing desiccation
stress (Mayne 1930; Gaaboub et al. 1971; Lyons et al. 2014). This, in turn, will decrease the temperatures
at which mosquitoes can survive to become infected and to transmit vector-borne pathogens. Evidence from
other insect systems (Shelford (1918); Edney & Barrass (1962); Chown & Nicolson (2004); Yu et al. (2010))
would predict that decreases in relative humidity at warm temperatures could also decrease the per capita
daily biting rate (a) and production of eggs (EFD) by altering mosquito activity and blood feeding due
to shifts in behavior (e.g., utilization of specific habitats, times of day, or times of season; Dow & Gerrish
(1970); Gaaboub et al. (1971); Provost (1973); Canyon et al. (1999); Drakou et al. (2020)) and physiological
responses (e.g., decreased metabolic rate) to increase desiccation resistance or tolerance (Chown & Davis
2003; Marron et al. 2003). However, the evidence that does exist for mosquitoes suggests decreases in relative
humidity can actually increase biting rates on hosts (e.g., Culex pipiens, Ae. aegypti, An. quadramaculatus;
Hagan et al. (2018)). It remains unclear if this pattern would persist in the field for mosquito species
that utilize sugar sources for hydration and nutrition, because nectar-feeding mosquitoes can increase sugar
feeding behavior when environmental conditions are dry (Fikrig et al.2020). Finally, we also anticipate
that the development of mosquito-borne pathogens and parasites, and potentially mosquito susceptibility to
infection, should be affected by variation in relative humidity under different ambient temperature conditions
based on physiological acclimation responses (Beitz 2006; Liu et al. 2016). Aquaporin water channels allow
organisms to rapidly move water (aquaporins) or water and glycerol (aquaglyceroporins) across cellular
membranes to promote cellular function. Mosquitoes utilize aquaporins and aquaglyceroporins to minimize
water loss in desiccating environments (Liu et al. 2011) and to maintain glycerol concentrations to stabilize
proteins when mosquitoes are exposed to high heat (Tatzelet al. 1996; Diamant et al. 2001; Deocaris
et al.2006; Liu et al. 2016). The physiological responses of mosquitoes to optimally thermo- and hydro-
regulate under sub-optimal temperature and relative humidity environments could also have consequences
for the energy available to developing pathogen (Liu et al. 2016).

5: Implications for understanding pathogen transmission and control in a changing world

Understanding the respective effects of variation in temperature and humidity, as well as any interaction
between variables, will be critical for addressing how the regional and global distributions of mosquito
vectors, and the seasonality and intensity of vector-borne pathogen transmission, will shift in response to
future climate and land use change. Based on the importance of maintaining optimal temperature and water
balance in other organisms, we also argue that variation in temperature, humidity, and water availability are
important selective determinants driving local adaptation of mosquitoes to various environments as well as
their capacity to respond to future environmental change. Finally, variation in temperature and humidity
will also likely affect the efficacy, coverage, and cost of disease control programs.

5.1 Human-mediated environmental change

Human-mediated climate change is resulting in widespread and uneven changes in global temperature, hu-
midity, and precipitation patterns and more frequent extreme weather events (IPCC 2021). In addition to
climate warming, regional changes in humidity and precipitation will result in increased drought in some
areas, while others become wetter (Konapalaet al. 2020). If mosquitoes and their transmission cycles are
more sensitive to humidity at higher temperatures, then future increases in wet vs. dry heat may have very



different implications for mosquito populations and pathogen risk. Regional variation in temperature and
relative humidity could have important implications for both the seasonal timing and peak of vector-borne
disease (Santos-Vega et al. 2016, 2022) as well as pathogen persistence or emergence. For example, it has
been suggested that future temperatures in tropical Africa will exceed the thermal optimum for malaria and
result in reduced transmission (Mordecai et al. 2020). However, these tropical regions are characterized by
humid heat, and malaria may persist if the maximum temperature for transmission increases at high hu-
midity. Similarly, the potential for arboviruses to expand into warming temperate climates may be greater
in regions with increasing humid heat vs. dry heat, which has not been considered in current mechanistic
model projections of disease risk with various climate change scenarios [e.g., (Ryan et al. 2020a, b; Caldwell
et al. 2021)].

Land-use change is another key human driver affecting mosquito-borne disease transmission (Baeza et al.
2017). For example, urban landscapes are one of the most rapidly growing land cover types across the globe
(United Nations 2019), with the proportion of people living in urban environment projected to increase from
55% to 68% between now and 2050. High environmental heterogeneity in urban areas creates substantial
variation in the local microclimates mosquitoes experience, through differences in temperature, moisture,
and wind speed (Stewart & Oke 2012). These differences are mediated by the extent of impervious surfaces,
the distribution of vegetation, and the three-dimensional structure created by buildings and trees. Together,
these changes result in urban heat and dry islands (Heaviside et al. 2017) with higher land surface (Yuan &
Bauer 2007) and near-surface air temperatures (Coseo & Larsen 2014) and lower relative humidity (Heaviside
et al. 2017; Lokoshchenko 2017; Yang et al. 2017; Hao et al.2018) compared to more vegetated landscapes.
This fine-scale variation in mosquito microclimate can have significant implications for multiple mosquito
species (e.g., Aedes aegypti, Ae. albopictus, Anopheles stephensi ) that drive urban outbreaks of diseases
(e.g., dengue, chikungunya, Zika, and malaria) (Beebe et al. 2009; Stoddardet al. 2009; Li et al. 2014;
Thomas et al. 2016, 2017; Murdock et al. 2017; Heinisch et al. 2019; Takken & Lindsay 2019).

Small-scale variation in temperature and relative humidity could also have important implications for the
spatial distribution of risk in urban environments (Fig 5). Recent studies that combine field experimentation
with direct monitoring of urban microclimates and mosquito abundance demonstrate that fine-scale variation
(e.g., individual neighborhoods or city blocks) in both temperature and relative humidity can have important
implications for mosquito life history, population dynamics, and disease transmission within urban environ-
ments (Murdock et al. 2017; Evans et al. 2018b, 2019; Wimberly et al. 2020). Thus, neighborhoods with
a high proportion of impervious surfaces that experience mean temperatures near or exceeding the thermal
optimum for transmission could experience even higher decreases in vectorial capacity than what models
would predict from temperature alone, if drier conditions increase desiccation stress and reduce mosquito
survival.

To generalize the effects of changing temperature and humidity across diverse locations and into the future, it
will be necessary to develop a conceptual framework that incorporates the psychometrics of temperature and
atmospheric moisture with mosquito biology and the natural and built environments in which transmission
occurs. Incorporating the effects of humidity into hierarchical models and assessment of mosquito population
dynamics and disease transmission will increase the precision of mapping environmental suitability, both
globally and regionally with human-mediated environmental change, as well as across heterogeneous human-
modified landscapes.

5.2 Local adaptation and capacity to adapt in the future

There is growing interest in the factors driving adaptation of mosquitoes to local environmental conditions
for providing insights into the long-term responses of mosquito species to future warming. Mosquito species
are composed of an array of locally adapted populations across their respective ranges. Substantial genetic
variation exists in mosquito species (Holt et al. 2002; Fouet et al. 2017; Maffey et al. 2020; Pless et al. 2020;
Yurchenko et al. 2020; Kang et al. 2021) and at fine-spatial scales (Gutiérrez et al. 2010; Jasper et al. 2019;
Matowoet al. 2019; Ayala et al. 2020; Carvajal et al.2020), with significant consequences for transmission
potential (Azaret al. 2017; Palmer et al. 2018; Vega-Ria et al.2020). This genetic variation can interact with



local environmental conditions to impact the capacity of mosquito vectors to transmit human pathogens
(e.g., dengue; Gloria-Soria et al. (2017) and chikungunya; Zouache et al. (2014)). Yet, we still do not have a
clear understanding of what environmental factors are driving this differentiation.

The work that has been done in this area to date has largely focused on the effects of temperature varia-
tion in driving local adaptation of current mosquito populations (Sternberg & Thomas 2014; Couper et al.
2021). However, research from the broader field of ectotherms [e.g., reviewed in Rozen-Rechels et al. (2019),
vertebrates; Chown et al. (2011), insects] suggests that selection on thermal response curves are constrained
by other metabolic stressors, like desiccation stress, as temperatures warm. For example, a study on 94 Dro-
sophila species from diverse climates found substantial variation in the upper thermal limits among species.
Further, the species specific CT,,q, correlated positively with increasing temperature in dry environments,
with species from hot and dry environments exhibited higher heat tolerance. However, this relationship com-
pletely disappeared for species inhabiting wet environments suggesting temperature as a selective force is less
important when humidity is high (Kellermann et al. 2012). A similar study in ectothermic vertebrates (400
lizards), found the thermal optimum to be more strongly related to ambient precipitation than to average
temperature (Clusella-Trullas et al. 2011). Environmental mean temperature was only found to be predictive
of the lower thermal limit (CTypp ) (Clusella-Trullaset al. 2011).

Both common garden and experimental evolution studies, two standard approaches to measure local adapta-
tion and evolutionary potential of a particular species, could be incorrectly attributing observed phenotypic
responses to temperature selection when they could be responding to a combination of energetic effects and
moisture stress. This impacts our ability to accurately characterize thermal response curves of mosquitoes,
as well as their capacity to adapt to future environmental change. From our conceptual framework outlined
above (Fig. 5), we would predict that the current approach to studying local adaptation, steeped in metabolic
theory of ecology, will be most predictive of mosquito population responses to future warming in regions
of the world that currently exist below the species specific thermal optima (T,,; ). However, for mosquito
populations that inhabit environments above their thermal optima, humidity will be an important deter-
minant of their capacity to respond to future environmental change. For example, mosquito populations in
warm and wet, humid environments may have less capacity to adapt to future climate change in a warming
and drying environment than what would be predicted from evolutionary models that consider the effects
of temperature alone. Conversely, mosquito populations that currently live in warm and dry environments
may have a greater capacity to adapt to warming conditions if they exhibit higher heat tolerance than their
counterparts inhabiting wetter areas of the geographic distribution.

5.3 Controlling mosquito populations and disease transmission

There have been several mechanistic modelling efforts to understand how regional and seasonal environmental
variation will impact the relative reproductive number of a pathogen, the intensity of human transmission,
and the efficacy of key disease interventions (e.g., Zika; Ngonghalaet al. (2021), schistosomiasis; Nguyen
et al. (2021)). These studies have, again, focused largely on the effects of ambient temperature. However,
seasonal and regional variation in humidity and precipitation could extend or shorten the transmission
season and magnify or depress the intensity of epidemics as predicted from models incorporating the effects
of temperature alone (Huber et al.2018; Ngonghala et al. 2021). For example, this is likely to be the case
in seasonally dry environments where mosquito-borne disease transmission tends to be highest during or
just after the rainy season and lowest during the hottest / driest parts of the season due to seasonal shifts
in mosquito habitat, as well as the effects of temperature and humidity on mosquito and pathogen traits
relevant for transmission.

How variation in humidity affects the efficacy of current and novel mosquito control interventions also needs
to be considered. Many novel mosquito control technologies involve the mass release of males that have been
sterilized or genetically engineered to pass on traits that confer either severe fitness costs (i.e., population
suppression approaches; Alphey et al. 2010; Wilke & Marrelli 2012; Wanget al. 2021) or enhanced resistance
to human pathogens (i.e., population replacement approaches (Wilke & Marrelli 2015; Carballar-Lejarazi &
James 2017; Hegde & Hughes 2017)). For example, the w Mel strain of the symbiont Wolbachia can prevent



dengue, chikungunya, and Zika transmission in Ae. aegypti(Moreira et al. 2009; Ye et al. 2015; Aliota et
al.2016a, b). Experimental work has determined that w Mel infections are temperature sensitive, with high
temperatures causing reductions in Wolbachia density (Ulrich et al. 2016; Ross et al.2017, 2019, 2020; Foo et
al. 2019; Gu et al. 2022) and temperature variation affects the host-pathogen interaction and the outcome
of infection in Wolbachia -infected mosquitoes (Murdocket al. 2014a). Based on the relationship between
temperature and water balance laid out in this paper, further experiments should examine whether Wolbachia
infections are limited by temperature alone or by cellular water availability, and examine what role mosquito
desiccation stress plays in limiting Wolbachia abundance within mosquitoes at varying temperature.

Furthermore, thermal performance differs between insecticide resistant vectors and their susceptible coun-
terparts, with important implications for assessing fitness costs associated with insecticide resistance (Akin-
wande et al. 2021). Thus, insecticide resistant mosquitoes may have to optimize temperature and water
needs across environmental constraints differently, and therefore be affected by changes in humidity, with
potentially important consequences for population dynamics, mosquito-pathogen interactions, and transmis-
sion. Identifying these environmental constraints on efficacy and coverage will be critical for the successful
implementation of current and future control programs (Parham & Hughes 2015).

6: Conclusions and future directions

Sufficiently understanding the performance of insect vectors within the natural environmental mosaics where
they occur will require substantially more data on the spatial and temporal complexities in microclimate,
behavioral responses to temperature and humidity change, plasticity in thermal tolerance traits, and the
eco-physiological mechanisms of vector water balance, coupled with broader understanding of the general
relationships between water and temperature described in this paper. We have collated these goals into a
general framework incorporating humidity into research questions and temperature-dependent mechanistic
models (Fig. 5 & Box 2). We intend for the evidence and theory presented here to be signposts for future
research, leading to a collective broadening in our understanding of insect vectors and how their responses
to climate variables will affect parasite transmission.
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Figure Legends:

Figure 1: A Similar to other ectothermic organisms, the life history traits of mosquitoes and the pathogens
they transmit typically exhibit non-linear relationships with environmental temperature, where trait perfor-
mance is constrained by both cool and warm temperatures and optimized at some intermediate temperature.
Further, the effect of temperature on these individual traits can vary qualitatively and quantitatively, result-
ing in different temperature ranges across which trait performance can occur, temperatures that maximize
trait performance, and the overall shape of the temperature-trait relationship (e.g., symmetric vs. asym-
metric). As a result, predicting the effects of temperature on mosquito fitness, population growth rates,
or pathogen transmission is complex. B Mathematical models of vector-borne pathogen transmission that
incorporate these temperature-trait relationships generally predict transmission to also follow a non-linear
relationship and to peak at some intermediate temperature, as depicted here with the temperature-dependent
relative reproductive number Ry as a conceptual example. This model incorporates the effects of temperature
on traits that drive mosquito population dynamics (e.g., per capita mosquito development rate (MDR ), the
probability of egg to adult survival (pEA ), and the per capita number of eggs females produce per day (EFD
)), host-vector contact rates (the per capita daily biting rate of female mosquitoes (a )), and the number of
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mosquitoes alive and infectious (transmission (b ) and infection (¢ ) probabilities, the extrinsic incubation
period (1/EIR ), and the per capita mosquito mortality rate (u )). Where the predicted thermal minimum
(Trnin ), maximum (T4 ), and optimum (7, ) for transmission occur will be dependent upon the relative
effect of each trait, the nature of the temperature-trait relationship, and how these factors combine to shape
the transmission process. Adapted from Mordecai et al. 2017.

Figure 2: Monthly malaria case data for Plasmodium falciparum shown (in purple) with a corresponding
time series for relative humidity (RH, red) for two cities in India, Ahmedabad (A ) and Surat (B ). Total cases
during the transmission season from August to November are shown as a function of mean RH in a critical
time window preceding this season and including the monsoons from May to July for Ahmedabad (C ) and
March to July for Surat (D ). Figure is taken from Santos-Vega et al. (2022) Nature Communications doi:
10.1038/s41467-022-28145-7. Figure is reproduced under Creative Commons Attribution 4.0 International
License.

Figure 3: The total amount of water the air can hold, expressed here as saturation vapor pressure (Es ),
increases exponentially with temperature and is estimated as a function of temperature using the Tetens
equation. The actual amount of water in the air, expressed here as vapor pressure (Fa ), can be derived
from relative humidity (RH ) as EFa = RH /100 * Es . The vapor pressure deficit (VPD ) is the absolute
difference between Fs and Fa and is an important metric of atmospheric moisture because it has a near linear
relationship with evaporative potential. Thus, as temperature warms, for a given decrease in RH , there will
be a larger increase in VPD and the amount of water stress mosquitoes experience.

Figure 4: A Thermal performance is often measured by placing mosquitoes in different life stages and
infection stages across a range of constant temperatures at a set relative humidity (typically between 70-90%
RH). However, despite holding relative humidity constant, as temperatures warm there will be a correspond-
ing increase in the vapor pressure deficit (VPD ) and the amount of water stress mosquitoes experience.
Overlaying these relationships (from Figure 1) on a given temperature-trait relationship demonstrates that
the sensitivity of trait performance to variation in relative humidity should be highest on the descending
limb of this relationship. Es = saturation vapor pressure, which increases exponentially with temperature
and is estimated as a function of temperature using the Tetens equation. Fa = vapor pressure, meaning the
actual amount of water in the air, and can be derived from relative humidity (RH ) as Ea= RH /100 * Es
. B-D represent the hypothetical responses of three temperature-trait relationships to variation in relative
humidity. These shifts are predicted to both decrease the thermal optimum and maximum for some traits
(e.g., B lifespan and D vector competence) or increase them for others (e.g.,C per capita biting rate).

Figure 5: Laboratory work with field derived mosquitoes can be conducted to estimate the effect of multiple
environmental variables on mosquito fitness, population dynamics, and pathogen transmission. For example,
mosquitoes could be housed across a range of constant temperature (7' ) and relative humidity (RH )
conditions that are reflective of monthly field conditions. From these experiments, one can estimate the
effects of variation in these environmental variables on key larval traits (A : mosquito development rate
(MDR ) and the probability of egg to adult survival (pEA )),adult traits (B : per capita mortality rate (u ),
per capita eggs laid per day (EFD ), and per capita daily biting rate (a )), and parasite / pathogen traits (C
: vector competence (bc ) and the extrinsic incubation period (EIP )). D Bayesian hierarchical models can
be used to develop T and RH response surfaces for each trait, which can either be incorporated in process-
based modeling approaches to infer effects on seasonal and inter-annual variation in vector-borne pathogen
transmission dynamics. E Bayesian models can also be used to generate a T' and RH dependent, relativeR,
model that can be used to predict environmental suitability for pathogen transmission at various spatial
scales. A crucial detail for modeling approaches, based on the evidence presented in Box 2, is that the effects
of T and RH will be interactive, not additive. (Inset on temporal dynamics in Dis from Santos-Vega et
al. (2022) Nature Communications; doi: 10.1038/s41467-022-28145-7. Figure is reproduced under Creative
Commons Attribution 4.0 International License.)

Table 1: Summary of the published literature that investigated the effects of relative humidity
on mosquitoes, organised by life history trait, presented with a summary of the effect of RH.
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Life History Trait

Longevity/Survival/ Desiccation tolerance
Egg production

Activity /Behaviour

Plasmodium infection

Egg-hatching

Microclimate preference upon emergence

Range Explored (RH%)
5 -100

34-95
10-30, up to 100
39 - 100

Real-world RH data; 0-100
75, 86

Effect of RH

Increased RH significantly increased female long
Increased RH increased egg production; significa
Mosquito activity increases with increasing relat
Mixed or unclear effects of humidity

Adding RH data to a predictive model focused o
Newly emerged adults with no access to water o

Table 2: Predictions for the interactive effects of relative humidity & temperature on different mosquito traits.

Trait Definition Tmin Topt Tmax
evaporation |, with ™ RH =" or
MDR  |mosquito development rate (1/days) no change ? no Ain Tmax no evaporation with
A RH = | Tmax
evaporation | with ™ RH =
pEA probability of egg to adult survival no change ? Tmax no evaporation
with P RH = |, Tmax
grp |PeT capita no. of eggs produced daily per female no change 9 RH 1 = 1 or 4 Tmax
(1/days)
a per capita female biting rate (1/days) no change ? RH 1 =1 or ¢ Tmax
H per capita mosquito mortality rate (1/days) no change ? RH 1 =1 Tmax
bc probability of becoming infectious no change ? RH 1 =? Tmax
EIR extrinsic incubation rate (1/ EIP or 1/days) no change ? RH 1 = 1P Tmax
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