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ABSTRACT : Communicating and interpreting uncertainty in ecological model predictions is notoriously
challenging, motivating the need for new educational tools which introduce ecology students to core concepts
in uncertainty communication. Ecological forecasting, an emerging approach to estimate future states of
ecological systems with uncertainty, provides a relevant and engaging framework for introducing uncertainty
communication to undergraduate students, as forecasts can be used as decision support tools for addressing
real-world ecological problems and are inherently uncertain. To provide critical training on uncertainty
communication and introduce undergraduate students to the use of ecological forecasts for guiding decision-
making, we developed a hands-on teaching module within the Macrosystems EDDIE (Environmental Data-
Driven Inquiry and Exploration; MacrosystemsEDDIE.org) educational program. Our module used an active
learning approach by embedding forecasting activities in an R Shiny application to engage introductory
students in data science, ecological modeling, and forecasting without needing advanced computational or
programming skills. Pre- and post-module assessment data from >250 undergraduate ecology students
indicate that the module significantly increased students’ ability to interpret forecast visualizations with
uncertainty, identify different ways to communicate forecast uncertainty for diverse users, and correctly
define ecological forecasting terms. Specifically, students were more likely to describe visual, numeric, and
probabilistic methods of uncertainty communication following module completion. Students were also able
to identify more benefits of ecological forecasting following module completion, with the key benefits of
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using forecasts for prediction and decision-making most commonly described. These results show promise
for introducing ecological model uncertainty, data visualizations, and forecasting into undergraduate ecology
curricula via software-based learning, which can increase students’ ability to engage and understand complex
ecological concepts.

Introduction

Communicating uncertainty in ecological models is a pressing challenge across ecology, motivating the need
for new educational tools to train students in understanding and interpreting uncertainty in model predic-
tions. Uncertainty in ecological model predictions is inherent across ecological disciplines, ranging across
population and community ecology models (e.g., Halpern et al. 2006, Bird et al. 2021), disease ecology
models (e.g., Briggs et al. 2009, McClintock et al. 2010), landscape ecology models (e.g., Wu et al. 2006,
Lechner et al. 2012), and ecosystem models (e.g., Link et al. 2012, Melbourne-Thomas et al. 2012). Sources
of uncertainty in ecological models include uncertainty in model parameter estimates, initial conditions, and
the underlying processes being modeled (Dietze 2017). Combined together, these sources of uncertainty can
have important implications for interpreting model results, as well as their utility in decision-making (e.g.,
Berthet et al. 2016, Cheong et al. 2016). However, uncertainty is rarely communicated or is communicated
poorly (Boukhelifa and Duke 2009, Hullman 2020), hindering the use of model output for both advancing
ecological understanding and decision-making (Joslyn and Savelli 2010, Milner-Gulland and Shea 2017). This
is likely because uncertainty is a difficult concept for most individuals to understand (Belia et al. 2005), as
well as to mathematically quantify and represent graphically with visualizations (Spiegelhalter et al. 2011,
Potter et al. 2012, Bonneau et al. 2015). Given low levels of visualization literacy in both the general and
scientific population (Maltese et al. 2015), educational tools to improve communication of ecological model
uncertainty are critically needed.

Ecological forecasting provides a powerful framework for teaching students uncertainty communication and
data science skills, which are increasingly needed for 21st century careers (Rieley, 2018, Vought and Droege-
meier, 2020). Ecological forecasts, which are future, out-of-sample model predictions of ecological variables
with quantified uncertainty (Table 1), can serve as useful decision support tools for a variety of users (Tul-
loch et al. 2020, Bodner et al. 2021). Because of the utility of forecasts in both informing decision-making
and the testing of ecological theory (Dietze et al. 2018, Lewis et al. 2022a, Carey et al. 2022), ecological
forecasting is a rapidly growing sub-field of ecology (Lewis et al. 2022b).

Many near-term (day to decade ahead) ecological forecasts are developed using the iterative forecasting cycle
(Lewis et al. 2022b), which has the potential to teach students foundational ecological forecasting concepts
(Moore et al. 2022a). The iterative, near-term forecasting cycle consists of multiple steps, which parallel the
scientific method: 1) make a prediction about ecological phenomena, 2) develop a model which represents
that hypothesis, 3) quantify uncertainty around predictions, 4) generate a forecast with uncertainty, 5)
communicate the forecast to users, 6) assess the forecast with observations, and 7) update the forecast with
new data (Dietze et al. 2018, Moore et al. 2022a). Altogether, teaching this iterative framework in ecology
courses could improve student understanding of complex ecological concepts (Selutin and Lebedeva 2017),
as well as uncertainty visualization skills.

Communicating and interpreting ecological forecast visualizations presents several unique challenges. First,
forecasts are inherently uncertain, yet they are needed to guide environmental management decisions, making
it critical to properly communicate the uncertainty associated with forecast predictions (Berthet et al. 2016).
Second, while there are numerous studies on visualizing data uncertainty (Olston and Mackinlay 2002, Potter
et al. 2012, Smith Mason et al. 2017, Wiggins et al. 2018), little consensus has emerged as to the best
approach for visualizing forecast uncertainty for both end user comprehension and decision support. Third,
it has been well-documented that different approaches to visualizing uncertainty result in varying levels
of comprehension by users (Ramos et al. 2013, Cheong et al. 2016, McKenzie et al. 2016, Kinkeldey et
al. 2017). Altogether, these challenges emphasize the need for thoughtful representation of uncertainty in
forecasts, as well as the need for educational materials that teach students how to interpret and develop
forecast visualizations for decision support applications.
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Several pedagogical methods may be useful for incorporating uncertainty visualization skills into introductory
ecological forecasting education. First, having students create their own visualizations has been shown to
improve data visualization literacy (Huron et al. 2014, Börner et al. 2016, 2019, Alper et al. 2017). Second,
teaching students how to produce a range of visualizations for the same forecast using a toolbox of different
visualization styles may enable them to communicate their forecast to a broader range of users, as well
as adapt their visualizations for different user needs. For example, teaching students how to communicate
uncertainty in a single forecast using multiple methods (e.g., representing uncertainty with numbers, words,
icons, and graphs such as maps or time series; sensu Spiegelhalter et al. 2011) can help illustrate the
multitude of ways uncertainty can be visualized and build students’ ability to interpret diverse forecast
visualizations. Third, teaching students to communicate forecast uncertainty using thresholds which are
directly meaningful for decision-making has proven utility in uncertainty communication (Kox et al. 2018).
For example, communicating a forecast of the abundance of an endangered species as a forecast index (e.g.,
the likelihood of encountering that endangered species at a site) may be a more effective communication style
for some forecast users by placing forecast output in a decision-making context (see Table 1 for definitions).
Fourth, emphasizing the importance of identifying forecast users and specifically the decisions which could be
made with forecasts could increase the relevance of ecological forecasting for students. Presenting ecological
concepts in culturally and societally relevant contexts is known to stimulate student engagement (Cid and
Pouyat 2013, Vance-Chalcraft and Jelks 2022, Henri et al. 2022), and can lead to more collaborative and
effective research and management broadly within the scientific community (Armitage et al. 2009, Cvitanovic
et al. 2013).

In addition to the pedagogical approaches above, integrating the concepts of decision science (e.g., through
structured decision-making or decision use cases, see Table 1 for definitions; Clemen and Reilly 2004, Gregory
et al. 2012) may help students better understand the needs of different forecast users, and correspondingly
lead to improved forecast visualizations. Current ecological forecasting teaching materials have largely been
methodology-focused, omitting application and communication components (Willson et al. 2022). This focus
on methods skill-building, while very valuable, may fail to engage introductory students who have yet to
master the computational and quantitative skills needed for forecast development.

To introduce students to key concepts in uncertainty visualization and communication in the context of
using near-term ecological forecasts for real-world decision-making, we developed a 3-hour teaching module,
“Using Ecological Forecasts to Guide Decision-Making,” as part of the Macrosystems EDDIE (Environmental
Data-Driven Inquiry and Exploration; MacrosystemsEDDIE.org) program. The module entailed a short
introductory lecture, three scaffolded, hands-on forecasting activities embedded within an online interactive
tool built using an R Shiny application (Chang et al. 2022) and discussion questions. Instructors were also
provided with a pre-module student handout which included suggested readings and discussion questions
to provide students with background information before beginning hands-on module activities. To test the
effectiveness of our interactive teaching module on students’ ability to learn uncertainty communication and
foundational ecological forecasting concepts within a decision support framework, we conducted pre- and
post-module assessment surveys. We analyzed the student assessment data to determine how completion of
the module affected: 1) students’ ability to interpret and communicate uncertainty in forecast visualizations,
and 2) students’ understanding of foundational ecological forecasting concepts.

Methods Module Overview

We designed Macrosystems EDDIE (Environmental Data-Driven Inquiry and Exploration; Macrosystem-
sEDDIE.org) Module 8 “Using Ecological Forecasts to Guide Decision-Making” to teach students uncertain-
ty communication and foundational ecological forecasting concepts within a decision support framework.
This is the 8th module in the Macrosystems EDDIE teaching module series (Carey et al. 2020, Houns-
hell et al. 2021, Moore et al. 2022a). Specifically, the module activities encompassed a range of decision
support concepts and applications, such as structured decision-making through role-playing and identifi-
cation of forecast user needs. The version of the module used for this study is archived and available for
download from Woelmer et al. (2022a, 2022b). All module materials are publicly available for use and are
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iteratively updated following user feedback; the most recent version of the module can be accessed at: htt-
ps://serc.carleton.edu/eddie/teaching materials/modules/module8.html. Our assessment focused on measu-
ring student understanding of uncertainty communication and foundational ecological forecasting as two
important yet currently overlooked concepts within undergraduate ecology curricula (Willson et al. 2022).

This module, following the Macrosystems EDDIE pedagogical framework (Carey et al. 2020), consisted of
a suite of three self-contained, scaffolded activities (Activities A, B, and C) which can be adapted to meet
the needs of individual lecture or laboratory classes. The three activities taught students different ways
to visualize forecasts (Activity A); how uncertainty in forecast visualizations can influence decision-making
(Activity B); and how to create visualizations of probabilistic ecological forecasts tailored to a specific user
(Activity C). All Macrosystems EDDIE modules follow the 5E Instructional Model (Bybee et al. 2006), which
uses activities to enable engagement, exploration, explanation, elaboration, and evaluation. This module, as
well as other Macrosystems EDDIE modules, are primarily geared towards the undergraduate level but can
also be applied in graduate-level courses (e.g., Moore et al. 2022a).

Because uncertainty interpretation and communication are not commonly integrated into undergraduate
ecology education (Willson et al. 2022), we introduced students to a broad suite of methods currently
applied in visualization and decision science within the module. These methods include: 1) creating one’s
own visualizations (Huron et al. 2014, Alper et al. 2017, Börner et al. 2016, Börner et al. 2019), 2) visualizing
uncertainty in multiple ways (sensu Spiegelhalter et al. 2011), 3) using meaningful thresholds for decision-
making (Kox et al. 2018), 4) identifying forecast users to increase engagement and relevance (Cid and Pouyat
2013, Henri et al. 2022, Vance-Chalcraft and Osborne Jelks, 2022), and 5) considering forecast user decision
needs to guide visualization development (Raftery 2016).

Our module assessment (described below) focused on two learning objectives (LOs) taught throughout the
module activities. The two LOs were: LO1) describe what ecological forecasts are and how they are used
(Activity A, B, C); and LO2) identify different ways to represent uncertainty in a visualization (Activity
A, B, C). In addition to LO1 and LO2, this module included four additional LOs for instructors: LO3)
identify the components of a structured decision (Activity B); LO4) discuss how forecast uncertainty relates
to decision-making (Activity A, B, C); LO5) match forecast user needs with different levels of forecasting
decision support (Activity A, C); and LO6) create visualizations tailored to specific forecast users (Activity
C). The activities within the module were designed to meet all six LOs, with several activities targeting
multiple LOs (Appendix S1: Table S1). Our focus on LO1 and LO2 for the assessment was motivated by the
importance of increasing representation of foundational ecological forecasting and uncertainty communication
concepts, respectively, in undergraduate ecology curricula (Appendix S1: Table S1).

Detailed module description The module included an introductory PowerPoint lecture, a suite of three activi-
ties embedded within an R Shiny application accessed in a web browser, and discussion questions. First, the
PowerPoint presentation (˜20 minutes) introduced students to the key concepts taught in the module, inclu-
ding a general introduction to ecological forecasting and a case study of an ecological forecasting application
with visualization examples. Instructor notes for each slide were provided, as well as an ‘Introduction to R
Shiny’ guide for students and instructors who were not previously familiar with using R Shiny applications.

For the case study within the introductory PowerPoint lecture, students were given an example of a forecast
of the future distribution of the invasive spongy moth (Lymantria dispar ) and introduced to different types
of forecast users and corresponding decisions that different forecast users could make, as well as different
ways of visualizing the same forecast for individual forecast users’ decision use cases (Table 1). For example, a
homeowner deciding whether to treat the oak trees on their property to prevent spongy moth invasion might
benefit from a forecast index visualizing the percent likelihood of spongy moth colonization in a particular
location. In contrast, a natural resource manager deciding where to prioritize conservation efforts of a native
competitor of spongy moth might prefer a map of spongy moth densities and associated uncertainty across
the region. Through the case study, students were shown a range of visualization types that can be altered
to suit different decision use cases. Students were taught about how uncertainty can be represented and
communicated using several methods, including numbers, words, icons, and graphs. For example, using the
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same forecast, uncertainty could be communicated with numbers (‘22% chance of a spongy moth outbreak’),
words (‘low risk of spongy moth outbreak’), an icon (showing a ‘traffic light’ symbol indicating ‘green’ for
low risk), or a graph (a map of the likelihood of an outbreak across a region) (Appendix S1: Figure S2).
Within these four categories, students were taught how to communicate forecast output (e.g., the density
of spongy moths in a given area, see Table 1 for an example), which uses output directly from a forecast
model. In addition, they were taught to communicate using a forecast index, which is forecast output that is
translated into an index based on some threshold which is meaningful to decision-making (e.g., the likelihood
of a spongy moth outbreak; Table 1, Appendix S1: Figure S2).

Second, following the presentation, students were instructed to access the module via the R Shiny application
and work through the module activities A, B, and C with a partner. R Shiny is an interactive tool built within
the R coding environment that allows users to interact with complex data through a simple web browser
interface (Chang et al. 2021, Kasprzak et al. 2021), increasing the ease of use. Applications developed using
R Shiny have been proven effective at teaching students challenging topics in a variety of educational settings
(e.g., Fawcett 2018, Moore et al. 2022a). All module activities were designed to meet one or more of the
module LOs (Appendix S1: Table S1).

Within the Shiny app, students first completed Activity A, “Explore ecological forecast visualizations and
decision use,” in which they individually selected an ecological forecast from a curated list of current fore-
casting systems (Appendix S1: Table S2), answered several embedded questions about how their selected
forecast is visualized and how it can be used, and then compared their answers with their partner. Through
these activities, students directly addressed LO1 (‘Describe what ecological forecasts are and how they are
used’) by analyzing forecasts and identifying forecast users and LO2 (‘Identify different ways to represent
uncertainty in a visualization’) by analyzing how or whether their forecast visualizes uncertainty.

In Activity B, “Make decisions using an ecological forecast,” students completed an in-depth case study in
which they role-played as resource managers and made decisions about optimizing multiple objectives using
two different forecast visualizations (Figure 2A). The use of role-playing as an active form of learning has
documented success in education, especially in science education (Howes and Cruz 2009), but has not been
tested in ecological forecasting education specifically. Students were given a case study in which they were
asked to role-play as water managers and make decisions about whether or not they should allow a swimming
race in a drinking water reservoir given different forecasts of potentially toxic algal blooms occurring at the
time of the race (see Appendix S1: Text S1 for a full description of the case study scenario).

As part of Activity B, students were taught to use structured decision-making techniques to apply their
management objectives for the drinking water case study. Specifically, students were taught the PrOACT
structured decision-making tool (see Table 1 for definition, e.g., Hammond et al. 2002, Hemming et al. 2022).
With a goal of optimizing four different management objectives identified using the PrOACT tool (Figu-
re 2A.3), students created hypotheses about how to manage the drinking water reservoir each day as the
forecasts were iteratively updated over time (Figure 2A.1; Appendix S1: Figure S3). They completed this ob-
jective twice, using forecast visualizations which represented uncertainty using two different methods (Figure
2A.1, 2A.2). Students were encouraged to work through this activity independently and consult with their
partner as needed. Finally, students answered questions about how different forecast visualizations influenced
their ability to make decisions about managing the reservoir. The culminating discussion of Activity B asked
students to discuss how they might improve or alter the visualizations for their decision needs as a water
resource manager. Students addressed LO1 in Activity B by using ecological forecasts to make decisions, and
LO2 by making decisions using different types of uncertainty visualizations.

In Activity C, “Create a customized visualization of an ecological forecast for a forecast user,” students
worked individually to choose a different forecast user that was not a drinking water manager (e.g., a
swimmer) of the same drinking water forecast they used in Activity B (Figure 2B-C). Students identified a
decision to be made by their forecast user (e.g., whether or not to go swimming in a lake based on an algae
threshold). Based on the decision that they identified, students created a customized forecast visualization
for their user. Additionally, students explored the underlying forecast distribution by examining the mean,
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median, and upper ranges of the forecast to better understand the uncertainty underlying the forecast.
Lastly, students compared their visualizations with their partner, who chose a different forecast user. This
Activity C advanced student understanding of LO1 by connecting the forecast to a variety of potential users.
By comparing across forecast users, students were also encouraged to think about how different users might
benefit from different types of visualizations (Figure 2B and 2C), contributing to their understanding of
LO2.

At the end of Activity C (as well as between completion of each activity, time permitting), instructors
were guided to bring the student pairs back together for a full group discussion and answer any remaining
questions. A list of discussion questions for the instructor to use as prompts was provided for each Activity in
the Instructor Manual. For example, to recap Activity A, instructors could ask students to discuss how they
were able to tell whether visualizations included uncertainty and if there were some types of visualizations
that made it more or less difficult to recognize and interpret forecast uncertainty. For Activity B, instructors
could ask students to present their decisions in the case study and explain how the trade-offs among their
management objectives influenced their decision-making. Lastly, for Activity C, instructors could ask students
to discuss the visualization that they chose for their forecast user and how it related to their forecast user’s
decision needs, as well as what they would do if they had to create a visualization which served multiple
forecast user needs.

Instructional Information and Accessibility

As noted above, all materials for teaching this module are publicly available. The teaching materials (in-
troductory lecture, introduction to R Shiny guide, pre-module student handout, and instructor’s manu-
al) are archived in the Environmental Data Initiative repository (Woelmer et al. 2022a). The R Shiny
application code is archived in the Zenodo repository (Woelmer et al. 2022b) and can be accessed at
http://module8.MacrosystemsEDDIE.org. To access the R Shiny application, students only need an in-
ternet connection and a web browser. For students without consistent access to an internet connection, the
R Shiny code can be downloaded from Zenodo (Woelmer et al. 2022b) and run locally on a computer using
R and RStudio software.

Macrosystems EDDIE Module 8 is designed to be taught either in-person, virtually, or in a hybrid modality.
The Instructor’s Manual includes instructions on best practices for facilitating the module in each modality.
For example, we recommend using Zoom breakout rooms with four students per room (two pairs of students)
if teaching virtually, or having students sit together in pairs if teaching in-person.

To increase accessibility for users, the module includes alternative (alt) text descriptions of all images.
In addition, text throughout the module was adjusted to have sufficient levels of contrast for improved
readability, following Moore et al. (2022a).

Module Assessment

To assess the effects of our module on student learning and answer our research questions, we administered
pre- and post-module assessment surveys to undergraduate students before and after module completion,
respectively. In total, we tested the module in four undergraduate courses at four different universities with
N = 314 consenting students and 7 unique instructors (Table 2). Not all students completed every question
so the number of responses per assessment question varied. All students who completed the assessment were
undergraduates in their second year or later and were enrolled in General Ecology, Zoology, or Freshwater
Ecology courses. Because the module was taught across a variety of institutions, course types, classroom
formats, and student experience levels, we were not able to control for these variables in our design, and thus
focused our analysis on the total pool of consenting students who completed the module. Instructors were
recruited via personal communication, participation in conference workshops, or through an email listserv.
The module was taught both virtually and in-person (Table 2), though the majority of students (92%)
completed the module with in-person instruction.

As described above, the goal of the assessment was to measure the effects of the module on students’ ability to
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understand foundational ecological forecasting concepts (LO1) and uncertainty communication (LO2; Figure
1, Table 3). We grouped the questions by LOs, resulting in three questions which measured foundational
ecological forecasting concepts (LO1) and five questions which measured uncertainty communication concepts
(LO2, Figure 1).

The assessment included multiple-choice and qualitative, open-ended questions (Table 3). Pre- and post-
surveys were identical and administered via an online, secure portal run by the Science Education Research
Center at Carleton College. All students and faculty consented to participate in the study per our Institutional
Review Board (IRB) protocols (Virginia Tech IRB 19-669 and Carleton College IRB 19-20 065).Analysis of
assessment surveys

We analyzed multiple-choice and qualitative assessment questions from the pre- and post-module surveys.
Multiple-choice questions (Q1-2, 5-9) were scored by whether students selected the correct answer. Qualitative
questions (Q3-4) were scored using a rubric developed by two Macrosystems EDDIE coordinators, following a
standardized two-step process (see Appendix S1: Text S2 for methodology), based on the rubric methodology
of Moore et al. (2022a) and Miles et al (2020). A detailed description of the coding criteria for both Q3 and
Q4 is included in Appendix S1: Tables S5 and S6, respectively. We also screened answers to Q4 (Table
3) for the presence of three keywords related to uncertainty communication (‘icon’, ‘color’, and ‘forecast
output/index’). We recorded whether the keywords were present or absent in student responses but did
not consider responses correct unless students also explained how the keywords were used to communicate
uncertainty.

To determine the overall performance within and across LO1 (foundational ecological forecasting) and LO2
(uncertainty communication), we calculated the percent correct within each LO (i.e., resulting in a score
for LO1 and LO2) for each student. For the two qualitative questions, which included multiple open-ended
responses, student responses were considered ‘correct’ if they identified at least one benefit of ecological
forecasting (Q3) and at least one way of communicating uncertainty (Q4).

We used paired Wilcoxon signed-rank tests to analyze the differences between pre- and post-survey responses
on both multiple-choice and qualitative questions as well as the grouped categories. Due to varying class
sizes, instruction, student experience levels, and teaching modalities across the four institutions, all data were
pooled and analyzed together. Statistical significance was defined as p < 0.05. All analyses were conducted
in R version 4.2.1 (R Core Team, 2022).

Results

Our assessment data indicate that student understanding of foundational ecological forecasting and un-
certainty communication concepts increased after module completion (Figures 3, 4). Specifically, students
identified significantly more ways to communicate uncertainty in a forecast, and were significantly more likely
to identify ‘decision-making’ and ‘prediction’ as important benefits of ecological forecasts (Figure 4). Across
the two LOs, students scored higher in foundational ecological forecasting concepts after completing the mo-
dule, but showed strong growth in understanding both ecological forecasting and uncertainty communication
concepts from pre- to post-module surveys (Figure 5).Student understanding of uncertainty communication

Students were more likely to correctly identify and describe multiple ways to communicate uncertainty in
forecast visualizations after completion of the module (Figures 3, 4b, 4d; Table 4). The percent of students
able to correctly distinguish among different ways to visualize forecast uncertainty increased from 33%
pre-module to 60% after module completion (p < 0.001; Figure 3e, Table 4). In addition, students were
significantly more likely to identify and interpret differences between two visualizations that had varying
representations of uncertainty after module completion (33% of students pre-module vs. 49% post-module;
p <0.001; Figure 3d, Table 4). We also observed post-module increases in the percent of students who
correctly interpreted a forecast visualization (49% pre-module; 52% post-module) and matched a forecast
visualization with a forecast user decision need (42% pre-module; 49% post-module), but these increases
were not statistically significant (p = 0.34 and 0.28, respectively; Figure 3c, 3f; Table 4).
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Students also showed increased comprehension of uncertainty communication after module completion in
our qualitative assessment. When asked to describe two different ways to communicate uncertainty, the
number of correct answers students provided increased from an average of 0.2 ± 0.5 on the pre-survey
(S.D.) to 1.1 ± 0.8 on the post-survey (p < 0.001; Figure 4d, Table 4). Specifically, the number of students
who identified numeric, visual, or probabilistic methods to visualize uncertainty increased significantly after
module completion (all p < 0.001; Figure 4b), while student responses which included text or multiple
predictions increased, but not significantly (both p = 0.18; Figure 4b, Table 4). The number of students
who identified ‘numeric’ methods to visualize uncertainty (e.g., ‘standard deviation’, ‘statistical confidence
intervals’, ‘intervals’, or ‘ranges’) increased from 8% on the pre-survey to 29% on the post-survey (p < 0.001;
Figure 4b, Table 4). Additionally, student responses which included ‘visual’ descriptions of uncertainty (e.g.,
‘boxplots’, ‘shaded area around a line’, ‘error bars’) increased from 8% to 41% (p < 0.001; Figure 4b, Table
4), while responses including ‘probabilistic’ methods to visualize uncertainty (e.g., ‘percentage likelihood’,
‘probability of exceeding a certain threshold’) increased from 2% to 15% from the pre-survey to the post-
survey (p < 0.001; Figure 4b, Table 4).

Several keywords were significantly more prevalent in post-module than pre-module responses to the question
about identifying uncertainty communication methods (Q4, Table 3). None of our keywords were identified
in the pre-survey responses, but 4% (n = 9) of students included the word ‘icon’ and 13% (n = 31) of
students included ‘color’ in their answers when asked to identify ways of communicating uncertainty in the
post-survey. In addition, 11% (n = 27) of students named ‘forecast output’ or ‘forecast index’ in their post-
survey responses. However, we note that of the 27 students who listed ‘forecast index/output’ as a way to
visualize uncertainty in their post-module response, only three students correctly described these terms in
the context of uncertainty communication. For example, one student explicitly described what they meant
by a ‘forecast index/output’ (“Forecasts can be visualized through figures that show forecast output, which
have direct information on it, and forecast index, which contains a meaningful threshold that is based off
what decision is being made”), demonstrating a deeper understanding than students who mentioned forecast
index/output without a definition (e.g., “You can visualize uncertainty with a forecast index and a forecast
output”).

Student understanding of foundational ecological forecasting

We found that student understanding of foundational ecological forecasting concepts increased after module
completion (Figures 3, 4; Table 4). Students were significantly more likely to correctly define an ecological
forecast after completing the module, with an increase from 27% pre-module to 78% of students answering
correctly post-module (p < 0.001; Figure 3a). Student understanding of how forecast uncertainty changes over
time also increased from 52% to 58% after module completion, although this increase was not statistically
significant (p = 0.16; Figure 3b, Table 4).

We saw a significant increase in the total number of benefits of ecological forecasts identified by students after
module completion (p < 0.001; Figure 4c, Table 4). Certain benefits were more likely to be mentioned than
others in the student responses. Specifically, students were more likely to identify how forecasting can be used
for facilitating decision-making (which was included in 13% of pre-module responses and 35% of post-module
responses), and predicting a future event (included in 47% of pre-module and 59% of post-module responses;
Figure 4a, Table 4). Correspondingly, the number of “I don’t know” responses to the question about forecast
benefits significantly decreased from 38% to 8% after module completion (Figure 4a, Table 4). Students also
identified other benefits of ecological forecasting in both the pre- and post-survey (e.g., benefits related to
management or policy, as well as increased understanding of ecological systems or models), although these
themes were not significantly more prevalent in student responses after module completion (Figure 4a).

Overall, student responses to the open-ended, qualitative question about forecast benefits showed an expan-
sion in their understanding of how ecological forecasts can be used. Several students provided fairly simplistic
answers about the benefits of forecasts in their pre-module responses and then more nuanced and complex
answers in their post-module responses. For example, one student answered “Limiting the effects of climate
change” in their pre-module response as a forecast benefit, while their response after module completion
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showed a more in-depth understanding of forecast applications: “Ecological forecasting allows people to bet-
ter understand how environmental conditions will change and how that will impact them.” Another student
similarly wrote in their pre-survey response to the forecast benefit question, “Maybe it’ll show the effects
of climate change in response to what we do now?” and then expanded to “They [forecasts] can assist in
planning future events as well as management or conservation for at risk areas” in their post-survey response.

Performance across ecological forecasting and uncertainty communication learning objectives

Student performance improved from pre- to post-module in correctly answering questions on both founda-
tional ecological forecasting concepts (LO1) and uncertainty communication (LO2; Figure 5). The increase
in performance was stronger for students who scored lower on the pre-survey (Figure 5b). Students were
more likely to correctly answer questions on ecological forecasting concepts than questions on uncertainty
communication concepts on the pre-module assessment (Figure 5a). Both LOs showed strong growth after
module completion, with many students who answered zero questions correctly on the pre-survey answering
all questions correctly on the post-survey in both categories (Figure 5b). More students scored 100% (all
LO-specific questions answered correctly) on foundational ecological forecasting concepts than on uncertain-
ty communication both before and after module completion, though we note that the number of questions
in the two categories differed (Figure 1).

Discussion

Our results indicate that completion of a 3-hour module can significantly improve undergraduate ecology
students’ understanding of uncertainty communication and ecological forecasting. While the percentage of
correct answers increased for all assessment questions after module completion, students were more likely
to perform higher on foundational ecological forecasting concepts than uncertainty communication concepts
prior to module completion. Higher initial performance on ecological forecasting questions may be becau-
se students were more familiar with ecological forecasting concepts relative to uncertainty communication
concepts before completing the module. However, students showed more growth in describing multiple ways
to communicate uncertainty than in identifying benefits of ecological forecasting (Figure 4c, 4d). Below, we
explore the implications of our results for undergraduate education in uncertainty communication, ecological
forecasting, and ecology broadly.Improved uncertainty communication skills and implications for visualization
literacy

Students identified significantly more ways to communicate uncertainty following module completion, indi-
cating that the module introduced students to a toolbox of approaches for developing and understanding
uncertainty in ecological visualizations. Before completing our module, the majority (85%) of students were
unable to describe any ways to communicate uncertainty, while after module completion 72% were able to
describe one or more ways to communicate uncertainty (Figure 4d). Being able to identify and describe
multiple methods for uncertainty communication is an important skill, as the method used to visualize un-
certainty can have a substantial effect on user comprehension and decision-making (Nadav-Greenberg et al.
2008, Ramos et al. 2013, Cheong et al. 2016, McKenzie et al. 2016, Kinkeldey et al. 2017). For example,
using summary visualizations (e.g., boxplots) can decrease users’ cognitive load and increase the speed of
decision-making, but are more likely to lead to misinterpretation (Ruginski et al. 2016, Correll et al. 2018).
In contrast, ensemble-based visualizations (i.e., forecast visualizations that show all possible model outputs)
may provide users with more information about the whole spread of uncertainty, but viewers may over-
weight certain ensemble members, leading to inconsistent decision-making (Padilla et al. 2017a). Given that
there is no single “best” visualization method for uncertainty communication due to differences in decision-
making needs (Spiegelhalter et al. 2011), the ability to create a variety of visualization options and adapt
visualizations based on forecast user feedback is critical for developing effective uncertainty visualizations.

All of the methods for uncertainty communication included in the students’ post-module responses are aligned
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with current state-of-the-art practices for uncertainty communication in visualization science. “Visual” and
“numeric,” the two uncertainty communication methods most commonly reported by students in post-
module responses (Figure 4b), mirror the two key uncertainty representation techniques (“visualization” and
“quantification”) identified in a recent review (Kamal et al. 2021). Probabilistic methods, which were also
significantly more common in student responses following module completion, can decrease cognitive load and
increase use and understanding of visualizations for decision support (Kox et al. 2018). Some students (n = 8)
also identified “text” as a useful method for uncertainty communication (Figure 4b), but “text” was almost
always (7/8 students) reported in addition to another form of communication (e.g., “visual,” “numeric,” or
“probability”), following literature which shows that text is most useful for explaining and providing context
for visualizations (Carr et al. 2018). Additionally, common keywords throughout student responses included
“color” and “icon.” Thoughtful use of color palettes (e.g., by using discrete rather than continuous color
palettes) has been shown to be a powerful tool in representing ranges of uncertainty (Padilla et al. 2017b,
Correll et al. 2018). Similarly, the use of icons or symbols has been shown to improve user understanding
and usability of decision support tools in diverse settings (Galesic et al. 2009, Garcia-Retamero et al. 2010,
Zikmund-Fisher et al. 2014, Kamal et al. 2021), potentially by decreasing the cognitive load required to
interpret the communication. While neither text, icons, or numbers alone are typically most effective in
scientific communication of complex ideas (Larkin and Simon 1987, Tait et al. 2010), the student post-module
responses are reflective of a common theme in the visualization literature that using multiple communication
forms increases user comprehension and confidence in decision-making (Fagerlin et al. 2005, Spiegelhalter
et al. 2011). Ultimately, the module increased students’ ability to communicate uncertainty using multiple
approaches, a key skill for developing decision support tools for forecast users.

Overall, the module shows promise for increasing visualization literacy and introducing much needed skills
in uncertainty communication to undergraduate ecology students. Most students who completed this module
had little to no prior experience with uncertainty communication, but showed substantial improvement in
performance after module completion, indicating that a 3-hour module can help build these critical skills
(Figure 5). Students’ lack of previous exposure to uncertainty communication is likely because undergraduate
ecology classes do not currently include uncertainty communication and visualization literacy topics as often
as, e.g., ecological modeling and prediction (Willson et al. 2022). Because the communication of uncertainty
is just as important as the quantification of uncertainty in forecasts for ensuring that forecast visualizations
guide end users’ decision-making, it is critical that science communication and visualization science, including
incorporation of end user decision needs in visualization development, are included in ecological forecasting
training (Robinson et al. 2012, Schwartz et al. 2017, Eisenhauer et al. 2021).

Overall, given the importance of uncertainty communication not only in ecology, but across scientific discipli-
nes broadly (e.g., medicine, meteorology, economics; Tait et al. 2010, Ferstl et al. 2017, Wesslen et al. 2022),
improving students’ ability to interpret and produce uncertainty visualizations may help enable student
participation in a variety of scientific disciplines. Moreover, providing students with improved visualization
literacy and uncertainty communication skills will yield a more data-literate population, regardless of stu-
dents’ future careers. This module provides an important first step for incorporating visualization literacy
coursework across undergraduate curricula broadly and initiating training in critical visualization inter-
pretation and communication skills.Increase in student understanding of foundational ecological forecasting
concepts

In addition to expanding students’ uncertainty communication skills, completion of the 3-hour module impro-
ved students’ understanding of foundational ecological forecasting concepts. Following module completion,
students were significantly more likely to correctly define an ecological forecast as a future prediction of
environmental conditions with uncertainty (Figure 3a; Appendix S1: Table S1). Overall, developing a com-
mon definition of “forecast” is important for furthering the field of ecological forecasting, as having common
definitions enables meaningful discourse on topics within and across disciplines, providing a scaffold for in-
terdisciplinary work to address complex socioecological problems (Lélé and Norgaard 2005, Robinson et al.
2012). Given that ecological forecasting is an emerging field (Woelmer et al. 2021), codifying definitions in
training materials enables undergraduate ecology students to more effectively discuss and learn forecasting
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topics.

Student understanding of the benefits of ecological forecasting also significantly increased after module com-
pletion. Specifically, we found a significant increase in the number of students who identified ‘decision-making’
and ‘prediction’ as benefits, but saw only a minimal increase for ‘policy,’ and decreases for ‘management’
and ‘understanding.’ Since ‘decision-making’ and ‘prediction’ were emphasized throughout the module, it
is unsurprising that these two benefits of ecological forecasting were most commonly provided in student
responses. However, the small decrease in responses related to management and understanding is surprising,
and may indicate that the module did not sufficiently focus on the benefits of forecasts for management or
ecological understanding. For example, while Activity B used a management-centered role-playing example,
the activity was primarily focused on the effect of visualization type on decision-making, rather than how
forecasts could be integrated into management workflows. Similarly, the module did not emphasize how eco-
logical forecasts can advance understanding of ecosystems and testing of ecological theory or be integrated
into policy-making decisions, leaving an opportunity to bolster these forecast applications in future iterations
of the module. Alternatively, it is possible that students who identified “decision-making” as a benefit of
forecasts may have had policy or management decisions in mind, but not specifically stated this.

We note that students’ ability to correctly identify that uncertainty should increase the further into the
future a forecast is made (Q2) showed only marginal growth (Figure 3b), leaving room for improvement in
teaching this foundational concept of ecological forecasting (sensu Dietze et al. 2018). To complement this
module and provide additional training in foundational ecological forecasting concepts, we suggest pairing
this module with other Macrosystems EDDIE modules (Module 5: Introduction to Ecological Forecasting,
Moore et al. 2022b; Module 6: Understanding Uncertainty in Ecological Forecasts, Moore et al. 2021; or
Module 7: Using Data to Improve Ecological Forecasts, Lofton et al. 2022).

Integration of decision support concepts into ecology curricula Integrating applied decision-making concepts
into ecological forecasting and uncertainty communication lessons heeds a widespread call to make ecological
research more societally relevant (e.g., Belovsky et al. 2004, Ruhl et al. 2022). Training that incorporates
components of translational ecology (e.g., science communication, end user engagement, structured decision-
making, multidisciplinary training) has long been recommended for ecologists at all career stages (Robinson
et al. 2012, Schwartz et al. 2017, Eisenhauer et al. 2021), but resources targeted at the undergraduate
level have been lacking (Bakermans and Pfeifer 2018). Our module aims to close this gap by incorporating
complex water management decision-making scenarios with multiple end users to engage students in solving
real-world problems, while also developing visualization literacy skills. While we did not quantitatively assess
the engagement of students in the module, we received open-ended positive feedback from many students.
Students reported that the module was enjoyable and important (“I really enjoyed looking at decision analysis
in an ecology class;” “I think it’s very important to talk about this in science classes”). Additionally, student
responses suggest that they found that the module was interesting (“This was informative and a really
interesting way for me to realize the actual impacts of ecological forecasting”) and novel (“It was helpful
because I came in with no information”).

Ultimately, introducing students to applications of ecological forecasting for real-world decision-making may
help recruit students to work in this subdiscipline, as well as highlight the importance of using ecology to
produce actionable tools to address societal problems (e.g., Enquist et al. 2017). Many ecological forecasters
have already begun to integrate decision support and uncertainty communication components into their
forecasts by making forecasts which are actionable, useful, and targeted towards forecast users (e.g., Gerst
et al. 2019, Turner et al. 2020, Jackson-Blake et al. 2022). Our experience with this module indicates that
even a short (3-hour) exposure to decision support and uncertainty communication concepts can increase
students’ understanding of potential applications and benefits of ecological forecasting.

Module caveats and opportunities for future use

The impact of this module on student learning of decision science and uncertainty communication skills could
be improved in several aspects. First, during module development, we intentionally introduced students to
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a single method of structured decision-making (PROACT) and a limited number of uncertainty communi-
cation methods (i.e., visual, numeric, probabilistic) to provide a simplified introduction to the decision and
visualization sciences. While students showed successful understanding of the PrOACT tool (Appendix S1:
Figure S4), the addition of other decision support components, including solutions-oriented decision-making
theory (Deitrick and Wentz 2015) or additional methods of structured decision-making (Gregory et al. 2012),
would increase students’ breadth of understanding of decision science. Inclusion of a broader variety of de-
cision support concepts could also lead to improved performance on the decision-related questions (e.g.,
Figure 3c, 3f). Second, allowing students more control over visualizations within the Shiny app (e.g., addi-
tional visualization or personalization options, inclusion of R-based coding activities) would likely increase
students’ visualization literacy (Huron et al. 2014, Alper et al. 2017, Börner et al. 2016, Börner et al. 2019).
Third, due to time constraints, our module asked students to imagine what type of forecast visualization
would best meet different end users’ needs, rather than asking them to actively engage in co-development
of visualizations with different forecast users, which would likely increase the utility of the visualization
(Raftery 2016, Padilla et al. 2017b, Gerst et al. 2019). Fourth, shifting the focus of the case study in Activity
B to be customizable for specific, nearby ecosystems which are directly relevant to students’ everyday lives
could potentially increase engagement and student learning (Cid and Pouyat 2013, Henri et al. 2022, Vance-
Chalcraft and Osborne Jelks, 2022). For example, students living in areas where wildfires are common may
be more engaged analyzing a case study presenting a decision-making scenario on wildfire forecasts. While
we recognize the value in including additional content on uncertainty communication, decision science, and
ecological forecasting, we note that expanding the module may make it less feasible for instructors to add
into their ecology curricula.

Several caveats should be considered when interpreting the assessment results from our module. First, we
used a pre- and post-module methodology because instructors were unable to divide their classes into treat-
ment and control groups for instruction. Second, there were many factors which were not held constant across
the classrooms that tested our module, including student experience level, instructor experience level, class-
room size, institutional familiarity with forecasting and others that could influence the effect of the module
on individual student learning. Third, due to the length of the module and limitations of our assessment
survey, our analysis provides only a limited understanding of students’ knowledge gain. Future longer-term
assessments are needed to assess student growth over a longer duration of time.

Conclusions

Communication of model uncertainty is of paramount importance for advancing the utility of ecological
research findings for decision-making. Our teaching module provides an introduction to concepts and skills
needed for ecology students to increase their visualization literacy, engage in data science applications,
and develop decision support tools. Introduction to ecological forecasting concepts at an early educational
stage, including an improved understanding of the importance of ecological forecasting for societal benefit,
is increasingly necessary for training the next generation of predictive ecologists to meet both European
(Nativi et al. 2021) and U.S. government agency directives (Vought and Droegemeier, 2020; Arsenault et al.
2020; NOAA, 2022; CDC 2022). Moreover, by teaching ecological forecasting and uncertainty communication
skills via a real-world decision-making scenario, this module helps to emphasize the relevance and lower the
barrier of entry to ecology. Through an R Shiny interface that is easy to implement for educators in a range
of classroom experience levels, this 3-hour, adaptable module fills a critical gap in undergraduate ecology
curricula. By introducing students to uncertainty communication and ecological forecasting early in their
careers, this module can help train the next generation of ecologists to conduct societally relevant research
and tackle pressing ecological challenges.
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TABLES

Table 1. Glossary of uncertainty communication and ecological forecasting terms taught in Macrosystems
EDDIE Module 8: “Using Ecological Forecasts to Guide Decision-Making” as well as examples of how each
term is applied to real-world, near-term forecasting.

Term Definition Example
Ecological forecast A prediction of a future event

with uncertainty
A forecast of the distribution
and density of the invasive
spongy moth for 1 month into
the future which includes
uncertainty

Forecast index A forecast output that
translated into thresholds which
are meaningful for
decision-making

22% chance of spongy moth
outbreak in a given location
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Forecast output Future predictions with
uncertainty generated using a
model

Spongy moth density is 24
individuals/km2 ± 4
individuals/km2

Forecast user Anyone who can use a forecast
to gain understanding or make
a decision

Scientist studying oak tree
populations, Homeowner, etc.

Forecast decision use A specific way in which a
forecast is used to inform a
decision

A forecast of the density of
invasive spongy moth guiding a
decision about buying moth
insecticide

Forecast decision use cases Categories of forecast users
defined by their decision use needs
(adapted from Raftery 2016)

Casual user: Users who do not
require probabilistic forecasts;
e.g., a park visitor interested in
which areas within the park are
affected by spongy moth
Practitioner: Users who need an
overall idea of uncertainty; e.g.,
homeowner deciding to protect
oak trees on their land in an area
affected by spongy moth Decision
analyst: Users who require
detailed information about
uncertainty; e.g., a natural
resource manager deciding which
area of a park to treat for spongy
moth invasion

Structured decision-making A formalized method of analyzing
a decision by dissecting its
components

PrOACT is a structured
decision-making tool which guides
users through identifying and
analyze the following components
of a decision: Problem
Objective
Alternatives
C onsequences
T rade-offs

Table 2. Summary of courses which participated in assessment of Macrosystems EDDIE Module 8 “Using
Ecological Forecasts to Guide Decision-Making.”

Institution
Course
Level

Class
Name

Carnegie
Code

Number of
students
enrolled

Number of
unique
instructors Mode

Albion
College

Upper-level
undergraduate

Ecology Baccalaureate
College:
Arts and
Sciences
Focus

8 1 In-person

University of
Georgia

Upper-level
undergraduate

Ecology Lab/
Honors
Ecology

Doctoral/
Research
University

250 7 In-person

20



P
os

te
d

on
27

M
ar

20
23

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
67

99
48

30
.0

71
06

60
5/

v
1

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. Institution
Course
Level

Class
Name

Carnegie
Code

Number of
students
enrolled

Number of
unique
instructors Mode

Virginia Tech Upper-level
undergraduate

Freshwater
Ecology

Doctoral/
Research
University

31 1 In-person

University of
Wisconsin-
Madison

Upper-level
undergraduate

Zoology Doctoral/
Research
University

25 1 Virtual

Note : Carnegie codes are categories of universities based on educational and research activity at each
institution (https://carnegieclassifications.acenet.edu).

Table 3. Selected assessment questions and their corresponding learning objectives for Macrosystems ED-
DIE Module 8: “Using Ecological Forecasts to Guide Decision-Making.”

Assessment Question Learning Objective (LO) Assessment question short name Question style
Q1. Which of the following statements best describes an ecological forecast? LO1: EF Concepts Define MC
Q2. When an ecological forecast is generated, how does the uncertainty of the forecast change as it predicts conditions further into the future? LO1: EF Concepts Uncertainty MC
Q3. List what you think are some benefits of ecological forecasting. LO1: EF Concepts Forecast benefits Q
Q4. Describe two different ways uncertainty can be visualized in a forecast. LO2: UC Communication Communication type Q
Q5. Which of the following is the best description of the forecast presented in Figure 1A? LO2: UC Communication Interpret MC
Q6. The ecological forecasts in Figure 1A and 1B present information differently. Which of the following is true? LO2: UC Communication Contrast MC
Q7. Which of the following is an example of a forecast index, as opposed to a forecast output)? LO2: UC Communication Distinguish MC
Q8. You have been hired as a marine resource manager tasked with deciding which region of the world you should prioritize for coral reef conservation based on coral reef stress. The forecaster you are working with is trying to develop a visualization that can help you make your conservation decision. Which of the following visualization options would be best? LO2: UC Communication Connect to user MC

Note : The full list of possible answers for multiple choice questions are listed in Appendix S1: Table S3,
and thematic bins used for scoring the qualitative questions are listed in Appendix S1: Tables S5 and S6.
EF = ecological forecasting. UC = uncertainty. LO1: EF Concepts = Describe what ecological forecasts
are and how they are used; LO2: UC Communication = Identify different ways to represent uncertainty in
a visualization. The assessment question short names are used to refer to specific questions throughout the
text and in Figures 3 and 4. MC = multiple-choice, Q = qualitative.Table 4. Summary statistics of pre-
and post-module assessment questions for assessment questions in this study (Q1-8).

Question
Two-Tailed
p-value

Test
Statistic Effect size

Pre-
Module
Correct
Responses

Post-
Module
Correct
Responses

Units for
Correct
Responses n

Q1:
Define

<0.001 725 0.67 28 80 Percent
correct
(%) across
all
students

240

Q2:
Uncertainty

0.16 1628 0.09 55 60 Percent
correct
(%) across
all
students

240
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Question
Two-Tailed
p-value

Test
Statistic Effect size

Pre-
Module
Correct
Responses

Post-
Module
Correct
Responses

Units for
Correct
Responses n

Q3:
Forecast
benefits

<0.001 1606 0.12 0.82 ±
0.79

1.13 ±
0.69

Number
correct
(Mean ±1
SD) per
student

208

Q4:
Communi-
cation
method

<0.001 238 1.09 0.4 ± 1.02 2.52 ±
1.79

Number
correct
(Mean ±1
SD) per
student

240

Q5:
Interpret

0.34 1716 0.06 50 53 Percent
correct
(%) across
all
students

240

Q6:
Contrast

<0.001 1751 0.22 33 47 Percent
correct
(%) across
al
students

240

Q7:
Distinguish

<0.001 1633.5 0.39 33 61 Percent
correct
(%) across
all
students

240

Q8:
Connect
to user

0.28 2392 0.07 46 51 Percent
correct
(%) across
all
students

221

Note: Test statistics, p-values, and effect sizes are for paired, two-sided Wilcoxon signed-rank tests. Signifi-
cant p-values (p < 0.05) are shown in bold.

FIGURE CAPTIONS Figure 1. Conceptual diagram of the two learning objectives (LOs) associated
with uncertainty communication and foundational ecological forecasting concepts taught in Macrosystems
EDDIE Module 8: “Using Ecological Forecasts to Guide Decision-Making.” Within the larger circles, each
bubble shows the corresponding assessment questions which tested the effectiveness of the module in meeting
these LOs. Descriptions of the assessment questions are in Table 3 and the full assessment questions can
be found in Appendix S1: Tables S1-2. Ecological forecast is abbreviated as EF.Figure 2. Screenshots of
activities from the module R Shiny application showing A) Activity B, in which students (1) make decisions
about how to manage a drinking water reservoir, using two different forecast visualizations (2a and 2b, which
were shown separately to students within the application), while weighing the consequences on multiple ob-
jectives, such as maintaining good drinking water quality, preserving ecological health, maximizing economic
benefit, and ensuring swimmer safety (3). In Activity C, students chose a forecast user and customized a
visualization for that particular users’ decision needs; for example, (B) shows a visualization and decision
chosen for a swimmer, while (C) shows a visualization and decision chosen for a local policymaker.Figure
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3. Percentage of students who answered multiple-choice questions correctly in the pre- and post-module sur-
veys. Asterisks (***) indicate a statistically significant difference between the pre- and post-module survey
according to a Wilcoxon signed-rank test (p < 0.001). Colors of the bars correspond to LO1: Foundational
ecological forecasting (EF) concepts (green) and LO2: Uncertainty Communication (orange; Figure 1, Table
3). A description of questions can be found in Table 3 and Appendix S1: Table S3.Figure 4.Percentage of
students who identified a) different benefits of ecological forecasting (Q3), and b) different ways to visualize
uncertainty (Q4) in the pre- and post-module responses. These responses correspond to the c) total number
of benefits identified by individual students in Q3, and d) the total number of ways to visualize uncertainty
identified by individual students in Q4. Students were also given the option to state “I don’t know,” repre-
sented as “IDK” in panels a and b. The categories listed on the x-axis in panels a and b were determined
through the methods outlined in Appendix S1: Text S1 and are listed in Table 4, respectively. Asterisks (***)
indicate a significant difference (p < 0.001) between the pre- and post-survey responses according to paired
Wilcoxon signed-rank tests. A full description of questions can be found in Appendix S1: Table S4.Figure
5. Pre- and post-survey results across the two LOs showing a) the total percent correct for all students
across each category, and b) the change in the number of correct answers for each student after module
completion relative to each student’s percent correct before taking the module. Color in (b) corresponds to
the number correct on the pre-survey only and points are jittered to improve legibility of individual points.
Note that the number of questions corresponding to each LO varied, with three questions assessing founda-
tional ecological forecasting concepts and five questions assessing uncertainty communication concepts. The
percentage of correct answers are standardized to the total number of questions per LO in (a), while the
number of questions answered correctly is shown in (b). “Foundational” corresponds to LO1: Ecological
Forecasting Concepts, and “Communication” corresponds to LO2: Uncertainty Communication.

FIGURES

Figure 1
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