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Abstract

We describe methods and software resources for a bioimpedance measurement technique, “trans-radial electrical bioimpedance

velocimetry” that allows for the non-invasive monitoring of relative cardiac contractility and stroke volume, proxies of sympa-

thetic cardiac tone. In addition to describing the general recording methodology, which requires impedance measurements of

the forearm, we provide open source Jupyter based software (operable on most computers) for deriving cardiac contractility

from the impedance measurements. We demonstrate the ability of this bioimpedance measurement for tracking event related

contractility in a maximal grip force production task. Critically, the results demonstrate both a reactive increase in cardiosym-

pathetic drive with force production as well as a learned increase in drive prior to grip onset, consistent with allostatic autonomic

regulation. The method and software should be of broad utility for investigations of event related cardio-sympathetic regulation

in psychophysical studies.
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Abstract 25 

We describe methods and software resources for a bioimpedance measurement technique, “trans-radial 26 

electrical bioimpedance velocimetry” that allows for the non-invasive monitoring of relative cardiac 27 

contractility and stroke volume, proxies of sympathetic cardiac tone. In addition to describing the 28 

general recording methodology, which requires impedance measurements of the forearm, we provide 29 

open source Jupyter based software (operable on most computers) for deriving cardiac contractility from 30 

the impedance measurements. We demonstrate the ability of this bioimpedance measurement for 31 

tracking event related contractility in a maximal grip force production task. Critically, the results 32 

demonstrate both a reactive increase in cardiosympathetic drive with force production as well as a 33 

learned increase in drive prior to grip onset, consistent with allostatic autonomic regulation. The method 34 

and software should be of broad utility for investigations of event related cardio-sympathetic regulation 35 

in psychophysical studies. 36 

  37 
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Introduction 38 

The cardiovascular system adapts quickly and dynamically in anticipation of and in response to a 39 

variety of stressors. Tracking these perturbations of sympathetic control by a measurement with high 40 

temporal resolution is a promising approach for identifying both physiological and psychological drivers 41 

of stress (Cieslak, et al., 2018). Bioimpedance methods, particularly impedance cardiography (ICG), have 42 

long been used to investigate the sympathetic branch of the autonomic nervous system to the heart by 43 

capturing electromechanical modulation of cardiovascular activity during cognitive tasks (Miller & 44 

Horvath, 1978). ICG uses a high frequency electrical current delivered via a total of 8 pairs of electrodes 45 

placed on the neck and thorax, while another pair of electrodes are required to record the 46 

electrocardigram. Using the combination of impedance cardiography and electrocardiography, a 47 

number of cardiodynamic parameters that are sensitive to sympathetic drive can be derived. These 48 

include intervallic parameters such as left ventricular ejection time (LVET) and pre-ejection period (PEP) 49 

as well as estimates of stroke volume (SV) and cardiac output (CO) based on idealized models of the 50 

thorax (Bernstein, 2009).  51 

While ICG is a powerful approach, the method has drawbacks. Because the measurements are 52 

acquired across the thorax, the normal respiratory cycle introduces a complex set of confounds including 53 

changes of thoracic size and shape that undermine the application of ideal models. Furthermore, cyclic 54 

changes of intrathoracic pressure and venous return to the heart introduce added uncertainty in isolating 55 

sympathetic dynamics from other physiologic control variables. Pragmatically, motion artifacts and 56 

operational challenges related to applying electrodes to the naked torso pose additional limitations. 57 

More problematic has been the modeling of the resultant thoracic impedance waveform. The analysis 58 

depends on the identification of the b-point, a subtle inflection of the impedance wave corresponding to 59 

the opening of the aortic valve. Despite the development and distribution of semi-automated software 60 

tools by our lab for expediting the labeling of the b-point, we find that for many studies b-point 61 
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identification continues to require extensive hands-on expert quality control for labeling ambiguous time 62 

points. While the variability in labeling the b-point can be overcome by averaging heart beats over a 63 

sliding time window, this compromises the goal of measuring sympathetic responses on a fast time scale 64 

(Cieslak, et al., 2018). 65 

Given the ongoing challenges of ICG analysis and the goal of characterizing cardiosympathetic 66 

drive on a beat-by-beat time scale, we have investigated other bioimpedance measurements besides 67 

ICG (Sel, Osman, & Jafari, 2021). Here we present a particularly promising method called Trans-Radial 68 

Electrical Bioimpedance Velocimetry (TREV) (Bernstein, Henry, Banet, & Dittrich, 2012). In contrast to 69 

ICG, TREV is a user-friendly approach that avoids many of the problems that result from acquiring signals 70 

across the thorax. Instead, impedance signals with TREV are measured across the length of the volar 71 

forearm. Changes of the impedance signal are directly related to a pressure wave propagating along the 72 

radial and ulnar arteries that arises with the opening of the aortic valve. In the following sections, we 73 

describe the underlying biomechanical and electrical properties of TREV that lead to the estimation of 74 

cardiac contractility. We demonstrate the utility of this approach with an isometric grip force task to 75 

capitalize on the known increase in sympathetic activation while humans apply their maximum grip force 76 

to a grip transducer (Richter, 2015; Richter, Gendolla, & Wright, 2016; Stanek & Richter, 2016; Stanek & 77 

Richter, 2021). We show that TREV is capable of capturing beat by beat allostatic anticipatory changes of 78 

the sympathetic nervous system, suggesting that participants can learn to develop a sympathetic 79 

response prior to movement onset. Finally, we provide signal processing software operable on most 80 

computers and a tutorial for streamlining the conversion of TREV impedance measurements into beat-81 

by-beat estimates of contractility. 82 

 83 

I. Background Physics and Physiology 84 

Red blood cells and impedance 85 



 

 5 

Several biophysical properties contribute to the changes of electrical impedance measured with 86 

TREV. Under static conditions (without blood flow or arterial pressure gradients), the red blood cells, 87 

constituting approximately 40% of blood volume in a vessel, will be randomly oriented. Due to the 88 

random orientation of the biconcave red blood cells, an increased resistance within the plasma is 89 

observed, as the artery exhibits a maximal level of electrical resistivity (Bernstein, 2009). During normal 90 

blood flow through the radial and ulnar arteries, the short axis of red blood cells aligns perpendicular to 91 

the flow axis. Additionally, impedance Z (measured in ohms/sec) and blood volume will vary as a 92 

function of velocity (v), which we assume remains constant along the measured segments of the two 93 

arteries. It is important to note that the denotation of Z in ohms per second is a departure from the 94 

typical usage of Z in other branches of physics where Z  is expressed in units of ohms (Bernstein, Henry, 95 

Banet, & Dittrich, 2012).  96 

 97 

 98 

 99 



 

 6 

 100 

Figure 1: Pulsatile blood flow through the artery of the forearm. During systole, the pressure wave both dilates the 101 
blood vessel and rapidly aligns red blood cells, resulting in decreased impedance. Adapted from (Bernstein, 2009). 102 

 103 

Generation of a pressure wave 104 

During diastole of the cardiac cycle, the aortic valve is closed, isolating aortic blood pressure 105 

from intraventricular pressure as blood fills the ventricle, boosted by atrial contraction. With systole, the 106 

ventricular myocardium contracts, the mitral valve closes and isovolumic intraventricular pressure rapidly 107 

rises until pressure in the ventricle surpasses aortic pressure, at which point the aortic valve opens. A 108 

pressure surge occurs at this moment. This near instantaneous pressure wave is rapidly transmitted 109 

throughout the arterial vasculature. In a stiff pipe, this wave travels at a velocity of 1280 m/s. Because the 110 

vasculature, particularly the proximal aorta, is compliant, there is both a delay and dispersion of this 111 

pressure wave compared to a rigid pipe. With TREV, when this slightly delayed and dampened pressure 112 

wave arrives in the arteries of the forearm the red blood cells will further align as shown in Figure 1. The 113 

ΔZ < 0 ΔZ > 0ΔZ = 0

ΔZ = 0 ΔZ = 0
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net effect is a decrease in impedance Z. As shown in Figure 1 there can also be an increase in blood 114 

volume; however, changes in blood volume in the forearm vasculature are relatively minor.  115 

Cardiac contractility, or the vigor with which the heart contracts, will determine in large part the 116 

intraventricular pressure that is generated during systole. As sympathetic activity increases, cardiac 117 

contractility also increases. Thus, contractility is a particularly useful variable of interest for tracking 118 

sympathetic dynamics in psychophysiological research. For a healthy individual at rest, end-diastolic 119 

ventricular volume will also impact intraventricular pressure and potentially influence the pressure wave 120 

and stroke velocity that change impedance. Critically, the greater the ventricular contractility, the higher 121 

the stroke velocity and change of impedance. To better characterize this change, we can take the 122 

derivative of stroke velocity which we can refer to as acceleration, measured as dZ/dt in units of ohms 123 

per second squared. In a single cardiac cycle, the maximum of the acceleration wave corresponds to the 124 

time at which the radial artery has the lowest resistivity. We can take the derivative of acceleration (in 125 

engineering, this is known as ‘jerk’), to obtain contractility, (d2Z/dt2), in ohms per second cubed. This 126 

wave can be interpreted as the strength at which the acceleration is generated, which occurs at the 127 

moment the aortic valve opens, and reflects the maximal isovolumic ventricular pressure. In addition to 128 

contractility, stroke volume can also be calculated by integrating the normalized acceleration curve. A 129 

previous validation study demonstrates good correlation between cardiac MRI and TREV based 130 

estimates of stroke volume and cardiac output (Bernstein, et al., 2015) 131 

The key benefit of TREV over ICG is that with the former, the measure is based on blood flow 132 

through the linear axially-oriented segments of the radial (and ulnar) artery as opposed to multi-oriented 133 

flow directions in the heart, aortic arch and heavily branching thoracic vasculature. The linear, 134 

longitudinal orientation of the radial and ulnar arteries in the forearm simplifies the relationship between 135 

impedance, blood flow and stroke velocity generated by the vigor of cardiac contractility. A similar 136 

relationship is not obtainable with ICG because the thoracic impedance measurement cannot distinguish 137 
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pressure-induced impedance changes in the aorta from those occurring in the ventricle, as both are 138 

within the field of measurement. Because of the limitations of impedance cardiography alone, the 139 

combination of ICG and EKG must be performed to derive measurements of sympathetic: PEP, LVET, 140 

SV, and CO. Thus, TREV’s advantageous design comes from the ability to derive a direct measurement 141 

of sympathetic activation, contractility, without the usage of a 10-electrode ICG-EKG system. Additional 142 

information on the mathematical derivation of contractility, effect of compliance, and extension to 143 

estimations of stroke volume are available as a supplement that accompanies the Jupyter software 144 

described below. 145 

 146 

II. Anticipatory changes of cardiac contractility with isometric force production 147 

In this section we demonstrate changes in contractility associated with the isometric force 148 

produced by bilateral maximum strength hand grips. Using repeated measures of grips, it is possible to 149 

observe the development of an anticipatory change in contractility prior to grip onset, consistent with 150 

allostatic regulation by the autonomic nervous system (McEwen & Wingfield, 2003). 151 

Materials and Methods 152 

Participants and experimental overview 153 

Thirty-one healthy humans (19 females) participated in the study after providing informed 154 

consent in accordance with the University of California, Santa Barbara (UCSB) Institutional Review Board. 155 

Participants self-reported no cardiovascular abnormalities. The average age of participants was 23.4 156 

years. One participant was excluded due to excessively noisy data, leaving a final sample of n = 30. 157 

Participants were compensated $10/hour plus a potential $10 bonus depending on task performance 158 

(see Grip Task below).  159 

Participants performed two blocks of a maximum grip task (Grip Task), each block corresponding 160 

to three sequential grips of one hand and then the other (with hand order randomized across subjects). 161 
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Three simultaneous physiological timeseries were recorded in each block. The first timeseries was time-162 

varying cardiac impedance derived from TREV, with electrodes attached to the forearm contralateral to 163 

the hand administering grips (Figure 2). The second timeseries was a standard electrocardiogram (EKG). 164 

The last timeseries recorded the continuous respiration cycle with an abdominal belt. 165 

 166 

Figure 2: Electrode placement of trans-radial electrical bioimpedance velocimetry system. Four electrodes placed on 167 
the forearm; two outer current electrodes (I+ and I-) and two inner voltage sensing electrodes (V+ and V-).  I+ and I- 168 
create an alternating current field (I) through the forearm, and any changes in forearm impedance are directly 169 
correlated to changes in voltage ΔV between V+ and V-.  170 
 171 
Recording Apparatus 172 

TREV electrodes were amplified by an NICO100D (BIOPAC Systems, Inc., Goleta, CA, USA) 173 

smart amplifier. A current field is applied across the forearm by means of a constant magnitude, high 174 

frequency (50-100 kHz) low amplitude alternating current (4 mA RMS). The constant current (I) is 175 

introduced through the two outer electrodes (I+ and I-) and the resulting voltage (V) is measured via the 176 

inner electrodes (V+ and V-). Using Ohm’s Law, we can use the voltage differential V and applied current I 177 

to calculate impedance Z (measured in ohms): 178 

Z(t) = V(t) / I(t) 179 
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Here, I and V are the root mean square values of the known current and measured voltage. 180 

Because the magnitude of the current I is constant, any change in voltage V over time will vary in direct 181 

proportion to changes in impedance Z. This method allows us to capture moment-to-moment 182 

fluctuations in bioimpedance, which directly correlate with perturbations in the autonomic nervous 183 

system. 184 

Electrocardiogram electrodes were amplified by an ECG100D (BIOPAC Systems, Inc.) smart 185 

amplifier. Respiration cycle was recorded using a TSD221-MRI (BIOPAC Systems, Inc.) respiration belt. 186 

Force exerted in the Grip Task was recorded using an SS56L (BIOPAC Systems, Inc.) grip bulb. All 187 

continuous signals were integrated using an MP160 (BIOPAC Systems, Inc.) amplifier and processed 188 

online using BIOPAC AcqKnowledge software (BIOPAC Systems, Inc.). Visual stimuli were presented on 189 

a 21” monitor using Microsoft PowerPoint. Offline preprocessing of recorded timeseries was conducted 190 

using the Moving Ensemble Analysis Pipeline (MEAP) and MATLAB (Cieslak, et al., 2018). Bayes models 191 

were fitted using No U-Turn sampling (NUTS) Hamiltonian Monte Carlo, fitted with PyMC3 Python3 192 

functions (Salvatier, Wiecki, & Fonnesbeck, 2016). 193 

General Procedure 194 

All data were recorded in a single session lasting approximately 45 minutes (including initial 195 

equipment setup). Participants first washed their hands and forearms with water and regular soap to 196 

remove dirt or oily residues. In a private setup room, an experimenter then placed four TREV electrodes 197 

on the forearm contralateral to the grip hand of the first block (see Grip Task, below). Two electrodes 198 

were placed ventrally on the distal region of the forearm, just below where the wrist meets the hand, and 199 

two electrodes on the proximal region of the forearm, just below where the elbow meets the forearm 200 

(Figure 2). Each electrode pair was spaced one centimeter apart. TREV electrodes are bioimpedance 201 

strip electrodes (BIOPAC EL526 - size 1.3cm x 16.5cm). These electrodes establish circumferential 202 

equipotential lines at the four electrode locations.  203 
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Next, the experimenter placed two EKG electrodes on the participant’s chest: one below the 204 

right collarbone and one where the deltoid meets the chest. Participants were then brought to the 205 

testing room, electrodes were connected to the associated amplifiers, a respiration belt was placed 206 

around the participant’s abdomen, and they were seated at the testing table 3 feet from a computer 207 

screen. Once seated, participants were taught how to properly hold and squeeze the grip bulb, with the 208 

tubing facing down and in a manner that involved the whole hand. Participants were also instructed to 209 

maintain the same posture and to keep their arms relaxed, still, and in the same positioning on the table 210 

throughout the entirety of the experiment. 211 

Grip Task 212 

The experimenter first asked participants to grip the bulb as hard as possible with each hand, 213 

recording each maximal value (max thresholds). Participants then performed two blocks of three trials, 214 

gripping with the opposite hand in each block (block-hand order was determined with uniform (p=0.50) 215 

probability for each participant). After recording participants’ maximum forces (max thresholds; above), 216 

the experimenter then explained the experimental protocol, which is depicted in Figure 3. Prior to the 217 

start of the first block of trials, participants were instructed to sit idly for three minutes to acclimate to the 218 

exam room. The experimenter then quietly entered the room to start the physiological recording and 219 

associated computer task. Once the experiment started, the experimenter departed the room. Trials 220 

began with an on-screen countdown timer, where participants were instructed to look at the screen 221 

through a two-minute rest period. At the end of the rest period, a “go” cue would appear, signaling to 222 

the participants to squeeze the bulb maximally for two seconds. The countdown period of the next trial’s 223 

rest period then immediately began. This cycle continued for two more grips. At the end of the third trial 224 

on each block, a timer counted down to a visual stimulus that instructed participants to ring a bell to 225 

alert the experimenter they had finished. Each of the three trials was therefore preceded and followed 226 

by a two-minute rest. To incentivize participants to grip with maximum strength, we imposed a bonus 227 
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system, whereby participants who reached a threshold of ± 0.04 Kg/m2 of their hand-specific max-228 

thresholds on all three grips would win a $10 bonus. The experimenter disclosed this rule to participants 229 

after recording the max thresholds and did not inform participants if they had achieved the bonus until 230 

after all testing was completed. After completing the first block, the experimenter transferred the TREV 231 

electrodes to the other arm and the grip task was repeated. 232 

 233 

Figure 3. Within block timing of grip task and rest. This structure was performed for each hand. 234 

 235 

Cardiovascular preprocessing 236 

During recording, the AcqKnowledge software was used to apply an online lowpass filter (max 237 

cutoff = 20 Hz) to the raw impedance timeseries Z(t) recorded by the TREV electrodes and then 238 

calculated as a continuous estimation of acceleration. This raw contractility timeseries was then imported 239 

together with the raw EKG and respiration timeseries to the MEAP software for minimal offline 240 

processing. MEAP first automatically labelled the R-peaks of the EKG timeseries, which we used as an 241 

index for the moment in time to define each individual heartbeat. We next used these R-peak time 242 

indices to extract epochs spanning +/-350 ms around each heartbeat from the raw contractility 243 

timeseries (contractility epochs). MEAP also computed estimates of heart-rate at each beat from the R-244 

peaks. MEAP outputs were then transferred to MATLAB, where the maximum amplitude in each 245 

contractility epoch was computed as an estimation of each heartbeat’s contractility (beat-wise 246 

contractility timeseries). Then, separately for each subject, and each block, we conducted an additional 247 

regression procedure (Dundon, et al., 2020; Dundon, Shapiro, Babenko, Okafor, & Grafton, 2021) to 248 

remove the additional confounding effects of heart-rate and respiration from the beat-wise contractility 249 

time (s)

rest 1 (120 s) grip 1 (2 s) rest 2 (120 s) grip 2 (2 s) rest 3 (120 s) final screengrip 3 (2 s) rest 4 (2 s)

120 240 360

RING
BELL120120120 120 GRIPGRIPGRIP



 

 13 

timeseries. Using a multiple regression model, we regressed the vector beat-wise contractility as a 250 

function of an intercept and three regressors: (i) the phase of respiration at each heartbeat, (ii) the 251 

amplitude of respiration at each heartbeat and (iii) the heartrate at each heartbeat. To down sample each 252 

regressor to beat-wise estimates, we used the value from raw timeseries closest to the time of each R-253 

peaks. We added the estimated intercept to the residuals from this model as the "residualized” 254 

contractility timeseries, i.e., with the effects of the above three regressors removed. Given both 255 

between-subject and within-subject variation in heart rate, we next applied temporal resampling of each 256 

block’s residualized timeseries to allow meaningful comparisons across participants. For this, we used 257 

one-dimensional linear interpolation across time to recreate residualized timeseries sampled at equal 258 

time intervals. Specifically, we took 479 estimates, spaced exactly one second apart, from 2 seconds 259 

post block onset until 480 seconds post block onset (interpolated contractility timeseries). Finally, these 260 

interpolated contractility timeseries were normalized as a t-statistic, i.e., each interpolated contractility 261 

estimate expressed as a t-statistic relative to the timeseries’s remaining 478 values. We refer to this t-262 

statistic-normalized timeseries from now on as the “contractility” timeseries. A grand average 263 

contractility timeseries across participants, separately for each block, is presented in Figure 4. 264 

 265 

 266 

Figure 4: Grand average time series of contractility across participants for left and right hand blocks of trials. 267 
Bayesian modeling framework 268 

The primary objective of this analyses was to determine whether TREV could reliably capture 269 

increases in group-level contractility that corresponded to the events in the grip task, either in response 270 

to, or in anticipation of a grip. For this, we used a hierarchical Bayesian framework which hypothesized 271 
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that the (n=30) group distribution of contractility estimates at each timepoint (t) formed a Student’s T 272 

distribution, T(t) ~ Student’s T(mu(t), sig(t), nu). We formally considered contractility to have increased 273 

beyond baseline at a given moment where the estimated mean of a timepoint’s distribution (mu(t)) 274 

credibly exceeded the mean across all timepoints (Mmu).  Mmu is itself fitted in the same model as the 275 

mean of a hierarchical Gaussian distribution (Gmu) which constrains estimates of each mu(t) by serving as 276 

their prior (Gmu ~ N(Mmu, Smu)). Given how Bayes theorem ascribes joint probabilities to both the prior and 277 

the observed data in posterior estimates, this distributional hierarchical framework is inherently 278 

conservative with respect to type one error for each estimate of mu(t). For example, if most values for 279 

mu(t) are within a tight range (as we would expect in a dataset of contractility values with long rest 280 

periods between grips), the hierarchical distribution will be characterized by a more certain mean and 281 

low variance (low value of Smu), which would then serve as a strict prior on mu(t) estimates, biasing them 282 

toward the group mean (i.e., a nail that stands out gets hammered in). This hierarchical framework 283 

therefore requires strong evidence before any mu(t) is formally accepted as a credible departure. In 284 

other words, in a context requiring multiple hypothesis tests, the hierarchical Bayesian framework 285 

imposes an adjustment to the level of evidence needed for credible effects, where the data itself 286 

determines that level of adjustment instead of an arbitrary criterion (e.g., Bonferroni). 287 

We fitted a hierarchical model separately for blocks where grip was administered with the right 288 

and left hand. In each case, the specific free parameters of our model were: mu(t) and sigma(t), i.e., the 289 

479 timepoint-specific mean and standard deviation parameters for group-level SNS distributions at 290 

each timepoint across each block. We did not fit the nu parameter hierarchically and assigned it the 291 

same uninformed prior (nu=1) in each model. As mentioned above, each mu(t) parameter was 292 

constrained by a hierarchical Gaussian distribution (Gmu) with free parameters Mmu and Smu corresponding 293 

respectively to its mean and standard deviation. Mmu was assigned an uninformed Gaussian prior, N(0,1), 294 

while Smu was assigned an uninformed half-Gaussian prior (forcing values to be positive), halfN(1). Each 295 
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sigma(t) was also constrained by hierarchical Gaussian distribution (Gsigma), which respectively used an 296 

uninformed Gaussian and half-Gaussian prior for its two free parameters, i.e., its mean (Msigma ~ N(0,1)) 297 

and standard deviation (Ssigma ~ halfN(1)). We formally compared each mu(t) posterior with that of the 298 

Mmu by computing the minimum-width Bayesian credible interval (Highest Density Interval (HDI)) of mu(t) 299 

- Mmu and only considered strong evidence of a departure at each timepoint, i.e., where resulting HDIs 300 

did not contain zero. 301 

Contractility timeseries were z-score normalized prior to fitting across all participants. Each 302 

model's posterior distributions were sampled across four chains of 5000 samples (20000 total), after 303 

burning an initial 5000 samples per chain to tune the sampler’s step-size to reach 0.95 acceptance. We 304 

estimated HDIs using the default setting in the arviz package (Kumar, Carroll, Hartikainen, & Martin, 305 

2019). 306 

Sliding window rate of change 307 
 308 

We performed a sliding window deterministic regression to enumerate the rate of change in 309 

contractility at each point in our timeseries. At each timepoint we estimated the rate of change in 310 

contractility over the ensuing 20 seconds of the timeseries. Specifically, for each timepoint (t) we fitted a 311 

distribution of coefficients (B(t)), containing five thousand coefficients (b(k)), where each b(k) estimated 312 

the relation between an arbitrary time vector [1,…,20] and independent draws from the proceeding 20 313 

posteriors of mu, i.e., the 20-element vector [[mu(t)](k),…, [mu(t+19)](k)]. To identify credibly positive 314 

rates of change, we tested whether 97% of each deterministic distribution (B(t)) was above zero. 315 

Results 316 

We tested whether a thorax-independent monitor of cardiac impedance (TREV) could reliably 317 

describe fluctuations in cardiac contractility that credibly exceed baseline as human participants perform 318 

a task known to drive increased cardiovascular sympathetic stress. Thirty participants completed both 319 

blocks of three incentivized max-intensity grips, with rest periods of two minutes both between each grip 320 
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and following the final grip. Participants showed strong motivation to grip at maximum intensity, 321 

supported by 29 out of 30 achieving a bonus payment (contingent on beating their predetermined max 322 

threshold) with at least one hand, and 21 out of 30 achieving the bonus payment with both. Figure 5 323 

depicts exemplar contractility for two heartbeats from a single subject, one in the rest phase prior to the 324 

second grip with their right hand and another in the grip’s immediate aftermath.  325 

 326 

Figure 5: Top row is a sample timeseries of contractility estimated at 100 heartbeats. Bottom row shows how 327 
contractility is estimated from impedance jerk timeseries at two single heartbeats. 328 

 329 

After linear resampling to temporally align contractility across participants and normalizing each 330 

block separately as a t-statistic, group-level contractility in temporal approximation to each grip was 331 

assessed. The results of the hierarchical Bayesian model fitted to contractility timeseries accompanying 332 

left-hand grips are depicted in the left panel of Figure 6. TREV reliably captured contractility exceeding 333 

baseline following grips with the left hand. Left hand grips were accompanied by credible baseline 334 

departure in seconds after grip onset at grip 1: [11, 12, 13, 15], grip 2: [-8, 5, 10, 11, 13] and grip 3: [8, 335 

12, 13, 14, 15]. Each grip was therefore accompanied by at least 4 individual seconds of credible 336 

baseline departure. Departures mostly followed the grips and never followed a grip by more than 15 337 
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seconds. Each grip was associated with at least two consecutive seconds of baseline departure, with grip 338 

3 associated with the longest sustained peak contractility (four consecutive points).  339 

 340 

Figure 6. Results of hierarchical Bayesian model depicting credible departures from baseline contractility (in red) for 341 
left and right hand grips. 342 
 343 

The results of the hierarchical Bayesian model fitted to contractility timeseries accompanying 344 

right-hand grips are depicted in the right panel of Figure 6. Right-hand grips were accompanied by 345 

credible baseline departure after grip onset (in seconds) for grip 1: [-114, 5, 6, 7, 8, 9, 12, 13], grip 2: [4, 346 

5, 6, 7, 8, 9] and grip 3: [11, 66]. Discounting the two outliers (preceding grip 1 and following grip 3), 347 

each grip was therefore accompanied by at least 1 second of credible baseline departure. Departures all 348 

followed the grips and never followed a grip by more than 13 seconds. Grip 2 was associated with the 349 

longest sustained peak contractility (six consecutive points). TREV again appeared to reliably capture 350 

contractility exceeding baseline following grips with the right hand, although a pair of outliers were 351 

present and the duration of peak contractility seemed to abate over the course of the three grips. 352 

Sliding window rate of change 353 
 354 

As depicted in Figure 7, for both the left and right-hand grips, the rate of change was credibly 355 

positive at numerous timepoints in the series preceding each grip. For the left hand, the earliest of these 356 

credible pre-grip changes occurred at t=62, i.e., 58 seconds prior to the first grip; at t=185, i.e., 55 357 

seconds prior to the second grip; and at t=349, i.e., 11 seconds prior to the third grip. For the right 358 

hand, the earliest of these credible pre-grip changes occurred at t=45, i.e., 75 seconds prior to the first 359 

grip; at t=178, i.e., 62 seconds prior to the second grip; and at t=348, i.e., 12 seconds prior to the third 360 
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grip. Interestingly, therefore, we observed a trend in both hands, whereby the rate of change became 361 

credibly positive much closer to the initiation of the grip by the third grip, consistent with the allostatic 362 

principle of participants learning task requirements and reserving a potentially expensive increase in 363 

cardiac contractility until the time it was most critically needed. 364 

 365 

Figure 7. Sliding window rate-of-change. Each column of raster plots are 50 samples from distributions of regression 366 
coefficients measuring change in contractility over next 20-second window. Yellow colors are positive (increasing 367 
contractility). Markers below each panel reflect timepoints when 97% of distribution is positive, i.e., credibly positive 368 
increase in contractility. 369 
 370 

Discussion  371 

There is expanding interest across multiple human research disciplines in robustly capturing 372 

event-related perturbations of the sympathetic stress response. Consequently, there a need for new 373 

assays of cardiac contractility that both reduce preparatory requirements and offer increased signal 374 

strength in the face of background noise. In this study we used a novel trans-radial electrical 375 

bioimpedance velocimetry device (TREV), attached to the forearm of human participants, and 376 

investigated whether it could reliably capture changes in group-level contractility that corresponded to 377 

events known to increase sympathetic drive, a max grip task (Grip Task). We observed that TREV 378 
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electrodes can be applied relatively quickly with minimal training and preparation, and can even be 379 

repositioned (from one arm to the other) efficiently between blocks of a task. We further observed TREV 380 

to register easy, visually identifiable beat-to-beat signals from the radial and ulnar artery corresponding 381 

to the third derivative of the measured impedance wave. In preprocessing, we could readily control for 382 

potential confounding effects of respiratory activity and heart rate on beat-wise contractility timeseries. 383 

Then, using a hierarchical Bayesian framework, we observed these contractility timeseries to reliably 384 

depart baseline at key events in the Grip Task. Remarkably, these departures were seen at the single-trial 385 

level across participants (i.e., without averaging across trials). We therefore conclude that TREV offers an 386 

exciting development in cardiac autonomic stress research for human researchers interested in event-387 

related capture of cardiac contractility. 388 

We employed a data-driven analysis framework, which used the entire timeseries of data 389 

recorded across sessions, to determine when contractility estimated by TREV credibly exceeded baseline 390 

fluctuations. The primary advantage of this framework is that it removed all need to impose arbitrary 391 

criteria on grip events or contractility activity, i.e., a priori deciding epochs around task events to refine 392 

analysis, or a priori deciding a criterion that constituted “credibly exceeding baseline”. The analysis was 393 

not assisted by any averaging across events to reduce signal-to-noise. The hierarchical Bayesian 394 

framework also imposed conservativeness with respect to credible departures from baseline across a 395 

large number of hypothesis tests. We nonetheless revealed reliable group-level increases in contractility 396 

at each of the six grips executed by participants. A significant sympathetic response to the physical 397 

challenge imposed by the grip task is consistent with motivational intensity theory. This theory posits 398 

that the sympathetic response should scale with the level of task difficulty, an effect which has been 399 

observed in both cognitive and grip tasks (see: Richter, Gendolla, & Wright, 2016, for a review). 400 

Note that our criterion for baseline was the average value across all datapoints in the timeseries, 401 

which theoretically incorporates all preparatory increases in sympathetic activity leading up to grip 402 
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execution. When we employed a slope-based analysis strategy, we additionally observed credible 403 

anticipatory changes of contractility just prior to grip onset for all trials and with either hand. This 404 

observation is consistent with the role of the sympathetic nervous system in allostatic regulation, 405 

providing just enough input and just in time (McEwen & Wingfield, 2003).  406 

In conclusion, we observed that thorax-independent TREV reliably captures contractility 407 

increases to individual events and offers considerable advantages for capturing event-related cardiac 408 

responses in more generalized real-world task settings. Such capture of contractility signals has the 409 

potential to greatly contribute toward improving our knowledge of how humans synchronize sympathetic 410 

state while monitoring broader state information, allowing us to develop more holistic technologies for 411 

human-machine integration that can assist with situational awareness, maneuverability and decision 412 

making. 413 

 414 

III. Jupyter based signal processing software 415 

In the following section, we describe public domain signal processing software operable on any 416 

Unix based system (Mac OS, Linux) and a tutorial for streamlining the conversion of TREV impedance 417 

measurements into beat-by-beat estimates of contractility. The software, SCOT: Semi-automated 418 

Contractility estimates from Ohmic impedance measured with TREV, uses the Jupyter Noteboook and is 419 

downloadable at https://github.com/caitgregory/SCOT. Unless otherwise specified, the pipeline uses 420 

the Tkinter package to manage all GUI interactions and Matplotlib (Hunter, 2007) to manage plots. It is 421 

currently configured to interact with output files from AcqKnowledge (BIOPAC); however, it theoretically 422 

could be amended to work with other file formats. Users can fully test or replicate this pipeline by 423 

downloading an example data set from the tutorial at 424 

https://github.com/caitgregory/SCOT/blob/main/tutorial.md. The example data were recorded for 45 425 

minutes during a simultaneous fMRI recording while human participants performed speeded reaches 426 
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with a joystick. These data were minimally preprocessed during acquisition using AcqKnowledge 427 

Software by performing an online lowpass filter (max cutoff = 20 Hz) and the calculation of stroke 428 

acceleration, dZ/dt.  429 

Pipeline Processing 430 

In four largely automated steps, users are able to import the data (Jupyter Notebook, Cell 1), 431 

identify beat by beat time intervals (Cells 2 and 3), estimate cardiac contractility at each beat (Cell 4), and 432 

remove artifacts related to heart rate and respiratory activity (Cell 5).  433 

Cell 1 of the Jupyter Notebook loads the data via a GUI (Figure 8) using the bioread functions 434 

(Vack, 2023). (To replicate the pipeline, users can use the AcqKnowledge file IV_301_1.acq). The 435 

resulting menu allows users to specify the appropriate acceleration channel and respiration channels 436 

defined during the acquisition. Note that the pipeline imports the stroke acceleration channel (which 437 

provides more easily identifiable peaks relative to noise. Here, users can also specify if the acceleration 438 

channel or the respiration channel require a FIR low-pass filter. We have preset the cutoff of these filters 439 

in the notebook at 22.5 Hz and 0.35 Hz, respectively. The filters use a Hamming window and a length 440 

computed by the convention used in freely available packages for processing electrophysiological data 441 

(MNE; (Gramfort, et al., 2013). Specifically, we construct a filter using the firwin function (SciPy; (Virtanen, 442 

et al., 2020) with a length of N. N is computed with 3.3 x 1/tb. Here, tb is a transition bandwidth which is 443 

the minimum value between f1 and f2, where f1 is the maximum between one quarter of the specified 444 

cutoff and 2, and f2 is the Nyquist frequency minus the specified cutoff. We then apply the filter using 445 

the lfilter function (SciPy) and adjust the phase shift by discarding the first N/2 samples of data and 446 

readjusting the time points. The user exits out of the menu which initiates the above steps. Depending 447 

on the length of the data this initial import could take a couple of minutes. A notice will appear in the 448 

cell output once this step is complete. 449 
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 450 

  451 

Figure 8: Cell 1 GUI.  452 

 453 

Cells 2 and 3 identify the time interval between each heartbeat by finding peaks in the 454 

acceleration timeseries. As noted above, the acceleration timeseries (dZ/dt) is more robust to noise than 455 

the contractility timeseries (d2Z/dt2), allowing for an easier identification of peaks. The program uses the 456 

SciPy findpeaks function which we preset to find peaks spaced at least 0.5 seconds apart (equivalent to a 457 

heart rate of 120 BPM). In Cell 2, (Figure 9) users can visually inspect a 20 second portion of the 458 

acceleration timeseries at time to identify a minimum threshold for peak amplitude, which they manually 459 

input. In addition to the minimum spacing, this peak amplitude threshold acts as an extra automated 460 

control against spurious peak identification. On the sample data set, we selected a minimum threshold 461 

value of 0.5.  462 

 463 

Acceleration Channel
Selection

Respiration Channel
Selection
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 464 

Figure 9: GUI for cell 2. Note the peak threshold is inputted as 0.5. This threshold value helps avoid flutter between 465 
acceleration peaks. The participant has a premature ventricular contraction at time 16.5s (causing a reduction of 466 
contractility due to reduced ventricular filling). Also note the onset of MRI scanning at 18 seconds. Despite the 467 
associated MRI associated noise, acceleration peaks are still visible and robust. 468 
 469 

Cell 3 (Figure 10) allows users to manually add and remove heart beats via an interactive 470 

timeseries of the acceleration waveform. Users can scroll through the data and identify any peaks that 471 

the program may have missed or mis-labeled. There are three keyboard options that allow the user to 472 

edit the pre-determined time points of the peaks. Using a two-button mouse, or equivalent keystrokes 473 

and clicks for a one-button mouse, a left click will add a peak and a right click will remove a peak. If is 474 

there is noise in the signal at any point or the user is unsure where exactly the peak should go, the user 475 

can press m + left click. Here, the script performs a moving ensemble average of the two previous and 476 

two consecutive peaks to determine the location of the peak of interest. 477 

 478 

 479 
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 480 

Figure 10: Cell 3 GUI. The acceleration time series plotted over time with detected peaks. The user is 481 

able to use the slider along the bottom of the graph to scroll through the data and adjust the peak 482 

location as needed.  483 

 484 

Cell 4 (Figure 11) plots the contractility timeseries (the derivative of acceleration). Note that in 485 

cell 3 we found the maximum values of the acceleration timeseries, i.e., the critical values such that 486 

d2Z/dt2 = 0. Given that maximum acceleration is reached after peak contractility, the time points of 487 

peaks identified in cells 2 and 3 need to be adjusted backward in time. We accordingly search for 488 

maximum contractility amplitude in the time window spanning 250 ms prior to the identified acceleration 489 

peak. Users can scroll through the data and manually adjust the identified peak amplitude if necessary. 490 

Note that in this cell we are interested in peak contractility amplitude values rather than time points. 491 

Detected Peaks =
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 492 

Figure 11: Cell 4 GUI. The contractility timeseries plotted over time.  493 

 494 

 Lastly, Cell 5 removes the influence of heart rate and respiration from the contractility estimates 495 

using the residualizing method described in the methods section above. Briefly, a multiple regression 496 

was conducted where contractility is modeled as a function of the heart rate, respiratory amount, and 497 

respiratory cycle at each heartbeat. Heart rate is computed from the inter-beat intervals identified in cell 498 

3. Respiratory amount and cycle are identified by first finding each consecutive cosine-like segment in 499 

the specified respiration timeseries. Y-axis values (i.e. respiration amount) of each segment are 500 

demeaned while x-axis values (i.e., respiration phase) are normalized between 0 and 2π. We then extract 501 

the respiratory amount and phase values closest to each heartbeat. Prior to the regression, each 502 

regressor is z-scored. We output the residuals of the regression model as the contractility estimates with 503 

the effects of heart rate and respiration removed. Once completed, data are outputted into a csv file 504 

with each row corresponding to a heartbeat, and columns with the time of each heartbeat (relative to the 505 

beginning of the recording) and the contractility amplitude. By default, the csv will be named the same 506 

as the input AcqKnowledge file with the csv extension; however, users can change this through a GUI. 507 

 508 
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