
P
os
te
d
on

7
M
ar

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
67
81
70
63
.3
25
76
43
2/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

On variational approach to fourth order problems with unbounded

weight

Marek Galewski1 and Dumitru Motreanu2

1Politechnika Lodzka Instytut Matematyki
2Universite de Perpignan Via Domitia

March 7, 2023

Abstract

We investigate fourth order equations with Dirichlet type boundary conditions with perturbation unbounded from above making

the problem non-potential. We apply variational method to some auxiliary problem and conclude about the existence and

uniqueness to the original one. Multiple solutions are also considered. We conclude our note with the result pertaining to the

continuous dependence on parameters.
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1 INTRODUCTION

We are interested in the following variant of the elastic beam equation, i.e. the fourth order problem with unbounded from above
perturbation 𝑔 and with a numerical parameter 𝜆 > 0

{

𝑑4

𝑑𝑡4
𝑢 (𝑡) − 𝑑

𝑑𝑡

(

𝑔
(

𝑡, ||
|

𝑑
𝑑𝑡
𝑢 (𝑡)||

|

)

𝑑
𝑑𝑡
𝑢 (𝑡)

)

= 𝜆𝑓 (𝑡, 𝑢(𝑡)), for a.e. 𝑡 ∈ (0, 1) ,
𝑢 (0) = 𝑢 (1) = 0, 𝑢̇ (0) = 𝑢̇ (1) = 0,

(1)

where 𝑓 ∶ [0, 1]×ℝ→ℝ, 𝑔 ∶ [0, 1]×ℝ+→ℝ are functions subject to some conditions provided below. We underline following8

that in such a case the problem cannot be directly tackled by monotonicity methods due to the fact the relevant operator is in
this case unbounded. The variational approach cannot be used due to the lack of potentiality which results from the fact that 𝑔 is
unbounded from above. Thus in order to overcome these difficulties we will apply some truncation technique from8 and9 which
was introduced for second order partial differential equations in connection with the usage of the theory of monotone operators,
namely the (generalized) Browder-Minty Theorem. With this truncation method the auxiliary problem which we obtain is now
variational, i.e. solutions correspond in a 1 − 1 manner to critical points of the relevant action functional. We underline,that in
the sources mentioned the authors obtained the existence of at least one solution without any information about the multiplicity.
The feature of the present note is to apply a recent multiplicity theorem from4 in order to get the existence of multiple solutions
for coercive functionals as well. We consider the coercive case which means that we have an upper bounded for any solution,
provided it exists. At the same time, the coercivity means that we have restricted number of multiplicity results at our disposal.

We seek weak solutions in the space

𝐻2
0 (0, 1) =

{

𝑢 ∈ 𝐻1
0 (0, 1) ∶ 𝑢̈ ∈ 𝐿2 (0, 1) , 𝑢̇ (0) = 𝑢̇ (1) = 0

}

normed by

‖𝑢‖𝐻2
0
=

√

√

√

√

√

√

1

∫
0

|

|

|

|

𝑑2

𝑑𝑡2
𝑢 (𝑡)

|

|

|

|

2
𝑑𝑡.
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Put
‖𝑢‖𝐶 ∶= max

𝑡∈[0,1]
|𝑢 (𝑡)| .

As is the case of the well known space 𝐻1
0 (0, 1) the Sobolev and Poincaré inequalities read as follows: for any 𝑢 ∈ 𝐻2

0 (0, 1) it
holds

‖𝑢‖𝐶 ≤ ‖𝑢‖𝐻1
0
≤ 1

𝜋
‖𝑢‖𝐻2

0

and
‖𝑢‖𝐿2 ≤ 1

𝜋
‖𝑢‖𝐻1

0
≤ 1

𝜋2
‖𝑢‖𝐻2

0
.

Moreover, we have
‖𝑢̇‖𝐶 ≤ ‖𝑢‖𝐻2

0
.

As we seek for solutions in 𝐻2
0 (0, 1), we mean the so called weak solutions, namely 𝑢 ∈ 𝐻2

0 (0, 1) solves (1) when

∫ 1
0

𝑑2

𝑑𝑡2
𝑢 (𝑡) 𝑑2

𝑑𝑡2
𝑣 (𝑡) 𝑑𝑡 + ∫ 1

0 𝑔𝑅
(

𝑑
𝑑𝑡
𝑢𝑅 (𝑡)

)

𝑑
𝑑𝑡
𝑢 (𝑡) 𝑑

𝑑𝑡
𝑣 (𝑡) 𝑑𝑡 =

𝜆 ∫ 1
0 𝑓 (𝑡, 𝑢(𝑡))𝑣 (𝑡) 𝑑𝑡

for all 𝑣 ∈ 𝐻2
0 (0, 1). Further on we follow also the issue of higher regularity which is due to the variant of the celebrated du

Bois-Reymond Lemma, see for example7.
Here are the conditions which we will use. Let us recall for 𝑝 ≥ 1 that 𝑓 ∶ [0, 1] × ℝ → ℝ is an 𝐿𝑝−Carathéodory function

if the following conditions are satisfied (the first two meaning it is Carathéodory):
(i). 𝑡 → 𝑓 (𝑡, 𝑥) is measurable on [0, 1] for each fixed 𝑥 ∈ ℝ,
(ii). 𝑥 → 𝑓 (𝑡, 𝑥) is continuous on ℝ for a.e. 𝑡 ∈ [0, 1],
(iii). for each 𝑑 ∈ ℝ+ function 𝑡 → max

|𝑥|≤𝑑 |𝑓 (𝑡, 𝑥)| belongs to 𝐿𝑝 (0, 1) .
Observe that 𝐹 ∶ [0, 1] ×ℝ → ℝ given by

𝐹 (𝑡, 𝑥) =

𝑥

∫
0

𝑓 (𝑡, 𝑠) 𝑑𝑠 for a.e. 𝑡 ∈ [0, 1] and all 𝑥 ∈ ℝ

is a Carathéodory function as well in case 𝑓 is Carathéodory. We see that 𝑑
𝑑𝑥
𝐹 (𝑡, 𝑥) = 𝑓 (𝑡, 𝑥) for a.e. 𝑡 ∈ [0, 1] and all 𝑥 ∈ ℝ.

The assumptions are required for various results as follows,
A) about the existence:

A1 𝑔 ∶ [0, 1]×ℝ+ → ℝ is a continuous function for which there are a constant 𝑔0 ∈
(

0, 𝜋2) and a function 𝑔1 ∶ ℝ+ → ℝ such
that 𝑔 (𝑡, 𝑥) ≥ 𝑔1 (𝑡) ≥ 𝑔0 for all 𝑡 ∈ [0, 1] and 𝑥 ∈ ℝ and lim𝑡→∞ 𝑔1 (𝑡) = +∞.

A2 𝑓 ∶ [0, 1] ×ℝ → ℝ is an 𝐿2−Carathéodory function.

A3 There exist 𝑎 ∈ 𝐿∞ (

0, 1;ℝ+
)

, 𝑏 ∈ 𝐿1 (0, 1) such that for a.e. 𝑡 ∈ [0, 1] and all 𝑥 ∈ ℝ it holds

𝑓 (𝑡, 𝑥)𝑥 ≤ 𝑎 (𝑡) |𝑥|2 + 𝑏 (𝑡)

B) in addition to the above in connection with uniqueness:

A4 For a.e. 𝑡 ∈ [0, 1] function 𝑥 → 𝑓 (𝑡, 𝑥) is nonincreasing.

A5 It holds that
𝑔 (𝑡, 𝑥) 𝑥 − 𝑔 (𝑡, 𝑦) 𝑦 ≥ 0

for all 𝑡 ∈ [0, 1] and 𝑥 ≥ 𝑦 ≥ 0.

C) in connection with the existence of multiple solutions we must replace condition A3 with some other condition and
additionally impose:
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A6 There exist a constant 𝜃 ∈ (1, 2) and functions 𝑎 ∈ 𝐿𝜈 (0, 1;ℝ+
)

, 𝑏 ∈ 𝐿1 (0, 1) such that for a.e. 𝑡 ∈ [0, 1] and all 𝑥 ∈ ℝ it
holds

𝑓 (𝑡, 𝑥)𝑥 ≤ 𝑎 (𝑡) |𝑥|𝜃 + 𝑏 (𝑡)
and where 𝜈 = 2

2−𝜃
.

A7 There is a function 𝑢 ∈ 𝐻2
0 (0, 1) such that

1

∫
0

𝐹
(

𝑡, 𝑢 (𝑡)
)

> 0

A8 lim𝑥→0
𝑓 (𝑡,𝑥)
𝑥

= 0 uniformly a.e. for 𝑡 ∈ [0, 1].

Note that for A1 we can take any positive lower bound, since we can always decrease it, so the assumption that 𝑔0 ∈
(

0, 𝜋2)

is not restrictive, but is important from the techniques applied in the proofs. From assumption A4 we have that 𝑥 → −𝑓 (𝑡, 𝑥) is
nondecreasing for a.e. 𝑡 ∈ [0, 1] which is what we further need in order to make the auxiliary action functional (strictly) convex.
Assumption A6 is some version of A3 and both lead towards the coercivity for various values of numerical parameter 𝜆. We
introduce this parameter because of the methodology applied in connection with the existence of at least three solutions.

The equation which we investigate in this note pertains to the theory of elastic deflection which was considered from
various point of view for example in1,2,13,14 in which the three critical point theorem due to Ricceri see10, the Sturm com-
parison theorem combined with the shooting method and also the Guo-Krasnosel’skij fixed point theorem of cone-expansion
compression type are employed. The authors mainly considered, as we do here, rigidly fastened beams, i.e. fourth order equation

𝑑4

𝑑𝑡4
𝑥 = 𝑓 (𝑡, 𝑥) (2)

pertaining to boundary conditions
𝑥 (0) = 𝑥 (1) = 𝑥̇ (0) = 𝑥̇ (1) = 0

or simply supported beams, i.e. the equation (2) with conditions

𝑥 (0) = 𝑥 (1) = 𝑥̈ (0) = 𝑥̈ (1) = 0

are considered. Equation (2) with either boundary conditions is a simplified version of the following one
𝑑2

𝑑𝑡2

(

𝐸 (𝑡) 𝐼 (𝑡) 𝑑2

𝑑𝑡2
𝑥 (𝑡)

)

+𝑤 (𝑡) 𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡))

with suitable assumptions placed on 𝑓 and where 𝐸 ∶ [0, 1] → 𝑅 is Young’s modulus of elasticity for the beam, 𝐼 ∶ [0, 1] → 𝑅
is the moment of inertia of cross section of the beam and 𝑤 is the load density (force per unit length of a beam). It is usually
assumed that that 𝑤 (𝑡) > 0, 𝐸 (𝑡) ≥ 𝐸0 > 0, 𝐼 (𝑡) ≥ 𝐼0 > 0 for 𝑡 ∈ [0, 1] and that 𝐸, 𝐼,𝑤 ∈ 𝐿∞ (0, 1) or else that functions 𝐸, 𝐼
are constant (and therefore equal 1) and function 𝑤 is incorporated into the nonlinear term. The assumptions which we impose
allow for having the load density as it is and some minor technical changes would allow us for having functions 𝐸, 𝐼 included
into the main setting. Now we provide some examples of nonlinear terms which satisfy our assumptions.

Example 1. Concerning the nonlinear perturbation 𝑔 ∶ [0, 1] ×ℝ+→ℝ we may consider the following unbounded from above
function

𝑔 (𝑡, 𝑥) = 𝑒𝑥 + 1.5 + sin (𝜋𝑡)
which is bounded from below and satisfies the monotonicity condition A5.

Example 2. Concerning the nonlinear term 𝑓 ∶ [0, 1] ×ℝ+→ℝ satisfying A2, A3, A4 we may consider the following function
(where we drop the dependence on 𝑡 for clarity)

𝑓 (𝑥) = ln
(

𝑥2 + 1
)

− 2𝑥

which satisfies the growth condition with 𝑎 = 4.

Example 3. Concerning the nonlinear term 𝑓 ∶ [0, 1] ×ℝ+→ℝ satisfying conditions A2, A6 we propose

𝑓 (𝑥) = ln
(

𝑥2 + 1
)

+
√

|𝑥|

where we take 𝜃 = 3
2

and 𝑎 = 4 in order to have A6. Note that in this case we do not have A4 satisfied.
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2 BACKGROUND AND AUXILIARY RESULTS

Our main tool pertains to the classical direct variational method, see7 and11 for the theoretical background. In what follows we
assume 𝐸 to be a real reflexive, separable Banach space and 𝐽 ∶ 𝐸 → ℝ.

Theorem 1. If 𝐽 ∈ 𝐶1 (𝐸,ℝ) is sequentially weakly lower semi-continuous and coercive, i.e. lim
‖𝑥‖→∞ 𝐽 (𝑥) = +∞, then there

exist 𝑥0 such that
inf
𝑥∈𝐸

𝐽 (𝑥) = 𝐽 (𝑥0)

and 𝑥0 is also a critical point of 𝐽 , i.e. 𝐽 ′(𝑥0) = 0.

The above theorem has also a version that originates from the application of the theory of monotone operators. Our approach
relies on this theory. Thus we proceed to some other version of the above given theorem after some preparation. For the back-
ground results cited here we refer to5. Operator 𝐴 ∶ 𝐸 → 𝐸∗ is called:
i) monotone if for all 𝑢, 𝑣 ∈ 𝐸

⟨𝐴 (𝑢) − 𝐴 (𝑣) , 𝑢 − 𝑣⟩ ≥ 0
and strictly monotone if the above inequality is strict for 𝑢 ≠ 𝑣;
ii) demicontinuous if 𝑢𝑛 → 𝑢0 implies 𝐴

(

𝑢𝑛
)

⇀ 𝐴
(

𝑢0
)

;
iii) strongly continuous if 𝑢𝑛 ⇀ 𝑢0 implies 𝐴

(

𝑢𝑛
)

→ 𝐴
(

𝑢0
)

;
iv) potential if there exists a Gâteaux differentiable functional  ∶ 𝐸 → ℝ, called the potential of 𝐴, such that ′ = 𝐴;
v) satisfying condition (S) if

𝑢𝑛 ⇀ 𝑢0 in 𝐸 and
⟨

𝐴
(

𝑢𝑛
)

− 𝐴
(

𝑢0
)

, 𝑢𝑛 − 𝑢0
⟩

→ 0 imply 𝑢𝑛 → 𝑢0 in 𝐸;

vi) coercive if
lim

‖𝑣‖→∞

⟨𝐴(𝑣), 𝑣⟩
‖𝑣‖

→ +∞.

We need some version of the Weierstrass-Tonelli Theorem to be found in4:

Theorem 2. Assume that functional  ∶ 𝐸 → ℝ is bounded from below, coercive, Gâteaux differentiable and that its derivative
 ′ ∶ 𝐸 → 𝐸∗ satisfies condition (S). Then there is some 𝑢0 ∈ 𝐸 such that


(

𝑢0
)

= inf
𝑢∈𝐸

 (𝑢) .

Now we introduce the multiplicity result. For 𝑟 > 0 we put

𝐵𝑟 ∶= {𝑥 ∶ ‖𝑥‖ ≤ 𝑟} , 𝑆𝑟 = {𝑥 ∶ ‖𝑥‖ = 𝑟} .

Theorem 3. Assume that  ∈ 𝐶1(𝐸) is sequentially weakly l.s.c., coercive and has a Gâteaux derivative  ′ ∶ 𝐸 → 𝐸∗ which
satisfies condition (S). Let 𝑥 ∈ 𝐸 and 𝑟 > 0 be fixed. Assume further that conditions

B1 inf
𝑥∈𝐸

 (𝑥) < inf
𝑥∈𝐵𝑟

 (𝑥);

B2 ‖

‖

𝑥‖
‖

< 𝑟 and  (𝑥) < inf
𝑥∈𝑆𝑟

 (𝑥)

are satisfied. Then functional  has at least three critical points in 𝐸, two of which are necessarily nontrivial.

We need some additional technical results about monotonicity and potentiality of the perturbation operator. We assume that

A𝛗 𝜑 ∶ [0, 1] ×ℝ+ → ℝ is a Carathéodory function for which there is a constant 𝑀 > 0 such that

|𝜑 (𝑡, 𝑥)| ≤ 𝑀 for a.e. 𝑡 ∈ [0, 1] and all 𝑥 ∈ ℝ+.

Under some additional growth assumption on function 𝜑 we will consider the monotonicity of an operator

𝐴 ∶ 𝐿2 (0, 1) → 𝐿2 (0, 1) ,
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given by

⟨𝐴 (𝑢) , 𝑣⟩ =

1

∫
0

𝜑 (𝑡, |𝑢 (𝑡)|) 𝑢 (𝑡) 𝑣 (𝑡) 𝑑𝑡 (3)

Theorem 4. Assume that condition A𝜑 is satisfied. Operator 𝐴 given by (3) is potential with the potential 𝐹 ∶ 𝐿2 (0, 1) → ℝ
defined by

𝐹 (𝑢) =

1

∫
0

|𝑢(𝑡)|

∫
0

𝜑 (𝑡, 𝑠) 𝑠𝑑𝑠𝑑𝑡 for 𝑢 ∈ 𝐿2 (0, 1) .

If
𝜑 (𝑡, 𝑥) 𝑥 − 𝜑 (𝑡, 𝑦) 𝑦 ≥ 0

for all 𝑥 ≥ 𝑦 ≥ 0 and a.e. 𝑡 ∈ [0, 1], then 𝐴 is monotone.

Now we introduce some technical tools which will be used further on:

Lemma 1. Assume that 𝐴 ∶ 𝐸 → 𝐸∗ is potential, demicontinuous, bounded and coercive. Then its potential 𝐹 ∶ 𝐸 → ℝ is
coercive.

Lemma 2. Assume that operator 𝐴 ∶ 𝐸 → 𝐸∗ fulfills property (S) and that 𝑇 ∶ 𝐸 → 𝐸∗ is strongly continuous. Then 𝐴 + 𝑇
also has property (S).

Lemma 3. Assume that operator 𝐴 ∶ 𝐸 → 𝐸∗ is strongly continuous and bounded. Then it is demicontinuous.

Lemma 4. Assume that 𝐴 ∶ 𝐸 → 𝐸∗ is potential and monotone. Then 𝐴 is demicontinuous.

3 TRUNCATED PROBLEM - EXISTENCE AND UNIQUENESS

We see from condition A3 that if any solution to (1) exists, it is necessarily bounded. Let us define

𝜆 =
𝜋2 (𝜋2 − 𝑔0

)

‖𝑎‖𝐿∞
.

Lemma 5. Assume that conditions A1, A2,A3 are satisfied. Then for each fixed 𝜆 ∈
(

0, 𝜆
)

there is some 𝑅 > 0 such that
‖𝑢‖𝐻2

0
≤ 𝑅 and ‖𝑢̇‖𝐶 ≤ 𝑅 for every 𝑢 ∈ 𝐻2

0 (0, 1) that solves problem (1).

Proof. Let us fix 𝜆 ∈
(

0, 𝜆
)

. Assume that 𝑢 ∈ 𝐻1
0 (0, 1) solves problem (1). Testing it with 𝑣 = 𝑢 we have

‖𝑢‖2𝐻2
0
+

1

∫
0

𝑔
(

𝑡,
|

|

|

|

𝑑
𝑑𝑡

𝑢 (𝑡)
|

|

|

|

)

|

|

|

|

𝑑
𝑑𝑡

𝑢 (𝑡)
|

|

|

|

2
𝑑𝑡 = 𝜆

1

∫
0

𝑓 (𝑡, 𝑢(𝑡))𝑢 (𝑡) 𝑑𝑡. (4)

Then we obtain concerning the left hand side of (4)

‖𝑢‖2𝐻2
0
+ ∫ 1

0 𝑔
(

𝑡, ||
|

𝑑
𝑑𝑡
𝑢 (𝑡)||

|

)

|

|

|

𝑑
𝑑𝑡
𝑢 (𝑡)||

|

2
𝑑𝑡 ≥

‖𝑢‖2𝐻2
0
+ 𝑔0 ‖𝑢‖

2
𝐻1

0
≥ ‖𝑢‖2𝐻2

0
− 𝑔0

𝜋2 ‖𝑢‖
2
𝐻2

0
.

(5)

Estimating the right hand side of (4) we have what follows

𝜆 ∫ 1
0 𝑓 (𝑡, 𝑢(𝑡))𝑢 (𝑡) 𝑑𝑡 ≤ 𝜆 ∫ 1

0 𝑎 (𝑡) |𝑢 (𝑡)|2 𝑑𝑡 + 𝜆 ∫ 1
0 𝑏 (𝑡) 𝑑𝑡 ≤

𝜆
𝜋2 ‖𝑎‖𝐿∞ ‖𝑢‖2𝐻1

0
+ 𝜆 ‖𝑏‖𝐿1 ≤ 𝜆 ‖𝑎‖𝐿∞

𝜋4 ‖𝑢‖2𝐻2
0
+ 𝜆 ‖𝑏‖𝐿1

Summing up we arrive at
(

1 −
𝑔0
𝜋2

− 𝜆
‖𝑎‖𝐿∞

𝜋4

)

‖𝑢‖2𝐻2
0
− 𝜆 ‖𝑏‖𝐿1 ≤ 0
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which implies the assertion ‖𝑢‖𝐻2
0
≤ 𝑅 since 1 − 𝑔0

𝜋2 − 𝜆 ‖𝑎‖𝐿∞
𝜋4 > 0. We see that we can take

𝑅2 ∶=
𝜆 ‖𝑏‖𝐿1

1 − 𝑔0
𝜋2 − 𝜆 ‖𝑎‖𝐿∞

𝜋4

.

The remaining assertion follows by the Sobolev inequality.

We define the following continuous function 𝑔𝑅 ∶ [0, 1] ×ℝ+→ℝ

𝑔𝑅 (𝑡, 𝑥) =
{

𝑔 (𝑡, 𝑥) , 0 ≤ 𝑥 ≤ 𝑅
𝑔 (𝑡, 𝑅) , 𝑥 > 𝑅.

}

(6)

We see that for 𝑡 ∈ [0, 1], and all 𝑥 ∈ ℝ+

𝑔0 ≤ 𝑔𝑅 (𝑡, 𝑥) ≤ max
𝑡∈[0,1],0≤𝑥≤𝑅

𝑔 (𝑡, 𝑥)

and moreover
𝑔𝑅 (𝑡, 𝑥) 𝑥 − 𝑔𝑅 (𝑡, 𝑦) 𝑦 ≥ 0

for all 𝑡 ∈ [0, 1], and all 𝑥 ≥ 𝑦 ≥ 0 in case A5 holds. With the above result we can define the following truncated problem for a
numerical parameter 𝜆 > 0

⎧

⎪

⎨

⎪

⎩

𝑑4

𝑑𝑡4
𝑢 (𝑡) − 𝑑

𝑑𝑡

(

𝑔𝑅
(

𝑡, ||
|

𝑑
𝑑𝑡
𝑢 (𝑡)||

|

)

𝑑
𝑑𝑡
𝑢 (𝑡)

)

= 𝜆𝑓 (𝑡, 𝑢(𝑡)), for a.e. 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0, 𝑢̇ (0) = 𝑢̇ (1) = 0,
(7)

Now problem (7) is variational so we can apply the direct method in order to investigate its solvability. Again we will look for
weak solutions whose further regularity will be investigated in what follows. The meaning of the weak solution to (7) is now
obvious, in fact it stems from equating (8) provided below.

We need some preparation as well as some auxiliary results from the theory of monotone operators. We define the following
operator

𝐴 ∶ 𝐻2
0 (0, 1) →

(

𝐻2
0 (0, 1)

)∗

by
⟨𝐴 (𝑢) , 𝑣⟩ = ∫ 1

0
𝑑2

𝑑𝑡2
𝑢 (𝑡) 𝑑2

𝑑𝑡2
𝑣 (𝑡) 𝑑𝑡 + ∫ 1

0 𝑔𝑅
(

𝑡, ||
|

𝑑
𝑑𝑡
𝑢 (𝑡)||

|

)

𝑑
𝑑𝑡
𝑢 (𝑡) 𝑑

𝑑𝑡
𝑣 (𝑡) 𝑑𝑡

−𝜆 ∫ 1
0 𝑓 (𝑡, 𝑢(𝑡))𝑣 (𝑡) 𝑑𝑡

(8)

and we put 𝐴1, 𝐴2, 𝐴3 ∶ 𝐻2
0 (0, 1) →

(

𝐻2
0 (0, 1)

)∗ by

⟨𝐴1 (𝑢) , 𝑣⟩ =

1

∫
0

𝑑2

𝑑𝑡2
𝑢 (𝑡) 𝑑2

𝑑𝑡2
𝑣 (𝑡) 𝑑𝑡

⟨𝐴2 (𝑢) , 𝑣⟩ =

1

∫
0

𝑔𝑅

(

𝑡,
|

|

|

|

𝑑
𝑑𝑡

𝑢 (𝑡)
|

|

|

|

)

𝑑
𝑑𝑡

𝑢 (𝑡) 𝑑
𝑑𝑡

𝑣 (𝑡) 𝑑𝑡

⟨𝐴3 (𝑢) , 𝑣⟩ = −

1

∫
0

𝑓 (𝑡, 𝑢(𝑡))𝑣 (𝑡) 𝑑𝑡.

Then by (8)
𝐴 = 𝐴1 + 𝐴2 + 𝜆𝐴3.

We obtain the following technical lemmas which will be used in both the existence and uniqueness results.

Lemma 6. Operator 𝐴1 is continuous, bounded, coercive strongly monotone and satisfies condition (S). Moreover, 𝐴1 is
potential with the potential 1 ∶ 𝐻2

0 (0, 1) → ℝ defined by

1 (𝑢) =
1
2

1

∫
0

|

|

|

|

𝑑2

𝑑𝑡2
𝑢 (𝑡)

|

|

|

|

2

𝑑𝑡.
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Proof. The continuity of 𝐴 is obvious. We calculate for any 𝑢, 𝑣 ∈ 𝐻2
0 (0, 1) that

⟨𝐴1 (𝑢) − 𝐴1 (𝑣) , 𝑢 − 𝑣⟩ =

1

∫
0

|

|

|

|

𝑑2

𝑑𝑡2
𝑢 (𝑡) − 𝑑2

𝑑𝑡2
𝑣 (𝑡)

|

|

|

|

2

𝑑𝑡

which provides the strong monotonicity and this implies the remaining assertions.

Lemma 7. Assume condition A2. Then operator 𝐴3 is potential, bounded and strongly continuous. If additionally A4 holds,
then 𝐴3 is monotone. The potential 3 ∶ 𝐻2

0 (0, 1) → ℝ is defined by

3 (𝑢) =

1

∫
0

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡.

Proof. Operator 𝐴3 is obviously potential. The monotonicity in case A4 holds is also obvious. Operator 𝐴3 is bounded since 𝑓
is an 𝐿2−Carathéodory function. We prove that it is strongly continuous. Take a sequence

(

𝑢𝑛
)∞
𝑛=1 which is weakly convergent

to some 𝑢0 in 𝐻2
0 (0, 1). Then

(

𝑢𝑛
)∞
𝑛=1 converges uniformly on [0, 1] to 𝑢0. Thus there is some 𝑑 > 0 that ‖

‖

𝑢𝑛‖‖𝐶 ≤ 𝑑. Since 𝐹 is
𝐿2−Carathéodory function we find a function 𝑓𝑑 ∈ 𝐿2 (0, 1) such that for a.e. 𝑡 ∈ [0, 1] and all 𝑛 ∈ ℕ it holds

|

|

|

𝑓
(

𝑡, 𝑢𝑛 (𝑡)
)

|

|

|

≤ 𝑓𝑑 (𝑡)

Hence we can apply the Lebesgue Dominated Convergence Theorem.

Lemma 8. Assume condition A1. Then operator 𝐴2 is bounded, potential and strongly continuous and demicontinuous. If
additionally A5 holds, then 𝐴2 is monotone. The potential 2 ∶ 𝐻2

0 (0, 1) → ℝ is defined by

2 (𝑢) =

1

∫
0

|

|

|

𝑑
𝑑𝑡
𝑢(𝑡)||

|

∫
0

𝑔𝑅 (𝑡, 𝑠) 𝑠𝑑𝑠𝑑𝑡.

Proof. Using same arguments as in the proof of Lemma 7 and noting that a sequence
(

𝑢𝑛
)∞
𝑛=1 which is weakly convergent to

some 𝑢0 in 𝐻2
0 (0, 1) is such that

(

𝑢̇𝑛
)∞
𝑛=1 converges uniformly on [0, 1] to 𝑢̇0, we see that 𝐴2 is strongly continuous. Since 𝑔𝑅 is

bounded, it is also bounded. Applying Theorem 4 and Lemma 4 we see the remaining part of the assertion.

With the above preparations we obtain the following:

Lemma 9. Assume that conditions A1-A3 are satisfied. Then operator 𝐴 is monotone, demicontinuous, potential, bounded and
coercive. Moreover, 𝐴 satisfies condition (S). If we assume additionally A4-A5 then 𝐴 is strictly monotone.

Proof. Using Lemma 3 we see that 𝐴3 is demicontinuous. We now use Lemmas 6, 8, 7 to conclude that 𝐴 is monotone, demicon-
tinuous, potential, bounded. By arguments contained in Lemma 5 we see that 𝐴 is coercive. By Lemma 6 operator 𝐴1 satisfies
condition (S), so by Lemma 2 we see that so is true for 𝐴. The strict monotonicity of 𝐴 follows since 𝐴1 being strongly monotone
is strictly monotone.

Now we define the following action functional  ∶ 𝐻2
0 (0, 1) → ℝ by

 = 1 +2 + 𝜆3 (9)

We see that functional  satisfies the assumption of Theorem 2 and we can propose the following result:

Theorem 5. Assume that conditions A1-A3 are satisfied. Then for each fixed 𝜆 ∈
(

0, 𝜆
)

problem (7) has at least one weak

solution. If we assume additionally A4-A5 then for each fixed 𝜆 ∈
(

0, 𝜆
)

problem (7) has exactly one weak solution.

We have also the following obvious result required later on:

Lemma 10. Assume that conditions A1-A2 are satisfied. Then operator 𝐴1 + 𝐴2 is strongly monotone, continuous, coercive
and satisfies condition (S). Moreover, 𝐴1 + 𝐴2 is invertible.
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4 ORIGINAL PROBLEM -REGULARITY, EXISTENCE AND UNIQUENESS

We start with some observation concerning the regularity of the weak solution. We introduce an auxiliary result pertaining to
the higher order du Bois-Reymond Lemma provided to match problem which we consider. Some related issues were considered
in12 however for different type of problems. From11, Proposition 4.5 we get the following result:

Lemma 11. If ℎ ∈ 𝐿2 (0, 1) and if
1

∫
0

ℎ (𝑡) 𝑑2

𝑑𝑡2
𝑣 (𝑡) 𝑑𝑡 = 0

for all 𝑣 ∈ 𝐻2
0 (0, 1), then there exist constants 𝑐0, 𝑐1 ∈ ℝ such that ℎ (𝑡) = 𝑐0 + 𝑐1𝑡 a.e. on [0, 1].

Now we obtain from the above lemma the regularity result about the weak solution:

Proposition 1. Assume that conditions A1, A2,A3 are satisfied. Fix 𝜆 ∈
(

0, 𝜆
)

. Then any 𝑢 ∈ 𝐻2
0 (0, 1) which is weak solution

to (7) is such that 𝑢, 𝑑
𝑑𝑡
𝑢, 𝑑2

𝑑𝑡2
𝑢, 𝑑3

𝑑𝑡3
𝑢 are absolutely continuous and 𝑑4

𝑑𝑡4
𝑢 ∈ 𝐿2 (0, 1) and that 𝑢 satisfies (7) a.e. on [0, 1] .

Proof. We will apply Lemma 11. Since 𝑢 ∈ 𝐻2
0 (0, 1) is a weak solution to (7), we see that 𝑢, 𝑑

𝑑𝑡
𝑢 are absolutely continuous. Next

using the definition of the weak solution to (7) and integrating by parts twice we see that the following holds for any 𝑣 ∈ 𝐻2
0 (0, 1)

∫ 1
0

(

𝑑2

𝑑𝑡2
𝑢 (𝑡) − ∫ 𝑡

0

(

𝑔𝑅
(

𝑠, | 𝑑
𝑑𝑠
𝑢𝑅 (𝑠) |

)

𝑑
𝑑𝑠
𝑢 (𝑠)

)

𝑑𝑠
)

𝑑2

𝑑𝑡2
𝑣 (𝑡) 𝑑𝑡−,

𝜆 ∫ 1
0 ∫ 𝑡

0

(

∫ 𝑠
0 𝑓 (𝜏, 𝑢(𝜏))𝑑𝜏

)

𝑑𝑠 𝑑2

𝑑𝑡2
𝑣 (𝑡) 𝑑𝑡 = 0.

Now using Lemma 11 and differentiating twice, we obtain the assertion.

With Proposition 1 we can introduce another notion of a solution to (7), namely the classical solution. We say that a function
𝑢 ∈ 𝐻2

0 (0, 1) is a classical solution to (7), if it is a weak solution, satisfies (7) a.e. on [0, 1] and if 𝑢, 𝑑
𝑑𝑡
𝑢, 𝑑2

𝑑𝑡2
𝑢, 𝑑3

𝑑𝑡3
𝑢 are absolutely

continuous while 𝑑4

𝑑𝑡4
𝑢 ∈ 𝐿2 (0, 1).

From Proposition 1 and Theorem 5 we immediately obtain that:

Theorem 6. Assume that conditions A1-A3 are satisfied. Then for each fixed 𝜆 ∈
(

0, 𝜆
)

problem (7) has at least one classical

solution. If we assume additionally A4-A5 then for each fixed 𝜆 ∈
(

0, 𝜆
)

problem (7) has exactly one classical solution.

We can state the following main existence result:

Theorem 7. Assume that conditions A1-A3 are satisfied. Then for each fixed 𝜆 ∈
(

0, 𝜆
)

problem (1) has at least one classical

solution. If we assume additionally A4-A5 then for each fixed 𝜆 ∈
(

0, 𝜆
)

problem (1) has exactly one classical solution.

Proof. Due to Lemma 5 solutions to (1) and (7) coincide since the estimate 𝑅 which we obtain is independent of a solution.
From Lemma 5 it also follows that problem (1), due to the coercivity, has only bounded solutions. Now the result follows from
Theorem 6.

From the above result we have an immediate corollary which we provide directly:

Corollary 1. Assume that conditions A1-A3 are satisfied. Then for each fixed 𝜆 ∈
(

0, 𝜆
)

solutions to problems (1) and (7)
coincide.

Now we proceed to the case when instead of A3 we assume A6.

Lemma 12. Assume that conditions A1, A2, A6 are satisfied. Then for each fixed 𝜆 > 0 there is some 𝑅 > 0 such that
‖𝑢‖𝐻2

0
≤ 𝑅 and ‖𝑢̇‖𝐶 ≤ 𝑅 for every 𝑢 ∈ 𝐻2

0 (0, 1) that solves problem (1).

Proof. We follow the proof of Lemma 5, so we provide only some minor results. Let us fix 𝜆 > 0. Assume that 𝑢 ∈ 𝐻2
0 (0, 1)

solves problem (1). Since 𝜈 = 2
2−𝜃

, we see that 𝜈′ = 2
𝜃

(
(

𝑣′)−1 + 𝜈−1 = 1). Then we proceed as in the proof of Lemma 5 using



Marek Galewski and Dumitru Motreanu 9

the Hölder Inequality and obtain
‖𝑢‖2𝐻2

0
− 𝑔0

𝜋2 ‖𝑢‖
2
𝐻2

0
≤ 𝜆 ∫ 1

0 𝑓 (𝑡, 𝑢(𝑡))𝑢 (𝑡) 𝑑𝑡 ≤

𝜆 ‖𝑎‖𝐿𝜈 ‖𝑢‖𝜃𝐿2 + 𝜆 ∫ 1
0 𝑏 (𝑡) 𝑑𝑡 ≤

𝜆
𝜋4𝜃 ‖𝑎‖𝐿𝜈 ‖𝑢‖𝜃𝐻2

0
+ 𝜆 ‖𝑏‖𝐿1 .

Therefore we obtain the following inequality
(

1 −
𝑔0
𝜋2

)

‖𝑢‖2𝐻2
0
− 𝜆

𝜋4𝜃
‖𝑎‖𝐿𝜈 ‖𝑢‖𝜃𝐻2

0
≤ 𝜆 ‖𝑏‖𝐿1

and the assertion follows since 𝜃 ∈ (0, 2).

From the above lemma and results of this section we now obtain:

Theorem 8. Assume that conditions A1, A2, A6 are satisfied. Then for each fixed 𝜆 > 0 problem (1) has at least one classical
solution. If we assume additionally A4-A5 then for each fixed 𝜆 > 0 problem (1) has exactly one classical solution. Moreover,
for each fixed 𝜆 > 0 solutions to problems (1) and (7) coincide.

5 MULTIPLICITY

Now we state the main multiplicity result.

Theorem 9. Assume that conditions A1, A2, A6-A8 are satisfied. Then there is 𝜆̄ > 0 such that for 𝜆 > 𝜆̄ problem (1) has at
least three classical solutions.

Proof. By Theorem 8 we see that it suffices to consider multiple solvability of (7) instead of (1). We apply Theorem 3 to action
functional  defined by (9) which is coercive by Lemma 1. We see that 𝐸 ∶= 𝐻2

0 (0, 1). Since all other assumptions are satisfied
by Lemma 9, we see that we need to show that conditions B1 and B2 are satisfied. Using A7 we see that there is a function
𝑢 ∈ 𝐻2

0 (0, 1) such that
3

(

𝑢
)

< 0.
Since 1 (𝑢̄) +2 (𝑢̄) > 0 we define

𝜆̄ ∶= −
1 (𝑢̄) +2 (𝑢̄)

3
(

𝑢
) >0

and we fix any 𝜆 > 𝜆̄. Then for ⨗ > 𝜆̄ it holds that  (𝑢̄) < 0. Reasoning similarly as with (5) we obtain that it holds for any 𝑢

1 (𝑢) +2 (𝑢) ≥
1
2

(

1 −
𝑔0
𝜋2

)

‖𝑢‖2𝐻2
0
.

Following the known technique applied in checking the mountain pass geometry we see from A8 that for any 𝜀 > 0 there is
𝛿 > 0 such that for |𝑥| ≤ 𝛿 it holds

|𝐹 (𝑡, 𝑥)| ≤ 𝜀
|𝑥|2

2
for a.e. 𝑡 ∈ [0, 1] .

Using the above we have that for 𝜀 ∈
(

0, 𝜋
2−𝑔0
𝜆

)

there is a constant 𝑟 ≤ 𝜀 such that for ‖𝑢‖𝐻2
0
≤ 𝑟 it holds

 (𝑢) ≥ 1
2

(

1 −
𝑔0
𝜋2

− 𝜀𝜆
𝜋2

)

‖𝑢‖2𝐻2
0
.

Since  (0) = 0 and since  (𝑢) ≥ 0 for 𝑢 ∈ 𝐵𝑟 we see that in fact

0 = inf
𝑢∈𝐵𝑟

 (𝑢) < inf
𝑢∈𝑆𝑟

 (𝑢) .

Hence we obtain condition B2. Since  (𝑢̄) < 0 we see that

inf
𝑢∈𝐻2

0

 (𝑢) < inf
𝑢∈𝐵𝑟

 (𝑢)

Therefore condition B1 is satisfied. The assertion now follows.
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Example 4. In the example of a nonlinear term satisfying our assumptions we drop the dependence on 𝑡. We put 𝑓 ∶ ℝ → ℝ by

𝑓 (𝑥) =

⎧

⎪

⎨

⎪

⎩

√

|𝑥|, 𝑥 < −1
− |𝑥| 𝑥, |𝑥| ≤ 1
−
√

|𝑥|, 𝑥 > 1.

6 DEPENDENCE ON PARAMETERS

We conclude this paper with results pertaining to dependence on functional parameters for weak solutions. Note that we do
not include numerical parameter 𝜆 > 0 here in order to simplify the considerations. We will need the following definition:
𝑓 ∶ [0, 1] × ℝ × ℝ → ℝ is an 𝐿2−Carathéodory function if the following conditions are satisfied (the first two meaning it is
Carathéodory):
(i). 𝑡 → 𝑓 (𝑡, 𝑥, 𝑦) is measurable on [0, 1] for each fixed pair (𝑥, 𝑦) ∈ ℝ ×ℝ,
(ii). (𝑥, 𝑦) → 𝑓 (𝑡, 𝑥, 𝑦) is continuous on ℝ ×ℝ for a.e. 𝑡 ∈ [0, 1],
(iii). for each 𝑑 ∈ ℝ+ function

𝑡 → max
𝑥2+𝑦2≤𝑑2

|𝑓 (𝑡, 𝑥, 𝑦)|

belongs to 𝐿2 (0, 1) .
The problem under consideration and the assumptions which employ now read:

⎧

⎪

⎨

⎪

⎩

𝑑4

𝑑𝑡4
𝑢 (𝑡) − 𝑑

𝑑𝑡

(

𝑔
(

𝑡, ||
|

𝑑
𝑑𝑡
𝑢 (𝑡)||

|

)

𝑑
𝑑𝑡
𝑢 (𝑡)

)

= 𝑓 (𝑡, 𝑢(𝑡), 𝑤 (𝑡)), for a.e. 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0, 𝑢̇ (0) = 𝑢̇ (1) = 0,
(10)

where 𝑔 satisfies A1 and where 𝑓 is subject to the following condition:

A9 𝑓 ∶ [0, 1]×ℝ×ℝ → ℝ is an 𝐿2−Carathéodory function satisfying for 𝑎 ∈ 𝐿∞ (

0, 1;ℝ+
)

, ‖𝑎‖𝐿∞ < 𝜋4−𝜋2𝑔0, 𝑏 ∈ 𝐿1 (0, 1)
the following growth condition

𝑓 (𝑡, 𝑥, 𝑦)𝑥 ≤ 𝑎 (𝑡) |𝑥|2 + 𝑏 (𝑡) for a.e 𝑡 ∈ [0, 1] and all 𝑥, 𝑦 ∈ ℝ.

Let 𝑀 > 0 be fixed. The parameter is as follows

𝑤 ∈ 𝐿𝑀 ∶=
{

𝑤 ∈ 𝐿2 (0, 1) ∶ |𝑤 (𝑡)| ≤ 𝑀 for a.e 𝑡 ∈ [0, 1]
}

.

The continuous dependence on parameters is understood as follows: given a convergent sequence of parameters
(

𝑤𝑛
)

⊂ 𝐿𝑀
with a limit 𝑤0 there exists a corresponding bounded sequence

(

𝑢𝑛
)

⊂ 𝐻2
0 (0, 1) of solutions to (10) such that any of its weakly

convergent subsequences converges weakly in 𝐻2
0 (0, 1) to a solution of (10) with 𝑤 = 𝑤0. Note that we do not need uniqueness

here. In case the solution were unique, we could apply the abstract results from3 to reach the assertion and this is why we do
not pursue this further. Instead we modify the method indicated in6 which works also in case when the solutions are not unique.
As is the case with problem (1) we see that here as well due to the coercivity which is uniform with respect to the parameter we
introduce the auxiliary problem and next work with it in order to reach our assertion. We obtain the following counter part of
Lemma 5:

Lemma 13. Assume that conditions A1, A9 are satisfied. Then there is some 𝑅 > 0 such that ‖𝑢‖𝐻2
0
≤ 𝑅 and ‖𝑢̇‖𝐶 ≤ 𝑅 for

every 𝑢 ∈ 𝐻2
0 (0, 1) that solves problem (10) with any fixed 𝑤 ∈ 𝐿𝑀 .

Using Lemma 13 we define 𝑔𝑅 by formula (6) and introduce the following auxiliary problem

⎧

⎪

⎨

⎪

⎩

𝑑4

𝑑𝑡4
𝑢 (𝑡) − 𝑑

𝑑𝑡

(

𝑔𝑅
(

𝑡, ||
|

𝑑
𝑑𝑡
𝑢 (𝑡)||

|

)

𝑑
𝑑𝑡
𝑢 (𝑡)

)

= 𝑓 (𝑡, 𝑢(𝑡), 𝑤 (𝑡)), for a.e. 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0, 𝑢̇ (0) = 𝑢̇ (1) = 0,
(11)

for which we have the following existence result which is obtained exactly as was for the case of problem (7):
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Lemma 14. Assume that conditions A1, A9 are satisfied. Then for each fixed 𝑤 ∈ 𝐿𝑀 problem (11) has at least one classical
solution which is also a solution to (10).

With the above preparations we can formulate the main result of this section:

Theorem 10. Assume that conditions A1, A9 are satisfied. Let
(

𝑤𝑛
)

⊂ 𝐿𝑀 be a convergent sequence of parameters with a
limit 𝑤0 ∈ 𝐿𝑀 . Then there is a constant 𝑅 > 0 such that for any 𝑛 ∈ ℕ there is at least one classical solution 𝑢𝑛 to (10) such that
‖

‖

𝑢𝑛‖‖𝐻2
0
≤ 𝑅. Moreover, there is a subsequence

(

𝑢𝑛𝑘
)

of the sequence
(

𝑢𝑛
)

such that 𝑢𝑛𝑘 ⇀ 𝑢0 weakly in 𝐻2
0 (0, 1) and where 𝑢0

is a solution to (10) corresponding to 𝑤0.

Proof. From Lemma 14 we learn that we can work with problem (11) which is solvable for any fixed 𝑛 ∈ ℕ. The existence
of a constant 𝑅 > 0 such that ‖

‖

𝑢𝑛‖‖𝐻2
0
≤ 𝑅 for all 𝑛 ∈ ℕ follows from Lemma 13. Hence the sequence

(

𝑢𝑛
)

admits a weakly
convergent subsequence

(

𝑢𝑛
)

which we do not renumber for simplicity with a weak limit 𝑢0 ∈ 𝐻2
0 (0, 1) and which can be chosen

so that it converges strongly in 𝐻1
0 (0, 1) and also uniformly on [0, 1]. Take a corresponding subsequence of parameters

(

𝑤𝑛
)

which we again do not renumber. Using the definition of a weak solution of (11) we now obtain for any fixed 𝑣 ∈ 𝐻2
0 (0, 1)

∫ 1
0

𝑑2

𝑑𝑡2
𝑢𝑛 (𝑡)

𝑑2

𝑑𝑡2
𝑣 (𝑡) 𝑑𝑡 + ∫ 1

0 𝑔𝑅
(

𝑡, ||
|

𝑑
𝑑𝑡
𝑢𝑛 (𝑡)

|

|

|

)

𝑑
𝑑𝑡
𝑢𝑛 (𝑡)

𝑑
𝑑𝑡
𝑣 (𝑡) 𝑑𝑡 =

∫ 1
0 𝑓 (𝑡, 𝑢𝑛(𝑡), 𝑤𝑛 (𝑡))𝑣 (𝑡) 𝑑𝑡.

(12)

Now we investigate the convergences in (12). Since
(

𝑢𝑛
)

is weakly convergent in 𝐻2
0 (0, 1) we see that

1

∫
0

𝑑2

𝑑𝑡2
𝑢𝑛 (𝑡)

𝑑2

𝑑𝑡2
𝑣 (𝑡) 𝑑𝑡 →

1

∫
0

𝑑2

𝑑𝑡2
𝑢0 (𝑡)

𝑑2

𝑑𝑡2
𝑣 (𝑡) 𝑑𝑡.

Since
(

𝑢𝑛
)

is norm convergent in 𝐻1
0 (0, 1) we see that

∫ 1
0 𝑔𝑅

(

𝑡, ||
|

𝑑
𝑑𝑡
𝑢𝑛 (𝑡)

|

|

|

)

𝑑
𝑑𝑡
𝑢𝑛 (𝑡)

𝑑
𝑑𝑡
𝑣 (𝑡) 𝑑𝑡 →

∫ 1
0 𝑔𝑅

(

𝑡, ||
|

𝑑
𝑑𝑡
𝑢0 (𝑡)

|

|

|

)

𝑑
𝑑𝑡
𝑢0 (𝑡)

𝑑
𝑑𝑡
𝑣 (𝑡) 𝑑𝑡.

Due to assumption A9 we can employ the Lebesgue Dominated Convergence Theorem in order to obtain that
1

∫
0

𝑓 (𝑡, 𝑢𝑛(𝑡), 𝑤𝑛 (𝑡))𝑣 (𝑡) 𝑑𝑡 →

1

∫
0

𝑓 (𝑡, 𝑢0(𝑡), 𝑤0 (𝑡))𝑣 (𝑡) 𝑑𝑡.

Summarizing for any 𝑣 ∈ 𝐻2
0 (0, 1) it holds

∫ 1
0

𝑑2

𝑑𝑡2
𝑢0 (𝑡)

𝑑2

𝑑𝑡2
𝑣 (𝑡) 𝑑𝑡 + ∫ 1

0 𝑔𝑅
(

𝑡, ||
|

𝑑
𝑑𝑡
𝑢0 (𝑡)

|

|

|

)

𝑑
𝑑𝑡
𝑢0 (𝑡)

𝑑
𝑑𝑡
𝑣 (𝑡) 𝑑𝑡 =

∫ 1
0 𝑓 (𝑡, 𝑢0(𝑡), 𝑤0 (𝑡))𝑣 (𝑡) 𝑑𝑡.

But this means that 𝑢0 is a solution to (11) corresponding to 𝑤0. Now the assertion of the theorem follows.

We conclude with some suggestions how to tackle other conditions on a parameter.

Remark 1. If one assumes that the parameter is in 𝐿2 (0, 1) without the bound imposed in the definition of 𝐿𝑀 then we need to
impose some additional sublinear growth on 𝑓 . If one assumes that the parameter is in 𝐿2 (0, 1) but that the sequence is merely
weakly convergent, that some special structure on 𝑓 must be imposed, namely the following

𝑓 (𝑡, 𝑥, 𝑢) = 𝑓1 (𝑡, 𝑥) + 𝑓2 (𝑡, 𝑥) 𝑢

with 𝑓1, 𝑓2 being 𝐿2−Carathéodory functions.
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