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Abstract

Let μ be a finite Borel measure on [0 ,1). In this paper, we consider the generalized integral type Hilbert operator I μ α + 1

( f ) ( z ) = [?] 0 1 f ( t ) ( 1 - tz ) α + 1 d μ ( t ) ( α > - 1 ) . The operator I μ 1 has been extensively studied recently.

The aim of this paper is to study the boundedness(resp. compactness) of I μ α + 1 acting from the normal weight Bloch space

into another of the same kind. As consequences of our study, we get completely results for the boundedness of I μ α + 1 acting

between Bloch type spaces, logarithmic Bloch spaces among others.
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GENERALIZED INTEGRAL TYPE HILBERT OPERATOR
ACTING BETWEEN WEIGHTED BLOCH SPACE

PENGCHENG TANG˚ XUEJUN ZHANG

Abstract. Let µ be a finite Borel measure on r0, 1q. In this paper, we consider

the generalized integral type Hilbert operator

Iµα`1pfqpzq “

ż 1

0

fptq

p1´ tzqα`1
dµptq pα ą ´1q.

The operator Iµ1
has been extensively studied recently. The aim of this paper

is to study the boundedness(resp. compactness) of Iµα`1 acting from the normal

weight Bloch space into another of the same kind. As consequences of our study,

we get completely results for the boundedness of Iµα`1
acting between Bloch type

spaces, logarithmic Bloch spaces among others.

1. Introduction

Let D “ tz P C : |z| ă 1u denote the open unit disk of the complex plane C and

HpDq denote the space of all analytic functions in D.

A positive continuous function ν on r0, 1q is called normal if there exist 0 ă a ď

b ă 8 and 0 ď s0 ă 1 such that
νpsq

p1´ s2qa
almost decreasing on rs0, 1q and

νpsq

p1´ s2qb

almost increasing on rs0, 1q.

A function g is almost increasing if there exists C ą 0 such that r1 ă r2 implies

gpr1q ď Cgpr2q. Almost decreasing functions are defined in an analogous manner.

Functions such as

νpsq “ p1´ s2qt logδ
e

1´ s2
pt ą 0, δ P Rq and νpsq “

˜

8
ÿ

k“1

ks2k´2

log3
pk ` 1q

¸´1

are normal functions.

In this paper, we use N to denote the set of all normal functions on r0, 1q and

let s0 “ 0. The letters a and b always represent the parameters in the definition of

normal function.
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Let ν P N , the normal weight Bloch space Bν consists of those functions f P HpDq
for which

||f ||Bν “ |fp0q| ` sup
zPD

νp|z|q|f 1pzq| ă 8.

In particular, if νp|z|q “ p1 ´ |z|2qγpγ ą 0q, then Bν is the Bloch type space Bγ. If

νp|z|q “ p1 ´ |z|2q log´β e
1´|z|2

pβ P Rq, then Bν is just the logarithmic Bloch space

Blogβ .

Let µ be a positive Borel measure on r0, 1q, 0 ď γ ă 8 and 0 ă s ă 8. Then µ is

a γ-logarithmic s-Carleson measure if there exists a positive constant C, such that

µprt, 1qq logγ
e

1´ t
ď Cp1´ tqs, for all 0 ď t ă 1.

In particular, µ is an s-Carleson measure if γ “ 0. See [1] for more about logarithmic

Carleson measure.

Let µ be a finite Borel measure on r0, 1q and n P N. We use µn to denote the

sequence of order n of µ, that is, µn “
ş

r0,1q
tndµptq. Let Hµ be the Hankel matrix

pµn,kqn,kě0 with entries µn,k “ µn`k. The matrix Hµ induces an operator on HpDq

by its action on the Taylor coefficients : an Ñ
8
ÿ

k“0

µn,kak, n “ 0, 1, 2, ¨ ¨ ¨ .

If fpzq “
8
ÿ

n“0

anz
n
P HpDq, the generalized Hilbert operator defined as follows:

Hµpfqpzq “
8
ÿ

n“0

˜

8
ÿ

k“0

µn,kak

¸

zn,

It’s known that the generalized Hilbert operator Hµ is closely related to the integral

operator

Iµpfqpzq “
ż 1

0

fptq

1´ tz
dµptq

If µ is the Lebesgue measure on r0, 1q, then Hµ and Iµ reduce to the classic Hilbert

operator H and I.

The action of the operators Iµ and Hµ on distinct spaces of analytic functions

have been studied in a number of articles (see, e.g., [2–8]). In this paper, we consider

the generalized integral type Hilbert operator

Iµα`1pfqpzq “

ż 1

0

fptq

p1´ tzqα`1
dµptq, pα ą ´1q.

If α “ 0, the operator Iµα`1 is just Iµ. The integral type operator Iµα`1 is closely

related to the Hilbert type operator

Hα
µpfqpzq “

8
ÿ

n“0

Γpn` 1` αq

Γpn` 1qΓpα ` 1q

˜

8
ÿ

k“0

µn,kak

¸

zn, pα ą ´1q,
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whenever the right hand side makes sense and defines an analytic function in D.

The operator Hα
µ can be regarded as the fractional derivative of Hµ. If α “ 1, then

Hα
µ called the Derivative-Hilbert operator which has been studied in [9, 10].

The connection between Iµ(or Hµ) and Iµα`1(or Hα
µ) motivates us to consider the

operator Iµα`1 in a unified manner. In [11](see also [5]), the authors have studied the

boundedness of Iµ acting on B. Li and Zhou studied the operator Hµ from Bloch

type spaces to the BMOA and the Bloch space in [12]. Ye and Zhou investigated

Iµ2 acting on B in [9] and Iµα`1 acting between Bloch-type space in [13]. But only

partial results were obtained for the boundedness of Iµα`1 acting between Bloch-type

spaces. The aim of this article is to deal with the operator Iµα`1 acting from normal

weight Bloch space into another of the same kind. As consequences of our study,

we obtain complete results for the boundedness of Iµα`1 acting between Bloch type

spaces, logarithmic Bloch spaces among others.

Throughout the paper, the letter C will denote an absolute constant whose value

depends on the parameters indicated in the parenthesis, and may change from one

occurrence to another. We will use the notation “P À Q” if there exists a constant

C “ Cp¨q such that “P ď CQ”, and “P Á Q” is understood in an analogous manner.

In particular, if “P À Q” and “P Á Q” , then we will write “P — Q”.

2. Preliminary Results

In [14], a sequence tVnu was constructed in the following way: Let ψ be a C8-

function on R such that (1) ψpsq “ 1 for s ď 1, (2) ψpsq “ 0 for s ě 2, (3) ψ is

decreasing and positive on the interval p1, 2q.

Let ϕpsq “ ψp s
2
q ´ ψpsq, and let v0 “ 1` z, for n ě 1,

Vnpzq “
8
ÿ

k“0

ϕp
k

2n´1
qzk “

2n`1´1
ÿ

k“2n´1

ϕp
k

2n´1
qzk.

The polynomials Vn have the properties:

(1) fpzq “
8
ÿ

n“0

Vn ˚ gpzq , for f P HpDq;

(2) ||Vn ˚ f ||p À ||f ||p, for f P Hp, p ą 0;

(3) ||Vn||p — 2np1´
1
p
q, for all p ą 0, where ˚ denotes the Hadamard product and || ¨ ||p

denotes the norm of Hardy space Hp.

Lemma 2.1. Let ν P N and f P HpDq, then f P Bν if and only if

sup
ně0

νp1´ 2´nq2n||Vn ˚ f ||8 ă 8.

Moreover,

||f ||Bν — sup
ně0

νp1´ 2´nq2n||Vn ˚ f ||8.

3



The proof of this Lemma is similar to that Theorem 3.1 in [15], we leave it to the

interested readers.

Lemma 2.2. Let ν P N and

gpζq “ 1`
8
ÿ

s“1

2sζns pζ P Dq,

where ns is the integer part of p1 ´ rsq
´1, r0 “ 0, νprsq “ 2´sps “ 1, 2, ¨ ¨ ¨ q. Then

gprq is strictly increasing on r0, 1q and there exist two positive constants N1 and N2

such that

inf
r0,1q

νprqgprq “ N1 ą 0, sup
ζPD

νp|ζ|q|gpζq| “ N2 ă `8.

This result is originated from Theorem 1 in [16].

Lemma 2.3. If ν P N , then

νp|z|q

νp|w|q
À

ˆ

1´ |z|2

1´ |w|2

˙a

`

ˆ

1´ |z|2

1´ |w|2

˙b

for all z, w P D.

This result comes from Lemma 2.2 in [17].

Lemma 2.4. Let ν P N , 0 ă δ ă 1
e2

, then
ż 8

e

e´δtdt

tνp1´ 1
t
q
À

1

νp1´ δq
.

Proof.
ż 8

e

e´δtdt

tνp1´ 1
t
q
“

ż 1
δ

e

e´δtdt

tνp1´ 1
t
q
`

ż 8

1
δ

e´δtdt

tνp1´ 1
t
q
“ I1 ` I2.

By the definition of normal function, we have

I1 ď

ż 1
δ

e

dt

tνp1´ 1
t
q
À

δa

νp1´ δq

ż 1
δ

e

ta´1dt À
1

νp1´ δq
.

If t ą 1
δ
, then 1´ 1

t
ą 1´ δ. The definition of normal function shows that

νp1´ δq

r1´ p1´ δqsb
À

νp1´ 1
t
q

r1´ p1´ 1
t
qsb
.

Hence, we have

I2 “

ż 8

1
δ

νp1´ δq

νp1´ 1
t
q

e´δtdt

tνp1´ δq

À

ż 8

1
δ

δbtb´1e´δt

νp1´ δq
dt “

1

νp1´ δq

ż 8

1

e´ssb´1ds

À
1

νp1´ δq
.

The proof is complete. �
4



Lemma 2.5. Let µ be a positive Borel measure on r0, 1q, β ą 0, γ ą 0. Let τ be

the Borel measure on r0, 1q defined by

dτptq “
dµptq

p1´ tqγ
.

Then, the following two conditions are equivalent.

(a) τ is a β-Carleson measure.

(b) µ is a β ` γ-Carleson measure.

Proof. paq ñ pbq. Assume (a). Then there exists a positive constant C ą 0 such

that
ż 1

t

dµprq

p1´ rqγ
ď Cp1´ tqβ, t P r0, 1q.

Using this and the fact that the function xÑ 1
p1´xqγ

is increasing in r0, 1q, we obtain

µprt, 1qq

p1´ tqγ
ď

ż 1

t

dµprq

p1´ rqγ
ď Cp1´ tqβ, t P r0, 1q.

This shows that µ is a β ` γ-Carleson measure.

pbq ñ paq. Assume (b). Then there exists a positive constant C ą 0 such that

µptq ď Cp1´ tqβ`γ, t P r0, 1q.

For 0 ă x ă 1, let hpxq “ µpr0, xqq ´ µpr0, 1qq “ ´µprx, 1qq. Integrating by parts

and using the inequality above , we obtain

τprt, 1qq “

ż 1

t

dµpxq

p1´ xqγ

“
1

p1´ tqγ
µprt, 1qq ´ lim

xÑ1

1

p1´ xqγ
µprx, 1qq ` γ

ż 1

t

µprx, 1qq

p1´ xqγ`1
dx

“
1

p1´ tqγ
µprt, 1qq ` γ

ż 1

t

µprx, 1qq

p1´ xqγ`1
dx

À p1´ tqβ `

ż 1

t

p1´ xqβ´1dx À p1´ tqβ.

Thus, τ is an β-Carleson measure. �

Lemma 2.6. Let ω, ν P N . If T is a bounded operator from Bω into Bν, then

T is compact operator from Bω into Bν if and only if for any bounded sequence

thnu in Bω which converges to 0 uniformly on every compact subset of D, we have

limnÑ8 ||T phnq||Bν “ 0.

The proof is similar to that of Proposition 3.11 in [18], we omit the details.
5



3. Nonnegative Coefficients of normal weight Bloch functions

First, we give a characterization of the functions f P HpDq whose sequence of

Taylor coefficients is non-negative which belongs to Bν .

Theorem 3.1. Let ν P N and f P HpDq, fpzq “
ř8

n“0 anz
n, an ě 0 for all n ě 0.

Then f P Bν if and only if

Spfq :“ sup
ně1

νp1´
1

n
q

n
ÿ

k“1

kak ă 8.

Moreover,

||f ||Bν — Spfq ` a0.

Proof. If f P Bν , then for each n P N,

||f ||Bν ě sup
z“1´ 1

n

νp|z|q|f 1pzq|

ě νp1´
1

n
q

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“1

kakp1´
1

n
q
k´1

ˇ

ˇ

ˇ

ˇ

ˇ

Á νp1´
1

n
q

n
ÿ

k“1

kak,

and hence Spfq À ||f ||Bν . Since a0 “ |fp0q| ď ||f ||Bν , we may obtain

Spfq ` a0 À ||f ||Bν .

On the other hand, if Spfq ă 8, then

νp1´ 2´jq
2j`1´1
ÿ

k“2j

kak À Spfq, j P N.

For each z P D with 1
2
ď |z| ă 1, we have

|f 1pzq| “

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

j“0

2j`1´1
ÿ

k“2j

kakz
k´1

ˇ

ˇ

ˇ

ˇ

ˇ

ď

8
ÿ

j“0

˜

2j`1´1
ÿ

k“2j

kak|z|
k´1

¸

À Spfq
8
ÿ

j“0

|z|2
j

νp1´ 2´jq
.

To finish the proof, it suffices to prove that

8
ÿ

j“0

|z|2
j

νp1´ 2´jq
À

1

νp|z|q
for all

1

2
ď |z| ă 1. p3.1q

6



For each 1
2
ď |z| “ r ă 1, by choosing m ě 2 such that rm´1 ď r ď rm, where

rm “ 1´ 2´m. Then

8
ÿ

j“0

ν´1p1´ 2´jqr2
j

ď

m
ÿ

j“0

ν´1p1´ 2´jq `
8
ÿ

j“m`1

ν´1p1´ 2´jqr2
j

“ S1 ` S2.

Using Lemma 2.3 we have

S1 À ν´1p1´ 2´mq
m
ÿ

j“0

ˆ

p
1

2
q
pm´jqa

` p
1

2
q
pm´jqb

˙

À ν´1p1´ 2´mq.

On the other hand,

S2 “

8
ÿ

j“m`1

ν´1p1´ 2´jqr2
j

ď

8
ÿ

j“m`1

ν´1p1´ 2´jqr2
m¨2j´m

m

ď

8
ÿ

j“m`1

ν´1p1´ 2´jqe´2
pj´mq

“

8
ÿ

l“1

ν´1p1´ 2´pl`mqqe´2
l

À ν´1p1´ 2´mq
8
ÿ

l“1

e´2
l

2lb À ν´1p1´ 2´mq.

Since ν´1p1´ 2´mq — ν´1prq, it follows that (3.1) is valid for all 1
2
ď |z| ă 1.

Therefore,

|fp0q| ` sup
zPD

νp|z|q|f 1pzq| À a0 ` Spfq.

The proof is complete. �

Corollary 3.2. Let γ ą 0 and f P HpDq, fpzq “
ř8

n“0 anz
n, an ě 0 for all n ě 0.

Then f P Bγ if and only if

sup
ně1

n´γ
n
ÿ

k“1

kak ă 8.

If f P Bν has nonnegative and non-increasing coefficients, then the result of The-

orem 3.1 can be state as follows.

Theorem 3.3. Let fpzq “
ř8

n“0 anz
n P HpDq with an nonnegative and non-increasing.

Then f P Bν if and only if

sup
ně1

n2νp1´
1

n
qan ă 8.

Moreover,

||f ||Bν — a0 ` sup
ně1

n2νp1´
1

n
qan.

7



Proof. If an nonnegative and non-increasing, then
řn
k“1 kak Á n2an. The proof of

the necessity follows from Theorem 3.1 immediately.

On the other hand, if M :“ supně1 n
2νp1´ 1

n
qan ă 8, then

an À
M

n2νp1´ 1
n
q

for all n ě 1.

For every z P D and 1
2
ă |z| ă 1,

|f 1pzq| ď
8
ÿ

n“1

nan|z|
n´1

ÀM
8
ÿ

n“1

|z|n

nνp1´ 1
n
q
.

Let

hxptq “
xt

tνp1´ 1
t
q

x P p0, 1q,

then hx is decreasing in t, for sufficiently large t and each x P p0, 1q. So, by Lemma

2.4 we have

8
ÿ

n“1

|z|n

nνp1´ 1
n
q
—

ż 8

e

e´t log
1
|z|

tνp1´ 1
t
q
dt À

1

νp1´ log 1
|z|
q
—

1

νp|z|q
.

This means that

||f ||Bν À a0 ` sup
ně1

n2νp1´
1

n
qan.

The proof is complete. �

Corollary 3.4. Let γ ą 0 and fpzq “
ř8

n“0 anz
n P HpDq with an nonnegative and

non-increasing. Then f P Bγ if and only if

sup
ně1

n2´γan ă 8.

4. Generalized integral type Hilbert operator acting on weighted Bloch

space

Let ω P N , we write rωptq “
şt

0
1

ωpsq
ds. We begin with characterizing those measure

µ for which the operator Iµα`1 is well defined on Bω.

Proposition 4.1. Let µ be a positive Borel measure on r0, 1q and α ą ´1. For any

given f P Bω, Iµα`1pfq uniformly converges on any compact subset of D if and only

if
ż 1

0

prωptq ` 1qdµptq ă 8. p4.1q

Proof. Let f P Bω, it is easy to verify that

|fpzq| À prωp|z|q ` 1q||f ||Bω for all z P D. p4.2q
8



If (4.1) holds, then for each 0 ă r ă 1 and z P D with |z| ď r, we have

|Iµα`1pfqpzq| ď

ż 1

0

|fptq|

|1´ tz|α`1
dµptq

À
||f ||Bω

p1´ rqα`1

ż 1

0

prωptq ` 1qdµptq

À
||f ||Bω

p1´ rqα`1
.

This implies that Iµα`1pfq uniformly converges on any compact subset of D and

hence analytic in D.

Suppose that the operator Iµα`1 is well defined in Bω. Considering the function

fpzq “

ż z

0

gpsqds` 1

where g is the function in Lemma 2.2 with respect to ω. Then Lemma 2.2 implies

that f P Bω. Since Iµα`1pfqpzq is well defined for every z P D, we have

|Iµα`1pfqp0q| “

ˇ

ˇ

ˇ

ˇ

ż 1

0

fptqdµptq

ˇ

ˇ

ˇ

ˇ

ă 8.

Since µ is a positive measure and gpsq ą 0 for all s P r0, 1q, it follows from Lemma

2.2 that

fptq “

ż t

0

gpsqds` 1 — rωptq ` 1. p4.3q

Therefore,
ż 1

0

prωptq ` 1qdµptq ă 8.

The proof is complete. �

The sublinear generalized integral type Hilbert operator rIµα`1 defined by

rIµα`1pfqpzq “

ż 1

0

|fptq|

p1´ tzqα`1
dµptq, pα ą ´1q.

It is obvious that Proposition 4.1 is remain valid if Iµα`1 is replaced by rIµα`1 . By

mean of Lemma 2.1, Theorem 3.1 and the sublinear integral type Hilbert operator
rIµα`1 , we have the following results.

Theorem 4.2. Let ω, ν P N and α ą ´1. Suppose µ is a positive Borel measure

on r0, 1q and satisfies (4.1). Then the following statements are equivalent.

(a) Iµα`1 : Bω Ñ Bν is bounded;

(b) rIµα`1 : Bω Ñ Bν is bounded;

(c) sup
ně1

nα`2νp1´
1

n
q

ż 1

0

tnprωptq ` 1qdµptq ă 8.

9



Proof. paq ñ pcq : If Iµα`1 : Bω Ñ Bν is bounded. For each f P Bω, Proposition 4.1

implies that Iµα`1pfq converges absolutely for every z P D and

Iµα`1pfqpzq “
8
ÿ

n“0

ˆ

Γpn` 1` αq

Γpn` 1qΓpα ` 1q

ż 1

0

tnfptqdµptq

˙

zn, z P D.

Take

fpzq “

ż z

0

gpsqds` 1,

where g is the function in Lemma 2.2 with respect to ω. Then f P Bω and

Iµα`1pfqpzq “

ż 1

0

fptq

p1´ tzqα`1
dµptq “

8
ÿ

n“0

bnz
n

where

bn “
Γpn` 1` αq

Γpn` 1qΓpα ` 1q

ż 1

0

tn
ˆ
ż t

0

gpsqds` 1

˙

dµptq.

It is clear that tbnu
8
n“1 is a nonnegative sequence. Using Theorem 3.1, (4.3) and

Stirling’s formula we have

||Iµα`1pfq||Bν Á sup
ně1

νp1´
1

n
q

n
ÿ

k“1

kbk

Á sup
ně1

νp1´
1

n
q

ż 1

0

tn prωptq ` 1q dµptq
n
ÿ

k“1

kα`1

— sup
ně1

nα`2νp1´
1

n
q

ż 1

0

tnprωptq ` 1qdµptq.

Therefore,

sup
ně1

nα`2νp1´
1

n
q

ż 1

0

tnprωptq ` 1qdµptq ă 8.

pcq ñ pbq : Assume (c). Then for each n P N, we have

ż 1

0

tnprωptq ` 1qdµptq À
1

nα`2νp1´ 1
n
q
. p4.4q

For a given 0 ı f P Bω,

rIµα`1pfqpzq “

ż 1

0

|fptq|

p1´ tzqα`1
dµptq “

8
ÿ

n“0

cnz
n,

where

cn “
Γpn` 1` αq

Γpn` 1qΓpα ` 1q

ż 1

0

tn|fptq|dµptq.

10



Obviously, tcnu
8
n“1 is a nonnegative sequence. Using (4.2), (4.4), and the definition

of normal weight, we deduce that

|c0| ` sup
ně1

νp1´
1

n
q

n
ÿ

k“1

kck

À ||f ||Bω ` ||f ||Bω sup
ně1

νp1´
1

n
q

n
ÿ

k“1

pk ` 1qα`1
ż 1

0

tkprωptq ` 1qdµptq

À ||f ||Bω ` ||f ||Bω sup
ně1

νp1´
1

n
q

n
ÿ

k“1

1

kνp1´ 1
k
q

À ||f ||Bω ` ||f ||Bω sup
ně1

1

pn` 1qa

n
ÿ

k“1

pk ` 1qa´1

À ||f ||Bω .

Hence rIµα`1 : Bω Ñ Bν is bounded by Theorem 3.1.

pbq ñ paq : If rIµα`1 : Bω Ñ Bν is bounded, then for each f P Bω, by Lemma 2.1

we have

sup
ně1

νp1´ 2´nq2n||Vn ˚ rIµα`1pfq||8 — ||rIµα`1pfq||Bν À ||f ||Bω ||rIµα`1 ||.

Since the coefficients of rIµα`1pfq are non-negative, it is easy to check that

M8pr, Vn ˚ Iµα`1pfqq ďM8pr, Vn ˚ rIµα`1pfqq for all 0 ă r ă 1.

Therefore,

||Vn ˚ Iµα`1pfq||8 “ sup
0ără1

M8pr, Vn ˚ Iµα`1pfqq ď ||Vn ˚ rIµα`1pfq||8.

Consequently,

||Iµα`1pfq||Bν — sup
ně1

νp1´ 2´nq2n||Vn ˚ Iµα`1pfq||8 À ||f ||Bω ||rIµα`1 ||.

This implies that Iµα`1 : Bω Ñ Bν is bounded. �

Theorem 4.3. Let ω, ν P N and α ą ´1. Suppose µ is a finite positive Borel

measure on r0, 1q and rωp1q ă 8. Then the following statements are equivalent.

(a) Iµα`1 : Bω Ñ Bν is bounded;

(b) rIµα`1 : Bω Ñ Bν is bounded;

(c) Iµα`1 : Bω Ñ Bν is compact;

(d) rIµα`1 : Bω Ñ Bν is compact;

(e) sup
ně1

nα`2νp1´
1

n
qµn ă 8.

Proof. The equivalence of paq ô pbq ô peq follows from Theorem 4.2 immediately

and the implications of pdq ñ pcq ñ paq are obvious. Therefore, we only need to

prove that peq ñ pdq.
11



Let tfku
8
k“1 be a bounded sequence in Bω which converges to 0 uniformly on every

compact subset of D. Since rωp1q ă 8, arguing as the proof of Lemma 2.5 in [19],

we have that

lim
kÑ8

sup
zPD
|fkpzq| “ 0.

For each k P N, we have

rIµα`1pfkqpzq “

ż 1

0

|fkptq|

p1´ tzqα`1
dµptq “

8
ÿ

n“0

cn,kz
n,

where

cn,k “
Γpn` 1` αq

Γpn` 1qΓpα ` 1q

ż 1

0

tn|fkptq|dµptq.

It is obvious that tcn,ku
8
n“1 is a nonnegative sequence for each k P N. To prove that

rIµα`1 : Bω Ñ Bν is compact, it is sufficient to prove that

lim
kÑ8

˜

c0,k ` sup
ně1

νp1´
1

n
q

n
ÿ

j“1

jcj,k

¸

“ 0

by using Theorem 3.1 and Lemma 2.6. If sup
ně1

nα`2νp1´
1

n
qµn ă 8, then

µn À
1

nα`2νp1´ 1
n
q

for all n P N.

By Stirling’s formula and the above inequality, we have

|c0,k| ` sup
ně1

νp1´
1

n
q

n
ÿ

j“1

jcj,k

À

ż 1

0

|fkptq|dµptq ` sup
ně1

νp1´
1

n
q

n
ÿ

j“1

jα`1
ż 1

0

tj|fkptq|dµptq

À sup
tPr0,1q

|fkptq| ` sup
tPr0,1q

|fkptq| sup
ně1

νp1´
1

n
q

n
ÿ

j“1

jα`1µj

À sup
tPr0,1q

|fkptq| ` sup
tPr0,1q

|fkptq| sup
ně1

νp1´
1

n
q

n
ÿ

j“1

1

jνp1´ 1
j
q

À sup
tPr0,1q

|fkptq| Ñ 0, pk Ñ 8q.

Hence (d) holds. �
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5. Some Applications

As a direct application of the above results, we first consider the operator Iµα`1

acting from Bβ to Bγ. If γ ě α ` 2, then it is easy to see that Iµα`1 : Bβ Ñ Bγ is

always a bounded operator under the condition (4.1). Therefore, we only need to

consider the case 0 ă γ ă α ` 2.

Corollary 5.1. Let µ be a positive Borel measure on r0, 1q and satisfies
ş1

0
log e

1´t
dµptq ă

8, α ą ´1. If 0 ă γ ă α ` 2, then the following statements are equivalent.

(a) Iµα`1 : B Ñ Bγ is bounded;

(b) µ is a 1-logarithmic α ` 2´ γ-Carleson measure;

(c)

ż 1

0

tn log
e

1´ t
dµptq “ Op

1

nα`2´γ
q.

Proof. Let dλptq “ log e
1´t
dµptq, then Lemma 2.5 in [11] shows that µ is a 1-

logarithmic α ` 2 ´ γ-Carleson measure if and only if λ is an α ` 2 ´ γ-Carleson

measure. By Theorem 2.1 in [20], λ is an α` 2´ γ-Carleson measure if and only if
ż 1

0

tndλptq “ Op
1

nα`2´γ
q.

The desired result follows from Theorem 4.2 immediately. �

Remark 5.2. If γ “ 1 and α “ 0, the result of Theorem 5.1 have been obtained

in [11](or [5]). In addition, if γ “ 1 and α “ 1, the result have been given in [9].

Corollary 5.3. Let µ be a positive Borel measure on r0, 1q and satisfies
ş1

0
dµptq

p1´tqβ´1 ă

8, α ą ´1. If 0 ă γ ă α ` 2 and β ą 1, then Iµα`1 : Bβ Ñ Bγ is bounded if and

only if µ is an α ` 1` β ´ γ-Carleson measure.

Proof. It follows from Theorem 4.2 that Iµα`1 : Bβ Ñ Bγ is bounded if and only if
ż 1

0

tn
dµptq

p1´ tqβ´1
“ Op

1

nα`2´γ
q.

This is equivalent to saying that dµptq
p1´tqβ´1 is an α ` 2 ´ γ-Carleson measure. The

proof can be done by using Lemma 2.5. �

Corollary 5.4. Let µ be a finite positive Borel measure on r0, 1q and α ą ´1. If

0 ă γ ă α ` 2 and 0 ă β ă 1, then the following statements are equivalent.

(a) Iµα`1 : Bβ Ñ Bγ is bounded;

(b) Iµα`1 : Bβ Ñ Bγ is compact;

(c) µ is an α ` 2´ γ-Carleson measure.

Proof. This is a direct consequence of Theorem 4.3. �

Remark 5.5. It should be mentioned that Ye and Zhou [13] have obtained some

results of Corollary 5.1-5.4 by using the duality theorem. In fact, they dealt with

γ “ α and α ě 1.
13



In what follows, we consider the operator Iµα`1 acting between logarithmic Bloch

spaces.

Corollary 5.6. Let α ą ´1, β ą ´1, γ P R. Suppose µ is a positive Borel

measure on r0, 1q and satisfies
ş1

0

logβ e
1´t

1´t
dµptq ă 8. Then the following statements

are equivalent.

(a) Iµα`1 : Blogβ Ñ Blogγ is bounded;

(b) sup
ně1

nα`1 log´γpn` 1q

ż 1

0

tn logβ`1
e

1´ t
dµptq ă 8;

(c) sup
tPr0,1q

µprt, 1qqplog e
1´t
qβ`1´γ

p1´ tqα`1
ă 8.

Proof. It follows from Theorem 4.2 that paq ô pbq. We only need to show that

pbq ô pcq. The implication pbq ñ pcq follows from the inequalities

µ

ˆ

r1´
1

n
, 1q

˙

logβ`1pn` 1q À

ż 1

1´ 1
n

tn logβ`1
e

1´ t
dµptq À

logγpn` 1q

nα`1
.

pcq ñ pbq. Assume (c). Then there exists a positive constant C such that

µ prt, 1qq

ˆ

log
e

1´ t

˙β`1´γ

ď Cp1´ tqα`1, 0 ď t ă 1.

Integrating by parts, we obtain
ż 1

0

tn logβ`1
e

1´ t
dµptq

“ n

ż 1

0

tn´1µprt, 1qq logβ`1
e

1´ t
dt` pβ ` 1q

ż 1

0

tnµprt, 1qq logβ
e

1´ t

dt

1´ t

À n

ż 1

0

tn´1p1´ tqα`1 logγ
e

1´ t
dt`

ż 1

0

tnp1´ tqα logγ´1
e

1´ t
dt.

Note that

φ1ptq “ p1´ tq
α`1 logγ

e

1´ t
, φ2ptq “ p1´ tq

α logγ´1
e

1´ t

are regular in the sense of [21]. Then, using Lemma 1.3 and (1.1) in [21], we have

n

ż 1

0

tn´1p1´ tqα`1 logγ
e

1´ t
dt —

logγpn` 1q

nα`1

and
ż 1

0

tnp1´ tqα logγ´1
e

1´ t
dt —

logγ´1pn` 1q

nα`1
.

These two estimates imply that
ż 1

0

tn logβ`1
2

1´ t
dµptq À

logγpn` 1q

nα`1
.

Thus, (b) holds. �
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Arguing as the proof of previous theorem, one can obtain the following theorems.

Corollary 5.7. Let α ą ´1, β “ ´1, γ P R. Suppose µ is a positive Borel measure

on r0, 1q and satisfies
ş1

0
log log e

1´t
dµptq ă 8. Then the following statements are

equivalent.

(a) Iµα`1 : Blog´1 Ñ Blogγ is bounded;

(b) sup
ně1

nα`1 log´γpn` 1q

ż 1

0

tn log log
e

1´ t
dµptq ă 8;

(c) sup
tPr0,1q

µprt, 1qq log log e
1´t

p1´ tqα`1 logγ e
1´t

ă 8.

Corollary 5.8. Let α ą ´1, β ă ´1, γ P R. Suppose µ is a finite positive Borel

measure on r0, 1q, then the following statements are equivalent.

(a) Iµα`1 : Blogβ Ñ Blogγ is bounded;

(b) Iµα`1 : Blogβ Ñ Blogγ is compact;

(c) sup
ně1

nα`1 log´γpn` 1qµn ă 8;

(d) sup
tPr0,1q

µprt, 1qq log´γ e
1´t

p1´ tqα`1
ă 8.

It is known that H maps Blogβ into Blogβ`1 for all β P R(see e.g., [22]). If µ

is Lebesgue measure on r0, 1q, then Corollary 5.6-5.8 show that the integral type

Hilbert operator I : Blogβ Ñ Blogβ`1 is bounded if and only if β ą ´1.

Declarations. The authors declare that there are no conflicts of interest regarding

the publication of this paper.

Availability of data and material. Data sharing not applicable to this article

as no datasets were generated or analysed during the current study: the article

describes entirely theoretical research.

References

[1] R. Zhao, On logarithmic Carleson measures, Acta Sci. Math. (Szeged) 69 (3–4) (2003) 605–

618.
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