Survey of New Applications of Geometric Algebra

Eckhard Hitzer¹, Manos Kamarianakis², George Papagiannakis², and Petr Vašík³

¹International Christian University ²University of Crete ³Brno University of Technology

February 20, 2023

Abstract

This survey introduces 101 new publications on applications of Clifford's geometric algebras (GA) newly published during 2022 (until mid-January 2023). The selection of papers is based on a comprehensive search with Dimensions.ai, followed by detailed screening and clustering. Readers will learn about the use of GA for mathematics, computation, surface representations, geometry, image- and signal processing, computing and software, quantum computing, data processing, neural networks, medical science, physics, electric engineering, control and robotics.

DOI: xxx/xxxx

RESEARCH ARTICLE

Survey of New Applications of Geometric Algebra

Revised 18 March 2023:

Eckhard Hitzer*1 | Manos Kamarianakis² | George Papagiannakis³ | Petr Vašík⁴

¹College of Liberal Arts, International Christian University, Tokyo, Japan
²Department of Computer Science,

University of Crete, Crete, Greece

³Department of Computer Science, University of Crete, Crete, Greece

 ⁴Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic

Correspondence

*Eckhard Hitzer, International Christian University, Osawa 3-10-2, 181-8585 Mitaka, Japan. Email: hitzer@icu.ac.jp

Present Address

 ¹Eckhard Hitzer, International Christian University, Osawa 3-10-2, 181-8585 Mitaka, Japan. Email: hitzer@icu.ac.jp.
 ²Manos Kamarianakis, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece. Email: kamarianakis@uoc.gr.
 ³George Papagiannakis, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece. Email: papagian@ics.forth.gr.
 ⁴Petr Vašík, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic. Email: Petr.Vasik@vutbr.cz.

Summary

This survey introduces 101 new publications on applications of Clifford's geometric algebras (GA) newly published during 2022 (until mid-January 2023). The selection of papers is based on a comprehensive search with Dimensions.ai, followed by detailed screening and clustering. Readers will learn about the use of GA for mathematics, computation, surface representations, geometry, image- and signal processing, computing and software, quantum computing, data processing, neural networks, medical science, physics, electric engineering, control and robotics.

KEYWORDS:

Clifford geometric algebra, mathematics, surface representations, geometry, image- and signal processing, computing, software, quantum computing, data processing, neural networks, medical science, physics, electric engineering, control, robotics

1 | INTRODUCTION

Applications¹ of Clifford's geometric algebras (Clifford algebras) are quickly increasing in numbers and diversity. In order to provide an up-to-date survey of the latest applications in mid-January of 2023, we used the Dimensions.ai search engine for the years of 2022 and 2023 with keywords *Geometric Algebra* and found 121 publications (articles, preprints, books, book chapters) with these keywords in title or abstract. After checking each item for its appropriateness we selected 101 of them for this survey. As survey authors we ourselves made quite a few *discoveries* of novel applications we were not aware of so far. We hope readers will have similar moments of surprise. One reason is that Dimensions.ai is not in any kind of theme– or information bubble, but delivers all results available.

We note that GA has become popularly used in applications dealing with geometry. It allows to reformulate and redefine problems involving geometry in a highly intuitive and general way. GA was defined thanks to the work of W. K. Clifford¹ to unify and generalize Grassmann algebra² and W.R. Hamilton's quaternions³ into a universal algebraic framework by adding the inner product to H. G. Grassmann's outer product. One of the geometric algebras that is often applied is conformal geometric

⁰Abbreviations: GA, geometric algebra; CGA, conformal geometric algebra; PGA, projective geometric algebra; STA, spacetime algebra; GAC, geometric algebra of conics; QGA, quadric geometric algebra

¹This paper is subject to the Creative Peace License, https://gaupdate.wordpress.com/2011/12/14/the-creative-peace-license-14-dec-2011/, accessed 17 Feb. 2023.

algebra. It became better known through⁴, is well described and illustrated in⁵, and in a brief illustrated form in⁶. For standard references on GA, we refer to the following textbooks: ^{7,8,5}. A brief introduction for engineers can be found in⁹, while a compact definition of GA is given in¹⁰, see also^{9,11}.

Regarding the notation of Clifford geometric algebras, a certain variety can be found. A frequently used notation is Cl(p, q, r) for the Clifford geometric algebra of a space $\mathbb{R}^{p,q,r}$, with dimension n = p + q + r, with an orthonormal basis of p vectors squaring to +1, q vector squaring to -1, and r vectors squaring to 0. For example, projective geometric algebra (PGA) of three dimensions uses Cl(3, 0, 1). Note that for r = 0 it is customary to abbreviate $\mathbb{R}^{p,q} = \mathbb{R}^{p,q,0}$, and Cl(p,q) = Cl(p,q,0). Furthermore, for q = 0, many authors abbreviate $\mathbb{R}^n = \mathbb{R}^{n,0}$, and Cl(n) = Cl(n,0), e.g., the GA of three-dimensional Euclidean space \mathbb{R}^3 is Cl(3, 0), and conformal geometric algebra (CGA) for three-dimensional Euclidean space, extended by a Minkowski type plane $\mathbb{R}^{1,1}$ is Cl(4, 1). But note that particularly in the field of Clifford analysis, authors may instead use $\mathbb{R}^n = \mathbb{R}^{0,n}$, it is therefore advisable when reading a publication to first ascertain which notation the author uses. Moreover one often finds $\mathcal{G}_{p,q,r} = \mathbb{G}_{p,q,r} = \mathcal{G}_{p,q,r} = \mathbb{R}_{p,q,r} = \mathbb{R}_{p,q,r}$, etc.

The paper is structured as follows, revealing how we clustered and ordered the 101 publications thematically (which is of course somewhat subjective). First, Section 2 refers the reader to similar earlier survey projects conducted during the last ten years. Then, Section 3 provides an overview of applications of GA for mathematics and computations, while Section 4 introduces applications to higher order surfaces and geometry. Next, Section 5 shows the use of GA for image– and signal processing. This is followed by Section 6 on GA computing and GA software and Section 7 on quantum computing with GA. Data processing with GA is featured in Section 8, many applications to neural networks in Section 9, and in Section 10 to the medical field. After that, Section 11 explores applications in physics, i.e., mechanics, electrodynamics, gravity and quantum physics. The new pioneering applications in electric engineering are surveyed in Section 12, and control and robotics in Section 13. The paper is concluded with Section 14 and the list of references.

2 | PREVIOUS GA APPLICATION SURVEYS

In¹², the authors present a survey including applications of Clifford geometric algebra (GA) in the past decade (mainly within 2013-2021), several of which were presented in the Applied Geometric Algebra for Computer Science and Engineering (AGACSE) conference series, as well as the annual Empowering Novel Geometric Algebra for Graphics and Engineering (ENGAGE) workshops, which are part of the conference Computer Graphics International.¹² can be seen as a continuation of the earlier survey¹³ published in 2013, summarizes approximately 200 GA publications.

It is further supplemented by a similar amount of publications on GA applications in ¹⁴ of early 2022, surveying publications in the years 2019 to 2022. These surveys include GA applications related to engineering, electric engineering, optical fibers, geographic information systems, geometry, molecular geometry, protein structure, neural networks, artificial intelligence, encryption, physics and software as well as signal, image, and video processing, etc.

3 | GA FOR MATHEMATICS AND COMPUTATION

This section is divided into three topical parts: the mathematical structure of GA, application of GA to mathematical problems and GA–based computing.

The first part consists of papers where the authors study the objects of GA, i.e. geometric entities or transformations and functions. Thus, Eduardo Bayro-Corrochano et al.¹⁵ revisit a proposal for the formulation of objects and geometric relations and constraints in CGA and discuss its application to various engineering disciplines. Representations of transformations, rotors in particular, are then searched for by Anthony Lasenby et al. in¹⁶ in the form of their reconstruction from initial and final frames. A series of papers by Acus Arturas et al. is handling the closed form exponentials of multivectors in general dimension¹⁷ with additional conditions on the GA signature, both in low dimensions¹⁸ and generally in¹⁹, respectively. In algebras of dimension *n* less than six, more maps such as normalization, square roots, exponential and logarithmic maps are treated by Steven De Keninck et al.²⁰. As for the operations on GA, in²¹ Tomáš Stejskal et al. provide a comprehensive description of relations between objects in 2D space using the matrix product of vectors, the geometric product, and the dot product of complex numbers. Finally, structural issues of the embedding of octonions in GA of all signatures in three and four dimensions are treated by Eckhard Hitzer in²².

In the last category the paper by Stephane Breuils et al.²⁷ discusses the complexity of products in GA, more precisely the number of operations required to compute a product, in a dedicated program for example, and the complexity of enumerating these operations.

4 | GA FOR SURFACES AND GEOMETRY

In his new book *Mathematics for Computer Graphics*²⁸, Vince explains a wide range of mathematical techniques and problemsolving strategies associated with computer games, computer animation, virtual reality, CAD and other areas of computer graphics. Among the list of worked examples and colour illustrations revolving around the mathematics required for computer graphics, the author dedicates a chapter to introduce the basic notation and functionality of GA, as an extension of the complex numbers and quaternions that were described in detail in previous sections. The introduction to GA is performed in the author's characteristic descriptive manner, and along with the numerical examples lure the reader to this exciting new world of multivectors.

The GA $\mathbb{G}_{6,3} = Cl(6,3)$, also denoted as *Quadric Geometric Algebra* (QGA), is a known generalization of CGA. In²⁹, Esquivel provides the description of common geometric entities, e.g., points, planes, spheres, but also (hyperbolic and parabolic) cylinders, elliptic cones or ellipsoids. The rotation and revolution of points and quadratic primitives as well as the vanishing coordinate frame { $e_{\infty x}$, $e_{\infty y}$, $e_{\infty z}$ }, are described in detail, providing better insight of QGA.

As the interpolation of the trajectory of points and geometric entities remains an important problem for kinematics (e.g., movement for robots), several algorithms exist to describe such trajectories, often involving the use of matrices, quaternions, dual-quaternions and the Study quadric. In ³⁰, the authors exploit CGA to represent motors as 8D vectors in projective space \mathbb{P}^7 , thus reducing the interpolation of rotations and translations to a linear problem. A CPU and a GPU (CUDA) implementation were tested to obtain performance metrics and the methodology was applied to interpolate trajectories in medical robotics for kidney surgery.

Towards an effective generation of molecular surfaces, Alfarraj and Wei³¹ employ Clifford Fourier transforms (CFT), a generalization of the classical FT. Using the CFT in $\mathbb{R}_3 = Cl(3,0)$ allows solving partial differential equations and specifically the ones involved in the mode decomposition process. After setting the theoretical background, authors apply the proposed method to small molecules and proteins, generating their surfaces and comparing their output with other definitions. The importance of their work is further highlighted, as their methodology can be applied for protein electro-static surface potentials and solvation free energy, as well as other biological sciences.

Using quaternion operators on orbits (curves or surfaces) in the Euclidean space \mathbb{E}^3 and its GA Cl(3,0), ³² demonstrates how to generate these orbits from points, curves or surfaces. An explicit form of the motions that achieves this is proved and provided as 1- or 2-parameter homothetic motions, along with detailed numerical examples.

Identifying sphere intersections is a simply-to-state yet important core problem of many applications, among a variety of scientific fields, e.g., data sciences and 3D protein structure determination. When the radii of the spheres are not known, the notion of a *spherical shell* can be employed, by replacing the precise radii with interval values. Considering the intersection of spheres and/or spherical shells in higher dimensions, Lavor et al.³³ provide a methodology to identify and characterize them. A comparison of the theoretical approaches via linear algebra or CGA is provided and illustrated with numerical examples. The result of this comparison further highlights the ability of CGA to naturally preserve the geometric intuition of the problem, even in dimensions higher than three.

To view fractal-based devices not as a problem only related to high-tech innovation, but also as a marketing problem,³⁴ tracks the development of Fractal Information Theory using a universal geometric musical language and a 12-dimensional GA. It explores how Fractal decision making can be used in the fields of business analytics, security for risk mitigation, and healthcare.

MAGES 4.0: Accelerating the world's transition to VR training and democratizing the authoring of the medical metaverse

5 | GA FOR IMAGE AND SIGNAL PROCESSING

Eckhard Hitzer³⁵ generalizes the spacetime Fourier transform (SFT) of ³⁶ to a special affine Fourier transform (SASFT, also known as offset linear canonical transform) for 16-dimensional spacetime multivector Cl(3, 1)-valued signals over the domain of spacetime (Minkowski space) $\mathbb{R}^{3,1}$. This includes computation in terms of the SFT, its properties of multivector coefficient linearity, shift and modulation, inversion, Rayleigh (Parseval) energy theorem, partial derivative identities, a directional uncertainty principle and its specialization to coordinates.

Zihao Zhang et al.³⁷ observe that the complex-valued random Fourier GA mapping (CRFGAM) method can solve the overcoupling issue of real and imaginary parts for complex-valued signals. In order to improve the accuracy of nonlinear mapping in the CRFGAM method, they propose a *multi-dimensional* complex-valued random Fourier GA mapping (MDCRFGAM) method by expanding CRFGAM to a multi-dimensional mapping space and extend this to a multi-dimensional complex-valued random Fourier GA least mean square (MDCRFGALMS) algorithm. Related to this Gangyi Huang et al.³⁸ propose a novel *fixed dimensional* adaptive filter for complex-valued signals named complex-valued random Fourier GA least mean square (CRFGALMS). With GA adaptive filtering, real and imaginary parts of complex-valued signals are mapped to random Fourier features space (RFFS) to improve the efficiency of the nonlinear mapping for complex-valued signals. The proposed GA based mapping has superior presentation abilities in the complex-valued domain, and decouples the nonlinear mapping of real and imaginary parts of complex-valued signals. In both cases simulations on nonlinear channel equalization are conducted for validation.

Xiangyang Wang et al.³⁹ present two novel GA methods to estimate two-dimensional (2D) directions-of-arrival (DOA) of non-circular (NC) signals for uniform rectangular arrays (URA). Traditional long vector methods inevitably lose orthogonality inside each electromagnetic vector sensor (EMVS) and miss information of second-order statistical properties and increase computational complexity. New GA-based estimating of signal parameters via rotational invariance techniques (ESPRIT) and propagation method (PM) algorithms are proposed. GA maintains the relationship among multidimensional signals. The six EMVS components are represented as a GA multivector, and a GA-based extended covariance matrix utilizes the signal information more completely. The new GA estimation of signal parameters via rotational invariance techniques for NC signal processing (GANC-ESPRIT) yields the DOA with high accuracy. The new GA propagation method for NC signal estimation (GANC-PM) uses linear transformations to calculate angle parameters. Memory requirement is greatly reduced versus long vector methods. Simulations validate good angular resolution and complexity analysis shows better performance with reduced computation.

Rui Wang et al.⁴⁰ propose two novel GA-based adaptive filtering algorithms based on the minimum error entropy (MEE) criterion and the joint criterion (MSEMEE) of MEE and the mean square error (MSE). Simulation results show that for the mean square deviation (MSD) learning curve, the GA-based MEE (GA-MEE) algorithm has faster convergence rate and better steady-state accuracy compared to the GA-based maximum correntropy criterion algorithm (GA-MCC) under the same generalized signal-to-noise ratio (GSNR). The GA-MEE algorithm reduces the convergence rate, but improves the steady-state accuracy by 10–15 dB compared to adaptive filtering algorithms based on GA and second-order statistics. When GA-MSEMEE and the adaptive filtering algorithms based on GA and second-order statistics. When GA-MSEMEE and the adaptive filtering algorithms based on GA-MSEMEE and GA-MEE maintain approximately steady-state accuracy, its convergence rate is improved by nearly 100 iterations. For noise cancellation, the average recovery error of the two new algorithms improves over other GA-based adaptive filtering algorithms. This provides new methods to deal with multi-channel interference in wireless networks.

Wenyuan Wang and Jiaolong Wang⁴¹ observe that GA based adaptive filters have been applied to fields like 3D wind speed, computer vision and fusion prediction of dynamic pressure. To further improve performance they propose GA adaptive algorithms convexly combining two different step size GA least mean square algorithms (CGA-LMS), and provide detailed steady state performance analysis. To address the phenomenon that the slow filter may lag considerably behind the fast filter, which slows down the overall convergence of the combined GA filter, they add a novel instantaneous transfer strategy, creating a CGA-LMS algorithm with transfer strategy (CGA-LMS-TS). To process the non-circular 3D and 4D signals, they employ a convex combination of a widely linear GA-LMS (CWL-GA-LMS) algorithm with a CWL-GA-LMS with transfer strategy (CWL-GA-LMS-TS). Simulations validate performance and correctness.

Anna Derevianko and Pavel Loucka⁴² introduce a search for the similarity transformation of two-dimensional point clouds using GA for conics (GAC). They represent image objects by ellipses fitted into contour points. This speeds up consequent similarity search and saves memory. Examples with real object images are included.

Haishun Liu et al⁴³ propose a GA product expression associated with geometric relationships of vectorized THz refractive index and absorption coefficients. From this expression, candidate characteristic parameters are extracted for liquids discrimination presenting abundant second order correlation information of optical parameters with rising dimensions. Three groups of liquids, containing C-reactive protein calibrators and alpha fetoprotein calibrators, were used for validation. Comparing with traditional THz parameters of refractive index, absorption coefficient, and complex permittivity, the novel approach is superior in differentiation with the evaluation of statistical differences and effect size.

Alexandre Calado et al.⁴⁴ compare two new geometric model-based approaches to gesture recognition which support the visualization and geometrical interpretation of the recognition process, with two classical ML algorithms, *k*-nearest neighbor (*k*-NN) and support vector machine (SVM), and two state-of-the-art (SotA) deep learning (DL) models, bidirectional long short-term memory (BiLSTM) and gated recurrent unit (GRU), on an experimental Italian Sign Language (LIS) data set. They achieve a compromise between high recognition rates (> 90%) and fast recognition times (< 0.1s) adequate for human–computer interaction.

6 | GA FOR COMPUTING AND SOFTWARE

Aiming to educate both GA experts and people that are not yet acquainted with the concept of multivectors, Hildenbrand and Rockwood⁴⁵ gave a SIGGRAPH course presentation² touching various aspects of GA. After a motivating introduction to the work of Grassman and Clifford, they provided the deep connection between algebra and geometry that holds for the entities of such mathematical frameworks, as well as basic notation and properties. After describing in more detail the two dominant GAs, namely projective GA (PGA) and CGA, the GAALOP software framework is used to perform various operations. Specifically, GAALOP and its web version, GAALOPWeb, is a well known software dedicated to optimize GA files. Its usage is demonstrated in a straightforward way for both PGA and CGA, to perform numerical operations as well as to obtain visual results. This work concludes with the presentation of GAC, an algebra that has become increasingly popular due to a diverse range of applications.

By analysing the majority of approaches used by logicians to support a mathematical claim, one may deduce that there are two ways that a computer can help establish a claim: it can either help find a proof in the first place (*automated theorem proving*) or it can help verify that a purported proof is correct (*interactive theorem proving*). The *Lean Theorem Prover* aims to bridge the gap between interactive and automated theorem proving, by situating automated tools and methods in a framework that supports user interaction and the construction of fully specified axiomatic proofs. Wieser and Song⁴⁶ recently presented the partial formalization of GA in Lean via describing multivectors as the quotient of a tensor algebra by a suitable relation, in a basis-agnostic manner. Although not complete yet, their work³ is applicable to GA of various dimensions and sets the bases for a complete GA formalization within the promising mathlib library, in a future proof and easy-to-extend way.

In the past decades, quaternions have been the dominant representation form for rotations in the computer graphics (CG) pipeline, along with the use of matrices and vectors to store translations and scalings. Although there is concrete evidence that the use of more advanced forms such as dual quaternions and multivectors (for motors, rotors and dilators in PGA and CGA) can alleviate commonly appearing rendering artifacts, such as the candy-wrapper effect, these forms are usually not incorporated in the modern CG curriculum, mainly due to the lack of support from the frameworks used. In⁴⁷ the authors present the *Elements* project, a pythonic framework that is based on the Entity-Component-System principle on top of a Scenegraph-based implementation. Using Elements, users may create and render a 3D scene, using transformation data that is either of the traditional form, i.e., a TRS matrix, or any other potential form, such as quaternions, dual-quaternions or multivectors.

7 | GA FOR QUANTUM COMPUTING

In⁴⁸, Hrdina et al. investigate the representation of *n*-qubits and quantum gates acting on them as elements of a complex GA defined on a complex vector space of dimension 2n. In such spaces the Dirac formalism can be realized straightforwardly. Aiming to establish GA as a major language for quantum computing, the authors introduce the non-complex Quantum Register Algebra (QRA)⁴⁹ and exploit the GAALOP (Geometric Algebra Algorithms Optimizer) framework to perform numerical operations.

²The complete presentation is available at https://dl.acm.org/doi/10.1145/3532720.3535655.

³This work can be found at https://github.com/pygae/lean-ga.

Their latter work proves advantageous for quantum computing beginners since they only have to know GA in order to intuitively describe the objects and operations of quantum computing.

In the same context, Soiguine⁵⁰ demonstrates how the the double split experiment results can be resolved with diffraction patterns inherent to wave diffraction. In his work, he exploits the GA formalism along with generalization of complex numbers and subsequent lift of the two-dimensional Hilbert space valued qubits to geometrically feasible elements of an even GA subalgebra.

8 | GA IN DATA PROCESSING

Addressing the demand for multi-level declassification of geographic vector field data (GVFD), the authors of ⁵¹ employ GA to uniformly express it as a GA object and then sequentially apply a rotor and a perturbation operator. Declassifying the final output and comparing it to the input shows that despite the alteration of the original vector field some general geo-spatial features are retained. This approach offers effective multi-level controls and has good randomness, it suggests a viable solution for data disclosure, secure transmission and encapsulation storage of such types of data.

In⁵², the authors conducted an analysis of the spatial geometric similarity computation based on CGA, aiming to shed light on spatial analysis and data retrieval. By (a) developing a unified expression model for spatial geometric scenes, (b) integrating shapes of objects and spatial relations between them, and (c) establishing a model for spatial geometric similarity computation, they are able to derive measurement information and topological relations of spatial objects. Their method involves simple inner, outer and geometric product operations and can be applied to retrieve spatial scenes with objects of different types, yielding satisfying results.

As the world is evolving from a binary space to a ternary space, a suitable framework to capture diverse geographic information is required. The seven-dimensional framework proposed in⁵³ exploits a form of GA representation that is suitable to represent characteristics such as semantics, attribute, interrelationship, and interplay mechanisms, which are usually unstructured and cannot be represented as plain geometries or simple algebraic equations.

In ⁵⁴, Wu et al. propose a GA-based Collaborative Filtering model for recommendation, based on representation learning. Their methodology involves the usage of multivectors to represent users and items, while plain geometric and inner product operations are used to indicate the historical interaction between users and items. Training the model with the resulting multivectors, interdependencies between components of multivectors can be predicted, allowing more complex interactions between users and items to be captured.

A quite intriguing area where GA proves to yield enhanced results involves Knowledge Graph Embedding (KGE), which introduces important challenges for knowledge representation learning such as the management of time-evolving data nodes. Link prediction tasks in KGE have shown promising performance, especially due to complex or hypercomplex representation forms. In⁵⁵, Xu et al. present a GA-based approach that achieves or even surpasses the state-of-the-art performance threshold. Their approach involves data representation as multivectors of $\mathbb{G}^2 = Cl(2,0)$ or $\mathbb{G}^3 = Cl(3,0)$, as well as a GA-based model that consumes the obtained data set. This novel, yet effective, approach for KG, manages to successfully handle the Temporal KGE completion problem, by exploiting the geometric meaning of the time embedding.

A variant of the well-known threshold secret sharing scheme proposed by Adi Shamir in 1979 is presented in ⁵⁶. Its methodology involves using multivector objects to be secrets in a secret sharing scenario without incurring any additional overhead in comparison with the reference scheme. Fundamental computations such as addition and multiplication can be performed over random shares, making this approach ideal to use the context of multi-secret sharing. As both secret and random shares of members are members of the same space, the fundamental property of Shamir's scene, *idealness*, is also preserved.

9 | GA APPLIED TO NEURAL NETWORKS

GA seems to be well suited regarding the representation of multi-dimensional data. Expressing such data in multivector form, Li et al.⁵⁷ were able to capture the inherent structures and preserve the correlation of multiple dimensions in the context of a *long and short term time series* network that processes multivariate time series. Their method outperforms traditional techniques with higher prediction accuracy.

Following a similar approach,⁵⁸ proposes a GA-based mapping of each spectrum in a hyperspectral image (HSI), the multivectors derived are then used in a Convolutional Neural Network (CNN) that deals with multi-channel HSIs. In such an approach, increased performance, less overfitting risks and better information preservation was achieved with respect to identical real-valued CNNs.

As Graph Neural Networks become increasingly popular, the authors of ⁵⁹ proved that graph feature embedding in GA can improve the quality of graph feature presentation. Using a *few shot cross domain* classification task as application, their proposed approach yields improved results over metric-based methods as it uses the high algebraic dimensions of GA to reduce the distortion of feature information despite the increased hidden layers.

Robust and efficient transmission of data over networks is crucial for collaborative AR/VR applications. In such a context, the authors of ⁶⁰ compare traditional representation forms (vectors and matrices) with GA-based forms (quaternions, dual quaternions and PGA/CGA multivectors) for transmission, recording and replay purposes. Their work suggests that, regarding transmission, GA is the only viable solution for poor network conditions and yields better or on par results when no such conditions occur. It is also shown that, using GA forms, less transformation data per second can be recorded without impacting the interpolated keyframes during replay.

Regarding computer-vision oriented deep learning techniques, GA is a great means to capture rotational data that constantly appear, as many of the related tasks such as pose estimation from images or point clouds can be formulated as a regression on rotations. Overcoming limitations posed by commonly used representations, the authors of ⁶¹ exploit multivectors to reduce errors in high-noise datasets, while learning fewer parameters.

With the development of cities and the increased demand for traffic management, predicting traffic data has become an increasingly researched yet complicated task due to changeable and complex traffic conditions. By capturing related traffic information as multivectors, the multidimensionality of the data can be maintained and complex features can also be extracted in the context of spatio-temporal attention neural networks⁶², multi-channel residual networks⁶³, generative adversarial networks⁶⁴, or graph attention networks⁶⁵. These works suggest an improvement of performance when GA-based forms are used compared with real-data based implementations and are suitable to predict even long-term features such as the traffic speed for a whole day.

Alongside algorithmic advances in neural networks, new technological paradigms are developed where machine- and deep learning techniques are incorporated in dedicated hardware. Such an example is described in ⁶⁶, where a Hypersphere Neural Network for energy consumption monitoring, based on geometric algebra representation of points and hyperspheres, is implemented in an IoT device, consisting of a NodeMCU board and an Esp8266 microcontroller.

Towards solving the problem that derives from non-orthogonal data attributes in conventional machine learning applications, 67 proposes a shift-invariant *k*-means methodology. The authors suggest the use of complex, hypercomplex and GA based approaches and encoding schemes, to better capture invariance under rotation or general transformations, via convolution operators that preserve spatio-temporal information.

GA based neural networks also find applications in the medical field.

10 | GA IN MEDICAL SCIENCE

GA is able to positively impact the majority of scientific areas, including the medical sciences. A good example is provided in ⁶⁸ where the most common neurodegenerative disorder, the Alzheimer's disease (AD), is considered. Introducing a GA-based multimodal feature transformation and fusion model, a fast-convergent Artificial Neural Network framework can provide a highly accurate AD diagnosis.

Further proving that high-dimensional information can be more efficiently handled via GA, Wang et al.⁶⁹ propose a multimodal medical image fusion algorithm based on a discrete GA cosine transform. In their work, they conduct fusion experiments on four groups of brain medical color images, by considering the connection between the color image channels and using multivectors to represent the source image. Results indicate improved performance, but only marginal advantage compared to traditional algorithms, thus leaving room for future improvements.

A similar technique is exploited in⁷⁰ where GA is employed for (a) a multi-modal medical image fusion algorithm, (b) an orthogonal matching pursuit algorithm and (c) a K-means clustering singular value decomposition algorithm. All these components are involved into an effective algorithm that avoids losing the correlation of color channels of medical images and surpasses the state-of-the-art approaches in terms of subjective and objective quality evaluation.

GA is also employed in the context of modern applications that impact the medical training landscape. In⁷¹, the authors propose MAGES 4.0, a novel Software Development Kit (SDK) to accelerate the creation of collaborative medical training

applications in VR/AR. Their solution is essentially a low-code metaverse authoring platform for developers to rapidly prototype high-fidelity and high-complexity medical simulations. Among the variety of novelties it incorporates, this Unity3D-based framework exploits GA-based representation forms, namely dual quaternions and multivectors, to efficiently transmit user actions over the network in multi-user collaborative scenarios. Exploiting the mechanisms described in⁶⁰, its under-the-hood GA interpolation engine achieves optimal performance compared to state-of-the-art. The same engine and all-in-one GA framework is also employed to effectively record and replay VR/AR sessions.

See also the discussion of ³¹ and ³⁰ in Section 4.

11 | GA IN PHYSICS

11.1 | Mechanics

Steuard Jensen and Jack Poling⁷² describe angular momentum with Cl(3,0) bivectors, visualized as *tiles* with area and orientation whose components form an antisymmetric matrix. Bivectors have historically been considered mostly in specialized contexts like spacetime classification or GA, but are no more complicated than cross products. Teaching rotational physics in this language is ultimately viewed more fundamental, and helps to understand rotations in relativity and extra dimensions.

According to Sylvain Brechet⁷³ in Cl(3,0) the Poisson formula for the time derivative of unit vectors of a moving frame is expressed by the angular velocity bivector and applied to cylindrical and spherical frames. The rotational dynamics of a point particle and a rigid body are fully determined by the time evolution of Cl(3,0) rotors. The mapping of the angular velocity bivector onto the angular momentum bivector is the inertia map. It is characterised by symmetric coefficients (moments of inertia) in the (rigid body) principal axis frame. The Huygens-Steiner theorem, the kinetic energy of a rigid body and the Euler equations are expressed in terms of bivector components. The rotational dynamics of a gyroscope provides an example.

Hitoshi Ikemori et al⁷⁴ formulate the Runge-Lenz vector in the Kepler problem as a three-dimensional GA projection of a SO(4) moment map that acts on the phase space of a four-dimensional particle motion. The Runge-Lenz vector originates from geometric symmetry of $\mathbb{R}^4 \times \mathbb{R}^4$ phase space.

11.2 | Electrodynamics

Sylvain Brechet⁷⁵ treats electrodynamics of electric charges and currents in vacuum and dielectric and magnetic material media, using Cl(3,0) and STA Cl(1,3). With a polarisation multivector and an auxiliary electromagnetic field multivector, Maxwell's equation is formulated in a material medium in Cl(3,0), and in STA with an extra bound current vector. The wave equation in a material medium is obtained from the gradient of the Maxwell equation. For a uniform electromagnetic medium of induced electric and magnetic dipoles, the stress-energy momentum vector is formulated with the electromagnetic force density vector as inhomogeneity, and the Maxwell equation in a material medium is written in STA as vector potential wave equation.

According to Debashis Sen⁷⁶, STA provides an invariant description of electromagnetic theory, without reference to any inertial system. Using elementary geometric calculus, STA allows the direct analytical introduction of magnetic monopoles and renders the equations for both constituent fields, symmetric and inhomogeneous. STA unifies the Lorentz force equation and the electromagnetic power equation.

11.3 | Gravity

Noticing that the even subalgebras of Cl(3, 1) and Cl(1, 3) can algebraically not be distinguished, Bofeng Wu⁷⁷ provides a signature invariant treatment of general Lorentz boosts and general spatial rotations in arbitrary planes. For a massive particle, the spacetime splits of the velocity, acceleration, momentum, and force four-vectors with the normalized four-velocity of the fiducial observer, at rest in the coordinate system of the spacetime metric, are given, where the proper time of the fiducial observer is identified, and the contribution of the bivector connection is considered, and with these results, a three-dimensional analogue of Newton's second law for this particle in curved spacetime is achieved. As example, in Lense-Thirring spacetime, the signature invariant precessional angular velocity of a gyroscopic spin is derived in STA.

Jianfei Xu⁷⁸ discusses in STA gravitational wave solutions of the gauge theory of gravity field equations with a negative cosmological constant, and shows that these solutions are of Petrov type-N. He also discusses the velocity memory effect by calculating the velocity change of an initially free falling massive particle due to the presence of gravitational waves.

11.4 | Quantum Physics

Because geometric algebra of spacetime (STA) is isomorphic to the 4×4 complex Dirac matrix algebra of Dirac's equation for relativistic electrons, applications of geometric algebra to quantum mechanics have a long and rich tradition.

Andrew Hamilton shows in⁷⁹ how it is possible to start with row- and column spinors and their products which include GA multivectors to construct a *super geometric algebra* for both spinors and GA. Thus viewing fermions (spinors) as truly fundamental and expressing the exclusion principle as elementary spinor product rule. Anthony Lasenby⁸⁰ embeds octonions⁴ in STA such that the octonion product norm corresponds to the preservation of the timelike part of a particle Dirac current. This allows to embed and geometrically interpret earlier work of particle physics based on octonions. Furthermore SU(3) of six Euclidean dimensions can also be embedded in STA based on bivector norm preservation. Finally interesting connections to G_2 and SU(8) are considered.

Václav Zatloukal⁸¹ examines the minimal coupling procedure in Hestenes' STA Dirac equation, where spinors are identified with even multivectors, and finds a non-Abelian generalisation of the electromagnetic gauge potential. Dennis Marks⁸² observes that real geometric algebras Cl(n; s) = Cl(p, q), s = p-q, are periodic in *s*, i.e. $Cl(n; s) \cong Cl(n; s+8k)$ for $p+4k \ge 0$, $p-4k \ge 0$, and recursive in *n*, i.e. $Cl(n; s) \otimes Cl(2; 0) = Cl(n + 2; s)$. Moreover, in GA two-dimensional Euclidean planes and spacetime Minkowski planes have isomorphic GAs. Their direct product gives STA. A further product algebraically describes strong forces and then generates a lattice with standard model physics at each node. This implies Noether's theorem conservation laws from uniformity of spacetime based on the recursive generation.

Alexander Soiguine⁸³ begins by replacing complex numbers by real GA multivectors, achieving clear explanations of atoms as a kind of planetary system. The three-sphere S^3 hosts torsion like states eliminating abstract Hilbert space vectors. S^3 points evolve, governed by the updated Schrödinger equation, and act in measurements on observables as operators. In⁸⁴ he furthermore explains double split experiments in GA, where particles create diffraction patterns inherent to wave diffraction, eliminating a key difficulty in the interpretation of quantum mechanics.

In⁸⁵ Sokol Andoni uses the spin–position decoupling approximation, to substitute the Pauli vector–matrix spin model by a vector with a phase in 3D orientation space endowed with GA. He explains the resulting properties, including measurement irreversibility, entanglement and 2D in 3D spin space embeddding. The formalism appears in two complementary "spinor" or "vector" forms, providing a clear geometric picture of spin correlations and transformations entirely in the 3D physical orientation space.

Erik Trell⁸⁶ examines Marius Sophus Lie's 1871 PhD thesis *Over en Classe geometriske Transformationer*, relates it to Hermann Grassmann's *Ausdehnungslehre* (1844/1862) and William Kingdom Clifford's *Space-theory of Matter* (1876), and develops a concrete cellular automaton building kit of the Standard Model organized as structural $\mathbb{R}^3 \times SO(3)$ wave-packets, both inwards from the elementary particles and outwards via the periodic table of the atoms over further hierarchical growth in molecular and crystal stages to an isotropic space-filling of the whole classical Euclidean Universe in harmonic exchange with its relativistic spherical moiety, dark mass and energy.

Joy Christian⁸⁷ tries to further explain his model for local origins of quantum correlations, assumed to be rooted in GA, and to defend it against some criticism.

12 | GA FOR ELECTRIC ENGINEERING

Ahmad Eid and Francisco Montoya⁸⁸ explore the concept of generalized geometrical frequency in electrical systems with an arbitrary number of phases by using GA and differential geometry. With the *Darboux bivector* concept they can find a bivector that encodes the invariant geometrical properties of a spatial curve named electrical curve. The traditional concept of instantaneous frequency in power networks can be intimately linked to the Darboux bivector. Several examples illustrate this result.

Eid and Montoya⁸⁹ then present a new GA framework for a systematic generalization of well-known instantaneous transformations used in electrical engineering for power system analysis and computing through geometric principles. By introducing the the Kirchhoff vector and Kirchhoff subspace, a new generalized transformation is presented that unifies the Clarke, Park or hyper-space vector transformations (widely used in electrical engineering) as particular cases. A generalization to an arbitrary number of phases is achieved. All the underlying ideas are presented by means of space-like conceptualizations, substantiated

⁴See the further expansion of this embedding of octonions in other GAs in ²² discussed on page 2.

by their corresponding algebraic formulation. This proposal has wide ranging power system applications such as to electrical machines, current compensation, power quality, electronic converters or transmission lines. Preliminary results show superior efficiency compared to matrix methods. Some real-world examples are included.

Francisco Montoya et al⁹⁰ establish an alternative physical formulation for the harmonic power flow in electrical systems provided by GA, the Poynting Vector (PV) and the Poynting Theorem (PT). Given the traditional definition of PV (Abraham approach) as cross product of electric and magnetic field vectors, they exploit the duality of the cross product to the much more powerful wedge product of exterior algebra. Using vector space concepts they develop a completely GA-based approach founded on top of the isomorphism among periodic time-domain signals and Euclidean spaces. This sheds light on the long-running discussion of electric power flow in non-sinusoidal and non-linear electrical power systems. Then Francisco Montoya et al⁹¹ for the first time model power flows in electrical circuits in a mixed time-frequency domain by using GA and the Hilbert transform. They overcome some of the limitations of the existing methodologies, in which the so-called *active current* may not lead to the lowest Root Mean Square (RMS) current under distorted supply or unbalanced load. Moreover, this current may contain higher levels of harmonic distortion compared to the supply voltage. The proposed method can be used for sinusoidal and non-sinusoidal power supplies, non-linear loads and single- and multi-phase electrical circuits, and it provides meaningful engineering results with a compact formulation. It can also serve as an advanced tool for developing algorithms in the power electronics field. Several examples verify the approach.

The circuit analysis approach based on GA and M, the power definition based on the geometric product between the voltage and the current multivectors, are used by Milton Castro-Nunez et al⁹² to demonstrate shortcomings of the traditional definition of the non-sinusoidal apparent power S. The shortcomings of S are illustrated: Firstly, by showing an example of how the norm of M contains S. Secondly, through six experiments that involve compliance with: Kirchhoff's circuit laws, Tellegen's theorem, the principle of conservation of energy, the equivalency of two terminal networks and the concept of reactive power compensation. Lastly, by showing how the use of S leads the current's physical component power theory astray. The experiments show contradictions between the aforementioned circuit theory fundamentals and the results attained with S but a compelling harmony with the results attained with M. The evidence reveals: (1) that mathematical models aimed at explaining energy flow in non-sinusoidal circuits should not be based on the traditional decomposition of S, and (2) the inappropriateness of extrapolating definitions from sinusoidal to non-sinusoidal settings.

Finally, Nitin Sundriyal et al⁹³ show that for linear and non-linear non-sinusoidal circuit conditions, a consensus can be reached on norms that comply with well-known, established standards. They compare the use of the harmonic domain and GA in circuits with disturbances for sinusoidal and non-sinusoidal excitations in order to demonstrate the accuracy of GA in power flow calculations.

13 | GA FOR CONTROL AND ROBOTICS

In previous years, GA has been used mostly to unify various frameworks of screw theory, Lie algebra and dual quaternions. Even now, papers on specific aspects of motion descriptions may be found, see e.g. Ben Cross et al.⁹⁴. The simplicity of motion, i.e. Euclidean transformations and their interpretation have been heavily used in robot kinematics. Indeed, papers providing description of robotic motion planning are, e.g. Jesús Medrano–Hermosilo et al.⁹⁵ for 6–DOF serial robot's forward kinematics, or Edgar Macias-Garcia et al.⁹⁶ solving the inverse position kinematics for *n*-degrees-of-freedom kinematic chains with revolving joints and, similarly, Lechuga-Gutierrez et al.⁹⁷ present a set of generalized iterative algorithms for these mechanisms. A planar three-revolute (3R) serial chain motion generation by establishing the relative kinematics model based on CGA is introduced in Lei Wang et al.⁹⁸. Finally, a new coordinate-invariant geometric constraint equation for 3-RPR planar parallel mechanisms is elaborated by Ganmin Zhu et al. in⁹⁹.

Recently, specific GA algorithms focusing on various robotic mechanisms have been developed. Thus, for instance, Ge Li et al. ¹⁰⁰ propose a novel 6–DOF platform for pose adjustment of heavy equipment. Also, kinematics of various types of serial robots have been designed in GA, see Zhipeng Tong et al. ¹⁰¹ for a study of spherical 2R mechanism in order to design a seedling pick-up mechanism, or Lingmin Xu¹⁰² for a design of a new parallel manipulator with two rotational and one translational motion. Dynamics of novel robotic mechanisms is also solved in GA, see e.g. Zchieng Song et al. ¹⁰³ for dynamic modeling and generalized force analysis of a three-(rotation pair)-(prismatic pair)-spherical pair (3-RPS) parallel mechanism.

In combination with questions of kinematics, associated problems are solved in GA too. For instance, singularities of serial robots are tackled by Isiah Zaplana et al. in¹⁰⁴ and binocular visual control for a 6-DOF robotic manipulator is described by

Marek Stodola et al. in¹⁰⁵. Apart from the control for specific robots or associated problems, there is a group of papers that generalize the concept of kinematic chains in terms of GA. Thus Isiah Zaplana et al. search for closed–form solutions for the inverse kinematics of serial robots in¹⁰⁶, and Bahar Kalkan et al. in¹⁰⁷ introduce the Study variety of conformal (CGA) kinematics, i.e. a generalization of the Study quadric model of rigid body kinematics.

To spread the information about GA, authors integrate new methods and models with standard approaches. Thus, the connection between GA and control on Lie groups is discussed by Jaroslav Hrdina et al. in ¹⁰⁸ and Eduardo Bayro-Corrochano et al. in ¹⁰⁹ show the importance of the Hamiltonian in control theory in terms of GA.

A relatively new type of kinematics studied by means of GA is the one of machining with three– or five axis. Although the algorithms are not too complicated, the spread of GA to this area is interesting. In Yongxue Chen et al.¹¹⁰ the authors propose an approach that can generate a smooth tool-path that passes through the discrete cutter locations given in the original linear segments analytically and discuss the impact on accuracy. Another approach to volumetric accuracy of a five–axis machine tool can be found in Barbora Navrátilová et al.¹¹¹.

Apart from controlling algorithms, hardware and computational aspects are also treated. Thus, Tarik Uzinović et al.¹¹² present a combination of two methods that can be effectively combined for control of electrical machines. For computational acceleration, Salvatore Vitabile et al.¹¹³ propose a novel embedded coprocessor for accelerating CGA operations in robotic tasks. Furthermore, Hebett Sira Ramírez et al. in¹¹⁴ present a general method, based on GA, for the synthesis of sliding mode controllers in SISO switched nonlinear systems, and the same authors in¹¹⁵ examine the sliding mode existence conditions, the switching policy, the invariance conditions, the associated equivalent control, and the characterization of ideal sliding dynamics of sliding mode controllers from a GA viewpoint.

In¹¹⁶ the authors exploit GA for conics ability to represent transformed objects such as rotated ellipses to propose a novel algorithm for finding the optimal control of a switched dynamical systems with purely imaginary eigenvalues. Such a geometric approach guarantees the optimality of the switching path and eliminates the need for any solver, thus yielding results with minimal numerical errors.

14 | CONCLUSION

We hope to provide with our survey a comprehensive insight for the reader on new applications of Clifford's geometric algebras published during the last 12 months, prior to writing it (mid-January 2023). The use of the search engine Dimensions.ai ensures a relatively complete overview of the relevant literature, where apart from scientific journal articles, preprints, book chapters (proceedings) and books are also included.

ACKNOWLEDGEMENTS

E.H. wishes to thank God: *Then God saw everything that He had made, and indeed it was very good.* (Genesis 1:31, NKJV) and his dear family. He thanks his university colleagues for taking the best care of all administrative matters. All of us thank the organizers of *Computer Graphics International* for hosting the *Empowering Novel Geometric Algebra for Graphics and Engineering* (ENGAGE 2022) workshop.

Author contributions

E.H. did the Dimensions.ai search, clustering, wrote abstract, introduction, conclusion and the sections on Physics, Image and Signal Processing, and Electric Engineering. P.V. wrote the sections on Mathematics and Computing and on Control and Robotics. M.K. wrote all other sections under the guidance and supervision of G.P.

Financial disclosure

None reported.

Conflict of interest

The authors declare no potential conflict of interests.

References

- Clifford WK. Applications of Grassmann's Extensive Algebra. American Journal of Mathematics 1878; 1(4): 350–358. http://www.jstor.org/stable/2369379.
- Grassmann HG. Extension Theory (Die Ausdehnungslehre von 1862).
 History of Mathematics, Sources, American Mathematical Society, Rhode Island, London Mathematical Society.
 L.C. Kannenberg (translator).
- Hamilton WR. *Elements of Quaternions*. Cambridge University Press, Cambridge (UK). 2015. Edited by William Edwin Hamilton, firs published 1866, https://doi.org/10.1017/CBO9780511707162.
- Hestenes D, Li H, Rockwood A. New Algebraic Tools for Classical Geometrych. 1: 3–27; Springer, Berlin . 2001. in Sommer G. (ed.), Geometric Computing with Clifford Algebras, https://doi.org/10.1007/978-3-662-04621-0_1.
- 5. Dorst L, Fontijne D, Mann S. *Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry*. Elsevier, Burlington (MA), Morgan Kaufmann Series . 2007.
- Hitzer E, Tachibana K, Buchholz S, Yu I. Carrier Method for the General Evaluation and Control of Pose, Molecular Conformation, Tracking, and the Like. *Adv. in App. Cliff. Alg.* 2009; 19(2): 339–364. https://doi.org/10.1007/s00006-009-0160-9.
- 7. Hestenes D, Sobczyk G. *Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics*. Kluwer, Dordrecht, reprinted with corrections . 1992.
- 8. Lounesto P. Clifford Algebras and Spinors. Cambridge University Press, Cambridge (UK). 2001.
- Hitzer E. Introduction to Clifford's Geometric Algebra. SICE Journal of Control, Measurement, and System Integration 2012; 51(4): 338–350. Preprint: http://arxiv.org/abs/1306.1660.
- 10. Falcao MI, Malonek HR. Generalized Exponentials through Appell sets in ℝⁿ⁺¹ and Bessel functions. *AIP Conference Proceedings* 2007; 936: 738–741. https://doi.org/10.1063/1.2790257.
- 11. Breuils S, Tachibana K, Hitzer E. Introduction to Clifford's Geometric Algebra. *Vixra.org* 2021: 1–10. Preprint: https://vixra.org/abs/2108.0145.
- 12. Breuils S, Tachibana K, Hitzer E. New Applications of Clifford's Geometric Algebra. Advances in Applied Clifford Algebras 2022; 32(2): 17. doi: 10.1007/s00006-021-01196-7
- Hitzer E, Nitta T, Kuroe Y. Applications of Clifford's Geometric Algebra. Advances in Applied Clifford Algebras 2013; 23(2): 377–404. doi: 10.1007/s00006-013-0378-4
- 14. Hitzer E, Lavor C, Hildenbrand D. Current survey of Clifford geometric algebra applications. *Mathematical Methods in the Applied Sciences* 2022. https://onlinelibrary.wiley.com/doi/10.1002/mma.8316doi: 10.1002/mma.8316
- Bayro-Corrochano EJ, Altamirano-Escobedo G, Ortiz-Gonzalez A, Farias-Moreno V, Chel-Puc N. Computing in the Conformal Space Objects, Incidence Relations, and Geometric Constrains for Applications in AI, GIS, Graphics, Robotics, and Human-Machine Interaction. *IEEE Access* 2022; 10: 112742-112756. https://ieeexplore.ieee.org/ielx7/6287639/9668973/09926065.pdfdoi: 10.1109/access.2022.3216266
- Lasenby A, Lasenby J, Matsantonis C. Reconstructing a rotor from initial and final frames using characteristic multivectors: With applications in orthogonal transformations. *Mathematical Methods in the Applied Sciences* 2022. https://onlinelibrary.wiley.com/doi/full/10.1002/mma.8811doi: 10.1002/mma.8811

- 17. Acus A, Dargys A. Coordinate-free exponentials of general multivector in Cl(p,q) algebras for p + q = 3. *Mathematical Methods in the Applied Sciences* 2022. https://doi.org/10.22541/au.163384987.72001728/v1doi: 10.1002/mma.8529
- 18. Dargys A, Acus A. Exponential and logarithm of multivector in low-dimensional (n = p + q < 3) Clifford algebras. *Nonlinear Analysis Modelling and Control* 2022; 27(6): 1129-1149. https://www.journals.vu.lt/nonlinear-analysis/article/download/29528/28672doi: 10.15388/namc.2022.27.29528
- Dargys A, Acus A. Exponentials of general multivector in 3D Clifford algebras. Nonlinear Analysis Modelling and Control 2022; 27(1): 179-197. https://www.journals.vu.lt/nonlinear-analysis/article/download/24476/24634doi: 10.15388/namc.2022.27.24476
- 20. De Keninck S, Roelfs M. Normalization, square roots, and the exponential and logarithmic maps in geometric algebras of less than 6D. *Mathematical Methods in the Applied Sciences* 2022. http://arxiv.org/pdf/2206.07496doi: 10.1002/mma.8639
- Stejskal T, Svetlík J, Lascsáková M. Tensor of Order Two and Geometric Properties of 2D Metric Space. *Mathematics* 2022; 10(19): 3524. https://www.mdpi.com/2227-7390/10/19/3524/pdf?version=1665475168doi: 10.3390/math10193524
- 22. Hitzer E. Extending Lasenby's embedding of octonions in space-time algebra Cl(1,3), to all three- and four dimensional Clifford geometric algebras Cl(p,q), n = p + q = 3, 4. *Mathematical Methods in the Applied Sciences* 2022. https://onlinelibrary.wiley.com/doi/10.1002/mma.8577doi: 10.1002/mma.8577
- Ramírez HS, Gómez-León BC, Aguilar-Orduña MA. Lyapunov Stability: A Geometric Algebra Approach. Advances in Applied Clifford Algebras 2022; 32(2): 26. doi: 10.1007/s00006-022-01210-6
- Abdulkhaev K, Shirokov D. Basis-Free Formulas for Characteristic Polynomial Coefficients in Geometric Algebras. Advances in Applied Clifford Algebras 2022; 32(5): 57. http://arxiv.org/pdf/2205.13449doi: 10.1007/s00006-022-01232-0
- Filimoshina E, Shirokov D. On generalization of Lipschitz groups and spin groups. *Mathematical Methods in the Applied Sciences* 2022. http://arxiv.org/pdf/2205.06045doi: 10.1002/mma.8530
- Matsuno M. Twisted algebras of geometric algebras. Canadian Mathematical Bulletin 2022: 1-16. https://arxiv.org/abs/2205.00723doi: 10.4153/s0008439522000649
- Breuils S, Nozick V, Sugimoto A. Computational Aspects of Geometric Algebra Products of Two Homogeneous Multivectors. Advances in Applied Clifford Algebras 2022; 33(1): 4. http://arxiv.org/pdf/2002.11313doi: 10.1007/s00006-022-01249-5
- 28. Vince J. Mathematics for Computer Graphics. Springer . 2022
- Esquivel JCZ. Vanishing Vector Rotation in Quadric Geometric Algebra. Advances in Applied Clifford Algebras 2022; 32(4): 46. doi: 10.1007/s00006-022-01234-y
- Martinez-Terán G, Ureña-Ponce O, Soria-García G, Ortega-Cisneros S, Bayro-Corrochano E. Fast Study Quadric Interpolation in the Conformal Geometric Algebra Framework. *Electronics* 2022; 11(10): 1527. doi: 10.3390/electronics11101527
- Alfarraj A, Wei GW. Geometric algebra generation of molecular surfaces. *Journal of the Royal Society Interface* 2022; 19(189): 20220117. doi: 10.1098/rsif.2022.0117
- 32. Aslan S, Yayli Y. Motions on curves and surfaces using geometric algebra. *Communications Faculty Of Science University* of Ankara Series A1 Mathematics and Statistics 2022; 71(1): 39–50. doi: 10.31801/cfsuasmas.878766
- 33. Lavor C, Alves R, Fernandes LA. Linear and geometric algebra approaches for sphere and spherical shell intersections in \mathbb{R}^n . *Expert Systems with Applications* 2022; 187: 115993. doi: 10.1016/j.eswa.2021.115993
- Mukhopadhyay M. Going Beyond Turing A Fractal Approach towards Decision Making. SSRN Electronic Journal 2022. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4262323doi: 10.2139/ssrn.4262323

- 35. Hitzer E. Special Affine Fourier Transform for Space-Time Algebra Signals in Detail. Advances in Applied Clifford Algebras 2022; 32(5): 60. doi: 10.1007/s00006-022-01228-w
- 36. Hitzer E. Quaternion Fourier Transform on Quaternion Fields and Generalizations. *Advances in Applied Clifford Algebras* 2007; 17(3): 497-517. doi: 10.1007/s00006-007-0037-8
- Zhang Z, Cai P, Shen M, Huang G, Wang S. Geometric Algebra Adaptive Filter Based on Multi-Dimensional Complex-Valued Random Fourier Features. In: ; 2022: 1-6. https://ieeexplore.ieee.org/document/9943322
- Huang G, Shen M, Lin D, Qi L, Qian J, Wang S. Complex-Valued Random Fourier Geometric Algebra Adaptive Filtering. IEEE Transactions on Circuits & Systems II Express Briefs 2022; 69(4): 2346-2350. doi: 10.1109/tcsii.2022.3142167
- Wang X, Lv X, Wang R. Geometric Algebra based 2D-DOA Estimation for Non-circular Signals With an Electromagnetic Vector Array. *Research Square* 2022. https://www.researchsquare.com/article/rs-1619433/latest.pdfdoi: 10.21203/rs.3.rs-1619433/v1
- Wang R, Wang Y, Li Y, Cao W. Research on geometric algebra-based robust adaptive filtering algorithms in wireless communication systems. *EURASIP Journal on Wireless Communications and Networking* 2022; 2022(1): 38. https://doi.org/10.1186/s13638-022-02100-ydoi: 10.1186/s13638-022-02100-y
- 41. Wang W, Wang J. Convex combination of two geometric-algebra least mean square algorithms and its performance analysis. *Signal Processing* 2022; 192: 108333. doi: 10.1016/j.sigpro.2021.108333
- Derevianko A, Loucka P. Search for Similarity Transformation Between Image Point Clouds Using Geometric Algebra for Conics: 215-226; Springer . 2022. https://link.springer.com/chapter/10.1007/978-3-030-98260-7_13
- Liu H, Liu X, Zhang Z, Liang M, Zhang C. A novel strategy regarding geometric product for liquids discrimination based on THz reflection spectroscopy. *Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy* 2022; 274: 121104. doi: 10.1016/j.saa.2022.121104
- 44. Calado A, Roselli P, Errico V, Magrofuoco N, Vanderdonckt J, Saggio G. A Geometric Model-Based Approach to Hand Gesture Recognition. *IEEE Transactions on Systems Man and Cybernetics Systems* 2022; 52(10): 6151-6161. doi: 10.1109/tsmc.2021.3138589
- 45. Hildenbrand D, Rockwood A. Geometric Algebra Computing for Computer Graphics using GAALOP. In: ; 2022: 1-173. https://dl.acm.org/doi/10.1145/3532720.3535655
- 46. Wieser E, Song U. Formalizing Geometric Algebra in Lean. *Advances in Applied Clifford Algebras* 2022; 32(3): 28. doi: 10.1007/s00006-021-01164-1
- 47. Papagiannakis G, Kamarianakis M, Protopsaltis A, Angelis D, Zikas P. Project Elements: A computational entitycomponent-system in a scene-graph pythonic framework, for a neural, geometric computer graphics curriculum.; 2023. https://arxiv.org/abs/2302.07691
- Hrdina J, Návrat A, Vašík P. Quantum computing based on complex Clifford algebras. *Quantum Information Processing* 2022; 21(9): 310. doi: 10.1007/s11128-022-03648-w
- 49. Hrdina J, Hildenbrand D, Návrat A, et al. Quantum Register Algebra: the mathematical language for quantum computing. *arXiv* 2022. https://arxiv.org/abs/2208.02608doi: 10.48550/arxiv.2208.02608
- 50. Soiguine A. The Geometric Algebra Lift of Qubits and Beyond. *Authorea* 2022. https://www.authorea.com/users/454445/articles/552055doi: 10.22541/au.164157257.73404882/v1
- 51. Luo W, Wang Y, Zhang X, et al. Multilevel Declassification Method for Geographic Vector Field Data: A Geometric Algebra Approach. *Advances in Applied Clifford Algebras* 2022; 32(5): 52. doi: 10.1007/s00006-022-01229-9
- Jiang X, Huang Y, Zhang F. Study on Spatial Geometric Similarity Based on Conformal Geometric Algebra. *International Journal of Environmental Research and Public Health* 2022; 19(17): 10807. doi: 10.3390/ijerph191710807

14

- 53. Lv G, Yu Z, Yuan L, et al. Classification and Description of Geographic Information: A Comprehensive Expression Framework: 75-83; Springer . 2022
- Wu L, Wang D, Feng S, Song K, Zhang Y, Yu G. Database Systems for Advanced Applications, 27th International Conference, DASFAA 2022, Virtual Event, April 11–14, 2022, Proceedings, Part II. *Lecture Notes in Computer Science* 2022: 256–263. doi: 10.1007/978-3-031-00126-0_17
- Xu C, Nayyeri M, Chen YY, Lehmann J. Geometric Algebra based Embeddings for Static and Temporal Knowledge Graph Completion. *IEEE Transactions on Knowledge and Data Engineering* 2022; PP(99): 1–1. doi: 10.1109/tkde.2022.3151435
- 56. Silva DWHAd, Harmon L, Delavignette G. Threshold Secret Sharing with Geometric Algebra. *Authorea* 2022. https://www.authorea.com/users/459269/articles/555588doi: 10.22541/au.164423153.38279225/v1
- 57. Li Y, Wang Y, Wang Y, Qian C, Wang R. Geometric algebra based recurrent neural network for multi-dimensional timeseries prediction. *Frontiers in Computational Neuroscience* 2022; 16: 1078150. doi: 10.3389/fncom.2022.1078150
- Li Y, Wang Y, Wang R, et al. GA-CNN: Convolutional Neural Network Based on Geometric Algebra for Hyperspectral Image Classification. *IEEE Transactions on Geoscience and Remote Sensing* 2022; 60: 1–14. doi: 10.1109/tgrs.2022.3212682
- 59. Liu Q, Cao W. Geometric algebra graph neural network for cross-domain few-shot classification. *Applied Intelligence* 2022; 52(11): 12422–12435. doi: 10.1007/s10489-021-03124-5
- Kamarianakis M, Chrysovergis I, Lydatakis N, Kentros M, Papagiannakis G. Less is More: Efficient Networked VR Transformation Handling Using Geometric Algebra. Advances in Applied Clifford Algebras 2023; 33(1): 6. doi: 10.1007/s00006-022-01253-9
- 61. Pepe A, Lasenby J, Chacón P. Learning rotations. *Mathematical Methods in the Applied Sciences* 2022. https://onlinelibrary.wiley.com/doi/10.1002/mma.8698doi: 10.1002/mma.8698
- Zang D, Ding Y, Qu X, Chen X, Tang K, Zhang J. Traffic Data Prediction with Geometric Algebra Spatial-Temporal Attention Neural Network. 2022 7th International Conference on Big Data and Computing 2022: 14–19. doi: 10.1145/3545801.3545804
- 63. Zang D, Chen X, Lei J, et al. A multi-channel geometric algebra residual network for traffic data prediction. *IET Intelligent Transport Systems* 2022; 16(11): 1549–1560. doi: 10.1049/itr2.12232
- 64. Zang D, Ding Y, Qu X, et al. Traffic-Data Recovery Using Geometric-Algebra-Based Generative Adversarial Network. Sensors (Basel, Switzerland) 2022; 22(7): 2744. doi: 10.3390/s22072744
- Miao C, Su W, Fu Y, Chen X, Zang D. Long-Term Traffic Speed Prediction Based on Geometric Algebra ConvLSTM and Graph Attention. 2022 IEEE International Conference on Smart Internet of Things (SmartIoT) 2022; 00: 108–115. doi: 10.1109/smartiot55134.2022.00026
- García-Limón JA, Rubio JPS, Herrera-Guzmán R, Rodriguez-Vidal LM, Hernández-Mendoza CM. Advances in Computational Intelligence, 21st Mexican International Conference on Artificial Intelligence, MICAI 2022, Monterrey, Mexico, October 24–29, 2022, Proceedings, Part I. *Lecture Notes in Computer Science* 2022: 38–51. doi: 10.1007/978-3-031-19493-1_4
- 67. Oktar Y, Turkan M. Preserving Spatio-Temporal Information in Machine Learning: A Shift-Invariant *k*-Means Perspective. *Journal of Signal Processing Systems* 2022; 94(12): 1471–1483. doi: 10.1007/s11265-022-01818-8
- Tu Y, Lin S, Qiao J, Zhuang Y, Zhang P. Alzheimer's disease diagnosis via multimodal feature fusion. *Computers in Biology and Medicine* 2022; 148: 105901. doi: 10.1016/j.compbiomed.2022.105901
- 69. Wang R, Fang N, He Y, Li Y, Cao W, Wang H. Multi-modal Medical Image Fusion Based on Geometric Algebra Discrete Cosine Transform. *Advances in Applied Clifford Algebras* 2022; 32(2): 19. doi: 10.1007/s00006-021-01197-6

- 70. Li Y, Fang N, Wang H, Wang R. Multi-Modal Medical Image Fusion With Geometric Algebra Based Sparse Representation. *Frontiers in Genetics* 2022; 13: 927222. doi: 10.3389/fgene.2022.927222
- Zikas P, Protopsaltis A, Lydatakis N, et al. MAGES 4.0: Accelerating the world's transition to VR training and democratizing the authoring of the medical metaverse. *IEEE Computer Graphics and Applications* 2023: 1–16. doi: 10.1109/MCG.2023.3242686
- 72. Jensen S, Poling J. Teaching Rotational Physics with Bivectors. *arXiv* 2022. https://arxiv.org/abs/2207.03560doi: 10.48550/arxiv.2207.03560
- 73. Brechet SD. Rotations in classical mechanics using geometric algebra. *arXiv* 2022. https://arxiv.org/abs/2210.16803doi: 10.48550/arxiv.2210.16803
- 74. Ikemori H, Kitakado S, Matsui Y, Sato T. Runge-Lenz Vector as a 3D Projection of *SO*(4) Moment Map in ℝ⁴×ℝ⁴ Phase Space. *arXiv* 2022. https://arxiv.org/abs/2212.04931doi: 10.48550/arxiv.2212.04931
- 75. Brechet SD. Electrodynamics in geometric algebra. *arXiv* 2022. https://arxiv.org/abs/2210.05601v1doi: 10.48550/arxiv.2210.05601
- Sen D. Electromagnetism according to geometric algebra: An appropriate and comprehensive formulation. *Pramana* 2022; 96(4): 165. doi: 10.1007/s12043-022-02394-z
- 77. Wu B. A signature invariant geometric algebra framework for spacetime physics and its applications in relativistic dynamics of a massive particle and gyroscopic precession. *Scientific Reports* 2022; 12(1): 3981. https://www.nature.com/articles/s41598-022-06895-0.pdfdoi: 10.1038/s41598-022-06895-0
- 78. Xu J. Gravitational waves in gauge theory gravity with a negative cosmological constant. *Classical and Quantum Gravity* 2022; 39(17): 175005. http://arxiv.org/pdf/2012.15001doi: 10.1088/1361-6382/ac8092
- Hamilton AJS. The Supergeometric Algebra. Advances in Applied Clifford Algebras 2023; 33(1): 12. doi: 10.1007/s00006-022-01256-6
- 80. Lasenby A. Some recent results for *SU*(3) and octonions within the geometric algebra approach to the fundamental forces of nature. *Mathematical Methods in the Applied Sciences* 2023. https://arxiv.org/abs/2202.06733doi: 10.1002/mma.8934
- Zatloukal V. Real Spinors and Real Dirac Equation. Advances in Applied Clifford Algebras 2022; 32(4): 45. http://arxiv.org/pdf/1908.04590doi: 10.1007/s00006-022-01236-w
- Marks DW. Binary Encoded Recursive Generation of Quantum Space-Times. *Advances in Applied Clifford Algebras* 2022; 32(4): 51. https://link.springer.com/content/pdf/10.1007/s00006-022-01235-x.pdfdoi: 10.1007/s00006-022-01235-x
- Alexander S. The 3-Sphere Instead of Hilbert Space. *Journal of Applied Mathematics and Physics* 2022; 10(09): 2733-2742. http://www.scirp.org/journal/PaperDownload.aspx?paperID=120000doi: 10.4236/jamp.2022.109183
- Soiguine A. Explaining Double Split Experiment with Geometrical Algebra Formalism. Applied Science and Innovative Research 2022; 6(1): p46. http://www.scholink.org/ojs/index.php/asir/article/download/4528/5198doi: 10.22158/asir.v6n1p46
- 85. Andoni S. Spin 1/2 one- and two-particle systems in physical space without eigen-algebra or tensor product. *Mathematical Methods in the Applied Sciences* 2022. http://arxiv.org/pdf/2212.09463doi: 10.1002/mma.8925
- 86. Trell E. A bottom-up 'Game of Lie' cellular automaton evolution in SO(3) root space both nucleating, crystallizing and space-filling the complete atomic realm. *Journal of Physics Conference Series* 2022; 2197(1): 012025. https://doi.org/10.1088/1742-6596/2197/1/012025doi: 10.1088/1742-6596/2197/1/012025
- 87. Christian J. Local origins of quantum correlations rooted in geometric algebra. *arXiv* 2022. https://arxiv.org/abs/2205.11372doi: 10.48550/arxiv.2205.11372

16

- Eid AH, Montoya FG. A Geometric Procedure for Computing Differential Characteristics of Multi-phase Electrical Signals using Geometric Algebra. arXiv 2022. https://arxiv.org/abs/2208.05917v1doi: 10.48550/arxiv.2208.05917
- 89. Eid AH, Montoya FG. A Systematic and Comprehensive Geometric Framework for Multiphase Power Systems Analysis and Computing in Time Domain. *IEEE Access* 2022; 10: 132725-132741. https://ieeexplore.ieee.org/ielx7/6287639/6514899/09992202.pdfdoi: 10.1109/access.2022.3230915
- 90. Montoya FG, Arrabal-Campos FM, Alcayde A, Prado-Orbán X, Mira J. Geometric Power and Poynting Vector: a Physical Derivation for Harmonic Power Flow using Geometric Algebra. In: ; 2022: 1-6
- Montoya FG, Baños R, Alcayde A, Arrabal-Campos FM, Roldán-Pérez J. Geometric Algebra Applied to Multiphase Electrical Circuits in Mixed Time–Frequency Domain by Means of Hypercomplex Hilbert Transform. *Mathematics* 2022; 10(9): 1419. https://www.mdpi.com/2227-7390/10/9/1419/pdf?version=1650872705doi: 10.3390/math10091419
- Castro-Núñez M, Londoño-Monsalve D, Castro-Puche R. M, The Power Definition in Geometric Algebra that Unveils the Shortcomings of the Nonsinusoidal Apparent Power S. Advances in Applied Clifford Algebras 2022; 32(2): 18. doi: 10.1007/s00006-022-01200-8
- Sundriyal N, Ramirez JM, Corrachono EB. A Comparison of Geometric Algebra and Harmonic Domain for Linear Circuit Analysis. *Authorea* 2022. https://www.authorea.com/doi/pdf/10.22541/au.164848881.10317415doi: 10.22541/au.164848881.10317415/v1
- 94. Cross B, Cripps RJ, Mullineux G. C¹ and G¹ continuous rational motions using a conformal geometric algebra. *Journal of Computational and Applied Mathematics* 2022; 412: 114280. doi: 10.1016/j.cam.2022.114280
- 95. Medrano-Hermosillo JA, Lozoya-Ponce R, Ramírez-Quintana J, Baray-Arana R. Forward Kinematics Analysis of 6-DoF Articulated Robot using Screw Theory and Geometric Algebra. In: ; 2022: 1-6
- 96. Macias-Garcia E, Zamora-Esquivel J, Chel-Puc N, Bayro-Corrochano E. Iterative Inverse Kinematics based on Screw Rotors and the Extended Kalman Filter. In: ; 2022: 81-86
- Lechuga-Gutierrez L, Macias-Garcia E, Martínez-Terán G, Zamora-Esquivel J, Bayro-Corrochano E. Iterative inverse kinematics for robot manipulators using quaternion algebra and conformal geometric algebra. *Meccanica* 2022; 57(6): 1413-1428. doi: 10.1007/s11012-022-01512-w
- 98. Wang L, Yu G, Sun L, Zhou Y, Wu C. Motion generation of a planar 3R serial chain based on conformal geometric algebra with applications to planar linkages. *Mechanical Sciences* 2022; 13(1): 275-290. https://ms.copernicus.org/articles/13/275/2022/ms-13-275-2022.pdfdoi: 10.5194/ms-13-275-2022
- 99. Zhu G, Wei S, Zhang Y, Liao Q. CGA-based novel modeling method for solving the forward displacement analysis of 3-RPR planar parallel mechanism. *Mechanism and Machine Theory* 2022; 168: 104595. doi: 10.1016/j.mechmachtheory.2021.104595
- 100. Li G, Li Y, Weng S, Wan H, Luo D. Design and Simulation of a Novel 6-DOF Hybrid Mechanism Motion Platform for Pose Adjustment of Heavy Equipment. *Iranian Journal of Science and Technology, Transactions of Mechanical Engineering* 2022: 1-24. doi: 10.1007/s40997-022-00557-2
- Tong Z, Yu G, Liu J, Zhao X. Research and Application of Spherical 2R Mechanism based on Conformal Geometric Algebra. *Research Square* 2022. https://www.researchsquare.com/article/rs-657363/latest.pdfdoi: 10.21203/rs.3.rs-657363/v1
- 102. Xu L, Ye W, Li Q. Design, analysis, and experiment of a new parallel manipulator with two rotational and one translational motion. *Mechanism and Machine Theory* 2022; 177: 105064. doi: 10.1016/j.mechmachtheory.2022.105064
- 103. Song Z, Jiang S, Chen B, Wang L, Wu H. Analysis of dynamic modeling and solution of 3-RPS parallel mechanism based on conformal geometric algebra. *Meccanica* 2022; 57(6): 1443-1455. doi: 10.1007/s11012-022-01472-1
- 104. Zaplana I, Hadfield H, Lasenby J. Singularities of Serial Robots: Identification and Distance Computation Using Geometric Algebra. *Mathematics* 2022; 10(12): 2068. https://www.mdpi.com/2227-7390/10/12/2068/pdf?version=1655287883doi: 10.3390/math10122068

- 105. Stodola M, Frolík S. Self-calibration method of binocular vision based on conformal geometric algebra. *Mathematical Methods in the Applied Sciences* 2022. https://doi.org/10.22541/au.163977066.68521892/v1doi: 10.1002/mma.8910
- 106. Zaplana I, Hadfield H, Lasenby J. Closed-form solutions for the inverse kinematics of serial robots using conformal geometric algebra. *Mechanism and Machine Theory* 2022; 173: 104835. https://lirias.kuleuven.be/bitstream/20.500.12942/695623/2/IK%2bGA.pdfdoi: 10.1016/j.mechmachtheory.2022.104835
- 107. Kalkan B, Li Z, Schröcker HP, Siegele J. The Study Variety of Conformal Kinematics. Advances in Applied Clifford Algebras 2022; 32(4): 44. https://link.springer.com/content/pdf/10.1007/s00006-022-01227-x.pdfdoi: 10.1007/s00006-022-01227-x
- 108. Hrdina J, Návrat A, Vašík P, Zalabová L. A note on geometric algebras and control problems with SO(3)-symmetries. *Mathematical Methods in the Applied Sciences* 2022. http://arxiv.org/pdf/2111.11088doi: 10.1002/mma.8662
- 109. Bayro-Corrochano E, Medrano-Hermosillo J, Osuna-González G, Uriostegui-Legorreta U. Newton–Euler modeling and Hamiltonians for robot control in the geometric algebra. *Robotica* 2022; 40(11): 4031-4055. doi: 10.1017/s0263574722000741
- 110. Chen Y, Huang P, Ding Y. An analytical method for corner smoothing of five-axis linear paths using the conformal geometric algebra. *Computer-Aided Design* 2022; 153: 103408. doi: 10.1016/j.cad.2022.103408
- Navrátilová B, Byrtus R, Holub M. Geometric algebra methods in volumetric accuracy analysis. *Mathematical Methods in the Applied Sciences* 2022. https://onlinelibrary.wiley.com/doi/epdf/10.1002/mma.8494doi: 10.1002/mma.8494
- 112. Uzunović T, Montoya FG, Osmanović A, et al. Combining Real-time Parameter Identification and Robust Control Algorithms for Effective Control of Electrical Machines. In: ; 2022: 2391-2396
- 113. Vitabile S, Franchini S, Vassallo G. An Optimized Architecture for CGA Operations and Its Application to a Simulated Robotic Arm. *Electronics* 2022; 11(21): 3508. https://www.mdpi.com/2079-9292/11/21/3508/pdf?version=1667888434doi: 10.3390/electronics11213508
- Ramírez HS, Aguilar-Orduña MA, Gómez-León BC. The invariance control approach to sliding regimes in switched systems: A Geometric Algebra viewpoint.. In: ; 2022: 29-34
- 115. Ramírez HS, Aguilar-Orduña MA, Gómez-León BC. Sliding mode control of switched systems: A geometric algebra approach. *Asian Journal of Control* 2022; 25(1): 15-25. doi: 10.1002/asjc.2781
- 116. Derevianko A, Vašík P. Solver-free optimal control for linear dynamical switched system by means of geometric algebra. *Mathematical Methods in the Applied Sciences* 2022. https://onlinelibrary.wiley.com/doi/10.1002/mma.8752doi: 10.1002/mma.8752
- Gevorkyan MN, Demidova AV, Velieva TR, Korol'kova AV, Kulyabov DS. Analytical-Numerical Implementation of Polyvector Algebra in Julia. *Programming and Computer Software* 2022; 48(1): 49–58. doi: 10.1134/s0361768822010054
- 118. Zanardi P. Quantum scrambling of observable algebras. Quantum 2022; 6: 666. doi: 10.22331/q-2022-03-11-666
- Yao G, Aierken A, Li T, et al. The influence of geometric algebra in surgical practice of sleeve gastrectomy-single center experience. *Medicine* 2022; 101(43): e30783. doi: 10.1097/md.00000000030783
- Löw T, Calinon S. Geometric Algebra for Optimal Control with Applications in Manipulation Tasks. arXiv 2022. doi: 10.48550/arxiv.2212.07237
- 121. Tanev TK, Lekova A. Implementation of Actors' Emotional Talent into Social Robots Through Capture of Human Head's Motion and Basic Expression. *International Journal of Social Robotics* 2022; 14(7): 1749-1766. https://link.springer.com/content/pdf/10.1007/s12369-022-00910-0.pdfdoi: 10.1007/s12369-022-00910-0
- 122. Klausen KO. Visualizing Stokes theorem with Geometric Algebra. arXiv 2022. doi: 10.48550/arxiv.2206.07177

- 123. Jost J, Wenzel W. Geometric algebra for sets with betweenness relations. *Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry* 2022: 1-25. https://link.springer.com/content/pdf/10.1007/s13366-022-00648-w.pdfdoi: 10.1007/s13366-022-00648-w
- 124. Mandolesi ALG. Compendium on Multivector Contractions. arXiv 2022. doi: 10.48550/arxiv.2205.07608
- 125. Soiguine A. Explaining Some Weird Quantum Mechanical Geomet-Features in ric Algebra Formalism. Global Journal ofScience Frontier Research 2022: 37-50. https://journalofscience.org/index.php/GJSFR/article/download/102510/24605doi: 10.34257/gjsfrfvol22is3pg37
- 126. Böhm J, Jacobsen JL, Jiang Y, Zhang Y. Geometric algebra and algebraic geometry of loop and Potts models. *Journal of High Energy Physics* 2022; 2022(5): 68. https://link.springer.com/content/pdf/10.1007/JHEP05(2022)068.pdfdoi: 10.1007/jhep05(2022)068

AUTHOR BIOGRAPHY

Eckhard Hitzer. Eckhard Hitzer holds a PhD in theoretical physics from the University of Konstanz in Konstanz, Germany. He is Senior Associate Professor at College of Liberal Arts of International Christian University in Tokyo, Japan. His main research interests are theory and application of Clifford geometric algebras. Visiting Fellow for Religious, Philosophical and Scientific Foundations of Sustainable Society at Europa Institute of Sophia University, Tokyo, Japan. He recently published: *Quaternion and Clifford Fourier Transforms*, Chapman and Hall/CRC, 474 pp., Sep. 2021. Editor of GA-Net, and GA-Net Updates (blog).

Manos Kamarianakis. Dr. Manos Kamarianakis is a mathematician researcher that specializes in Computational Geometry and Computer Graphics. He holds a PhD in Computational Geometry, a M.Sc. in Mathematics (specializing in design of algebra-based algorithms) and 2 B.S. (pure and applied mathematics) from University of Crete. Throughout his studies he was awarded multiple scholarships, including a Onassis Foundation scholarship. He was, until recently, a post-doctoral researcher in the Department of Mathematics and Applied Mathematics, UoC, focusing on research topics regarding Algebra, Logic and Number theory. For the past 3.5 years, he is a member of Foundation for Research and Technology Hellas – Institute of Computer Science (FORTH-ICS) spinoff startup ORamaVR, where his role as the R&D director involves the design of innovative, geometric-based algorithms, suitable for Augmented, Virtual and Mixed Reality. Manos is also a visiting researcher of FORTH-ICS and specifically the Human-Computer Interaction Lab as well as also a temp professor at University of Crete, teaching Computer Graphics. He has published multiple articles on these topics and recently, his paper *Never Drop the ball* received the Best Paper and Presentation Award from the CGI2021 Conference (ENGAGE Workshop).

George Papagiannakis. Dr. George Papagiannakis, co-founder and CEO of ORamaVR is a computer scientist specialised in computer graphics systems, extended reality algorithms and geometric computational models. His academic credentials include serving as Professor of Computer Graphics at the Computer Science department of the University of Crete, Greece, as Affiliated Research Fellow at the Human Computer Interaction Laboratory of the Institute of Computer Science in the Foundation for Research and Technology Hellas, Heraklion, Greece, where he leads the CG Group and as visiting Prof of CS at the University of Geneva. He has more than 100 publications in the field, and he is a member of CGS (Board Member), IEEE, Eurographics, ACM and SIGGRAPH professional societies. In 2011 he was awarded a Marie-Curie Intra-European Fellowship for Career Development from the European Commission's Research Executive Agency. He was conference chair of the Computer Graphics International 2016 Conference, in cooperation with CGS, ACM, ACM SIGGRAPH and Eurographics Associations. In 2017 he published a Springer-Nature book on Mixed Reality and Gamification which achieved more than 77.000 downloads so far.

Petr Vašík. Petr Vašík is a mathematician at the Faculty of Mechanical Engineering of Brno University of Technology, Brno, Czech Republic. He is an associated professor and the Head of the Institute of Mathematics. His main research areas are differential geometry, particularly geometric control theory, and geometric algebras with the focus on applications in engineering. He is the organizer of several series of international conferences, such as Applied Geometric Algebras in Computer Science and Engineering (AGACSE 2021, main organizer), Empowering Novel Geometric Algebra for Graphics & Engineering (ENGAGE 2022), Modelling & Simulation for Autonomous Systems. He is a guest editor of two special issues in Mathematical Methods in the Applied Sciences, Wiley.

How to cite this article: Hitzer E., Kamarianakis M., Papagiannakis G., and Vašík, P. (2023), Survey of New Applications of Geometric Algebra, *Mathematical Methods in the Applied Sciences*, 2023;00:1–37.