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Abstract

Single-nucleotide polymorphism (SNP) analyses are a powerful tool for population genetics, pedigree reconstruction and phe-
notypic trait mapping. SNPs could also be useful for sexing individuals in species with reduced sexual dimorphism, yet this
possibility remains poorly explored. Here, we develop a novel protocol for molecular sexing of birds based on the detection
of unique Z- and W-linked SNP markers. Our method is based on the identification of two unique loci, one in each sexual
chromosome. Individuals are considered males when they are heterozygotic for the Z-linked SNP and females when they are
homozygote for the Z-linked SNP and have the W-linked SNP. We validated the method in the Jackdaw (Corvus monedula),
a species whose reduced sexual dimorphism makes it difficult to sex individuals in the wild. We assessed the reliability of the
method with 36 individuals of known sex, and found that their sex was correctly assigned in 100% of cases. The sex-linked
markers also proved to be widely applicable to discriminate males and females from a sample of 927 genotyped individuals of
different maturity stages with an accuracy of 99.5%. Given that SNP markers are increasingly used in quantitative genetic
analyses of wild populations, the approach we propose has a great potential to be integrated into broader genetic research

programmes without the need of additional sexing techniques.

Introduction

The growing development of advanced molecular and bioinformatic tools have revolutionized the study of
ecology and evolution by allowing to sequence hundreds of samples in parallel at a whole-genome scale
(Hudson 2008). Next-generation sequencing (NGS) techniques are sensible, accurate, low time-consuming,
and can be applied to non-model organisms. Such availability of massive genomic data provides a promis-
ing potential in the field of genomics, transcriptomics, and proteomics, as well as a wide application for
microsatellites and single-nucleotide polymorphisms (SNP) screening.

SNPs are increasingly used to study wild populations. They are suitable for population-level genotyping due
to their abundance and widespread distribution along the genome, low genotyping error, high-throughput and
low-cost per locus (Kaiser et al. 2017). The use of SNP markers is currently widely used in population genetic
analysis, pedigree reconstruction, extra-pair paternity assignments and phenotypic trait mapping (Garvin
et al. 2010), providing crucial information to address important aspects of evolutionary and conservation
ecology.

Sex largely influences a wide array of key ecological and evolutionary processes, including habitat use, feeding
specializations, parental care, dispersal and migration (Selander 1966; Durell 2000). Thus, it is not surprising
that devising molecular tools for reliable sex identification has long been in the agenda of wildlife ecologists.
Yet, tools for sexing using SNP markers have only been developed for commercial animals (Andrews et



al. 2016), including a range of aquaculture fish and crustacean species for which the factors involved in
determining sexes are not identified yet (Palaiokostas et al. 2015; Shi et al. 2018; Wang et al. 2019; Fang
et al. 2020). The use of SNPs for sexing remains, however, largely unexplored in wild animals, despite
their great potential to reduce costs and improve performance of multiple genetic analysis from the same
multi-locus panel including all SNPs of interest without the need of additional PCR amplifications and
electrophoresis.

Here, we describe a novel protocol for molecular sexing of birds based on single nucleotide polymorphisms.
Birds are well-known for their extraordinary diversity of sexually dimorphic characters. The elaborate
breeding performances by colourful males with striking plumage-colours, bill sizes and shapes in birds-of-
paradise (family Paradisaeidae) or the extreme adaptations in the tail of male peacocks (Pavo cristatus )
are among the most emblematic displays (Beehler 1989; Owens and Hartley 1998). However, the sex of birds
cannot always be easily identified by phenotypic traits. In fact, about half of all avian species are sexually
monomorphic, with males and females showing very similar appearances (Price and Birch 1996). These
include geese, cranes, rails, raptors, owls, parrots, doves, auks, shearwaters and many passerines (Volodin
et al. 2015). Even in sexually dimorphic species, males and females rarely show sex-linked morphological
differences shortly after hatching, making it difficult to obtain information on the sex ratio at birth exclusively
from phenotypic measurements.

Our method is based on the identification of two unique loci, one in each sexual chromosome. Birds have the
ZW sex-determination system, in which males are the homogametic sex (ZZ), while females are heterogametic
(ZW) (Bloom 1974). As for the XY system in mammals, Z and W chromosomes share homologous sequences
of nucleotides in the Pseudo-Autosomal Region (PAR) (Fridolfsson and Ellegren 1999). In this region, genes
are inherited the same way as any autosomal gene rather than sex-linked, and both males and females
have two copies of this region. Therefore, SNPs found in the PAR region would distinguish females and
males only in the rare event that each allele variant is fixed and specific for each sex. For those cases,
females would be heterozygotes whereas males would be homozygotes. Outside the PAR region, however,
discriminating among sexes is expected to be easier because unique Z-linked SNPs would amplify two SNP
alleles in heterozygotic males and only one in females, while unique W-linked SNPs would amplify only
in females. Only hemizygotic (individuals in which only one member of a chromosome pair is present)
or homozygotic males would express one Z allele call but not for W. ZZ males are then defined by either
homozygote or heterozygote genotype calls for the Z-chromosome-linked SNP and the lack of the calling
variants in the W-chromosome-linked SNP. Conversely, ZW females amplify for the W-chromosome-linked
SNP but do not show heterozygosity for Z-chromosome-linked SNP.

To illustrate the method, we use the Western Jackdaw (Corvus monedula ) as our study system. Jackdaws are
small corvids from the Palearctic (Madge and De Juana 2019), characterized by a black plumage, grey nape
and distinctive pale-blue irises. The identification of sexes in the wild is difficult because sexual dimorphism
in plumage is absent and, although males tend to be larger than females, there is considerable overlap
between sexes (Green and Theobald 1989; Henderson 1991; Fletcher and Foster 2010). The traditional
molecular method for bird sexing based on the PCR amplification of the CHD sexual gene (Griffiths et al.
1998) works well in Jackdaws (e.g. de Kort et al. 2003; Arnold and Griffiths 2003; Salomons et al. 2006;
Woods et al. 2018; Aastrup and Hegemann 2021; Hahn et al. 2021). However, the alternative use of SNPs
holds great potential for its use in reliable high-throughput sexing within broader population genetic studies
from the same multi-locus SNP panel. Despite the limitation of lacking a W-chromosome reference in the
Jackdaw, our protocol made it possible to locate the Pseudo-Autosomal Region (PAR) in which both sexual
chromosomes share homologous sequences as well as to detect unique W-linked markers that can be used to
reliably sex individuals. Thus, our approach can easily be extended to other avian species.

Material and methods
Sample collection in the field
From 2015 to 2022, we captured both fledgling and adult Jackdaws as part of a long-term study of a



population breeding in nest-boxes in the Lleida plain, northeastern Iberian Peninsula (Unzeta 2020). We
banded each individual with a metallic ring, measured the weight and the length of the tarsus and third
primary wing, and took a sample of feathers from the abdomen for genetic analyses. To help developing the
library of SNPs, we also used adults found dead during the visits to the nest-boxes. From each individual, we
sampled a piece of tissue from the wing shoulder and placed it in Eppendorf tubes. All tissue samples were
stored at -20°C to prevent DNA degradation. Feathers were first stored in glassine bags at room temperature,
and selected samples were later transferred to -20°C freezers to be preserved until DNA extraction. Permits
for animal manipulation and sample collections were provided for the Servei de Fauna i Flora from the
Generalitat de Catalunya (SF/430-439/2016, SF/0473-0476/2018, SF/0039/2019, 4/2020/MP, SF/0093,/21,
SF/0018 2/22).

Sample dissection and DNA extraction in the lab

Feather dissections were performed by taking the cells from the basal tip of the calamus, following Morin
et al. (1994). The lysis was performed by adding 400 pl lysis buffer and 40 yl protease K, and incubating
samples at 56°C overnight. DNA was extracted using an automated Chemagic 360 instrument (Perkin El-
mer) from a total of 957 samples corresponding to 905 feathers from fledglings, and 49 feathers and 3 tissue
samples from adult individuals. A duplicated sample collected from a recaptured individual was included as
a genotyping control. The quality and concentration of the extracted DNA was assessed using a NanoDrop
spectrophotometer (Thermo Fisher Scientific). Laboratory procedures were performed at the SVGM labora-
tories (Molecular Genetics Veterinary Service) of the Faculty of Veterinary of the Autonomous University of
Barcelona. Some feather samples, particularly those belonging to adults, had low DNA concentrations (be-
low 50 ng/uL, which is the recommended DNA concentration to ensure proper sample genotyping according
to the Thermo Fisher Scientific protocol for QuantStudio OpenArray@® PCR Plates). For such low-quality
samples (N=90), liquid was evaporated using a SpeedVac Vaccum Concentrator centrifuge to increase DNA
concentrations. This process was carried out at the Centre for Research in Agricultural Genomics (CRAG)
facilities. Further details on sample quality, applied thresholds and genotyping success related with DNA
concentration are shown in Section S1 in Supplementary Information (see also Table S1, Fig. S2 and Fig.
S3).

Identification of nine candidate sexual SNP loci

The exploration of candidate sexual SNP loci was carried out through the compilation of individual sequences
using our own data (ten birds from Lleida) and data kindly provided by Weissensteiner et al. (2020) (four
whole-genome sequenced birds from Sweden) (see Section S2 and Table S3 in Supplementary Information).
We first located the sexual chromosomes and the PAR region within them based on the four whole-genome
sequenced Jackdaws from Sweden. To do so, we assembled the sequences of the four individuals and assumed
that the homologous regions between non-autosomal chromosomes should map within the PAR region. We
annotated and identified the CHD gene (chromo-helicase-DNA-binding), traditionally used for sex identi-
fication in birds (Griffiths et al. 1998), to locate this region. Similar to Palmer et al. (2019), we used the
amount of reads mapping to this gene to distinguish between males and females. Individuals J01, J02 and
JO8, with a high number of reads mapped, were classified as males while individual JO3 was classified as
a female based on the low number of reads mapped (see Section S2 in Supplementary Information). Since
reads mapped heterogeneously in multiple regions along the chromosome Z, with variable coverage ranging
from 4 to 30 and a median of 12, this approach did not allow us to identify the starting and ending positions
of the PAR region. We located the chromosome W based on a sequence deposited in NCBI from a female
of a close-related species, the New Caledonia Crow Corvus moneduloides (accession number CM018842.1).
Reads not mapping to Z nor to any other part of the genome were assumed to be unique to W.

Once we identified the PAR region and the W chromosome, we used the sequences of the individuals from
Lleida and Sweden to identify SNPs located in sexual chromosomes and outside the PAR region to assess
their utility for sexing. From the W-chromosome, we selected four SNPs from different regions far from
CHD and potentially unique from W. From the Z-chromosome, we selected one SNP previously tested in the
studied population (F9A, see Section S2 in Supplementary Information) and four additional SNPs. These



four SNPs presumably presented fixed sex-specific allele variants at least within the analysed individuals
from both populations, and were located in regions close to the CHD gene, assumed to be within the PAR
region. Therefore, we used a total of nine SNPs located in sexual chromosomes to evaluate for their usefulness
for sexing.

SNP genotyping with OpenArray Real-Time PCR

The OpenArray®) technology is an advanced real-time PCR method that enables a broad range of applicati-
ons, including SNP genotyping and gene expression analysis (Schleinitz et al. 2011; Broccanello et al. 2020).
The thermocycler measures FAM and VIC fluorescence signals of the amplified product (SNPs sequences, in
our case) that is generated during the reaction. Such fluorescence signals are expressed when the threshold
cycle (Cr) value is reached, which is the number of PCR cycles until the genotype calling groups are specified.
The fact that the detection of the DNA amplification occurs while the reaction is proceeding —instead of
at the end-point— makes the technology faster and more precise and accurate than other PCR technologies
(Valasek and Repa 2005). Excluding 3 blanks and 29 samples without amplified genotype variants of 960
samples, we analysed the genotyping results of 928 samples from 927 individuals.

Validation of the genetic sex assignments

Individuals with the combination of homozygote calls for Z-linked SNP and amplifying for W-linked SNP
were assigned as females. Male individuals could show both homozygote or heterozygote calls for the Z-linked
SNP. However, since males lack the W-chromosome, they should not show calling variants for the W-linked
SNP. We validated these assignments using information on 36 adult breeding individuals (18 distinct females
and 18 distinct males) that could be reliably sexed by morphological measures. Although males and females
show certain overlap in body size, within a couple the male tends to have consistently larger tarsus and wings
than the female (Henderson 1991; authors pers. obs.). During the breeding season and in early stages, we
were able to identify breeding pairs because jackdaws are monogamic species forming long-term pair bonds
and both sexes participate in building nests within cavities and in parental care (Hahn et al. 2021). To
validate the genetic sex assignments, we selected ringed, sized and genotyped individuals from all pairs we
identified in our population. We used these 36 individuals of known sex to assess how many were correctly
sexed using our SNP approach.

Results

We found that six out of the nine candidate SNPs included in the OpenArray could not inform on sexual
differences among individuals. Four of them (F1C, F2C, F4C and F6C) showed a fixed allele expression
without variability between samples. Another SNP (F3C) did not amplify in any sample. The last SNP
(F70A) did amplify for the “A” and “G” alleles but not for the heterozygote genotypes “A/G”, indicating
that the SNP was located within the PAR region from the Z chromosome. We therefore discarded these six
SNPs and focused our attention to the remaining two W-markers SNPs (F5C and F7C) and the Z-marker
F9A.

For F9A, 323 samples (34.8%) expressed the allele “A”, 360 (38.79%) expressed the allele “G” whereas 236
samples (25.43%) expressed both “A” and “G”. Nine samples (0.97%) could not be genotyped because they
did not amplify in any of the 928 samples. Scatter plots for allelic discrimination confirmed the existence of
three clusters for FOA (Fig. Sla; see also Table S1), corresponding to the homozygote genotype for allele 1
(“G/G” with high values of VIC and low values of FAM), the homozygote genotype for allele 2 (“A/A” with
high values of FAM and low values of VIC) and finally the heterozygote genotype (“A/G” with high values
of VIC and FAM). Since FOA was found in the Z-chromosome, heterozygote samples could only correspond
to ZZ male individuals, while either male or female individuals could express a homozygote genotype.

The results for the F5C and F7C confirmed that they were W-linked and located outside the PAR region
(Table 1). Fluorescence for F7C and F5C clustered into two groups separating samples that amplified (“A”
with high values of FAM and VIC) from those which did not amplify (“NOAMP” with low values of FAM
and VIC) (Fig. S1b and Fig. Slc respectively). In F7C, 466 samples (50.21%) amplified for the variant “A”



and in F5C, 443 samples (47.73%). No other allele variant was expressed in these two SNPs. The fact that
only one copy was present indicated hemizygosity; thus, only female individuals carrying the W chromosome
amplified for F5C and F7C. Being both W-linked SNPs complementary, one is enough to identify females
instead of two, which would reduce the number of SNPs for genotyping. F7C showed less specificity to amplify
other regions of the genome, suggesting the use of F7C primers was more reliable for sexing (see Section S3,
Table S4, Table S5 and Fig. S4 in Supplementary Information for more details regarding this justification).

Therefore, we assigned an individual as female if amplified for the variant “A” or “G” in the Z-linked SNP
F9A and “A” for the W-linked SNP F7C. We assigned an individual as male if amplified for the variant
“A/A”, “A/G” or “G/G” in the SNP F9A and did not amplify for the SNP F7C (Fig. 1 and Fig. 2).
To validate the discriminating power of our method, we used 18 males and 18 females from 18 breeding
pairs. Within couples, morphological measures can be reliably used to sex the bigger- and the smaller-sized
individuals as males and females respectively (see Material and Methods). We found that our SNP approach
correctly classified 100% of females and males (Table S2).

Using our method, we identified 456 individuals of the genotyped samples as females and 457 as males,
including both adults and fledglings. This represents the 99.5% of all genotyped samples successfully sexed.
The few cases in which individuals could not be sexed (N=5) showed a heterozygote genotype call for F9A
but amplified for F5C (purple triangles in Fig. 1, observation in group b and c in Fig. 2). Accordingly, these
individuals (with the sample codes CMF1598, CMF2121, CMF2223, CMF0858 and CMF1808) should be
composed by two Z chromosomes and one W chromosome.

Discussion

We have proposed a general method for sexing wild birds using sex-linked SNP markers based on sequen-
cing unique loci mapping outside the pseudoautosomal region where sexual chromosomes exchange genetic
material. We hypothesized heterozygote genotypes for the Z-linked SNP would refer to males as the homo-
gametic sex in birds. In contrast, the detection of W-linked SNP variants would occur only in females. We
demonstrate the accuracy and reliability of the method in the monomorphic Western Jackdaw. Below, we
provide further insights into the use of our molecular technique to sex wild birds, highlighting its benefits
and limitations compared to other available tools for molecular sexing and the broader implications of the
use of sex-linked SNPs on the study of ecology and evolutionary biology.

The proposed technique is expected to be particularly useful in studies aimed at genotyping large number
of individuals within species and populations. On one hand, the method only requires sampling feathers.
Feathers provide sufficient quality and quantity of DNA for molecular analyses like ours (Horvath et al. 2005).
Indeed, we found that in feathers where the concentration of the DNA extracted was considered low (<50
ng/uL), genotyping was still successful in 86.55% of cases. On the other hand, our technique can be integrated
into multiple genetic analysis based on SNP data without the need of additional PCR amplification and
electrophoresis. Combined with the use of high-throughput sequencing method of OpenArray®) genotyping
based on real-time PCR technology (Broccanello et al. 2020), which results in a significant reduction on the
sequencing time and costs required per sample and locus (Hudson 2008), the technique represents a cost-
effective method for SNP genotyping in studies that require genotyping thousands of individuals (Jenkins
and Gibson 2002).

Despite the capabilities of OpenArray@®) genotyping, its implementation is not exempt of difficulties. In our
case, the genotyping variants of one locus included in the array was undefined for the totality of the samples.
Because the estimated error rate of automated high-throughput methods for genotyping with SNPs is fewer
than 1 in 2000 genotypes (Ranade et al. 2001), we can safely discard standard sequencing errors as the
main source of the observed result. Instead, the allelic variants identified in individuals from the Sweden
population for this locus in particular might not be present in Lleida’s population. Furthermore, candidate
loci meeting the screening criteria are more challenging to identify from sequencing artifacts in small sample
sizes (N=3 males and N=1 females). In practice, multiple individuals of each sex would be required to avoid
falsely identifying rare SNP variants as sex-linked contigs (Palmer et al. 2019).



The capabilities of OpenArray(r) genotyping are also limited by the quality of DNA samples. Although
genotyping proved to be successful in poor-quality samples, a 3.03% of the samples (29 of the whole batch
of 957) did not amplify for any loci due to low DNA concentrations. From the remaining 928 sequenced
samples, the Z-allele could not be identified in 9 of them, leading to a total of 919 genotyped samples. The
low mean DNA concentration (47.27 ng/uL) of these samples indicated, again, problems of sample quality
rather than sequencing errors. Therefore, increasing the quality threshold should reduce the number of not
genotyped samples.

More difficult to understand is the observation of five samples (5 of the 919 genotyped samples) that could not
be sexed with certainty because showed two variants in the Z-chromosome and a third in the W-chromosome.
A likely alternative is a differential specificity of the F5C and F7C primers for the W-unique loci. Indeed, in
2.4% of the cases where genotypes were defined, samples showed a mismatch between the genotypic variants
amplified with the W-linked F5C and F7C SNPs. The existence of differential specificity of the F5C and F7C
primers is further supported by a blast analysis, which shows that specificity was higher for F7C. Although
in our sexing method we employed F7C, the fact that we still detected samples with two variants in the Z-
chromosome may indicate that this may still be insufficient to fully resolve the specificity issue. Alternatively,
the observation of ZZW may indicate possible cross-contamination events (mixing samples from male and
female individuals) and/or sequencing errors (misassignment of genotype calls). We should also consider
the possibility of trisomies which, although rare, have been documented in some bird species like Gallus
domesticus (Lin et al. 1995), Charadrius alezandrines (Kiipper et al. 2012), Ara ararauna (Tiersch et al.
1991) and Acrocephalus arundinaceus (Arlt et al. 2004).

Regardless of the limitations, the high accuracy (100% of individuals correctly sexed) and reliability (over
99% of samples correctly processed) of the proposed approach make it an efficient way to sex birds. Although
there are other powerful approaches for sexing individuals (e.g. Griffiths et al. 1998; Lois-Milevicich et al.
2021), the use of sex-specific SNP markers located in unique fragments of Z- and W-chromosomes, as we
propose here, will contribute to reliably sex individuals while genotyping samples for other purposes. While
the approach requires reference sequences to identify and annotate sex chromosomes, this information is
becoming increasingly available in non-model species through fast and affordable next generation (NGS) and
whole-genome sequencing (WGS). Even in species for which only one reference sex chromosome is available,
as in our case, sex-linked scaffolds can still be identified based on sex differences in genomic coverage (Palmer
et al. 2019).

Currently, SNPs are widely used in a variety of research programs like human forensics, crop improvement,
aquaculture, drug discovery and wildlife research (Garvin et al. 2010). In ecology and evolution, SNPs are
increasingly used for population genetic analysis, pedigree reconstruction and phenotype mapping (Garvin et
al. 2010). Given that males and females often differ in habitat preferences, feeding specializations, parental
investment and dispersion, among many other ecological roles, these studies heavily rely on the accurate
identification of the sex of individuals. Thus, we expect that the sex-linked SNPs protocol we present here
will be useful to a broad range of fields because it will allow genotyping and sexing a high number of
individuals in parallel and with independence of their life cycle stage.
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Tables and Figures
TABLE 1. Sex-linked SNP markers information (Fw, forward; Rv, reverse; bp, base pairs).



Assay Name

F9A

F7C

F5C

Chromosome

Location (bp position)

Unique Z-linked, no
PAR
28656895-28657166

Unique W-linked, no
PAR
1886358-18886578

Unique W-linked, no
PAR
10603258-10603378

Fw primer name ANPRYWV_F ANPRYWW_F ANMGCR2_F
Rv primer name ANPRYWV_R ANPRYWW_R ANMGCR2_R
Fw primer sequence GGGTGTAGGTATAGA  GAAAATAATAACTAT ATTAAAAAATAAACC
TTGGCTCTCA CTGTGTATGGATGGG GTTTTCAAGCATTTGCA
Rv primer sequence CTCAAAGCTCCATGG AACTCCATGCTTAAA CACTTTGGAATCCTC
AACAAACTG CCGTCCTT TCCATTAGGA
Context sequence ATTGGCTCTCAATTG GTAGTTAATGACAAT AGCATTTGCATATTA
ACCTCTAGCT[G/A] GCATGGATCTI[A/C] TAAATTCGGGI[A/G]
GTGGAGATTCTGCAG TGTGTTGTGTATAAG ATTTTAGTTCTGAAT
TTTGTTCCAT GACGGTTTAA AAGTGGGTTT
50406 4 Call F9A
+ o AA
N GIA
I GIG
2 2e+06 1 ? 8 -+ NOAMP
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>
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FIGURE 1. Allelic discrimination plot for F9A and F7C SNPs using fluorescence data from allele 1. Each
dot represents the genotype of one sample at a specific SNP fluorescence value in VIC Rn units (normalized
reporter signal). Genotype calls include FOA homozygotes (A/A and G/G in circles and squares respectively),
FIA heterozygotes (G/A in triangles), not amplified (NOAMP in crosses for F9A and in green for F7C), or
undefined (UND in crossed squares for F9A and in purple for F7C). Females are depicted in purple (N=456)
and males in green (N=457).
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FIGURE 2. Summary of all possible genotype combinations using the Z- and the W-unique loci. The
number and percentage of samples matching the conditions represented by the overlapping sets of the Venn
diagram is shown in each area. The represented sets include homozygotes for FOA (a), heterozygotes for
F9A (b), amplified for F7C (c), and not amplified for F7C (d). Females are depicted in purple (N=456) and
males in green (N=457). Samples that could not be sexed are represented in the grey areas, while conditions
not found in any sample are left empty.
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