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Abstract

In this study, an Cournot duopoly model describing conformable fractional order differential equations with piecewise constant
arguments is discussed. We have obtained two dimensional discrete dynamical system as a result of the discretization process is
applied to the model. By using the center manifold theorem and the bifurcation theory, it is shown that the discrete dynamical
system undergoes flip bifurcation about the Nash equilibrium point. Phase portraits, bifurcation diagrams, Lyaponov exponents
show the existence of many complex dynamical behavior in the model such as stable equilibrium point, period-2 orbit, period-4
orbit, period-8 orbit, period-16 orbit and chaos according to changing the speed of adjustment parameter v 1 . Discrete Cournot
duopoly game model is also considered on a Scale free network with N=10 and N=100 nodes. It is observed that the complex
dynamical network exhibits similar dynamical behavior such as stable equilibrium point, Flip bifurcation and chaos depending
on the changing the coupling strength parameter c s . Moreover, flip bifurcation and transition chaos happen earlier in more
heterogeneous networks. Calculating the Largest Lyapunov exponents guarantee the transition from nonchaotic to chaotic
states in complex dynamical networks.
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Abstract

In this study, an Cournot duopoly model describing conformable fractional order dif-
ferential equations with piecewise constant arguments is discussed. We have obtained
two dimensional discrete dynamical system as a result of the discretization process is
applied to the model. By using the center manifold theorem and the bifurcation the-
ory, it is shown that the discrete dynamical system undergoes flip bifurcation about
the Nash equilibrium point. Phase portraits, bifurcation diagrams, Lyaponov expo-
nents show the existence of many complex dynamical behavior in the model such
as stable equilibrium point, period-2 orbit, period-4 orbit, period-8 orbit, period-16
orbit and chaos according to changing the speed of adjustment parameter 𝑣1. Discrete
Cournot duopoly game model is also considered on a Scale free network with𝑁 = 10
and 𝑁 = 100 nodes. It is observed that the complex dynamical network exhibits
similar dynamical behavior such as stable equilibrium point, Flip bifurcation and
chaos depending on the changing the coupling strength parameter 𝑐𝑠. Moreover, flip
bifurcation and transition chaos happen earlier in more heterogeneous networks. Cal-
culating the Largest Lyapunov exponents guarantee the transition from nonchaotic
to chaotic states in complex dynamical networks.
KEYWORDS:
Conformable fractional derivative ,Piecewise constant arguments, Stability, Flip bifurcation; Scale Free
Network; Cournot duopoly game

1 INTRODUCTION

Dynamical systems are mathematical tools that are frequently used in many fields such as population dynamics, physics, engi-
neering and economics. In economy, researchers have proposed various mathematical models in order to explain competitive
interaction between firms by using both discrete and continuous dynamical systems. An important part of these models have
been focused on the interaction oligopolistic and duopoly markets. In 1838, Cournot proposed the first mathematical model
describing the interaction between duopolistic markets. Complex dynamical behavior of Cournot model was studied by many
researchers, such as, Agiza et al.1, Aziza et al.2 Yassen and Agiza3, Agiza and Elsadany4, Fanti and Gori5, Fanti et al.6, Zhu
et al.7, Gori et al.8, Elsadany9, Askar and Al kedhairi10. Agiza et al.1 modeled a duopoly game with bounded rationality by
using discrete dynamical systems. The stability and bifurcation analysis of the model reveal that Nash equilibrium point loses
its stability via period-doubling bifurcation.

†This is an example for title footnote.
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Researches have shown that memory and hereditary characteristics of the model that already exist in the natural structure
of systems can be reflected by using the fractional-order derivative. These features cannot be reflected in integer order models
and this situation leads to constitute a disadvantage in mathematical models. Considering this fact in the real world, many
researchers have begun to prefer using fractional order derivative which are the generalization of classical derivatives to non-
integer order11,12,13,14,15.

Al-khedhairi studied the fractional order cournot duopoly game model with Caputo sense as follows:
{

𝑑𝛼𝑞1(𝑡)
𝑑𝑡𝛼

= 𝑣1𝑞1(𝑡)(𝑎 − 𝑐 − 2𝑞1(𝑡) − 𝑑𝑞2(𝑡))
𝑑𝛼𝑞2(𝑡)
𝑑𝑡𝛼

= 𝑣2𝑞2(𝑡)(𝑎 − 𝑐 − 𝑑𝑞1(𝑡) − 2𝑞2(𝑡))
. (1)

Caputo and Riemann– Liouville fractional derivative is defined by means of an integral equation, and this also involves a
big problem due to the non-local properties of this integral. This disadvantage leads to a weakness in modeling physical and
biological phenomenon. In 2014, a new definition of fractional order derivative named conformable fractional derivative (𝑇𝛼𝑓 )(𝑡)
has been presented in order to overcome these problems arising in Caputo fractional order derivative16. This derivative has
some properties in connection with classical derivatives that are not in the Caputo fractional derivative17. For example, there
is a relation between the left conformable fractional derivative starting from a and the classical derivative of the function 𝑓 :
(𝑇 𝑎

𝛼 𝑓 )(𝑡) = (𝑡 − 𝑎)1−𝛼𝑓 ′(𝑡).
Many physical and biological events in our world contain very large complex processes in their structures. In the mathemat-

ical modeling of this complex structures networks that consists of nodes and edges are used.Therefore, it is not surprising that
researchers have shown so much interest to networks. In the literature, network that is the extension of graph theory has appli-
cations in many fields such as engineering18, biology19,20,21,22,23,24,25, economics26, social science27, physics28, chemistry29,
computer science30. One of the most widely known and used types of networks is scale-free networks. Scale free network is
a complex network where the number of connections per node(k)that is degree of a node has a power-law distribution. Com-
plex network has non-trivial topological features that do not exist in simple networks. Analysis of the dynamical behavior of the
complex network, such as synchronization, transition from non-chaotic to chaotic state as a result of bifurcation phenomena, is
a hot topic and these dynamical behaviors gives us information about the complexity of the network. In the study20,21, transition
chaos with respect to coupling strength parameter has been reported for logistic map on both scale free and Erdos Renyi random
network with 𝑁 = 1000 nodes. Huang et al.22 investigated dynamical behavior discrete time predator prey model on globally
coupled network and observed rich dynamical behavior such as stable equilibrium point, Flip and Neimark-Sacker bifurcation
and chaos in the complex network.

In this paper,we consider the following Cournot-type duopoly game model with conformable fractional order form where firms
(players) produce homogeneous goods which are perfect substitutes and offer them at continuous-time periods 𝑡 = 0, 1, 2, ... on
a common market.

{

𝑇 𝑎𝑞1(𝑡) = 𝑣1𝑞1(𝑡)(𝑎 − 𝑐 − 2𝑞1(𝑡) − 𝑑𝑞2(𝑡))
𝑇 𝑎𝑞2(𝑡) = 𝑣2𝑞2(𝑡)(𝑎 − 𝑐 − 𝑑𝑞1(𝑡) − 2𝑞2(𝑡))

. (2)
where 𝑞𝑖(𝑡) is the output of firm 𝑖 at time period 𝑡. The parameter 𝑎 represent extend of market demand of both products, 𝑐 is
marginal cost of the players, 𝑣𝑖 is speed parameters representing output adjustment.

2 DISCRETIZATION PROCESS

In this section, we will discretize the model (2) based on approximation given in31. Firstly, we consider the model (2) with
piecewise constant arguments as follows.

{

𝑇 𝑎𝑞1(𝑡) = 𝑣1𝑞1([
𝑡
ℎ
]ℎ)(𝑎 − 𝑐 − 2𝑞1([

𝑡
ℎ
]ℎ) − 𝑑𝑞2([

𝑡
ℎ
]ℎ))

𝑇 𝑎𝑞2(𝑡) = 𝑣2𝑞2([
𝑡
ℎ
]ℎ)(𝑎 − 𝑐 − 𝑑𝑞1([

𝑡
ℎ
]ℎ) − 2𝑞2([

𝑡
ℎ
]ℎ))

. (3)

Applying the property of conformable fractional derivative (𝑇 𝑎
𝛼 𝑓 )(𝑡) = (𝑡 − 𝑎)1−𝛼𝑓 ′(𝑡) to the system (3) in the interval 𝑡 ∈

[𝑛ℎ, (𝑛 + 1)ℎ) leads to
{

(𝑡 − 𝑛ℎ)1−𝛼 𝑑𝑞1(𝑡)
𝑑𝑡

= 𝑣1𝑞1(𝑛ℎ)(𝑎 − 𝑐 − 2𝑞1(𝑛ℎ) − 𝑑𝑞2(𝑛ℎ))
(𝑡 − 𝑛ℎ)1−𝛼 𝑑𝑞2(𝑡)

𝑑𝑡
= 𝑣2𝑞2(𝑛ℎ)(𝑎 − 𝑐 − 𝑑𝑞1(𝑛ℎ) − 2𝑞2(𝑛ℎ))

. (4)
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By rearranging the system (4), one can holds
{

𝑑𝑞1(𝑡) = 𝑣1𝑞1(𝑛ℎ)(𝑎 − 𝑐 − 2𝑞1(𝑛ℎ) − 𝑑𝑞2(𝑛ℎ))(𝑡 − 𝑛ℎ)𝛼−1𝑑𝑡
𝑑𝑞2(𝑡) = 𝑣2𝑞2(𝑛ℎ)(𝑎 − 𝑐 − 𝑑𝑞1(𝑛ℎ) − 2𝑞2(𝑛ℎ))(𝑡 − 𝑛ℎ)𝛼−1𝑑𝑡

. (5)

From the solutions of this system in the interval 𝑡 ∈ [𝑛ℎ, 𝑡), we obtain
{

𝑞1(𝑡) − 𝑞1(𝑛ℎ) = 𝑣1𝑞1(𝑛ℎ)(𝑎 − 𝑐 − 2𝑞1(𝑛ℎ) − 𝑑𝑞2(𝑛ℎ))
(𝑡−𝑛ℎ)𝛼

𝛼
𝑞2(𝑡) − 𝑞2(𝑛ℎ) = 𝑣2𝑞2(𝑛ℎ)(𝑎 − 𝑐 − 𝑑𝑞1(𝑛ℎ) − 2𝑞2(𝑛ℎ))

(𝑡−𝑛ℎ)𝛼

𝛼

. (6)

Let 𝑡 → (𝑛 + 1)ℎ, then we have
{

𝑞1((𝑛 + 1)ℎ) − 𝑞1(𝑛ℎ) = 𝑣1𝑞1(𝑛ℎ)(𝑎 − 𝑐 − 2𝑞1(𝑛ℎ) − 𝑑𝑞2(𝑛ℎ))
ℎ𝛼

𝛼
𝑞2((𝑛 + 1)ℎ) − 𝑞2(𝑛ℎ) = 𝑣2𝑞2(𝑛ℎ)(𝑎 − 𝑐 − 𝑑𝑞1(𝑛ℎ) − 2𝑞2(𝑛ℎ))

ℎ𝛼

𝛼

. (7)

Finally, to use an appropriate notation for the difference equations we replace 𝑞1(𝑛ℎ) and 𝑞2(𝑛ℎ) by 𝑞1(𝑛) and 𝑞2(𝑛). Therefore
we obtain the following system of difference equations

{

𝑞1(𝑛 + 1) = 𝑞1(𝑛) + 𝑣1𝑞1(𝑛)(𝑎 − 𝑐 − 2𝑞1(𝑛) − 𝑑𝑞2(𝑛))
ℎ𝛼

𝛼
𝑞2(𝑛 + 1) = 𝑞2(𝑛) + 𝑣2𝑞2(𝑛)(𝑎 − 𝑐 − 𝑑𝑞1(𝑛) − 2𝑞2(𝑛))

ℎ𝛼

𝛼

. (8)

3 STABILITY ANALYSIS

Discrete dynamical system (8) has four equilibrium point 𝐸1 = (0, 0), 𝐸2 = ( 𝑎−𝑐
2
, 0), 𝐸3 = (0, 𝑎−𝑐

2
) and 𝐸∗ = (𝑞∗1 , 𝑞

∗
2 ) =

( 𝑎−𝑐
2+𝑑

, 𝑎−𝑐
2+𝑑

). We note that 𝐸∗ is the unique interior Nash equilibrium point that exists for 𝑎 > 𝑐.
Theorem 1. If 𝑎 > 𝑐 then the equilibrium point 𝐸1 is source point.
Proof. The Jacobian matrix of the system (8) at 𝐸1 = (0, 0) is

𝐽 (𝐸0) =

(

1 + (𝑎−𝑐)ℎ𝛼𝑣1
𝛼

0
0 1 + (𝑎−𝑐)ℎ𝛼𝑣2

𝛼

)

and has the eigenvalues: 𝜆1 = 1 + (𝑎−𝑐)ℎ𝛼𝑣1
𝛼

and 𝜆2 = 1 + (𝑎−𝑐)ℎ𝛼𝑣2
𝛼

It is easily seen that if 𝑎 > 𝑐 then |𝜆1,2| > 1

Theorem 2. If 𝑎 > 𝑐 and 𝑑 ∈ (−1, 1) then the equilibrium point 𝐸2 is saddle point.
Proof. The Jacobian matrix of the system at 𝐸2 = ( 𝑎−𝑐

2
, 0) is

𝐽 (𝐸1) =

(

1 − (𝑎−𝑐)ℎ𝛼𝑣1
𝛼

− (𝑎−𝑐)𝑑ℎ𝛼𝑣1
2𝛼

0 1 − (𝑎−𝑐)(−2+𝑑)ℎ𝛼𝑣2
2𝛼

)

.

and has the eigenvalues: 𝜆1 = 1 − (𝑎−𝑐)ℎ𝛼𝑣1
𝛼

and 𝜆2 = 1 + (𝑎−𝑐)ℎ𝛼𝑣2
2𝛼

(2 − 𝑑). The conditions 𝑎 > 𝑐 and 𝑑 ∈ (−1, 1) guarantee
|𝜆1| < 1 and |𝜆2| > 1 respectively.
Theorem 3. If 𝑎 > 𝑐 and 𝑑 ∈ (−1, 1) then the equilibrium point 𝐸3 is saddle point.
Proof. The Jacobian matrix of the system at 𝐸3 = (0, 𝑎−𝑐

2
) is

𝐽 (𝐸3) =

(

1 − (𝑎−𝑐)(−2+𝑑)ℎ𝛼𝑣1
2𝛼

0
− (𝑎−𝑐)𝑑ℎ𝛼𝑣2

2𝛼
1 − (𝑎−𝑐)ℎ𝛼𝑣2

𝛼

)

.

and has the eigenvalues: 𝜆1 = 1 + (𝑎−𝑐)ℎ𝛼𝑣1
2𝛼

(2 − 𝑑) and 𝜆2 = 1 − (𝑎−𝑐)ℎ𝛼𝑣2
𝛼

. If 𝑑 ∈ (−1, 1), then |𝜆1| > 1 and if 𝑎 > 𝑐, then
|𝜆2| < 1.
Theorem 4. Suppose that 𝑎 > 𝑐, 𝑑 ∈ (−1, 1) and 0 < ℎ𝛼 < (2+𝑑)𝛼

(𝑎−𝑐)𝑣2
. If

𝑣1 <
4𝛼((2 + 𝑑)𝛼 + (−𝑎 + 𝑐)ℎ𝛼𝑣2)

(𝑎 − 𝑐)ℎ𝛼(4𝛼 + (𝑎 − 𝑐)(−2 + 𝑑)ℎ𝛼𝑣2)
. (9)

then 𝐸∗ is local asymptotically stable.
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Proof. The Jacobian matrix of the system at 𝐸∗ = (𝑞∗1 , 𝑞
∗
2 ) = ( 𝑎−𝑐

2+𝑑
, 𝑎−𝑐
2+𝑑

) is

𝐽 (𝐸∗) =

(

1 − 2(𝑎−𝑐)ℎ𝛼𝑣1
(2+𝑑)𝛼

(−𝑎+𝑐)𝑑ℎ𝛼𝑣1
(2+𝑑)𝛼

(−𝑎+𝑐)𝑑ℎ𝛼𝑣2
(2+𝑑)𝛼

1 − 2(𝑎−𝑐)ℎ𝛼𝑣2
(2+𝑑)𝛼

)

.

Moreover, the characteristic polynomial of 𝐽 (𝐸∗)) is given by:
𝑝(𝜆) = 𝜆2 + 𝑝1𝜆 + 𝑝0 (10)

where
𝑝1 = −2 +

2(𝑎 − 𝑐)ℎ𝛼(𝑣1 + 𝑣2)
(2 + 𝑑)𝛼

. (11)
and

𝑝0 = 1 − 2(𝑣1 + 𝑣2)
ℎ𝛼(𝑎 − 𝑐)
𝛼(𝑑 + 2)

+ 𝑣1𝑣2(4 − 𝑑)2(
ℎ𝛼(𝑎 − 𝑐)
𝛼(𝑑 + 2)

)2. (12)
In order to obtain stability conditions for the characteristic polynomial (10) at the Nash equilibrium point 𝐸∗ one can use the

Schur-Cohn criterions that are:
a) 1 + 𝑝1 + 𝑝0 > 0,
b) 1 − 𝑝1 + 𝑝0 > 0
c) 1 − 𝑝0 > 0.
From the condition (a), we always hold

1 + 𝑝1 + 𝑝0 = 𝑣1𝑣2(
(𝑎 − 𝑐)ℎ𝛼

(2 + 𝑑)𝛼
)2(4 − 𝑑)2 > 0. (13)

From (b) and (c) we have,
1 − 𝑝1 + 𝑝0 = 4 +

(𝑎 − 𝑐)ℎ𝛼(−(𝑎 − 𝑐)(−2 + 𝑑)ℎ𝛼𝑣1𝑣2 − 4𝛼(𝑣1 + 𝑣2))
(2 + 𝑑)𝛼2

(14)
and

1 − 𝑝0 =
(𝑎 − 𝑐)ℎ𝛼((𝑎 − 𝑐)(−2 + 𝑑)ℎ𝛼𝑣1𝑣2 + 2𝛼(𝑣1 + 𝑣2))

(2 + 𝑑)𝛼2
. (15)

Considering the inequalities 𝑎 > 𝑐, 𝑑 ∈ (−1, 1) and 0 < ℎ𝛼 < (2+𝑑)𝛼
(𝑎−𝑐)𝑣2

with the fact (9), we have 1−𝑝1+𝑝0 > 0 and 1−𝑝0 > 0.
This completes our proof.

4 BIFURCATION ANALYSIS

In this section, we discuss the existence and direction of flip bifurcation for the system (8) at the Nash equilibrium point 𝐸∗ by
using the center manifold and bifurcation theory in31,32,33,34,35,36. The existence of Flip bifurcation needs the algebraic conditions
that are
FB1) 1 + 𝑝1 + 𝑝0 > 0
FB2) 1 − 𝑝1 + 𝑝0 = 0
FB3) 𝑝1 ≠ 0, 2.
These three conditions guarantee 𝜆1 = −1 and |𝜆2| ≠ 1

Theorem 5. Suppose that the parameters satisfy 𝑎 ≠ 𝑐, 𝑎 ≠ 𝑐+ (2+𝑑)𝛼
ℎ𝛼𝑣2

, 𝑎 ≠
±
√

𝑑2(−4+𝑑2)ℎ2𝛼𝛼2𝑣22+(−2+𝑑)ℎ
𝛼𝑣2((2+𝑑)𝛼+𝑐ℎ𝛼𝑣2)

(−2+𝑑)ℎ2𝛼𝑣22
and 𝑛16 ≠ 0.

If 𝑣1 = 𝑣∗1 =
4𝛼((2+𝑑)𝛼+(−𝑎+𝑐)ℎ𝛼𝑣2)

(𝑎−𝑐)ℎ𝛼(4𝛼+(𝑎−𝑐)(−2+𝑑)ℎ𝛼𝑣2)
then the system (8) undergoes Flip bifurcation at the equilibrium point (𝑞∗1 , 𝑞∗2 ). Morever,

if 𝛼2 > 0 then the period-2 solution is stable, and if 𝛼2 < 0 then the period-2 solution is unstable.
Proof. From the FB1), we always holds 1 + 𝑝1 + 𝑝0 > 0. From the solution of the equation in FB2, we obtain the critical Flip
bifurcation point as

𝑣1 = 𝑣∗1 =
4𝛼((2 + 𝑑)𝛼 + (−𝑎 + 𝑐)ℎ𝛼𝑣2)

(𝑎 − 𝑐)ℎ𝛼(4𝛼 + (𝑎 − 𝑐)(−2 + 𝑑)ℎ𝛼𝑣2)
. (16)

For the value of this 𝑣∗1, the eigenvalues of the jacobian matrix are 𝜆1 = −1 and 𝜆2 =
4(2+𝑑)𝛼2+(𝑎−𝑐)ℎ𝛼𝑣2(3(−4+𝑑2)𝛼−2(𝑎−𝑐)(−2+𝑑)ℎ𝛼𝑣2)

(2+𝑑)𝛼(4𝛼+(𝑎−𝑐)(−2+𝑑)ℎ𝛼𝑣2)
.

In addition if 𝑎 ≠ 𝑐, 𝑎 ≠ 𝑐 + (2+𝑑)𝛼
ℎ𝛼𝑣2

and 𝑎 ≠
±
√

𝑑2(−4+𝑑2)ℎ2𝛼𝛼2𝑣22+(−2+𝑑)ℎ
𝛼𝑣2((2+𝑑)𝛼+𝑐ℎ𝛼𝑣2)

(−2+𝑑)ℎ2𝛼𝑣22
, then we have 𝑝1 ≠ 0, 2.



Fuat Gurcan ET AL 5

To decide the stability of the bifurcated period-2 points, we apply the center manifold reduction. Taking 𝑣1 as an independent
variable into the system (8) and making transformation: 𝑢 = 𝑞1 − 𝑞∗1 , 𝑣 = 𝑞2 − 𝑞∗2 ve 𝑣1 = 𝑣1 − 𝑣∗1, then the system (8) is
transformed into:

⎛

⎜

⎜

⎝

𝑢
𝑣1
𝑣

⎞

⎟

⎟

⎠

→

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(𝑎 − 𝑐)(4 + 𝑑2)ℎ𝛼𝑣2 − 4(2 + 𝑑)𝛼
(𝑎 − 𝑐)(−4 + 𝑑2)ℎ𝛼𝑣2 + 4(2 + 𝑑)𝛼

0
4(𝑎 − 𝑐)𝑑𝑣2ℎ𝛼 − 4𝑑(2 + 𝑑)𝛼

(𝑎 − 𝑐)(−4 + 𝑑2)𝑣2ℎ𝛼 + 4(2 + 𝑑)𝛼
0 1 0

−
(𝑎 − 𝑐)𝑑ℎ𝛼𝑣2
(2 + 𝑑)𝛼

0
(ℎ𝛼𝑣2(2𝑐 − 2𝑎) + (2 + 𝑑)𝛼)

(2 + 𝑑)𝛼

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑢
𝑣1
𝑣

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

𝑓1(𝑢, 𝑣1, 𝑣)
0

𝑓2(𝑢, 𝑣1, 𝑣)

⎞

⎟

⎟

⎠

(17)

where

𝑓1(𝑢, 𝑣1, 𝑣) = −
2(𝑎 − 𝑐)ℎ𝛼

(2 + 𝑑)𝛼
𝑘𝑢 − 2ℎ𝛼

𝛼
𝑘𝑢2 −

(𝑎 − 𝑐)𝑑ℎ𝛼

(2 + 𝑑)𝛼
𝑘𝑣 +

8((𝑎 − 𝑐)ℎ𝛼𝑣2 − (2 + 𝑑)𝛼)
(𝑎 − 𝑐)((𝑎 − 𝑐)(−2 + 𝑑)ℎ𝛼𝑣2 + 4𝛼)

𝑢2

−
4𝑑(−(𝑎 − 𝑐)ℎ𝛼𝑣2 + (2 + 𝑑)𝛼)

(𝑎 − 𝑐)((𝑎 − 𝑐)(−2 + 𝑑)ℎ𝛼𝑣2 + 4𝛼)
𝑢𝑣 − 𝑑ℎ𝛼

𝛼
𝑢𝑘𝑣,

𝑓2(𝑢, 𝑣1, 𝑣) = −
𝑑ℎ𝛼𝑣2
𝛼

𝑢𝑣 −
2ℎ𝛼𝑣2
𝛼

𝑣2

Let

𝑇 =

⎛

⎜

⎜

⎜

⎝

2(ℎ𝛼𝑣2(𝑐 − 𝑎) + (2 + 𝑑)𝛼)
(𝑎 − 𝑐)𝑑ℎ𝛼𝑣2

0 2𝑑𝛼
4𝛼 + (𝑎 − 𝑐)(−2 + 𝑑)ℎ𝛼𝑣2

0 1 0
1 0 1

⎞

⎟

⎟

⎟

⎠

and use the translation
⎛

⎜

⎜

⎝

𝑢
𝑣1
𝑣

⎞

⎟

⎟

⎠

= 𝑇
⎛

⎜

⎜

⎝

𝑋
𝜇
𝑌

⎞

⎟

⎟

⎠

. Then the map (17) becomes

⎛

⎜

⎜

⎝

𝑋
𝜇
𝑌

⎞

⎟

⎟

⎠

→

⎛

⎜

⎜

⎜

⎜

⎝

−1 0 0
0 1 0

0 0
−2(𝑎 − 𝑐)2(−2 + 𝑑)ℎ2𝛼𝑣22 + 3(𝑎 − 𝑐)(−4 + 𝑑2)ℎ𝛼𝑣2𝛼 + 4(2 + 𝑑)𝛼2

𝛼((𝑎 − 𝑐)(−4 + 𝑑2)ℎ𝛼𝑣2 + 4(2 + 𝑑)𝛼)

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑋
𝜇
𝑌

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

𝐹1(𝑋, 𝜇, 𝑌 )
0

𝐹2(𝑋, 𝜇, 𝑌 )

⎞

⎟

⎟

⎠

, (18)

where

𝐹1(𝑋, 𝜇, 𝑌 ) = 𝑛11𝑋𝑌 + 𝑛12𝑌
2 + 𝑛13𝑋

2 + 𝑛14𝑌 𝜇 + 𝑛15𝑌
2𝜇 + 𝑛16𝑋𝜇 + 𝑛17𝑋

2𝜇 + 𝑛18𝑋𝑌 𝜇
𝐹2(𝑋, 𝜇, 𝑌 ) = 𝑛21𝑋

2 + 𝑛22𝑌
2 + 𝑛23𝑋𝑌 + 𝑛24𝑋

2𝜇 + 𝑛25𝑋𝑌 𝜇 + 𝑛26𝑌
2𝜇 + 𝑛27𝑋𝜇 + 𝑛28𝑌 𝜇
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Let 𝑧 = (𝑎 − 𝑐)(−2 + 𝑑). Then the Taylor coefficient can be computed as:

𝑛11 =
2𝑑((𝑎 − 𝑐)3(−4 + 𝑑)2𝑣32ℎ

3𝛼 − 2(𝑎 − 𝑐)2(−4 + 𝑑)2𝑣22ℎ
2𝛼𝛼 + 4(𝑎 − 𝑐)(2 + 𝑑)2𝑣2ℎ𝛼𝛼2 − 8(2 + 𝑑)2𝛼3)

(𝑎 − 𝑐)(𝑧𝑣2ℎ𝛼 + 4𝛼)((𝑎 − 𝑐)𝑧𝑣22ℎ
2𝛼 − 2(𝑎 − 𝑐)(−4 + 𝑑2)𝑣2ℎ𝛼𝛼 − 4(2 + 𝑑)𝛼2)

𝑛12 = −
2𝑧𝑑2𝑣22ℎ

2𝛼((−𝑎 + 𝑐)𝑣2ℎ𝛼 + (2 + 𝑑)𝛼)(𝑧𝑣2ℎ𝛼 + 2(2 + 𝑑)𝛼)

(𝑧𝑣2ℎ𝛼 + 4𝛼)2((𝑎 − 𝑐)𝑧𝑣22ℎ
2𝛼 − 2(𝑎 − 𝑐)(−4 + 𝑑2)𝑣2ℎ𝛼𝛼 − 4(2 + 𝑑)𝛼2)

𝑛13 =
2(2 + 𝑑)(𝑧𝑣2ℎ𝛼 + 2(2 + 𝑑)𝛼)(2(𝑎 − 𝑐)2)𝑣22ℎ

2𝛼 + (𝑎 − 𝑐)(−4 + 𝑑)(2 + 𝑑)𝑣2ℎ𝛼𝛼 + 4(2 + 𝑑)𝛼2)

(𝑎 − 𝑐)2𝑑𝑣2ℎ𝛼((𝑎 − 𝑐)𝑧𝑣22ℎ
2𝛼 − 2(𝑎 − 𝑐)(−4 + 𝑑2)𝑣2ℎ𝛼𝛼 − 4(2 + 𝑑)𝛼2)

𝑛14 = −
(𝑎 − 𝑐)2𝑧𝑑2𝑣22ℎ

3𝛼

−2(𝑎 − 𝑐)2(−4 + 𝑑2)𝑣22ℎ
2𝛼𝛼 + 4(𝑎 − 𝑐)(−2 + 𝑑)(2 + 𝑑)2𝑣2ℎ𝛼𝛼2 + 8(2 + 𝑑)2𝛼3

𝑛15 = −
−(𝑎 − 𝑐)𝑧𝑑3𝑣22ℎ

3𝛼

(𝑎 − 𝑐)𝑧2𝑣32ℎ
3𝛼 − 2(𝑎 − 𝑐)𝑧(−6 + 𝑑2)𝑣22ℎ

2𝛼𝛼 − 12(𝑎 − 𝑐)(−4 + 𝑑2)𝑣2ℎ𝛼𝛼2 − 16(2 + 𝑑)𝛼3

𝑛16 = −
(𝑎 − 𝑐)ℎ𝛼(𝑧𝑣2ℎ𝛼 + 4𝛼)2

−2(𝑎 − 𝑐)𝑧𝑣22ℎ
2𝛼𝛼 + 4(𝑎 − 𝑐)(−4 + 𝑑2)𝑣2ℎ𝛼𝛼2 + 8(2 + 𝑑)𝛼3

𝑛17 =
(2 + 𝑑)(𝑧𝑣2ℎ𝛼 + 4𝛼)2((−𝑎 + 𝑐)𝑣2ℎ𝛼 + (2 + 𝑑)𝛼)

(𝑎 − 𝑐)𝑑𝑣2𝛼((𝑎 − 𝑐)𝑧𝑣22ℎ
2𝛼 − 2(𝑎 − 𝑐)(−4 + 𝑑2)𝑣2ℎ𝛼𝛼 − 4(2 + 𝑑)𝛼2)

𝑛18 =
((𝑎 − 𝑐)𝑧𝑑𝑣22ℎ

3𝛼 + 4𝑑(2 + 𝑑)ℎ𝛼𝛼2)

𝛼(−(𝑎 − 𝑐)𝑧𝑣22ℎ
2𝛼 + 2(𝑎 − 𝑐)(−4 + 𝑑2)𝑣2ℎ𝛼𝛼 + 4(2 + 𝑑)𝛼2)

𝑛21 =
2(2 + 𝑑)2((𝑎 − 𝑐)𝑣2ℎ𝛼 − 2𝛼)(𝑧𝑣2ℎ𝛼 + 4𝛼)((−𝑎 + 𝑐)𝑣2ℎ𝛼 + (2 + 𝑑)𝛼)
(𝑎 − 𝑐)2𝑑𝑣2ℎ𝛼((𝑎 − 𝑐)𝑧𝑣22ℎ

2𝛼 − 2(𝑎 − 𝑐)(−4 + 𝑑2)𝑣2ℎ𝛼𝛼 − 4(2 + 𝑑)𝛼2)

𝑛22 = 𝑣2ℎ
𝛼(−2

𝛼
+

𝑧𝑑3𝑣2ℎ𝛼

(𝑧𝑣2ℎ𝛼 + 4𝛼)2
−

2𝑑(−2 + 𝑑2)
𝑧𝑣2ℎ𝛼 + 4𝛼

+
𝑑((𝑎 − 𝑐)(−4 + 𝑑2)𝑣2ℎ𝛼 − 2(−1 + 𝑑)(2 + 𝑑)2𝛼)

(𝑎 − 𝑐)𝑧𝑣22ℎ
2𝛼 − 2(𝑎 − 𝑐)(−4 + 𝑑2)𝑣2ℎ𝛼𝛼 − 4(2 + 𝑑)𝛼2

)

𝑛23 = (−
(2 + 𝑑)2

𝑎 − 𝑐
−

2𝑣2ℎ𝛼

𝛼
−

𝑑3𝑣2ℎ𝛼

𝑧𝑣2ℎ𝛼 + 4𝛼

+
2𝑑𝑣2ℎ𝛼(−(𝑎 − 𝑐)(−4 + 𝑑2)𝑣2ℎ𝛼 + 2(−1 + 𝑑)(2 + 𝑑)2𝛼)
−(𝑎 − 𝑐)𝑧𝑣22ℎ

2𝛼 + 2(𝑎 − 𝑐)(−4 + 𝑑2)𝑣2ℎ𝛼𝛼 + 4(2 + 𝑑)𝛼2
)

𝑛24 = −
(2 + 𝑑)(𝑧𝑣2ℎ𝛼 + 4𝛼)2((−𝑎 + 𝑐)𝑣2ℎ𝛼 + (2 + 𝑑)𝛼)

(𝑎 − 𝑐)𝑑𝑣2𝛼((𝑎 − 𝑐)𝑧𝑣22ℎ
2𝛼 − 2(𝑎 − 𝑐)(−4 + 𝑑2)𝑣2ℎ𝛼𝛼 − 4(2 + 𝑑)𝛼2)

𝑛25 = −
((𝑎 − 𝑐)𝑧𝑑𝑣22ℎ

3𝛼 + 4𝑑(2 + 𝑑)ℎ𝛼𝛼2)

𝛼(−(𝑎 − 𝑐)𝑧𝑣22ℎ
2𝛼 + 2(𝑎 − 𝑐)(−4 + 𝑑2)𝑣2ℎ𝛼𝛼 + 4(2 + 𝑑)𝛼2)

𝑛26 =
(𝑎 − 𝑐)𝑧𝑑3𝑣22ℎ

3𝛼

(𝑎 − 𝑐)𝑧2𝑣32ℎ
3𝛼 − 2(𝑎 − 𝑐)𝑧(−6 + 𝑑2)𝑣22ℎ

2𝛼𝛼 − 12(𝑎 − 𝑐)(−4 + 𝑑2)𝑣2ℎ𝛼𝛼2 − 16(2 + 𝑑)𝛼3

𝑛27 =
(𝑎 − 𝑐)ℎ𝛼(𝑧𝑣2ℎ𝛼 + 4𝛼)2

−2(𝑎 − 𝑐)𝑧𝑣22ℎ
2𝛼𝛼 + 4(𝑎 − 𝑐)(−4 + 𝑑2)𝑣2ℎ𝛼𝛼2 + 8(2 + 𝑑)𝛼3

𝑛28 =
(𝑎 − 𝑐)2𝑧𝑑2𝑣22ℎ

3𝛼

−2(𝑎 − 𝑐)2(−4 + 𝑑2)𝑣22ℎ
2𝛼𝛼 + 4𝑧(2 + 𝑑)2𝑣2ℎ𝛼𝛼2 + 8(2 + 𝑑)2𝛼3

Suppose that
𝑊 𝑐(0) = {(𝑋, 𝜇, 𝑌 ) ∈ 𝑅3

|𝑌 = ℎ∗(𝑋, 𝜇), ℎ∗(0, 0) = 0, 𝐷ℎ∗(0, 0) = 0}

is the center manifold for the system of (𝑋, 𝑌 ) = (0, 0) near 𝜇 = 0.
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Assume that
ℎ∗(𝑋, 𝜇) = 𝐴𝑋2 + 𝐵𝑋𝜇 + 𝐺𝜇2 + 𝑂((|𝑋| + |𝜇|)3).

By approximate computation for the center manifold, we have
𝐴 =

(2 + 𝑑)𝛼(𝑧𝑣2ℎ𝛼 + 4𝛼)𝑛21
2𝑧𝑣2ℎ𝛼((𝑎 − 𝑐)𝑣2ℎ𝛼 − (2 + 𝑑)𝛼)

𝐵 =
(2 + 𝑑)𝛼(𝑧𝑣2ℎ𝛼 + 4𝛼)𝑛27

2(𝑎 − 𝑐)𝑧𝑣22ℎ
2𝛼 − 4(𝑎 − 𝑐)(−4 + 𝑑2)𝑣2ℎ𝛼𝛼 − 8(2 + 𝑑)𝛼2

𝐺 = 0

Now, the map (17) restricted to the center manifold is given by
𝐹 ∶ 𝑋 → −𝑋 + ℎ1𝑋

2 + ℎ2𝑋𝜇 + ℎ3𝜇
2 + ℎ4𝑋

3 + ℎ5𝑋
2𝜇 + ℎ6𝑋𝜇2 + ℎ7𝜇

3 + 𝑂((|𝑋| + |𝜇|)4) (19)
where

ℎ1 = 𝑛13
ℎ2 = 𝑛16
ℎ3 = ℎ7 = 0

ℎ4 =
(2 + 𝑑)𝛼(𝑧𝑣2ℎ𝛼 + 4𝛼)𝑛11𝑛21

2𝑧𝑣2ℎ𝛼((𝑎 − 𝑐)𝑣2ℎ𝛼 − (2 + 𝑑)𝛼)

ℎ5 = 1
2
(2𝑛17 + (2 + 𝑑)𝛼(𝑧𝑣2ℎ𝛼 + 4𝛼)(

𝑛14𝑛21
𝑧𝑣2ℎ𝛼((𝑎 − 𝑐)𝑣2ℎ𝛼 − (2 + 𝑑)𝛼)

+
𝑛11𝑛27

(𝑎 − 𝑐)𝑧𝑣22ℎ
2𝛼 − 2(𝑎 − 𝑐)(−4 + 𝑑)2𝑣2ℎ𝛼𝛼 − 4(2 + 𝑑)𝛼2

))

ℎ6 =
(2 + 𝑑)𝛼(𝑧𝑣2ℎ𝛼 + 4𝛼)𝑛14𝑛27

2(𝑎 − 𝑐)𝑧𝑣22ℎ
2𝛼 − 4(𝑎 − 𝑐)(−4 + 𝑑2)𝑣2ℎ𝛼𝛼 − 8(2 + 𝑑)𝛼2

As given by the flip bifurcation theorem in36, the emergence of flip bifurcation for map (18) requires

𝛼1 =
[

𝜕𝐹
𝜕𝜇

. 𝜕
2𝐹

𝜕𝑋2
+ 2 𝜕2𝐹

𝜕𝑋𝜕𝜇

]

|

|

|

|(0,0)
= 2𝑛16 ≠ 0

𝛼2 =

[

1
2
.
(

𝜕2𝐹
𝜕𝑋2

)2

+ 1
3
. 𝜕

3𝐹
𝜕𝑋3

]

|

|

|

|(0,0)
= 2 + 𝑑

(𝑎 − 𝑐)4𝑣22ℎ
2𝛼
𝑥(

8(2 + 𝑑)(𝑧𝑣2ℎ𝛼 + 2(2 + 𝑑)𝛼)2(2(𝑎 − 𝑐)2𝑣22ℎ
2𝛼 + (𝑎 − 𝑐)(−4 + 𝑑)(2 + 𝑑)𝑣2ℎ𝛼𝛼 + 4(2 + 𝑑)𝛼2)2

𝑑2((𝑎 − 𝑐)𝑧𝑣22ℎ
2𝛼 − 2(𝑎 − 𝑐)(−4 + 𝑑2)𝑣2ℎ𝛼𝛼 − 4(2 + 𝑑)𝛼2)2

+
(𝑎 − 𝑐)3𝑣2ℎ𝛼𝛼(𝑧𝑣2ℎ𝛼 + 4𝛼)𝑛11𝑛21
(−2 + 𝑑)((𝑎 − 𝑐)𝑣2ℎ𝛼 − (2 + 𝑑)𝛼)

) ≠ 0

Thus, the proof is completed.

5 COURNOT DUOPOLY GAME MODEL ON SCALE FREE NETWORK

In this section, we consider Cournot duopoly game model on Scale Free Network. Let a node of a network given by following
two-dimensional discrete dynamical system.

{

𝑥(𝑘 + 1) = 𝑥(𝑘) + 𝑣1𝑥(𝑘)(𝑎 − 𝑐 − 2𝑥(𝑘) − 𝑑𝑦(𝑘))ℎ
𝛼

𝛼
= 𝑓 (𝑥(𝑘), 𝑦(𝑘))

𝑦(𝑘 + 1) = 𝑦(𝑘) + 𝑣2𝑦(𝑘)(𝑎 − 𝑐 − 𝑑𝑥(𝑘) − 2𝑦(𝑘))ℎ
𝛼

𝛼
= 𝑔(𝑥(𝑘), 𝑦(𝑘))

. (20)
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FIGURE 1 Flip bifurcation diagram of the system (8) at the Nash equilibrium point for the parameter values 𝑎 = 19, 𝑐 =
0, 5,𝑑 = 0.6, 𝑣2 = 1, ℎ = 0.1 and 𝛼 = 0.95.
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FIGURE 2 Time series plot of model (8) with respect to parameter 𝑣1: (𝑎) stable equilibrium point for 𝑣1 = 0.7, (𝑏) period-2
orbit for 𝑣1 = 0.85, (𝑐) period-4 orbit for 𝑣1 = 1.15, (𝑑) period-8 orbit for 𝑣1 = 1.23, (𝑑) period-16 orbit for 𝑣1 = 1.244, (𝑓 )
chaos for 𝑣1 = 1.35.

If we take into account𝑁 connected coupled identical nodes in network, then state equations of this network are given as follows:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥𝑖(𝑘 + 1) = 𝑓 (𝑥𝑖(𝑘), 𝑦𝑖(𝑘)) − 𝑐𝑠
𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑓 (𝑥𝑗(𝑘), 𝑦𝑗(𝑘))

𝑦𝑖(𝑘 + 1) = 𝑔(𝑥𝑖(𝑘), 𝑦𝑖(𝑘)) − 𝑐𝑠
𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑔(𝑥𝑗(𝑘), 𝑦𝑗(𝑘))

(21)
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FIGURE 3 Phase portrait of the system (8) with respect to parameter 𝑣1: (𝑎) 𝑣1 = 1.25, (𝑏) 𝑣1 = 1.3, (𝑐) 𝑣1 = 1.35, (𝑑)
𝑣1 = 1.39.
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FIGURE 4 Maximum Lyapunov exponents with changing the parameter 𝑣1.

where 𝑖 and 𝑗 are the sequence number of the nodes in the coupled dynamical network, 𝑐𝑠 is the coupling strength of the network.
The coupling matrix 𝐴 ∈ 𝑅𝑁𝑥𝑁 can be expressed by

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑑11 𝑎12 𝑎13 … 𝑎1𝑁
𝑎12 𝑑22 𝑎23 … 𝑎2𝑁
𝑎13 𝑎23 𝑑33 … 𝑎3𝑁
⋮ ⋮ ⋮ ⋱ …

𝑎1𝑁 𝑎2𝑁 𝑎3𝑁 … 𝑑𝑁𝑁

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(22)
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FIGURE 5 Scale free network with 𝑁 = 10 nodes.

If there is a connection between node 𝑖 and 𝑗, then 𝑎𝑖𝑗 = 1; otherwise, 𝑎𝑖𝑗 = 0(𝑖 ≠ 𝑗). Let 𝑎𝑖𝑖 = −𝑑𝑖, 𝑖 = 1, 2, ..., 𝑁 , where 𝑑𝑖 is
the degree of node 𝑖 and can be defined by the following equation:

𝑑𝑖𝑖 = −
𝑁
∑

𝑗=1,𝑗≠𝑖
𝑎𝑖𝑗 = −

𝑁
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗𝑖

A matrix form of system (21) is
{

𝑋𝑘+1 = (𝐼 − 𝑐𝐴)𝑓 (𝑋(𝑘), 𝑌 (𝑘))
𝑌𝑘+1 = (𝐼 − 𝑐𝐴)𝑔(𝑋(𝑘), 𝑌 (𝑘))

. (23)
where 𝑋𝑘 = (𝑥1(𝑘), 𝑥2(𝑘), ..., 𝑥𝑁 (𝑘)), 𝑌𝑘 = (𝑦1(𝑘), 𝑦2(𝑘), ..., 𝑦𝑁 (𝑘)) and 𝐼 ∈ 𝑅𝑁𝑥𝑛 is identity matrix.

6 NUMERICAL SIMULATIONS

In this section, we give some numerical simulations of the theoretical results obtained in section 3, section 4 and section 5.
Theorem 1, Theorem 2 and Theorem 3 present algebraic conditions for local asymptotically stable of the equilibrium points
𝐸1 = (0, 0), 𝐸2 = ( 𝑎−𝑐

2
, 0), 𝐸3 = (0, 𝑎−𝑐

2
) respectively. Since these equilibrium points have no economic implications, their

mathematical consequences will not be discussed. Now we focus on the Nash equilibrium point 𝐸∗ = (𝑞∗1 , 𝑞
∗
2 ) = ( 𝑎−𝑐

2+𝑑
, 𝑎−𝑐
2+𝑑

) that
is very important to market economy. Theoretical results show that speed of adjustment parameter 𝑣1 plays a key role on the
dynamics of market. Theorem 4 gives the stability region for the Nash equilibrium point 𝐸∗ with respect to parameter 𝑣1. For
the numerical simulations we choose the parameter as 𝑎 = 19, 𝑐 = 0.5, 𝑑 = 0.6, 𝑣2 = 1, ℎ = 0.1 and 𝛼 = 0.95. Inequality (9)
gives stable region with respect to parameter 𝑣1 as 𝑣1 < 0.807378. In section 5, we deal with the Flip bifurcation analysis by
using center manifold theory about the Nash equilibrium point 𝐸∗. For this purpose the parameter 𝑣1 select as a Flip bifurcation
parameter due to above fact. The critical value of speed of adjustment parameter 𝑣∗1 for this bifurcation is given (16). For the
above parameter values we get this value as 𝑣∗1 = 0.807378. In addition for this critical value the jacobian matrix has the
eigenvalues 𝜆1 = −1 and 𝜆2 = −0.0377623. On the other hand we holds 𝑎 ≠ 0.5, 𝑎 ≠ 23.6725 and 𝛼1 = −0.00714402 ≠ 0
and 𝛼2 = 0.0879606 ≠ 0. Now all of the conditions of Flip bifurcation satisfy and this bifurcation emerge about the Nash
equilibrium point 𝐸∗ = (7.11538, 7.11538) (Figure 1). Moreover, discrete dynamical system exhibit more complex phenomena
by increasing the value of 𝑣1 about the Nash equilibrium point such as stable equilibrium point for 𝑣1 = 0.7, period-2 orbit for
𝑣1 = 0.85, period-4 orbit for 𝑣1 = 1.15, period-8 orbit for 𝑣1 = 1.23, period-16 orbit for 𝑣1 = 1.244 and chaos for 𝑣1 = 1.35.
We note that period-2 solutions is stable because we hold 𝛼2 > 0 (Figure 2). Figure 3 shows the chaotic attractor with respect
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FIGURE 6 Complex dynamics of the discrete Cournot duopoly game model on scale free network with 𝑁 = 10 nodes.

FIGURE 7 Scale free network with 𝑁 = 100 nodes.

to increasing the speed of adjustment parameter where 𝑣1 = 1.25, 𝑣1 = 1.3, 𝑣1 = 1.35 and 𝑣1 = 1.39. Figure 4 shows the
maximum Lyapunov exponent according the changing the parameter 𝑣1 where some Lyapunov exponents are bigger than 0,
some are smaller than 0. Positive Lyapunov exponent guarantees the existence of chaotic motion for discrete dynamical system
about Nash equilibrium point.

In section 5, we also study the discrete time cournot duopoly game model (8) on scale free network with the parameter 𝑎 = 19,
𝑐 = 0.5, 𝑑 = 0.6, 𝑣2 = 1, ℎ = 0.1, 𝛼 = 0.95 and 𝑣1 = 0.75 that are not located in chaotic regions. If the dynamics of each
node can represent cournot-duopoly game model (20), then dynamics of 𝑁 connected coupled identical nodes in scale free
network are given N-dimensional system of difference equations (21). Such a network can be viewed as a product output market
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FIGURE 8 Complex dynamics of Cournot duopoly game model on scale free network with 𝑁 = 100 nodes.

competition based on the interaction between two chain markets. For the numerical simulations, we use scale free network with
𝑁 = 10 and 𝑁 = 100 nodes respectively which are plotted in Figure 5 and Figure 7.

In order to see the complex dynamical behavior of network with 𝑁 = 10 nodes we focus on the nodes in networks with the
highest degree, which for is 2 and its degree is 8. So we plot the bifurcation diagram with respect to parameter coupling strength
of the network 𝑐𝑠 against to 𝑥2 where the coupling matrix 𝐶 is

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−5 1 1 0 1 1 1 0 0 0
1 −8 1 1 1 0 1 1 1 1
1 1 −4 1 0 1 0 0 0 0
0 1 1 −2 0 0 0 0 0 0
1 1 0 0 −5 0 0 1 1 1
1 0 1 0 0 −2 0 0 0 0
1 1 0 0 0 0 −2 0 0 0
0 1 0 0 1 0 0 −2 0 0
0 1 0 0 1 0 0 0 −2 0
0 1 0 0 1 0 0 0 0 −2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Figure 6 shows that if the coupling parameter 𝑐𝑠 reaches the some critical value where it is interval 𝑐𝑠 ∈ [0.03, 0.04], then
Flip bifurcation occurs about the positive equilibrium point. In addition, complex dynamical network exhibit similar dynamical
behavior with respect to parameter 𝑐𝑠 such as stable equilibrium point for 𝑐𝑠 = 0.06, period-2 orbit for 𝑐𝑠 = 0.037, period-4 orbit
for 𝑐𝑠 = 10.045, period-8 orbit for 𝑐𝑠 = 0.048, period-16 orbit for 𝑐𝑠 = 0.049 and chaos for 𝑐𝑠 = 0.055 (Figure 9). Then, we
again examine the dynamics of the network with 𝑁 = 100 nodes by increasing the number of nodes with the highest degree,
which for is 1 and its degree is 17. Figure 8 shows that Flip bifurcation occurs at a smaller value of 𝑐𝑠 in the complex dynamical
network with 𝑁 = 100 nodes where it is in range 𝑐𝑠 ∈ [0.015, 0.02]. So, we can say that as the number of node increases,
bifurcation occur at a lower coupling strength parameter 𝑐𝑠.

In addition we also calculate Largest Lyapunov Exponent in order to see the chaotic motion in scale free network with 𝑁 = 10
nodes and 𝑁 = 100 nodes. The procedure calculating the Largest Lyapunov Exponent is first introduced in study37,38 and based
on procedure that use the least squares method to fit line to the slope of the natural logarithm of the absolute value of lower bound
error. In Figure 10 the slop of the red line is the Largest Lyapunov Exponents that are 0.337 and 0.309 for 𝑁 = 10 nodes and
𝑁 = 100 nodes respectively. Largest Lyapunov exponents provide evidence for the existence of chaos in complex dynamical
network.
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FIGURE 9 Dynamical behavior of scale free network with 𝑁 = 10 node on Cournot duopoly game model. (a) stable equilib-
rium point for 𝑐𝑠 = 0.06, (b) period-2 orbit for 𝑐𝑠 = 0.037, (c) period-4 orbit for 𝑐𝑠 = 0.045, (d) period-8 orbit for 𝑐𝑠 = 0.048,
(e) period-16 orbit for 𝑐𝑠 = 0.049, (f) chaos for 𝑐𝑠 = 0.055.

7 CONCLUSIONS

In this work, we have studied cournot-duopoly game model via conformable fractional order form with piecewise constant
arguments. From the solutions of the model with piecewise constant arguments gives us two dimensional system of difference
equations. Phase portrait, bifurcation diagrams and positive Lyapunov exponents indicate that discrete model displays many
complex dynamical behavior about the Nash equilibrium point such as stable equilibrium point, period-2 orbit, period-4 orbit,
period-8 orbit, period-16 orbit and chaos according to changing the speed of adjustment parameter 𝑣1. Discrete cournot-duopoly
game model is also considered on the scale free network with 𝑁 = 10 and 𝑁 = 100 nodes. In this situation we investigate the
effect of the coupling strength parameter 𝑐𝑠 on the dynamical behavior of the complex network where the other parameters are
not located in chaotic region. Bifurcation diagrams show that there exists the transition from non-chaotic states to chaotic state
in the networks depending on the parameter 𝑐𝑠. Calculating the largest Lyapunov exponents confirm the existence of chaos for
the complex networks.
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