High-performance perovskite/silicon heterojunction solar cells enabled by industrially compatible post annealing

Guangyi Wang¹, Zongyi Yue¹, Zengguang Huang¹, Wenzhu Liu², Rui Tong³, Haipeng Yin³, Lifei Yang⁴, Fucheng Yu¹, Zongyang Sun⁵, and Sihua Zhong¹

¹Jiangsu Ocean University ²Shanghai Institute of Microsystem and Information Technology ³JA Solar Technology Co Ltd ⁴SuZhou GH New Energy Tech Co Ltd ⁵Jinghaiyang Semiconductor Materials Co Ltd

February 1, 2023

Abstract

In recent years, developing dopant-free carrier-selective contacts, instead of heavily doped Si layer (either externally or internally), for crystalline silicon (c-Si) solar cells have attracted considerable interests with the aims to reduce parasitic light absorption and fabrication cost. However, the stability still remains a big challenge for dopant-free contacts, especially when thermal treatment is involved, which limits their industrial adoption. In this study, a perovskite material ZnTiO ₃ combining with an ultrathin (1 nm) SiO ₂ film and Al layer is used as an electron-selective contact, forming an isotype heterojunction with n-type c-Si. The perovskite/c-Si heterojunction solar cells exhibit a performance-enhanced effect by post-metallization annealing when the annealing temperature is 200-350 °C. Thanks to the post-annealing treatment, an impressive efficiency of 22.0% has been demonstrated, which is 3.5% in absolute value higher than that of the as-fabricated solar cell. A detailed material and device characterization reveal that post annealing leads to the diffusion of Al into ZnTiO ₃ film, thus doping the film and reducing its work function. Besides, the coverage of SiO ₂ is also improved. Both these two factors contribute to the enhanced passivation effect and electron selectivity of the ZnTiO ₃-based contact, and hence improve the cell performance.

High-performance perovskite/silicon heterojunction solar cells enabled by industrially compatible post annealing

Guangyi Wang¹, Zongyi Yue¹, Zengguang Huang¹, Wenzhu Liu², Rui Tong³, Haipeng Yin³, Lifei Yang⁴, Fucheng Yu¹, Zongyang Sun⁵ and Sihua Zhong^{*,1}

- 1. School of Science, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China
- Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 201800, China
- 3. JA Solar, Yangzhou, Jiangsu Province 225131, China
- 4. SuZhou GH New Energy Tech. Co., Ltd, Suzhou, Jiangsu Province 215168, China
- 5. Jinghaiyang Semiconductor Materials Co., Ltd, Lianyungang, Jiangsu Province 222399, China

*Corresponding author, E-mail: shzhong@jou.edu.cn

In recent years, developing dopant-free carrier-selective contacts, instead of heavily doped Si layer (either externally or internally), for crystalline silicon (c-Si) solar cells have attracted considerable interests with the aims to reduce parasitic light absorption and fabrication cost. However, the stability still remains a big

challenge for dopant-free contacts, especially when thermal treatment is involved, which limits their industrial adoption. In this study, a perovskite material ZnTiO₃ combining with an ultrathin (~1 nm) SiO₂ film and Al layer is used as an electron-selective contact, forming an isotype heterojunction with n-type c-Si. The perovskite/c-Si heterojunction solar cells exhibit a performance-enhanced effect by post-metallization annealing when the annealing temperature is 200-350 °C. Thanks to the post-annealing treatment, an impressive efficiency of 22.0% has been demonstrated, which is 3.5% in absolute value higher than that of the as-fabricated solar cell. A detailed material and device characterization reveal that post annealing leads to the diffusion of Al into ZnTiO₃film, thus doping the film and reducing its work function. Besides, the coverage of SiO₂ is also improved. Both these two factors contribute to the enhanced passivation effect and electron selectivity of the ZnTiO₃-based contact, and hence improve the cell performance.

Keywords: perovskite, dopant-free, carrier-selective contacts, thermal stability, silicon solar cells.