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Abstract

:30.0 The development of machine learning technologies are broadly changing how humans interact with their environments

across all sectors. In industrial settings, this is referred to as the fourth industrial revolution, Industry 4.0, and encompasses

several technologies that are pushing the boundaries of industrial automation. In this study, a general industrial process op-

timization (GIPO) methodology is formulated in the context of Industry 4.0 and tested on an industrial Injection Molding

Machine (IMM). GIPO aims to encourage the practical inclusion of industrial artificial intelligence at all levels of the manufac-

turing process while enabling industrial equipment to adapt to a changing processing environment. Special attention is given to

the generality of the methodology so that it can be extended to other applications. In the example case study presented here,

GIPO combines nearest neighbors classification and nearest neighbors optimization methods to effectively optimize an Injection

molding process. Practical implementation conducted on the IMM demonstrates a novel methodology to leverage data mining

and machine learning methods in a real-world setting to improve the overall performance regarding production time, energy

cost, and production quality.
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T:he development of machine learning technologies are broadly changing

how humans interact with their environments across all sectors. In indus-

trial settings, this is referred to as the fourth industrial revolution, Industry

4.0, and encompasses several technologies that are pushing the boundaries

of industrial automation. In this study, a general industrial process opti-

mization (GIPO) methodology is formulated in the context of Industry 4.0

and tested on an industrial Injection Molding Machine (IMM). GIPO aims

to encourage the practical inclusion of industrial artificial intelligence at all

levels of the manufacturing process while enabling industrial equipment to

adapt to a changing processing environment. Special attention is given to

the generality of the methodology so that it can be extended to other appli-

cations. In the example case study presented here, GIPO combines nearest

neighbors classification and nearest neighbors optimization methods to ef-

fectively optimize an Injection molding process. Practical implementation

conducted on the IMM demonstrates a novel methodology to leverage data

mining and machine learning methods in a real-world setting to improve

the overall performance regarding production time, energy cost, and pro-

duction quality.

Keywords: Industry 4.0, Injection Molding, Process Control Optimiza-

tion, Industrial Machine Learning

Introduction
The term Industry 4.0 (I4) describes a growing collection of technologies available for

factories to improve process performance. The combination of these technologies is

revolutionary in terms of moving the manufacturing industry into the next generation

of functionality. Combining data mining, machine learning methodologies, smart sen-

sors, and a new generation of connected automation tools, has made smart systems

the modern factory standard. Industrial equipment is broadly being fitted with smart
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sensors and integration of intelligent automation routines is becoming increasingly

common. To maximize the effectiveness of these systems, all of the components of a

smart process must integrate fluidly. In this study plastic injection molding (PIM)

serves as a benchmark industrial process for the development of a general industrial

process optimization (GIPO) methodology because of its complexity and prominence

in the manufacturing industry. There has been significant development in recent years

in terms of intelligent manufacturing in PIM, a process where the molten polymer is

pushed into a mold and allowed to cool. The production quality of the plastic parts

achieved through injection molding depends greatly on multiple highly coupled process

variables that are difficult to measure and control [1].

One avenue of leveraging machine learning to improve the efficiency of the the

PIM process is a quality prediction of the produced part. In their work, Jung et al.

highlighted the use of autoencoders to capture the driving features in prediction quality

[2]. Quality prediction is one part of the solution to improving the overall process,

but it is necessary to consider the optimization of the production parameters. Some

researchers have turned to knowledge-based systems to improve the overall process

parameters [3]. Others have contributed with methods to reduce the dependencies

of modeling actives on data such as Locker & Hopmann, who made use of transfer

learning for process modeling [4]. The standard approach for improving overall PIM

production is to optimize the predicted output of a given set of parameters using a

model [5, 6, 7]. One notable characteristic of the PIM process however is that the

dynamics of the many coupled process variables operate at different time scales. The

time required to heat a metal mold is significantly more than the time required to

harden molten plastic and produce a part. As such, converging to an optimal set of

process parameters for an entire production line is limiting, in other words, optimal

process parameters are not constant. The GIPO structure formulated here aims to

help address this while contributing to the growing body of intelligent manufacturing

literature and practical application examples.

In addition to the above, it is important to consider the challenges and opportu-
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nities that exist in transitioning through I4 [8]. Several studies have highlighted the

necessity of standardization of intelligent system approaches for ease of integration of

new technologies and availability are some of the challenges that need to be addressed

for industry to move into the next generation of advanced automation [9, 10, 11]. The

development and testing of methods to adapt industrial machinery to highly dynamic

and complex manufacturing environments are necessary for the global manufacturing

community to converge on a set of best practices and standard approaches [12]. This is

especially true when considering machine-to-machine communication and operation,

where different types of machines share information to optimize a factory-level process.

To this end, GIPO is formulated here and presents a generic procedure for including

machine learning and data mining methods in different types of industrial processes.

The GIPO approach is formulated and tested using an PIM to improve process per-

formance for target production goals: (1) quality of production, (2) production time,

and (3) energy consumption. These production goals are chosen as their optimization

is expected to result in a more environmentally responsible and profitable process.

Plastic Injection Molding Process
IM production can be considered as a combination of sub-processes that can be divided

into three categories: (1) plastication, (2) injection, and (3) cooling. These will be

discussed in terms of how they contribute to final part quality and overall process

performance. It is important to understand how the PIM sub-processes affect each

other as the main contribution of GIPO is the codification of these highly dynamic

and interactive processes in order to adapt to the changing processing environment.
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Plastication

The production of a single part begins with plastication. During plastication, a rotating

screw inside a heated barrel draws polymer pellets into the barrel where they begin to

melt as a result of shearing forces and applied heat energy. This rotating action moves

the polymer to the front of the screw while the screw is allowed to move backward

under a controlled back pressure. During injection, the polymer melt that is at the

front of the screw will be pushed into the mold. The final quality of the part will

be dependent on several factors that have already come into play at this point in the

production of a single part. These include, material temperature, and the pressure that

the material is subject to during the plastication phase. Knowledge of the material

composition and control of plastication pressure and speed, can be used to mitigate

production problems [13]. This is especially true when considering the entire IMP

which is made up of many measurable states such as mold temperature or material

composition.

Injection

The injection phase of the PIM process consists of filling the mold with polymer,

packing the polymer melt into the mold, and holding the polymer in the mold until

the gate has frozen. The gate is the orifice through which the polymer enters the mold

cavity. It is the smallest cross-section of the ejected part and is expected to harden

first. The injection phase of part production is directly tied to the pressure inside

the mold. It is well accepted that a consistent and desirable cavity pressure profile

will result in consistent quality part production . Cavity pressure is considered the

main measurable parameter to predict the part outcome, injection speed and mold

temperature are production parameters that can be used to affect cavity pressure

[17, 18, 19].

There are many challenges to controlling cavity pressure: (1) the filling and packing
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phase that is responsible for the rise to peak pressure happens quickly, (2) the control

ability of the pressure profile is sensitive to the states of the mold and the material,

and (3) it is often expensive and impractical to have pressure sensors in an injection

mold. In this research, the conditions that exist in the mold are inferred based on

observable outcomes over several cycles.

Cooling

Once the gate has frozen, cooling has begun. This is the last opportunity during the

cycle to affect the production outcome. As the polymer solidifies in the mold, internal

stresses must be allowed to dissipate to avoid undesirable mechanical properties of the

part such as warping. The main control variables in the cooling process are coolant

flow rates and temperatures [14]. Several methods have been used to improve the

consistency and distribution of cooling such as predictive models, conformal cooling,

and pulse cooling [15, 20, 21]. The main challenges to consider for the cooling phase of

a cycle are cooling limitations due to part geometry and inconsistency of overall mold

temperature. Cooling is the longest phase of the PIM cycle and is often the subject of

cycle time reduction tactics.

General Industrial Process Optimization

Structure
The study presented here aims to formulate a practical implementation of an adaptive

process optimization routine. The methodologies used to achieve the base implemen-

tation of GIPO on the PIM are elementary, the focus of the study is the architecture

used to leverage machine learning and optimization into a dynamic complex process.

The GIPO approach considers a manufacturing process where a task or several tasks
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are repeated, with each repetition treated as a cycle. The example scenario presented

in this case is a PIM, but the concepts described here apply to a wider range of ap-

plications. The following is a generic description of the GIPO methodology presented

in the flow chart in Fig. 1 with components described in greater detail here.

Plant and System Controllers

In the context of GIPO, a plant is made up of one or more physical production com-

ponents, such as machinery or processes that produce process variables. In the case of

PIM, the plant is a combination of the injection molding machine and the mold chilling

machinery. Process variables include: (1) any sensor or transducer measurement that

can be digitally processed such as thermocouples, encoders, or current sensors, (2)

variables that may not be measured, and (3) control variables such as speed, tempera-

ture, and pressure setpoints. GIPO achieves desired improvement goals by modulating

process set points at a process cycle rate based on measured values that directly or

indirectly affect the production process outcome.

Data Filters

Machine data produced in an industrial setting is typically large in volume, high in

velocity, and subject to noise. Pre-processing can be used to reduce the dimension

of the collected data as well as to appropriately remove noise. A data filter should

codify tacit knowledge of a human operator, deciding what combinations of sensors

and past decisions are important in achieving the end goal of improving the produc-

tion process outcome. In this implementation of GIPO knowledge and experience of

the manufacturing process was used to design an effective data filter. In this study,

operations within the data filter limit consideration to key sensor measurements and

a smart sensor, the Eigen Smart Module (ESM). The ESM translates thermal images

into quality measurements. This greatly condenses the produced machine data into a
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pragmatic cycle datasets that can be compared against a larger process datasets. This

is discussed in more detail in section . The cycle data, considered to be an instance is

fed into a classifier that contains the process dataset. This is the Industrial Artificial

Intelligence (IAI) engine 1 from Fig. 1. The process dataset that is contained in the

IAI Engine 1 is the driving hypothesis space, H, of the GIPO methodology.

IAI Engine N - Setpoint Selector

The flow chart presented in Fig. 1 is a small-scale formulation of GIPO that is concen-

trated on one production unit, for example, one PIM cycle. Since a single production

unit is considered in this formulation, the IAI engine N is labeled 1, N = 1. The pur-

pose of GIPO Engine 1 is to select the optimal set of setpoints from H that is safe and

achievable for the next production cycle. The target optimization goal should be de-

termined based on plant requirements. Examples of target process optimization goals

include quality, energy management, tool ware mitigation, cycle time, or a weighted

combination of these. The following constraints for Engine 1 must be considered: (1)

the change in setpoint from one cycle to another should be limited, and (2) processing

time for solving the objective must be done between cycles and should be kept to a

minimum. The suggested format for GIPO is as follows.

S = Hmax{αΛΛ+ α1P1 + α2P2 + · · ·+Pnαn} (1)

Where S is the list of optimal process set points, H is a hypothesis space, Λ is a

likeness measurement, Pn performance measurement such as product quality and αn
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are corresponding weighting factors. The hypothesis space follows the format:



A1,(i−n) · · · A1,(i−2) A1,(i−1) A1,(i) A1,(i+1)

A2,(i−n) · · · A2,(i−2) A2,(i−1) A2,(i) A2,(i+1)

...
...

...
...

...
...

Am,(i−n) · · · A(m,i−2) Am,(i−1) Am,(i) Am,(i+1)


(2)

Where A is a set of attributes that describes the operating conditions of a cycle,

including setpoints for process parameters. The variable i is the most recent production

cycle, and n is the number of previous cycles considered to affect the outcome of the

current cycle. The number of instances that are included in a H is m. Only instances

with successful outcomes are considered in H

Every time a cycle finishes, the attributes of the most recent cycle and n previous

cycles are compared with the instances in H to determine a likeness score Λ. This

is similar to a K-nearest neighbor classifier algorithm. The Λ is calculated using a

percent difference between each attribute and then using a mean squared error to

generate a single number for each instance in H.

Λm =

√√√√ i∑
i−n

(2[
|ai,j − am,i,j |
ai,j + am,i,j

]100)2 (3)

Where j in the term am,i,j represents the iteration within the attribute list Am,i

from equation 2. At the end of every cycle after the likeness, a score is obtained an

optimal point is selected from H using equation 1. When the Λ is heavily weighted

αΛ compared to other weights αn progression from one operating state to another

will be slow. In some, cases this is desirable otherwise the weight αΛ can be adjusted

accordingly.
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IAI Main Engine Updater

The main IAI engine in the GIPO methodology is responsible for maintaining the

H for GIPO Engines N. As new instances are created, they may be added to the H

based on criteria set in the main IAI Engine. These updates can be made outside of the

cycle loop, which allows more intensive data mining and machine learning operations

to occur. Additionally, this distributed format allows the separation of knowledge. For

example, the main engine may contain data for multiple mold configurations of an

PIM, but the IAI engine N is only fed knowledge about the current mold that is used.

This structure allows for a limitation to the size of the hypothesis space which may

be desirable to ensure timely processing for any IAI Engine N optimization routine.

The separation of the cycle to the cycle variables (pressures and temperatures),

and other process variables (material distributor and manufacture part) mitigates the

curse of dimensionality by providing a real-time setpoint selection methodology. IAI

Engine 1 can use an elementary classification routine while a more complex process

optimization routine at the IAI Main Engine level can be leveraged. New data is con-

tinuously introduced in the IAI Main Engine, but the machine data will be repetitive

and may not represent the full scope of possible outcomes to include in the H. This

would equate to lost opportunities for improved process performance. A closer in-

spection of the IAI engine classifier routine will show the methodology resembles a

standard nearest neighborsrs optimization routine, in that context, there is a danger

that the algorithm finds a local minimum and remains in a sub-optimal operation re-

gion. When considering that GIPO is emulating a human operator, this would equate

to an experienced operator being reluctant to try a new set of operating conditions

on a piece of machinery.

The creation of waypoints is an important tactic that must be considered to ensure

proper perturbation of the process and allow continued exploration of the process

variable space during operation. Waypoints are false instances that are fabricated

based on the belief that a better operating condition, than those examples provided, in
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the H exists. These points can be created in several ways, randomly, by an experienced

operator or by an artificial intelligent inference routine. For the example presented in

this paper, waypoints are created by a slight perturbation of existing operating points.

This ensures better variance in theH. The fabricated points should be weighted heavily

in equation 1 to ensure that they will be tested. In the presented example, this is done

by assigning the points with high performances scores.

Example Applications
An industrial IMM was used to develop and test the GIPO platform. The details of the

experimental setup and the algorithms used to achieve an implementation of GIPO

are discussed below.

Experimental Setup

A 150-ton Engel IMM was instrumented with many sensors. Those used in this study

are, Coolant Temperature Into Mold, Coolant Temperature Out of Mold, Coolant

Flow Rate, Injection Speed, Screw Position, Hydraulic Back Pressure, Barrel Temper-

atures, Barrel Pressures, Current Sensors, and an Eigen Smart Module (ESM). Lab

Windows and LabJack data acquisition hardware were used in conjunction with an

ESM to collect data from the IMM and store it for data mining and processing. A

Human Machine Interface was created using PyQtGraph, PyDaQmx, and other stan-

dard Python libraries to interface with the IMM. The IMM used in this study was

uniquely suited for the development and testing of the GIPO algorithm. In addition to

a large number of sensors the open architecture of the IMM control structure allowed

for the implementation of control algorithms to automate the injection pack, hold,

and cooling phases of the PIM. Model Predictive Controllers were implemented for

applicable control valves.

11



Data Filters

Standard soft filtering techniques to correct noisy signals and DC offsets were used.

In the case of the IMM, new data generated is considered at the end of every cycle,

this is the cycle dataset. The data generated is formatted to match the attribute list

of a (H) that has been created previously. For this implementation of GIPO, the

attribute and target list can be found in Table . It is widely accepted that pressure

and temperature sensor data are excellent indicators of PIM process. These are not

easy to control directly and are often impractical to obtain. For this reason, they are

not included in the attribute list. When formatting the data at the end of an injection

cycle and to match the hypothesis space attributes, one previous part was considered

from equation 2.

IAI Engine N Implementation

Initial Hypothesis Space

To initiate the process, a H was created by producing 100 parts with random process

setpoints within the values indicated in Table . This initial dataset represents the

baseline of the production process, in other words, this dataset represents the process

without a GIPO implementation. The data was formatted offline to include the at-

tributes listed in Table for 3 concurrent parts. These attributes were selected because

they are key variables in describing the state of the process for any given cycle. All

instances that resulted in a third party having poor quality were removed from the

H, meaning that the H, only contains sequences of instances that result in successful

production. The activity of managing the data to create meaningful H is left to the

main IAI after this initialization. The resulting target variable scores achieved in the

initial H are shown in Fig 2. The process production parameters targeted for process

optimization are the energy index Ci, quality index Qi, and the cycle time tc. These

are selected as they are common production performance measures in the injection
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molding industry.

Cycle time is the addition of cooling time, packing time, and holding time. The time

required to inject the polymer into the mold is negligible in the context of cycle time.

Injection speed is considered an important attribute inH. In this regard, injection time

is inherently included in the optimization routine of GIPO. The Ci is the addition of

the current drawn at each sampling instant over a cycle and then normalized. The

quality score is a label that is returned by the ESM as good-part, short shot or flashes

with a certainty p associated with it. The label is given a value of 1, 2, or 3 respectively

and the value p/2 is added to that number to give each part a quality score. The Qi

is the addition of the current part quality score and two previous part quality scores.

The initial H contains instances with attribute information and target information

that is used to optimize the PIM with intelligent setpoint selection

Setpoint Selection

When the mold opens and a part is ejected, the IAI Engine N algorithm is activated.

The most recent part cycle data is collected and formatted by the data filter and

compared to each instance in the H. All of the instances are given a score using

equation 1. The instance with the highest score is selected, in this way the IAI Engine

N provides a set of setpoints that are used to produce the next part. After producing

the initial H, a production run with the IAI alpha parameters αΛ, α1, and α2 equaling

0.01, 10, 0.01 respectively was run. The values selected for the α parameters in this

initial study are estimated to evenly distribute the weight of the importance associated

with the target variable and es, and a full parametric analysis is saved for future study.

Performance parameter data was extracted from the new dataset collected by the IAI

main engine and is shown as hypothesis space 2 in Fig. 3. Next, the process was

repeated changing the alpha parameter to αΛ = 0.01, α1 = 1, and α2 = 0.01, This

distribution of weights is selected to favor a reduction in cycle time which is evidenced

by the resulting hypothesis space 3 in Fig. 3.
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IAI Main Engine - Implementation

Setpoints that were included in the original H were available for the test resulting in

the creation of hypothesis space 2 and hypothesis space 3. The advantage of limiting

GIPO Engine N to a set of setpoints that have previously produced quality parts is

the inherent safety of ensuring that only desirable process conditions are available

to the process. The drawback to this is that optimal and safe process parameters

can be overlooked. A suggested methodology to improve the variance of the H while

mitigating risk is to vary available process parameters in a small incremental fashion.

In the case of the IMM, this was done by perturbation of the original waypointss by

a small amount from the real data points to create new synthetic points. A Bayesian

classifier was trained using the original H, and the trained classifier was used to

classify the quality score of the perturbed hypothesis space. The successful instances

were added to the original H and are called waypoints. Figs. 4 and 5 show the results

of how the perturbation added variance in the availability of key process setpoints.

These were not tested on the actual injection molding machine for safety reasons.

The investigation of fabricating waypoints lends itself well to future study in a virtual

environment.

Summary of Results

During the production of parts for all hypothesis spaces, the PIM was challenged.

The coolant temperature was set to 14 deg C and was allowed to cycle between tem-

peratures of 10 deg C to 18 deg C. While these conditions are severe and practically

unrealistic, they provide a significant disturbance to the system and challenge GIPO’s

capacity to affect the overall process performance. Conceptually, GIPO is successful

if it can improve the production output under these conditions. The key performance

results that were measured for the experiments are tabulated in Table . The creation

of the first hypothesis space with random setpoints resulted in the ”No GIPO” scores.

14



GIPO Test 1 is the result of implementing GIPO with the initial hypothesis space

and values for αΛ, α1, and α2 of 0.01, 10, and 0.01 respectively. These values provide

evenly weighted performance criteria. GIPO Test 2 used the values αΛ=0.01, α1 = 1,

and α2 = 0.01 for set-point selection which weights cycle time heavily.

Discussions and Future Research
The GIPO approach formulated here is meant to help ease the pragmatic incorporation

of I4 technologies, such as data mining and machine learning, into complex manufac-

turing systems to improve an overall process. The work presented is an introduction

to the GIPO methodology. The initial formulation of GIPO has produced many op-

portunities for future research in terms of parametric studies, intelligent optimization

routines with the study of waypoints, comparative studies of different machine learn-

ing and data mining methodologies, and case studies using different manufacturing

processes.

The purpose of this initial formulation study was the incorporation of the algo-

rithm into the PIM and demonstration the functionality of the methodology. The tools

required to properly automate an intelligent autonomous system are broad and exist

across several scientific research fields. Some key areas of improvement and future

research are identified concerning each of the three main components of GIPO below.

Data Filters

When considering large amounts of data, there are several filtering, data-mining, and

data pre-processing techniques available for the preparation of datasets. The transla-

tion of industrial big data into a workable data set is an active research topic in the

field of data science. In practical applications, many sensors are subjected to noise.

Adaptive filtering is one tactic to remove the noise that would be difficult to process
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for many artificial intelligence algorithms. This is also true for missing data or false

data. In these scenarios, first-principle models and predictors can be used to validate,

repair or infer data online [22].

IAI Engine 1 - Setpoint Selector

The optimization routine used in this study is strongly based on a K-nearest neighbors

algorithm. Several other optimization tactics are well developed and appropriate for

the GIPO platform. The performance of variations of GIPO resulting from using

different optimization approaches is identified as an area of interest for future study.

Examples of algorithms that could be considered to this end include fuzzy networks,

genetic algorithms, and a host of offline search methods to name a few. Each of these

algorithms has characteristics associated with them that would likely make them well

suited for different applications.

IAI Main Engine - Implementation

In the case presented here, GIPO is limited to one machine. The overall process is

relatively small in the context of a connected manufacturing plant. The main intelligent

routine driving the evolution of theH, retained successful operating points. The points

were classified using data from an ESM. Some initial context on this can be found

in [16]. The methodology of updating and adding waypoints can be enhanced using

machine learning methods. The advantages of pattern recognition and inference models

could be expected to significantly improve the capacity of GIPO to identify optimal

settings for process control. Especially, when considering large plants that are likely

very complex. This is saved for future study.
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GIPO Scalability

In the example presented here, GIPO is a distributed intelligence over two engines.

Where one engine populates the hypothesis space of an operating engine, GIPO Engine

N. This structure can be adapted so that a GIPO main engine is used to populate and

update the H of several GIPO Engines. An example flow chart depicting this structure

can be found in Fig. 6. This structure allows the inclusion of complex dynamics in a

supervisory sense while excluding complex models at the operating level of a plant.

The purpose of this structure is to create a workflow for machinery where different

components can collaborate effectively. The simulation and implementation of large

GIPO platforms is another area of research yet to be conducted.

Conclusion
As intelligent systems become the new factory standard, it is necessary to develop

methodologies for the pragmatic inclusion of new technologies offered by I4. To achieve

this, multiple intelligent system approaches need to be considered and tested until the

manufacturing community converges on a set of standards and best practices. The

study presented here is a formulation of an intelligent system methodology tested on

an PIM. Production tests show the functionality of the introduced GIPO architecture

and help define the shape of future research that can be done to validate and expand on

the basic GIPO structure. The fourth industrial revolution is disrupting the traditional

manufacturing world, as a research community it is our responsibility to usher in this

new age of intelligent manufacturing through experimentation and discovery. The

formulation of GIPO aims to contribute to this end.
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Tables

Table Attribute list
Atributes Values Units

Injection Setpoint 50-112 mm/s
Packing Setpoint 0-160 MPa
Holding Setpoint 0-160 MPa
Plasticate Setpoint 0-160 MPa
Cool Time Setpoint 5-20 seconds
Pack Time Setpoint 0-10 seconds
Hold Time Setpoint 0-10 seconds

Coolant Flow Rate Setpoint 0-30 L/min
Coolant Temperature (In-Out) 10-25 ◦C

Coolant Flow Rate 0-30 L/min
Injection Speed 0-112 mm/sec
Screw Position 21.6 cm

Hydraulic Back Pressure 0-160 MPA
Barrel Temperatures 200 ◦C

Barrel Pressure 0-20 MPA
Current Sensors 0-50 Amps

Eigen Smart Module (ESM) Quality Short Shot, %
Good Part, %

Flash, %

Table Results of Different GIPO weights for Performance criteria
Test

Descriptor
Energy
Score

Average

Quality
Score

Average

Cycle
Time

Average

No GIPO 6.79 2.83 14.23
GIPO - Test1 5.21 3.10 16.58
GIPO - Test2 8.39 3.25 11.00
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Figure 1: GIPO Flow Chart
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Figure 2: Way Points - Cycle Time Variables

Figure 3: Hypothesis Space Visualization
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Figure 4: Way Points - Injection Variables

Figure 5: Way Points - Cycle Time Variables

25



Existing 
Controllers

Data 
Filter

Multivariable
Plant 1

Cycle Data

 IAI 
Engine 1
 Classifer

 IAI
Main Engine

Updater

Existing 
Controllers

Data 
Filter

Multivariable
Plant 2

Cycle Data

 IAI 
Engine 2
 Classifer

Existing 
Controllers

Data 
Filter

Multivariable
Plant 3

Cycle Data

 IAI 
Engine n
 Classifer

Figure 6: Way Points - Cycle Time Variables
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