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Abstract

A novel parameter estimation method is proposed for the permanent magnet synchronous generator (PMSG), which is imple-

mented by an enhanced self-learning particle swarm optimization algorithm with Levy flight (SLPSO), and the problem of lower

parameter estimation precision of standard PSO is obviated. This method injects currents of different intensities into the d-axis

in a time-sharing manner to solve the problem of equation under-ranking, and the mathematical model for full-rank parameter

estimation is developed. The speed term of PSO is simplified to expedite the convergence of PSO, and a strategy with Chaotic

decline for the inertia weight of PSO is adopted to strengthen its ability to jump out of the local optimum. Moreover, the

self-learning dense fleeing strategy (SLDF) is proposed where particles perform diffusion learning based on population density

information and Levy flight, the evolutionary unitary problem and human intervention in the evolutionary process is averted.

Furthermore, the memory tempering annealing algorithm (MTA) and greedy algorithm (GA) is integrated into the algorithm,

MTA can facilitate the exploration of potentially better regions, and GA for local optimization enhances the convergence speed

and accuracy in late stage of the algorithm. Comparing the proposed method with several existing PSO algorithms through

simulation and experiments, the experimental data show that the proposed method can effectively track variable parameters

under different working conditions and has better robustness.
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1 Introduction
Different from fossil fuel, wind energy is a renewable resource
with abundant reserves and broad commercial prospects, and it
has been widely applied to power generation [1]. Permanent
Magnet Synchronous Generator (PMSG) as the core
equipment of power generation series, it has higher market
acceptance for its better suitability for low wind speed, low
energy consumption and lower subsequent maintenance cost.
Unfortunately, the parameters of PMSG are different under
different operating conditions [4], and this will prevent the
controller from working well and may even cause
malfunctions, therefore, the precise estimation of the
parameters is essential.

Online parameter estimation methods mainly include:
extended Kalman filter algorithm [5-6], model reference
adaptive system [7-8], least square method [9-10], neural
network [11-12], genetic algorithm [13-14], observer-based
method [15], etc. In [5-6], the extended Kalman filter method
(EKF) is often used to estimate the resistance and flux linkage
parameters of the generator, but its computation of matrix is
relatively larger and the appropriate Q and R matrices are not
easy to choose. In [7-8], the model reference adaptive system
(MRAS) was used for parameter estimation, which solves the
equation under-ranking problem by fixing one parameter to
estimate the other two parameters, and the experiments show
that its estimation effect is better, however, it ignores the fact
that the parameters of machine are strongly coupled, which
also limits its dynamic performance, moreover, the design of

adaptive law is complicated. Compared with other methods,
the least squares method (LS) in [9-10] has the advantages of
better convergence speed and easy realization, but the
accuracy and robustness of its parameter estimation are harder
to be satisfied. [11-12] used neural network (NN) to estimate
the machine parameters. The algorithm has high accuracy, but
if the tuning criterion is not implemented properly, the method
will fall into a local minimum or overfitting. [13-14] proposed
genetic algorithm (GA) to estimate parameters, this method
has smaller error, but suffers from premature and
computational problems. Moreover, the problem of the
equation being under-ranked is ignored. The observer-based
method in [15] has better performance in estimating
parameters, however, the robustness is not enough when
dealing with strongly coupled problems with parameters.

With the measurement data and a suitable objective
function, an ideal automatic parameter estimation method is
available by the bionic search optimization method. More
particularly, the particle swarm optimization (PSO) algorithm
benefits from simple implementation, higher search speed,
parallel search in the solution space, and is powerful in
addressing multi-parameter estimation problems [16-17]. In
[18], the PSO was used to estimate the machine parameters,
however, the PSO tends to fall into local optimality and cannot
estimate all parameters well. The lower precision of PSO
parameter estimation is attributed to the fact that its
parameters are constant, hence, in [19], by changing the
constant inertia weights of PSO to a linear decreasing
approach, and experimental results showed better performance.



[20] employed a Gaussian mutation for the extreme values of
PSO to enable PSO jumping out of the local optimum and the
parameter estimation accuracy was superior. [21] simplified
the speed term of PSO to make the convergence speed of PSO
better. [22] incorporated simulated annealing algorithm (SA)
to PSO, and the result proved that its accuracy is enhanced.
The above improvement methods are still difficult to prevent
PSO from falling into the local optimum problem. Moreover,
there is lack of theoretical basis for evaluating multiple
parameters when the equation is under-ranked.

To adress the problem of equation under-ranking and to
further improve the performance of PSO parameter estimation,
a parameter estimation method based on SLPSO is proposed.
The main contributions are summarized as follows:

1) The negative sequence weakening current and id = 0
current are injected into the d-axis in time sharing, the same
amount of data is collected under the two states, and a
mathematical model for full-rank parameter estimation is
developed.

2) The speed term of PSO is simplified to improve the
convergence speed in the later stage. Moreover, the Chaos
decreasing strategy is adopted for the inertia weight to
strengthen the global search ability.

3) A self-learning dense fleeing strategy (SLDF) based on
population density information and Levy flight is designed to
allow particles to learn deeply based on population density,
The problem of premature algorithmic maturation and human
intervention in the evolutionary process is prevented.

4) The memory tempering annealing (MTA) is integrated
into the PSO to make it explore potential better areas
(exploration), and the greedy algorithm (GA) is also
introduced late in the evolution to accelerate the convergence
of the algorithm to better regions (excavation). Simulation and
experimental results show that the proposed method has better
estimation accuracy and precision than other PSO methods.

The remainder of this paper is organized as follows. The
full-rank estimation mathematical model is designed in section
2. The principle of proposed method is detail described in
section 3. The scheme of parameter estimation and the
optimization process and steps are described in section 4. The
simulation and experiment results and analysis are given in
section 5. Finally, some conclusions are presented in section 6.

2 PMSG model
The voltage equation of PMSG under the d-q coordinate
system can be expressed as (1)
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where R is stator resistance, ud, uq, id, iq are the voltages and
currents of the d-axis and q-axis, Ld, Lq are the stator
inductances of the d-axis and q-axis, ωe is the electrical
angular velocity, ψm is permanent magnet flux linkage.

The steady-state voltage equation in the d-q coordinate
system is usually expressed as (2)
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The rank of (2) is 2, which has an under-rank problem in the
case of estimating 4 parameters. Most scholars employ the
strategy of injecting id ≠ 0 (negative sequence weakening
current) and id = 0 current in the d-axis to solve the under-
ranking problem [23]. The injection form is shown in Fig. 1.

Fig. 1 Diagram of the injected form
Collecting the same amount of data under the two states of

id =0 and id = -2 to obtain the 4th-order full-rank discrete
equation, which can be expersses as
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where k is the current number of iterations, ud0(k), uq0(k), iq0(k)
and ωe(k) are the data sampled for the k-th time in 0-t1 time in
Fig. 1, ud1(k), uq1(k), id1(k) and iq1(k) are the k-th collected data
in t1- t2 time.

3 Enhanced self-learning particle swarm
optimization algorithm with levy flight
3.1 Simple particle swarm optimization

The principle of PSO is to continuously approach the position
with a smaller fitness value to obtain the optimal solution to
the problem. The speed and position of the particle is updated
in a way that can be expressed as
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where vi and xi are the velocity and position of particle
respectively, Pibest is the best position found by the particle,
Pgbest is the best position of the particle swarm, r1 and r2 are
random numbers between 0 and 1, c1 and c2 are the
acceleration coefficients.

The velocity of particles is too divergent in the late stage of
the algorithm will lead to a slow convergence [24], therefore,
a simplified particle swarm optimization (SPSO) is proposed,
and (4) is simplified as

i i

1
1 1 2 2= ( ) ( )
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k k k k k kx wx c r P x c r P x     (5)

3.2 Chaos decreasing strategy



The inertia weight w is an important parameter that affects the
performance of SPSO, and tt generally decreases linearly from
0.9 to 0.4, and its expression can be expressed as

max max min
max

( )
k
kw w w w   (6)

where wmax is the initial inertia weight, wmin is the the
minimum inertia weight, kmax is the maximum number of
iterations.

Larger inertia weights w favor global search, and
conversely, smaller one favor local search and convergence.
However, the algorithm progressively enhances the capability
of local search (linear decreasing strategy) and SPSO is prone
to fall into local optimum. Chaotic mappings with the merits
of ergodicity and randomness can enhance evolutionary
diversity, and the logistic mapping form can be expressed as

4 (1 )z z z   (7)
where the initial value of z is between (0, 1) and is non-equal
to 0, 0.25, 0.5 and 1.

The improved inertia weight update equation can be
expressed as

max max min
max

( )
k
kw z w w w    (8)

This strategy combines the Logistic mapping with the linear
decline strategy and the random strategy, which improves the
performance of the linear decline strategy and the random
strategy, and prevent SPSO from falling into the local
optimum.

3.3 Self-learning dense fleeing

The organisms will flee from living densities that are too thin, and
the population density is expressed as

max
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d i P
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d

 (9)

where d(i, Pibest) represents the Euclidean length from the particle
i and the individual extreme, dmax represents the maximum
distance between the particle and the extreme.

As the iteration proceeds, the population gradually becomes
denser and there is an urgent need to exploit new living spaces.
Levy flight is a random search strategy between short-distance
flight and stochastic long-distance exploration that obeys the
Levy distribution. Levy flight is introduced into the update of
SPSO to facilitate its population evolutionary depth, and the Levy
flight position update equation is expressed as (10)
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where ⊕ represents element-by-element multiplication, α is
the step size associated with the scale of the problem of
interest, which is a random number in all dimensions of the
particle, and it can be expressed as

1 ( ( ))k k k k
i i l i iX X S X random size X     (11)

The step size Sl is calculated as
0.01lS S  (12)

where the factor 0.01 comes from L/100, which is the typical
step size for walking, where L is the typical length scale,
Otherwise, the Levy flight may become too aggressive, which
makes the new solution jump out of the optimization-seeking
domain (wasting computational power).

The step length S can be calculated by the Mantegna
algorithm for random walks, which can be expressed as [25]
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where μ and ν follow a Gaussian distribution, which can be
expressed as
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where  is standard Gamma function.
At higher PSO population density (s(i, Pibest)> rand()), Levy

flight is better able to facilitate PSO fleeing from areas of
lower survival density and protect the evolutionary vitality of
the population.

3.4 Global - domain enhancement

Simulated annealing (SA) accepts the position of poor fitness
with probability [26]. At temperature T, the fitness values of
the original position i and the new position j are fi and fj, and
the probability of receiving the new position is expressed as

 
j if f
T

ijP e



 (16)

When pij > rand(), accept the new position j; otherwise,
keep the original position i. The probability of accepting
inferior solutions in the early stage of SA is large, and it can
jump out of the local optimum.

Increasing the temperature (tempering) when receiving a
new solution, and continue to strengthen the search for
potential areas. In order to avoid repetition of calculation, the
number of tempering should not be too many, it is set to 5
times. Moreover, a memory is set to record the solution with
the best fitness value to prevent the forgetfulness of SA.

The above is the memory tempering annealing algorithm
(MTA), which contributes to the global exploration of PSO,
however, the PSO evolution degenerates to domain search at a
later stage (MTA does not accept the difference solution for 5
consecutive times) with limited evolutionary potential,
therefore, its replacement by the greedy algorithm (GA) with
simple principle and high efficiency of local search at a later
stage to enhance the fine exploitation locally.

Moreover, the initial value of GA is the PSO late-seeking
optimal value, which is closer to the real value than the
random initial value and contributes to better acquisition of the
global optimal value.

3.5 The proposed method



A strategy of chaotic decreasing inertia weights is used in SLPSO
to enhance the global search capability, and a scatter learning
strategy is designed based on the population density to facilitate
the particles to explore new lively intervals. Moreover, MTA is
introduced to assist the algorithm in exploring potentially better
regions, and GA is used to enhance the depth and speed of
evolution in the later stages of PSO.

The basic steps of SLPSO are stated as follows
Algorithm: SLPSO
1: Initialize parameters, data sampling and recording as in Fig.1, and
obtain initial individual and population extremes.
2: for 1< k < kmax

3: update particle position (xi) by (5) and evaluate their fitness value
(f(xi)).
4: get the fitness difference between the new and the old position Δf (fj -
fi,).
5: if Δf <0  Δf >0  exp(-Δf/T) > rand(), the particle enters the new
position, and the annealing operation is performed T=CT, or else, keep
the original position //T is the initial temperature and C is the coefficient
of annealing.
6: if Nt < 5, the tempering annealing T=2CT, or else, the local detailed
exploitation by GA by inheriting the optimal solution of PSO. // Nt is
number of tempering.
7: The inertia weight is chaotically decreasing by utilizing the (8), and
obtain the population density (s(i, Pibest)) by (9).
8: if s(i, Pibest)> rand(), SLDF strategy is initiated to explore new lively
areas and enhance population diversity.
9: if f(xi) < f(Pibest), update Pibest (Pibestxi).
10: if f(Pgbest)< f(Pibest), updatePgbest (Pgbest Pibest).
11: if the maximum number of iterations is met, the memory output
optimal parameters, or else, continue to iterate.

4 Principle of parameter estimation
The problem of parameter estimation can be transformed into an
optimization problem. The basic idea is to continuously adjust the
parameters of the adjustable model through SLPSO to minimize
the difference between the output of the reference model and the
adjustable model. Finally, the optimal solution output by SLPSO
is used as the identified parameter. The reference model is
expressed as

( , )y h p I (17)
where the h function is (3), p is the machine parameters, and p
= (R, Ld, Lq, ψm), I is the system input, and I= (id, iq, ωe), y is
the system output, and y= (ud, uq).

To estimate the parameters of machine, a model with the
same structure and adjustable parameters is designed, which
can be expressed as

ˆ ˆ( , )y h p I (18)
where p̂ is the adjustable model parameters, and p̂ =
( R̂ , ˆ

dL , ˆ
qL ˆm ), ŷ is the adjustable model output, and ŷ =

( ˆdu , ˆqu ).
It is necessary to compare the output of the reference model

and the adjustable model to accurately estimte the parameters.
PSO uses the fitness function to measure the accuracy of the
estimation parameters, which can be expressed as
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where 0ˆ ( )du k , 0ˆ ( )qu k , 1ˆ ( )du k and 1ˆ ( )qu k represent the d-q axis
voltages output by the adjustable model.

All parameters are estimated at the same time by (20)
4

1
ˆmin[ ( )] i ii

f p a f


 (20)
where ai is the weighting factor, which are all 0.25 for the
estimation parameters are equally important.

The principle block diagram of parameter estimation is
shown in Fig. 2.

Fig. 2 Block diagram of parameter identification

The steps of parameter estimation:
1) Initialize the SLPSO parameters.
2) Collect electrical signals, and obtain the outputs
0ˆ ( )du k , 0ˆ ( )qu k , 1ˆ ( )du k and 1ˆ ( )qu k of adjustable model from (18).
3) The initial fitness value f( p̂ (k)) is obtained from (20).
4) The current individual and group parameter extremes

ˆ pbes t
ip and ˆ gbestp are determined by the fitness value, and the

parameter is updated by (5), such as, the update of the R̂ can be
expressed as
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where ˆ pbestR and ˆ gbestR are the individuals and groups optimal

values of R̂ respectively, and other paremeters update in the
same way.

5) The inertia weight is updated by (8), and obtain the
population density (s(i, Pibest)) by (9).

6) Population density is high and the SLDF is initiated, and the



Metropolis principle is used to judge whether to accept new
parameters
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The p > rand(), update the parameter value, and annealing
operation is performed, otherwise, keep the original parameter
value.

8) Perform tempering annealing or GA optimization operations
according to the rules.

9) The maximum number of iterations is reached, the memory
output the optimal parameters, otherwise, continue to iteration.

5 Simulation and experimental analysis
5.1 Simulation analysis

To verify the effectiveness of the proposed method, a PMSG
vector control system is established in Matlab/simulink as shown
in Fig. 3.

Fig.3 Vector control system block diagram
The parameters of generator are shown in Table 1.

Table 1 Generator parameter table
Parameter Value Unit
Pole pairs 2 pairs
Resistance
Stator d-axis inductance

2.875
4.5

Ω
mH

Stator q-axis inductance
Permanent magnet flux
Rated power

13.5
0.17858
1.0

mH
Wb
kW

Rated speed
Rated torque

1500
15

rpm
N·m

The parameters of test algorithm are all set as follows: the
population number is 20, the number of iterations is the ratio of
the running time to the sampling time, the acceleration factor c1
and c2 take 1.6, the annealing temperature T and the coefficient C
are 1000 and 0.95 respectively, the simulation system runs for
0.2s, system sampling frequency is 10kHz.

The actual system is disturbed by uncertain factors and there
are random errors. Therefore, SLPSO, memory tempering
annealing PSO (MTAPSO), simulated annealing PSO (SAPSO)
and PSO are tested under different working conditions to
independently estimate machine parameters for 10 times, and take
the average value as the final output value.

1) Working condition 1
The estimation results and errors in the operating state with the

torque of 10N∙m and the speed of 1000 r/min are shown in Table
2.
Table 2 The results of parameter estimation under condition 1
Parameter PSO SAPSO MTAPSO SLPSO
R (Ω)
Error (%)
Ld (mH)
Error (%)
Lq (mH)
Error (%)
ψm (Wb)
Error (%)
Estimate time (s)

3.203
11.409
4.157
-7.622
13.255
-1.815
0.1703
-4.637
0.068

3.111
8.209
4.350
-3.333
13.652
1.126
0.1727
-3.293
0.062

3.005
4.522
4.424
-1.689
13.621
0.896
0.1747
-2.173
0.055

2.929
1.878
4.557
1.289
13.592
0.681
0.1759
-1.501
0.045

Fitness value 7.388 5.325 3.310 2.502
2) Working condition 2
Temperature has a great influence on machine parameters,

after the test machine runs for a period, its parameters become as:
R is 3.1625 Ω, Ld is 4.635 mH, Lq is 14.175 mH, and ψm is
0.169651 Wb. The Table 3 is the estimation results and errors
under the running state of the torque of 15 N·m and speed of
1500 r/min.
Table 3 The results of parameter estimation under condition 2

Parameter PSO SAPSO MTAPSO SLPSO
R (Ω)
Error (%)
Ld (mH)
Error (%)
Lq (mH)
Error (%)
ψm (Wb)
Error (%)
Estimate time (s)
Fitness value

2.794
-11.653
4.087
11.823
13.740
-3.069
0.1785
5.216
0.076
8.094

2.886
-8.743
4.304
-7.141
14.392
1.531
0.1757
3.566
0.064
5.892

2.990
-5.455
4.723
1.899
14.355
1.270
0.1737
2.387
0.057
3.681

3.225
1.976
4.711
1.640
14.289
0.804
0.1724
1.620
0.046
2.651

From the data in Tables II and III, we can see that PSO is
prone to fall into local optimum when dealing with
optimization problems with strongly coupled parameters, and
the accuracy is poor (the maximum estimation error is greater
than 11%), and its convergence speed is slow. The improved
SAPSO, MTAPSO and SLPSO have better accuracy than PSO,
and the estimation accuracy of SLPSO is within 2%, which is
3.44% better than MTAPSO and 6.29% better than SAPSO.
When the working conditions change, the accuracy of SLPSO
is still within 2%, the performance is less affected by external
influences, and its robustness is better.

5.2 Experimental verification

This paper uses RT-LAB to implement the hardware in the
loop simulation (HILS) of the machine drive system. The RT-
LAB experiment platform is shown in Fig. 4. The model of the
DSP controller is TMS320F2812, which runs the algorithm,
and RT-LAB (OP5600) is used to construct machine and
inverter.



(a) Test bench (b) HILS Configuration

Fig.4 RT-LAB experiment platform

The experimental test conditions are consistent with the
simulation.

1) Working condition 1
Fig. 5 to Fig. 7 show the results of parameter estimation and

the fitness curve, their parameter estimation results are shown in

Table 4.
Table 4 The experimental results of parameter estimation
under condition 1

Parameter PSO SAPSO MTAPSO SLPSO
R (Ω)
Error (%)
Ld (mH)
Error (%)
Lq (mH)
Error (%)
ψm (Wb)
Error (%)
Estimate time (s)
Fitness value

3.211
11.687
4.152
-7.733
13.251
-1.844
0.1690
-5.365
0.390
7.423

3.116
8.383
4.347
-3.400
13.653
1.133
0.1720
-3.685
0.380
5.337

3.011
4.730
4.579
1.756
13.628
0.948
0.1745
-2.285
0.370
3.319

2.930
1.913
4.558
1.289
13.593
0.689
0.1759
-1.501
0.260
2.504

(a)PSO (b) SAPSO

(c)MTAPSO (d)SLPSO

Fig.5. Parameter estimation results of R and ψm under condition 1.

The estimation curve of R and the ψm by PSO is close to stable
at 390ms, and its estimation value of R deviates from the true
value by nearly 11.7%, the SAPSO estimation curve stabilizes
within 8.5% of the true value at 380ms, and the MTAPSO
stabilizes at 4.8% of the true value at 370ms. Compared with the
other three methods, the convergence speed of the SLPSO

estimation curve is faster, and its estimation error is within 2% at
260ms, moreover, its estimation error is 1.913%, which is 0.6,
0.77 and 0.84 times smaller than that of MTAPSO, SAPSO and
PSO, respectively, demonstrating that the proposed method has
favorable global self-decoupling ability in dealing with the
strongly coupled parameter problem.



(a)PSO (b) SAPSO

(c)MTAPSO (d)SLPSO

Fig.6. Parameter estimation results of Ld and Lq under condition 1.

It can be seen from Fig. 6 that the inductance estimation
curve of PSO fluctuates greatly, and its error is 4.5% higher
than that of SAPSO. The inductance estimation accuracy of
MTAPSO is 1.5% higher than that of SAPSO. The exploration
domain of SLPSO with inertial weight chaotic decreasing
strategy is broader, which makes it better to escape from local
optimum, and the final estimation accuracy of inductance
remains within 1.3%.

Fig.7. The curve of fitness function under condition 1.

It can be seen from Fig. 7 that PSO falls into a local
optimum, which causes its fitness value curve to converge to
7.388 at 390ms. The fitness values of SAPSO and MTAPSO
are smaller than PSO, which are 5.337 and 3.319 respectively.
MTAPSO stabilizes at 370ms, and SLPSO converges to 2.504
in 260ms, which shows that SLPSO has better accuracy and

convergence speed than other methods.
2) Working condition 2
Fig. 8 to Fig. 10 show the results of parameter estimation and

the fitness curve under condition 2, and their parameter
estimation results are shown in Table 5.
Table 5 The experimental results of parameter estimation
under condition 2

Parameter PSO SAPSO MTAPSO SLPSO
R (Ω)
Error (%)
Ld (mH)
Error (%)
Lq (mH)
Error (%)
ψm (Wb)
Error (%)
Estimate time (s)
Fitness value

2.782
-12.032
4.082
11.931
13.701
-3.344
0.1791
5.570
0.48
8.318

2.884
-8.806
4.387
-5.351
14.408
1.644
0.1761
3.801
0.42
5.990

2.977
-5.866
4.725
-1.942
14.373
1.397
0.1743
2.740
0.380
3.747

3.225
1.976
4.713
1.683
14.290
0.811
0.1724
1.620
0.260
2.657

Fig. 8 shows the estimation curves of R and ψm by the four
algorithms when the machine parameters and operating
conditions change. The estimation curve of PSO fluctuates
greatly, and its error exceeds 12%. The curves of SAPSO,
MTAPSO, and SLPSO also fluctuate. SLPSO has a smaller
fluctuation, which is only 0.095% higher than that under working
condition 1, and the estimation accuracy is maintained better than



other methods.

(a)PSO (b) SAPSO

(c)MTAPSO (d)SLPSO

Fig.8. Parameter estimation results of R and ψm under condition 2.

(a)PSO (b) SAPSO

(c)MTAPSO (d)SLPSO

Fig.9. Parameter estimation results of Ld and Lq under condition 2.



Fig. 9 shows the estimation curves of inductance by the four
algorithms. Changes in working conditions and parameters
cause the system to fluctuate. PSO is greatly affected, the
parameter estimation accuracy of inductance is reduced by
4.2%, the accuracy of the optimized SAPSO, MTAPSO and
SLPSO are reduced by 1.95%, 0.45% and 0.39% respectively.
The accuracy of SLPSO decreases relatively lower, and its
error remains within 2%.

Fig.10. The curve of fitness function under condition 2.

It can be seen from Fig. 10 that the fitness value curve of
PSO fluctuates greatly under the condition of increased
disturbance. SAPSO and MTAPSO have joined SA, the
estimation accuracy has been improved, and the accuracy of
MTAPSO with tempering and memory is better than SAPSO.
The fitness value of SLPSO with SLDF and global - domain
enhancement strategy is smaller than other methods, which
shows that its estimation accuracy and speed are better, and
changes in working conditions have little effect on it.

As a conclusion, the accuracy and speed of the parameter
estimation of PSO are less satisfactory. The estimation
accuracy of SAPSO and MTAPSO is better than that of PSO.
Moreover, the estimation accuracy and speed of the SLPSO
proposed in this paper are better than the other three schemes,
and it exhibits good robustness in the case of changing
working conditions and parameters.

6 Conclusion
To overcome the issue that estimated equation is under-ranked
and PSO is vulnerable to local optimum, a novel parameter
estimation method for machine in SLPSO is proposed. The
following conclusions are drawn from the analysis of the
experimental results under different scenarios.

1) The full-rank estimation equation is obtained by injecting
id=0 and negative-sequence weak magnetic currents in a time-
sharing manner, and the potential problem of divergence is
avoided for the optimal solution.

2) The chaotic inertia weight is used to facilitate SLPSO to
explore potentially better regions, and the SLDF based on
population density information and Levy flight is designed,
and the algorithm can adaptively perform deep learning or
exploitation operations to avoid population monotony and the
necessity of human intervention.

3) A global - domain enhancement strategy is devised, i.e.,
MTA as a tool to facilitate the algorithm in enhancing deep
learning and guaranteeing eco-activity, and GA for
accelerating the algorithm in fine-grained mining and
guaranteeing better convergence to better confidence intervals.

4) It is still able to estimate the parameters well under
different parameters and working conditions, and its
estimation accuracy is controlled at more than 98%, the
requirements of high-performance controllers and fault
detection demands can be better fulfilled.
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