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Abstract

Machine learning methods can be used as robust techniques to provide invaluable information for analyzing biological samples

in pharmaceutical industries, such as predicting the concentration of viral particles of interest in biological samples. Here, we

utilized both convolutional neural networks and random forests to predict the concentration of the samples containing measles,

mumps, rubella, and varicella-zoster viruses (ProQuad®) based on Raman and absorption spectroscopy. We prepared Raman

and absorption spectra datasets with known concentration values, then used the Raman and absorption signals individually and

together to train RFs and CNNs. We demonstrated that both RFs and CNNs can make predictions with R2 values as high as

95%. We proposed two different networks to jointly use the Raman and absorption spectra, where our results demonstrated that

concatenating the Raman and absorption data increases the prediction accuracy compared to using either Raman or absorption

spectrum alone. Additionally, we further verified the advantage of using joint Raman-absorption with principal component

analysis (PCA). Furthermore, our method can be extended to characterize properties other than concentration, such as the

type of viral particles.
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Abstract

Machine learning methods can be used as robust techniques to provide invaluable 
information for analyzing biological samples in pharmaceutical industries, such as 
predicting the concentration of viral particles of interest in biological samples. Here, we 
utilized both convolutional neural networks and random forests to predict the 
concentration of the samples containing measles, mumps, rubella, and varicella-zoster 
viruses (ProQuad®) based on Raman and absorption spectroscopy. We prepared Raman 
and absorption spectra datasets with known concentration values, then used the Raman 
and absorption signals individually and together to train RFs and CNNs. We demonstrated 
that both RFs and CNNs can make predictions with R2 values as high as 95%. We 
proposed two different networks to jointly use the Raman and absorption spectra, where 
our results demonstrated that concatenating the Raman and absorption data increases the 
prediction accuracy compared to using either Raman or absorption spectrum alone. 
Additionally, we further verified the advantage of using joint Raman-absorption with 
principal component analysis (PCA). Furthermore, our method can be extended to 
characterize properties other than concentration, such as the type of viral particles.

Keywords: convolutional neural networks, random forest, Raman spectroscopy, absorption 
spectroscopy, principal component analysis

Page 1 of 28 MicrobiologyOpen



1. Introduction

The recent outbreak of COVID-19 proved the importance of robust anti-viral medications to 
stop the spread of pandemic viral infections. Anti-viral drugs and vaccines are the two major 
solutions to keep viral infections at bay. A recent study suggested that, for example, the 
COVID-19 vaccine saved approximately 20 million human lives in one year [1]. Measles, 
mumps, rubella, and varicella (MMRV) are common viral childhood diseases that can have 
serious complications. Developing efficient methods to mass produce MMRV paves the way 
for limiting the spread of the MMRV globally. The vaccine development flourished in the early 
20th century, and Maurice Hilleman at Merck & Co., Inc., a pioneer in the development of 
vaccinations, developed Rubeovax™ in 1968, the first commercial live vaccine for measles 
[2]. Vaccine development and production have been continuously improving in upstream and 
downstream processing [3]. Vaccine production involves challenging processes such as viral 
vector development, effective purification, polishing steps, and formulation with stable storage 
conditions. These processes require comprehensive and continuous quality management to 
maintain the product’s efficacy and ensure public safety. With the advancement in viral vector-
driven gene therapies and vaccine production, there is a growing interest in improving the 
continuous production of virus-like particle (VLP)-based vaccines [4]. The development of 
continuous manufacturing processes in the vaccine industry demands rapid, robust, and 
continuous analytical methods (Process analytical technology (PAT) tools) to understand real-
time manufacturing processes [5].

Non-invasive in-line sensors such as Raman probes (Raman spectroscopy) hold great 
potential due to their higher sensitivity to read the molecular fingerprints of chemical and 
biological molecules, species, or products [6, 7]. Raman spectra possess clear spectral features 
that can be easily assigned to different chemical compounds. Additionally, minimal sample 
preparation is sufficient for making accurate quantitative predictions using Raman spectra [8]. 
In other words, Raman spectroscopy provides invaluable information for various analyte 
molecules even in ultra-low concentrations [9]. Similarly, absorption spectroscopy is a robust 
technique that, owing to its high sensitivity and large signal-to-noise ratio [10], has the 
potential to be implemented as a great tool to make predictions. Generally, both Raman and 
absorption spectra have been widely used for particle detection and identification [11–14] and 
quantitative analysis [15–17].

Recently machine learning (ML) has become popular for making predictions based on 
spectroscopy data. Both supervised and unsupervised ML techniques have been applied to 
Raman signals to make predictions [18]. Particularly, Raman spectroscopy has been utilized 
for cancer predictions [18]. For instance, techniques, such as principal component analysis or 
artificial neural networks have been utilized for detecting cervical cancer [19]. Furthermore, 
Raman signals have been utilized for classification problems, such as classifying bacteria [5, 
20–22] viral [23, 24], and fungal infections [25, 26]. Additionally, Raman spectroscopy has 
been applied for regression purposes, such as predicting the concentration of the markers of 
interest, such as sensing the pH and Lactate in body fluids [27]. Absorption spectroscopy also 
has been utilized for classification purposes, such as the characterization of proteins [28] 
classification of wines [29], and quantifying the concentration of organic acids [30]. 
Furthermore, the joint Raman and absorption spectra have been applied to predict the values 
of concentrations [31].

Previous studies, in particular, have confirmed the capability of ML techniques in making 
quantitative predictions based on Raman or absorption signals. However, a comparison of 
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these signals and their strength in making accurate ML-based predictions for viral samples, 
such as MMRV has not been studied before. Here, we aim to create methods based on Raman 
and absorption spectroscopy that enables monitoring of the concentration of the viral particles 
in well plates. Additionally, it is not known whether using Raman and absorption spectra 
simultaneously can boost the prediction accuracy compared to using only Raman or 
absorption spectra separately. In our previous study, we demonstrated that deep learning 
enables the efficient detection of bacteria, fungi, and mammalian cells in static dried-down 
conditions [22]. Following our previous study, we intend to build convolutional neural 
networks (CNNs) and random forests (RFs) models that accept the Raman or absorption 
spectra or their combination as the input and predict the concentration of samples containing 
MMRV.

2. Materials & Methods

2.1 Data acquisition

All these samples prepared in this study are based on the ProQuad®, which is a sterile, 
lyophilized, preservative-free, live virus vaccine that contains measles, mumps, rubella, and 
varicella-zoster viruses [32]. We procured ProQuad® (manufactured by Merck & Co., Inc., 
West Point, PA) from the Purdue College of pharmacy and stored it at -20°C. We prepared the 
linear dilutions of the ProQuad® vaccine with a step size of 4 % and an initial concentration of 
7.20E+05 plaque forming units/ml (PFU/mL) (Lyophilized ProQuad® + 10 µL Diluent). 
Throughout this article, we refer to the number of infective particles within the sample (PFU) 
as particles. All the Raman spectra of the ProQuad® dilutions were collected with the Renishaw 
in ViaTMQontorconfocal Raman microscope (Renishaw plc, Wotton-under-Edge, UK) [33]. 
We used a 785-nm excitation laser with 100 % (300mW) power and 10 s acquisition time (1 
accumulation). The spectral resolution of the spectra was 1 cm−1, and the spectrum ranged from 
101 to 3200 cm−1corresponding to 3194 Raman shifts. The samples were focused with a 5X 
objective of a microscope (LeicaDM2700M), and three replicate Raman spectra were collected 
for each dilution. The sample volume used for the measurement was 100 µL, and the substrate 
used for the measurements was a 96-well plate (CorningTM3635 UV-Transparent Microplates). 
The experiment was repeated once. The raw Raman spectral data was collected using WiRE 
5.5 software. Furthermore, we collected the absorption spectrum for ProQuad® dilutions using 
the BMG LABTECH, Inc microplate reader (CLARIOstar Plus, SN: 430-2173). The spectrum 
range was 220 nm to 1000 nm with a spectral resolution of 1 nm wavelength corresponding to 
781 wavelengths. The sample volume used for the measurement was 100 µL, and the substrate 
used for the measurements was a 96-well plate (CorningTM3635 UV-Transparent Microplates). 
We collected three spectral scans for each dilution. The experiment was repeated once. In total, 
the dataset includes Raman and absorption spectra for 25 different concentration values with 
three to six replicates for each value, making a total of 116 samples, where 20 % of this data is 
used for testing by 5-fold cross-validation as described in section 2.2.
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2.2 Machine learning modeling

We adopt two widely used ML techniques to relate the Raman and absorption spectra to 
the concentration values: the random forest (RF) and the convolutional neural network (CNN) 
techniques. Before training, to ensure the reproducibility of the results, all the models are 
initialized by setting the seed number to zero. To assess the accuracy of predictions, we use 
the values of the coefficient of determination (R2 scores). Further, to train the models, the 5-
fold cross-validation technique is used both for the CNNs and RFs. In this method, the whole 
data is split into five sections, where the model is trained five times, and each time four 
sections are used as the training dataset and one section as the testing dataset. The 5-fold 
cross-validation model ensures that all the data points fall into the testing dataset at least once, 
preventing biased predictions. The Sklearn [34] and Pytorch [35] modules in Python are used 
for modeling the RFs and CNNs, respectively.

Convolutional neural network (CNN) is a supervised machine learning technique that, in 
our case, takes one-dimensional signals as the input and identifies the important parts of the 
signal, which paves the way for automatic learning of various features and hidden aspects in 
the signal that are important for the regression. In other words, CNN can capture the spatial 
and temporal dependencies in the Raman or absorption spectrum. The general architectures of 
the deep learning models used in this study are similar, i.e., a feed-forward single CNN 
consisting of four convolutional layers followed by four fully connected layers when either 
Raman or absorption spectrum is used as the input, as shown in Fig 1 a. However, when it 
comes to using both the Raman and absorption spectra as the input, we use two different 
designs. In one design, we concatenate the Raman and absorption signals and feed them into a 
single CNN, as shown in Fig 1 a. In another design, a double CNN is created for feeding the 
inputs, as demonstrated in Fig 1 b. In the double CNN, the Raman and absorption spectrum are 
first fed into two separate networks with four convolutional layers and then two fully connected 
layers. Eventually, the outputs of each network are concatenated and fed into a network with 
two fully connected layers. In all models, the architecture used for convolutional layers is based 
on residual mapping following the deep residual learning method [36]. The presence of residual 
blocks with shortcut connections between inputs and outputs boosts the training stability and 
paves the way for having deeper layers [36].

Furthermore, the kernel size used for all the convolutional layers is three with zero paddings 
and strides of one. Additionally, all the networks are trained for 6000 epochs (iterations), where 
a further increase in the epochs does not significantly boost the prediction accuracy. We use 
the mean squared loss function as the criterion for training with the back-propagation 
techniques, where we adopt the stochastic gradient descent with momentum and adaptive 
learning rate, Adam [37], where the weight decay and learning rate are set to 0.1 and 10−8, 
respectively. Batch normalization and ReLU activation functions are applied consecutively at 
the end of each convolutional layer, and the ReLU function is applied at the end of each fully 
connected layer. After passing the last ReLU function, the data is mapped into one neuron as 
the output. The number of channels and neurons are hyperparameters that can be tuned for 
further accuracy. In the current study, we found that a maximum of 10 channels and 4000 
neurons leads to sufficient accuracy while at the same time avoiding over-fitting.

Random Forest (RF) regression is a supervised machine-learning technique that utilizes the 
ensemble average of multiple decision trees to make final predictions [38]. Each one of the 
trees makes its prediction of the concentration. As shown in Fig 2, the Raman, absorption, or 
their concatenated spectrum is used as the input with the concentration as the output. RF is a 
powerful regression technique that runs efficiently on larger datasets. RFs are generally 
suitable for making predictions in the training range. Additionally, we use the bootstrapping 
technique, where we select multiple training samples from the original training sample, and 
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these different samples are used for training each one of these decision trees. Bootstrapping 
reduces over-fitting chances and stabilizes the network. The squared error criterion in scikit-
learn [34] is used to measure the quality of splitting for 100 trees.

3. Results and discussions

We use CNN and RF as two powerful ML techniques, with different levels of preprocessing 
to identify the optimum predictions. Here, we discuss how the algorithms work with the test 
data generated using 5-fold cross-validation, where each fold can contain points both inside 
and outside of the training ranges. For CNN, we discuss whether a single or double CNN works 
better when both Raman and absorption spectra are used as the input.

In this study, CNN models are composed of multiple convolutional layers with a kernel size 
of 3, where, in each layer, by convolving around the signal, hidden features and patterns are 
learned. To expedite the learning process and improve the model performance, it is beneficial 
to preprocess the data before training the models. Thus, we apply baseline corrections and 
normalize the data using the standard normal variate method, i.e., subtracting each spectrum 
by its mean value and dividing by the standard deviation described by Romer et al. [39]. 
Additionally, normalizing the Raman spectrum makes intensities of the Raman and absorption 
spectrum to be approximately in the same order for further comparison. No baseline correction 
or normalization is required for the absorption spectrum since the difference between 
maximum and minimum values is relatively low. Additionally, normalizing the absorption data 
led to no significant boost in prediction accuracy. Finally, the Raman and absorption signals 
are smoothened using the Savitzky-Golay (SG) filter [39, 40]. Fig 3 demonstrates the Raman 
and absorption spectra before and after preprocessing for two different concentrations. In 
addition to normalization and applying filters, some studies trim the Raman spectrum to obtain 
the spectral range of interest [8]. In the current study, we did not observe any significant gain 
in the prediction accuracy when the Raman or absorption spectrum is trimmed, as we have 
shown, for example, for the RF method in the Appendix. Additionally, we analyzed how the 
predictions change with the subtraction of the control spectrum of solvent as described in the 
Appendix, where we noticed a reduction in the accuracy with the subtraction of the control 
spectrum. Therefore, we excluded the subtraction of the control spectrum step from 
preprocessing steps.

The R2 coefficients for the values of the 5-fold predictions for both RF and CNN are listed 
in Table. 1. The average R2 score for all the predictions is above 90%. However, the prediction 
accuracy is higher when the concatenated Raman-absorption spectrum is used for RF and CNN 
compared to the predictions based on either Raman or absorption spectrum. Furthermore, the 
prediction accuracy is slightly higher for RF compared to CNN in the hyperparameter space 
we studied. However, both RF and CNN lead to predictions with R2 values as high as 98% 
when the joint Raman-absorption data is used. Additionally, we note that the single CNN 
demonstrates higher prediction accuracy compared to the double CNN, which might be 
attributed to the low predictability of the absorption spectrum compared to the Raman 
spectrum, as the prediction accuracy is higher when only Raman is used compared n to when 
only absorption data is used. Furthermore, we have made a comparison between RF and 
support vector machine (SVM) methods in Appendix, where we note that RF predictions are 
slightly more accurate than SVM. Additionally, we visually demonstrate how the predictions 
of CNN and RF vary for the testing dataset in one of the folds in the 5-fold dataset. As 
demonstrated in Fig 4, prediction values based on the Raman spectrum are more in line with 
the actual values as opposed to the absorption spectrum, where the average R2 coefficient is 
lower. This difference can be attributed to the larger size of the Raman signal and, therefore, 
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larger regions of dissimilarity corresponding to different concentrations, which make Raman 
spectra more distinguishable from each other. Further, the use of joint Raman-absorption 
spectra boosts the prediction accuracy compared to the case when only Raman spectra are used.

The differences between the prediction accuracy of the Raman and the absorption spectra 
can further be understood through the principal component analysis (PCA). We use PCA to 
reduce the dimensionality of the Raman, absorption, and concatenated Raman-absorption 
spectra to 4, where the original size of the Raman and absorption spectra are 3194 and 781. Fig 
5 demonstrates how principal coordinate (PC) values differ at different concentration values. 
The distinction between PCA points at different concentrations is more evident for the Raman-
absorption spectrum as compared to the Raman or absorption spectrum. Additionally, we 
notice that for most cases, not only the prediction accuracy does not increase by conducting 
PCA, but also for the Raman and Raman-absorption data, the average R2 values slightly 
decrease when we compare Fig 5 d, and Fig 4. Therefore, for the current dataset, dimensionality 
reduction does not improve the prediction accuracy.

4. Conclusion

In the current study, the possibility of using absorption, Raman, and joint Raman-absorption 
spectrum to determine the concentration of the samples containing viral particles was 
investigated. RF and CNN, as two different machine learning algorithms, were utilized for 
making predictions, and the prediction accuracy was monitored using 5-fold cross-validation. 
We demonstrated that with sufficient preprocessing, both the Raman and absorption spectra 
could be used to create a surrogate to predict the values of concentration. In most cases, the 
Raman spectrum leads to more accurate predictions compared to the absorption spectrum. 
Moreover, concatenating Raman and absorption spectra improves the prediction accuracy both 
for RF and CNN. Furthermore, PCA analysis sheds light on the advantage of joint spectra over 
single usage of Raman or absorption spectrum as the points corresponding to different 
concentrations are further separated. We have demonstrated that the joint utilization of the 
Raman and absorption spectra paves the way for the real-time measurements of the 
concentration of the viral particles in well plates, which can be extended to different static and 
dynamics settings, such as microfluidic devices with different flow conditions.

The key limitations of this study can be listed as follows. a) the predictions, in general, work 
well when the unknown concentration values lie in the range of training datasets. Given that 
here we focused on relatively large concentration values (> 4 × 105/ml), the predictions for the 
low concentration values (<< 4 × 105/ml) are not reliable. b) the predictions are valid only for 
ProQuad® samples. Further training data points corresponding to different types of viral 
particles are required to extend the applicability of the current method.

In future studies, we intend to extend the range of predictions and develop a graphical user 
interface, which accepts the raw Raman and absorption data as the input and predicts the values 
of concentrations for different ML methods. Indeed, the current study can serve as a basic block 
for developing completely automated software that can capture the values of concentration for 
different types of viral particles using different machine learning algorithms. Furthermore, we 
aim to extend the predictions to include Raman spectroscopy in microfluidics under different 
flow conditions.
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Table 1: The R2 values of 5-fold cross-validation for the prediction of concentration 
for given Raman, absorption, and Raman-Absorption concatenated spectra

Fold Absorption Raman Raman-Absorption Concatenated R-A Absorption Raman Raman-Absorption
1 0.975 0.976 0.981 0.992 0.977 0.974 0.988
2 0.948 0.973 0.980 0.974 0.974 0.983 0.995
3 0.942 0.980 0.977 0.992 0.964 0.979 0.991
4 0.835 0.964 0.931 0.946 0.881 0.953 0.981
5 0.952 0.984 0.980 0.991 0.989 0.982 0.990

Ave 0.930 0.975 0.969 0.979 0.955 0.974 0.989

Figure legends

Fig 1: Schematic view of the neural network structure used when a) Raman, absorption, or 
concatenated Raman-absorption spectrum is used as the input b) both Raman and absorption spectra 
are used as separate inputs. The number of layers shown is for illustration purposes and does not 
reflect the actual values.

Fig 2: Schematic view of the RF composed of multiple decision trees with either Raman, absorption, 
or concatenated Raman-absorption spectrum as the input. ``A'' stands for the average. The number of 
nodes and trees shown are for illustration purposes and do not reflect the actual values.

Fig 3: Raw and preprocessed Raman and absorption plots at two different concentrations

Fig 4 a: Comparison of the predictions of the RF and CNN for one fold in the 5-fold cross-validation 
datasets when the Raman spectrum is used as the input

Fig 4 b: Comparison of the predictions of the RF and CNN for one fold in the 5-fold cross-validation 
datasets when absorption spectrum is used as the input

Fig 4 c: Comparison of the predictions of the RF and CNN for one fold in the 5-fold cross-validation 
datasets when the Raman-absorption spectrum is used as the input in the single network

Fig 4 d: Comparison of the predictions of the RF and CNN for one fold in the 5-fold cross-validation 
datasets when the Raman-absorption spectrum is used as the input in the double network

Fig 5 a: Comparison of the PCA plots at different concentration values for the Raman data.

Fig 5 b: Comparison of the PCA plots at different concentration values for the absorption data.

Fig 5 c: Comparison of the PCA plots at different concentration values for the concatenated Raman-
absorption data.

Fig 5 d: Comparison of RF predictions with dimensionality reduction using PCA for different types of 
inputs. R-A stands for the concatenated Raman-absorption.
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SVM 
Fold Absorption Raman

1               0.664             0.980 
2               0.698             0.984 
3               0.777             0.981 
4               0.601             0.968 
5               0.621             0.984 

Ave            0.672             0.979

Raman-Absorption 
0.991 
0.990 
0.989 
0.980 
0.993 
0.988

R F  
Fold Absorption Raman

1               0.958             0.926 
2               0.972             0.935 
3               0.949             0.951 
4               0.873             0.914 
5               0.973             0.957 

Ave            0.945             0.937

Raman-Absorption 
0.933 
0.960 
0.940 
0.973 
0.973 
0.956

Absorption 
0.664 
0.698 
0.777 
0.601 
0.621 
0.672

SVM
Raman Raman-Absorption 
0.731                     0.701
0.746 0.790 
0.623 0.578 
0.758 0.793 
0.695 0.538 
0.710 0.680

R F  
Fold Absorption Raman

1               0.958             0.971 
2               0.972             0.982 
3               0.949             0.967 
4               0.873             0.961 
5               0.973             0.980 

Ave            0.945             0.972

Raman-Absorption 
0.987 
0.991 
0.975 
0.955 
0.988 
0.979

Appendix

Several ML algorithms can be used for making predictions using Raman and absorption spectra. Here, we present 
how the predictions might be different if one chooses a different ML algorithm, such as the support vector machine 
(SVM). Table A1 demonstrates the R2 coefficients for the values of the 5-fold predictions for the SVM method. 
The results are very similar to the values listed for the RF method for the Raman and the concatenated Raman-
absorption spectrum. However, for the absorption spectrum, we note that the RF predictions are more accurate 
than SVM.

Table A1: The R2 values of 5-fold cross-validation for the prediction of concentration for the Raman, absorption, and concatenated Raman-
absorption spectrum using the SVM method

Furthermore, we demonstrate how the prediction R2 values change if the input dimension is reduced to 4 using 
PCA for the RF and SVM methods. As shown in Table A2, we note that dimensionality reduction, in this case, 
significantly decreases the R2 values, particularly for the SVM method.

Table A2: The R2 values of 5-fold cross-validation for the prediction of concentration for the Raman, absorption, and concatenated Raman-
absorption spectrum using PCA

The background noise can affect the Raman and absorption spectra, particularly at low Raman shifts and 
wavelengths. As a result, in this section, we remove the initial parts of the Raman (Raman shift < 300 cm-1) and 
absorption spectrum (λ < 250 nm). As shown in Table A3, we note that the prediction accuracies do not change 
significantly with trimming. Therefore, we used the entire spectra for prediction. Indeed, one of the advantages 
of using machine learning techniques is that these techniques automatically detect which part of the signal is 
important. Fig A1 demonstrates the values of importance for the Raman and absorption spectra before and after 
trimming. The importance values are obtained automatically from the Sklearn importance attribute for the RF 
method [34]. As evident, we do not notice any significant shift in the important regions of the signals.

Table A3: The R2 values of 5-fold cross-validation for the prediction of concentration for the trimmed Raman, absorption, and concatenated 
Raman-absorption spectrum using the RF method
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R F  
Fold Absorption Raman

1               0.975             0.920 
2               0.982             0.983 
3               0.971             0.931 
4               0.882             0.866 
5               0.989             0.947 

Ave            0.959             0.972

Raman-Absorption 
0.981 
0.991 
0.948 
0.917 
0.974 
0.962

In this study, we did not subtract the control spectrum of the solvent (sterile water) from the Raman and absorption 
spectrum to minimize the amount of preprocessing. Here, we demonstrate how the prediction accuracies change 
if we subtract the control data from all the spectrums. Fig A2 demonstrates the comparison of the Raman and 
absorption spectrum for samples that contain viral particles. As evident, the presence of viral particles induces 
noticeable changes at most Raman shifts. Further, the absorption signal at all wavelengths is different when viral 
particles are introduced. Additionally, we presented the spectrum with the water data subtracted. Table A4 
demonstrates R2 values for predictions of the RF method using the spectrum with water data subtracted. We note 
that the R2 values decrease with the subtraction of water data compared to the values presented in Table A3. 
Therefore, we excluded the subtraction of the water spectrum step in the preprocessing.

Table A4: The R2 values of 5-fold cross-validation for the prediction of concentration for the trimmed Raman, absorption, and concatenated 
Raman-absorption spectrum using the RF method with control data being subtracted

Appendix Fig A1 a: Importance of each point in the Raman shift in the regression based on the RF 
method

Appendix Fig A1 b: Importance of each point in the wavelength in the regression based on the RF 
method

Appendix Fig A2: Preprocessed Raman, absorption, and the control (sterile water) spectrum plots in 
addition to plots with background subtracted
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